Chapter 9

Not well-posed results

9.1 Introduction

For the second order differential operator in R? with real analytic coefficient
a(xo,z1) > 0 defined near the origin

P = —D} + a(zg,r1)D3

the Cauchy problem is C*>° well posed near the origin ([40]). Since then it has
been conjectured that the Cauchy problem is C'* well posed for any second
order differential operator of divergence form with real analytic coefficients

Pu = —Dgu + Z D, (aij(x)Dx].u), a;j(x) = aj;i(x)

ij=1
where a;;(x) are real analytic and

n

3 aii(2)&g >0, VE = (&,....6,) €R™

7,j=1

In Section 8.1 we have shown that the operator P,,,q is of divergence form and
hence this gives a counter example of the conjecture. In this chapter we show
somewhat stronger assertion on the well-posedness of the Cauchy problem for
P04, that is the Cauchy problem for P,,,q + Q is not 4(*) well posed for any
s > 6 whatever the lower order term () is. Recall that the coefficients of P4
are not only real analytic but also polynomials. This is a quite unexpected fact.
On the other hand note that the Cauchy problem for Py,,q+ @ is 7(*) well posed
for any 1 < s < 2 and for any lower order term (), which is a particular case of
the general result proved in [9].
Let us consider again

(9.1.1) Prod(x, D) = —D2 + 221Dy Dy + D? + 23 D3

in R3. Then we have
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Theorem 9.1.1 ([49]) The Cauchy problem for

2
P(z,D) = Ppoa(z,D) + Y _b;D;
j=0

is not locally solvable at the origin in v if s > 6 for any by, by, by € C. In
particular the Cauchy problem for Ppoq is not C°° well posed for any lower
order term.

It is easy to modify the proof of Theorem 8.1.1 to get

Proposition 9.1.1 The Cauchy problem for

1
P(2,D) = Pmoa(2, D)+ Y _b;D;

§=0
is not locally solvable in v®) if s > 5 for any by, by € C.

Thus in order to prove Theorem 9.1.1 we may assume that by # 0. More-
over, making a change of the coordinate system; (xg,x1,x2) — (zg,z1, —22) if
necessary, we may assume that by € C\ R™.

In Section 10.2, following [18], [23] we construct an asymptotic solution Uy
to PUy = 0 which contradicts the a priori estimates, derived in Section 10.4,
when A — oo and hence finally we prove Theorem 9.1.1.

9.2 Asymptotic solutions

Let us consider

2
P =—D§+2x:DoDy+ D} +23D5 + > b;D;, b €C.
7=0

Make a change of coordinates system
zo=A""yo, T1 =AY, w2= A"y,
so that we have

Py = —A\"2D2 + 20\ Yy1 Dy Dy + D? 4+ X\"2y3 D3
+b2Dy + A"2b1 Dy + A" 3by Dy
We switch the notation to x and set by = b so that we study
Py = —A"2Dj 4+ 2\ 'z, Dy Dy + DI + A2z} D3
+bDy + A72b1 Dy 4+ A" 3by Dy
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Let us denote
Ey = exp (iN2zg +ido(z))
and compute /\_1E/\_1P,\E>\ which yields
ATLESIPAE) = M 22164, + 2, + 25 + b}
+{2$1D0 + 2¢w1 Dy + 2$1¢m0¢m2 + b¢x2 + szfqbzl - id)mlzl}
+A7' W (2, D) + A0 (2, D) + A *0®) (2, D)
where h()(x, D) are differential operators of order 2. We first assume that

Imb # 0.

Take y; € R small so that )
Im 2—3/1 >0
and work near the point (xg,z1,z2) = (t,y1,0) = x*. We solve the equation
(9.2.1) 28104, + G2, + 37 +b=0
imposing the condition
¢ =(z1 —y1) +iley —y1)? +ix3 on  xo =t
Noticing
¢ = (x1—y1) +i(z1 — y1)° + 23 + Gay (, 21, 32) (w0 — t) + O((wo — 1)?)
we conclude
Im¢ = (z1 — y1)2 + a;% + {Im Guo (t,y1,0) + R(x)}(xo —t)
where R(z) = O(|z — 2*|). Note that

¢z0($ )_ 2y1 - 9

and hence Im ¢, (z*) < 0. Writing o = Im ¢, (z*) we have

Im¢ = (x1 —y1)? + 22 4+ oz —t) + %(6_1(l‘0 —t) 4+ eR(x))?
2 2

~ (w0~ 1) = SR(@)’

2
€
= (o1 = y0)* + 7 + (20— 1)° — S R(@)’
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Thus —Im ¢ attains its strict maximum at z* in the set {z; |z — 2*| < §, 29 < t}
if 6 > 0 is small enough. Let L be a compact set in R3. For ¢t € R recall that
we denote L' = {x € L | 29 <t} and Ly = {x € L | 79 > t}. Then we have

Lemma 9.2.1 Let K be a small compact neighborhood of x*. Then we have

sup {—=Im ¢(z)} < 2|lm ¢g, («7)[7
IEeKt-"T

for any small T > 0. Let § > 0 be small. Then there exist v(§) > 0 and 7(6) > 0
such that

s {-Im(@)} < ()
zeKt+TN{|z—x*|>d}
for any T < 7(0).

Let us denote
AT'PAEy = ExQx,  Qx = Qo(z, D) + Q1(z,\, D)
where
Qo(x, D) = 2x1Dg + 2¢3, D1 + 221$gy Gy + bz, + 22505, — iy, 2,
{ Q1(z,\, D) = \"'hW (y, D) + A72h2) (2, D) + A=3h®) (2, D).

Let us set V), = 22]:0 vg\n) and determine v/(\") by solving the Cauchy problem

QO(CE,D)UE\M = _gg\n) = _leg\n_l)7
vg\O)(tvxl)xQ) == 17
vf\n)(t,xl,xg) =0, n>1

where v\ = 0 so that Q\Vx = Q1(z, A, D)'U/(\N). Hence

(922) )\_1P)\E)\V)\ = E)\Ql(l‘,)\,D)’Ug\N).

We turn to the case
beR, b<O.

We follow the arguments in [18]. We write b = —v2, v > 0. We solve the
equation (9.2.1) under the condition

¢ = —i(xg —t) —f—ix% on z1 = 0.

That is, one solves the equation ¢,, = \/ V2 — 23 — 221y, It is clear that

By = (v+z‘%) +0(a3).
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One can write

¢ = —i(zo — t) +iz3 + (v + i%)xl + R(x)

where R(x) = O(z3). Note that
Im¢ = —(vo —t) + x5+~ 27 + R(z)
= (zo—t)° +7v 'ai + 25+ R(z) + {~1 — (z0 — t) }(z0 — 1)

and hence the same assertion as Lemma 9.2.1 holds. Noting that ¢,, is different
from zero in an open neighborhood of x* = (¢,0,0) we can solve the transport
equation in the z; direction

QO(xa D)U,(\n) = _gg\n) = _leg\nil)a
Ug\O) (.’170,0,.272) = 17

vgn)(:vo,o,:vg) =0, n>1.

9.3 Lemmas

To estimate E,V), which is constructed in the previous section, we apply the
method of majorant following Ivrii [24]. Consider @ = 3_, <1 ba D* where we
assume that the coefficient of Dy is different from zero near x = x*. We first
recall the notion of majorant.

Definition 9.3.1 Let ®;(7,n) = pro Cijkmin", i = 1,2 be two formal power
series in (1,m). Then we write B

D) < Py
if |Cjk| < Coji for any j,k > 0. We say that ®2 is a majorant of ;.

Lemma 9.3.1 Let Qu = g and let
TaOTI‘a/‘ o *
o(r,pv) = Y ———I[D%(a")|.

Then we have

0 0
Lo (r,n; 9 o(r.m ) + ®(r.1:
57 (r,m;v) < C(7,m) an (1,m;v) + C(1,n)®(7,1; 9)

with some holomorphic C(7,n) at (0,0) with C(1,7n) > 0 which depends only on
Q.

Proof: Note that

82(1)7—77’ Z

% (Dov)(z*)| = (7, m; Dov).
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On the other hand from Qv = g one sees Dyv = Z?:l cjDjv 4 cov. Since
(7, m; fg) < (7, 1; f)®(7,7; 9) and hence

a n
5, 21 mv) < C(7,m) O @(r,n; Djv) + ®(7,m59)).
j=1

To conclude the assertion it is enough to note

|a/|7_a0,,7|o/|—1 B ‘a/‘Tdon\&W Tdon\d’\

al ajal - al

Lemma 9.3.2 Assume Qu =g and
2<I>*(7' ) > C(1 )2@*(7 )+ C(r,n)®(7,m;9)
87_ ’77 7”7 8/’7 7/’7 777 7/’759 )
®*(0,m) > @(0,n;v).

Then we have
(7, m;v) < ©*(7,m).

Proof: Let @ be a solution to the Cauchy problem
2<i)(7' )=C(7 )2&)(7 )+ C(1,n)®(1,1;9)
?7_ ) = 1 an >N 1 »159),
®(0,m) = (0, 7).

Then it is clear that ®(7,n;v) < ®(7,1) < ®*(1,7). O

Lemma 9.3.3 Assume 0 < a < da; and 0 < b < dby with some 0 < § < 1.
Then we have

0 (-0 -7 w0 -
0 (=005 <(-2-D)"

Proof: The assertion (i) follows from
n o Tyn N Tan
{Z(z - }{Z(a + a—1> }
_ E 4 _)n(ﬁ + << (5m n+m
2.5

<<Z<5mz )".
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To examine the second assertion it is enough to note that the coefficient of "7
in > (n/b)* Y (7/a)’ is b="a~™ while that of n"7™ in

is b="a"™(n +m)!/(nlm!). O

Here we recall that if ¢(7,7n) is holomorphic in a neighborhood of {(7,7) |
In| <b,|7| < a} then we have

o(rm) < (1= )M (1=3)7" sup Jo(rn)
IT|=a,|n|=b

which follows from the Cauchy’s integral formula. Assume that

- My\-1 A
¢ 1= —) " (1-3) ' B< (1= ——35) B.
tmm <A al) ( b1) < ay b1)
Lemma 9.3.4 Assume that Qu = g and
(0, m;v) <w (1~ %)_n, o(r,1;9) < L(1— 2 - g)_”eMW.

We also assume that Ba/b < (1 —9¢) and B < (1 —§)M. Then we have

O(r,m;v) <K Lw—l(l _T_ %)*neMm'
a

Proof: Let us denote (L > 1)

O* = Lw_l(l — 2 — %)_neM“".

It is easy to see by Lemma 9.3.3 that

0D+ O+
il (1. 1: ).
5 > C(t,m) an + C(1,n)®(1,1;9)

Then the assertion follows from Lemma 9.3.2. O

Let us denote
o7 = o(r,m;0\")

and hence ®7(0,n) =0 for n > 1 and ®{(0,7) = 1. We assume that

2n
n n+ly—n n—k T M\ —k=1 Mrw
(9.3.1) DY (7,n) < A" ];Ow k(1 — i g) eMTw,

For n = 0 this holds clearly. Suppose that (9.3.1) holds for <n — 1. Let

3
9= (XA @.D))ol ™ = Qi A D

=1
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and we first show that

2n
) . An—l—l)\—n n—kk‘ 1— Z _ Q —k—1 MTw'
(T, m59) < kZ:Ow (1———3)" e

As for terms ¢(x) D“u with |a| < 2 we have

(7. m;eD™u) < (1 - = L) 9 (r.m: D)
1 1
. )71[ 02 00 o

o1 Ty 9 9
<CO= =0 152 T aran T a2

]<I>(7',17;u).

We now estimate

{32 g2 927

-~ - -~ n—1-kz., _ Z _ ﬁ —k=1 Mrw
o7 aran ol 2 T TR ) e

k=0
which is bounded by
2(n—1) . ]
Z M2wn+1_kk!(1 - — = E)_k_l + 2Mu)n_k(kz + 1)!(1_1(1 T Q)—k—Q
k=0 a b a b
+wn—1—k(k + 2)!CL—2(1 T %)*k73
a
+Mwn_k(]€ + 1)!b_1(1 — 2 — %)7’“*2 +wn—1—k(k + 2)!a_1b_1(1 . 2 _ %),k,?,
_|_wn—1—k(k + 2)![)_2(1 T ﬂ)fka
a b
2n
< w(M?+2Ma™ + a7+ MY a7 4 b72) YR - - - )T
k=0

up to the factor A" A\~"*+1eM™ Taking A so that
A>M?*+2Ma ' +a 2+ Mb +a o 4572

we conclude that

2n

O(1,1;9) < A”“)F"wzw"*kk!(l T %)—k—leMm_
a
k=0

Recalling that ®%(0,7) = 0 < w™!(1 — %)_1, n > 1 for any w and applying
Lemma 9.3.4 we see

Lemma 9.3.5 We have

2n
O (1,7) < AT kz_ownkk!@ _ g _ g)"“‘leMW

for any w > 1.
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Lemma 9.3.6 There are h > 0 and 6§ > 0 such that

h'a‘ . 2n
Z —  sup \Do‘vg\ )(:r)] < Brtiym Zw”*kk!eM“".
o (6% |z—z*|<68 =0

Proof: Note that

la| 2n
n a, (n)/ x n+ly—n n—k N NN—k-1 Mnpw
Ea o | D%y (™) < A" kgow k!(1 " b) e

and hence for 0 < n <7y we have

la| 2n
z 77_' |Da’U§\n) (l‘*)| < Bn—i-l)\—n Z wn—kk!eMnow‘
ey @ k=0
This shows that
. D% (n) 2n
| ( ) ’<Z‘ ( )’|(:C_$*)a|SBTL—}—l)\—nan—kk!ele
k=0

for |z — x*| < np. From the Cauchy’s inequality it follows that

2n
sup |Dav§\n)(az)| < (770/2)_'0"04!3"“)\_"Zw”_kk!eMW
|z—z*|<no/2 k=0

and hence we have

hle! (n) N
Z o sup D" (z)| < B"TIAT" Zw”_ kle
o C|e—x* <8 k=0

for 2h < ng and 2§ < 1y with a possibly different B. O
Let us define

Z U(n)
where NV and w are chosen so that
w=4N, X=wBe"

where L will be determined later. Then we have for n < N

2n
Zw”_kk!eMl‘" <w eMWZ( ) <w eMl“’Z< )
k=0
and hence
hled "
Z —— sup |Dav§\ )(az)| < Btz Tnynethe

S Bn—l—l(B—le—L)nele — Be—Ln—&—le.
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In particular one has

hlel
(9.3.2) S sup D%V (a)|

(e%) -

< Be LN+4MiN _ Befe_L(L74M1)>\/4B_

On the other hand, we see

plal N
(9.3.3) Z — sup |[DVy(z)] < Z B el
n=0

N
Bw\n L
Miw Miw 4M; N e “MiA/B
- IBE:< ><_ wB = Be!™iN — B VB,
e 2 \ e e (&

9.4 A priori estimates

In this section assuming that the Cauchy problem for P(z, D) is v(*) well posed
we derive a priori estimates following [22], [24]. Let L be a compact set in R3.
Recall that

YWMEL) = {f €y R?) | suppu € L,3C > 0,492 f(2)] < C(a))*}
which is the Banach space equipped with the norm

Blel|92 £ ()]
e ()

In the following sections we fix A > 0 and § > 0 so that Lemma 9.3.6 holds and
hence we have (9.3.2) and (9.3.3). Consider

Py, =P\ 7x,\9¢)
where A™%2 = (A77°20, A" x1, A" 7%22) and o; > 0. Then we have

Lemma 9.4.1 Assume that the Cauchy problem for P is v) well posed near
the origin. Let W be a compact neighborhood of the origin. Then there are
c>0, C >0 such that

y hlel|02 Pyul
U iy < Cexp (c(A7° /7)Y 5=5)) exp (A7/* sup —————2—
ey £ Coxp (e 7)) exp 07/ T s FCIEES

for any u € ’y(()s)’h(Wo), anyt>0,7>0, any 1 < s’ <s, any 1 < k < s where
o= man{O'j}.

Proof: Assume that the Cauchy problem for P is 4(*) well posed. Let h > 0
and K be a compact neighborhood of the origin. From the standard arguments
it follows that there exists a neighborhood of the origin D such that for any
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f(z) € 7(()3) "(Ko) there is a u € C2(D) satisfying Pu = f in D and u = 0 in

zo < 0 such that for any compact set L C D there is C' > 0 such that
hllog f ()]

0 <C
lulco(r) ZSUP (@)

(see for example [39]). We may assume that K C D. Thus we have

Blel |92 Pl

el V@) €2 (o)

‘U|CO(L) <C Z sup

Let x(r) € ~/(%) (R), k < s, such that x(r) =1 for » <0, x(r) = 0 for »r > 1 and
set x1(zo) = x((xo —t)/7) so that

{ x1(xo) =1 =z <t,

X1(zo) =0 w0 >t+T.

Let u € ’y(()s)’h(Ko) and consider y;Pu. Let v € C?(D) be a solution to Pv =
x1Pu with v =0 in g < 0. Since Pv = Pu in zg < t and hence

hlel|o2 (x1 P
[ulcorey = [vlco(ryy < C;sup W

Recall that |02y, (x)] < C1PH1 (1% 7r~181 and hence

Blel|ge (v, P I plaligon az p
ZSUp 05 (x1Pu)| stup o 105" x11032 Pul

(al)s aqlas! (al)s

1 hle|9gry,]|0g2 Pul
<
Zsup arlag! (an!)s=H(ag!)*!

hla 1|‘a X1| |a2\‘aazpu’
< su 7.
Z Py al a22m0<t+'r ')
Since
hleal|geay | Cleal+1y=lea|pleal
sup —————— <
L o ST
1\1/(s—~) L\ 1/(s—r)
<C ( - ) chlel < ¢ ( - )
< Comn (2] (e < e (o)
we have
1\ 1/(s—n) |a‘\8aPu|
P 0] t < —_— _—
(9.4.1) lu|c ity < Cexp (c(T) ) ;mos;lt[jﬂ (o)



154 CHAPTER 9. NOT WELL-POSED RESULTS

Let u € 783)’h(W0). Then it is clear that u(\7x) € fyés)’h(Ko) for large A. For

v(z) = u(A\?x) we apply the inequality (9.4.1) with t = A=7°f, 7 = A77°% to get

AP0 1/ (s—r) hlel|og Pol
vloviwy < Cexp (¢ %) >§rf£& (al)?

where Pv = Pu(A\x) = (Pyu)(Ax) and hence
O [(Pau)(A7u)] = M= (92 Pyu) (X7 ).

Thus we have

o 1/(s—k) h\a|)\6|a| aa P
[t goyey < CeF) sup 9 (Pr)(z)
« xo <t++ (Oé)
og \1/(s—r) h\a|)\6-|a| a(p
o :E0§£++ (a) (Oé)
70 J 1/ (5=) /s’ laf |9
< e P2) T e s gy |?m|(>§7;f)<m)'
« To<t++ o
This proves the assertion. O

9.5 Proof of not well-posed results

Take x(x) € ’yén)(Wo) such that x(z) = 1 in a neighborhood of z* supported in

{lz —z*| <6} and 1 < k < s. Let us set Uy = E\Vy\x € fyés)’h(Wo) and note
|Ux(z*)| = 1. Then we have from (9.2.2)

P\U\ = (PAEAV))Xx + Z Cap(, N3 (EAVA)8 X
la|<1,1<]8]<2

= EAleg\N)X + Z Cap (T, \)OS (EAVA)IPx.

la|<1,1<|B]<2
To estimate the right-hand side we note

Lemma 9.5.1 We have

laf| 9o
Zsup W10r Bl < Cexp (eAY* + Asup{—Im ¢(x)}).
@ K (a!)s zeK

Proof: Recall that E) = exp (iA\?z2 + iA¢(z)). Since ¢(z) is real analytic in a
neighborhood K of x* then it is not difficult to check that

|3§6M¢(w)| < C’|°‘|+1()\ + ‘a‘)la\e—Alm ¢(m)’ reK
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and hence we have

(9.5.1) 02 Ey| < CleHL (A2 4 |o)lele=Ame@) 4 c K.
Noting that
lool ()2 lex] 2/e
WA+ )™ per
(al)®
we get the assertion. O

From Lemma 9.2.1 there exist v > 0 and 7 > 0 such that —Im ¢(x) < —v if
x €supp [08x]N{xg < t+7},0<7 <7, |3 >1. Then from Lemma 9.5.1 and
(9.3.3) it follows that

R07 (92 (EAVA)02 X))
7 o <t+T (7!)8

< Cexp (A —vh+e LM B71N).

(9.5.2)

We turn to E,\legN)X. Thanks to Lemma 9.2.1 we have —Im ¢(z) < 2ar
if x € supp [x] N {zxo < t+ 7} where a = |Im ¢, (2*)|. Thus from Lemma 9.5.1
and (9.3.2) it follows that

hlel|oe (BxQuo{™ y)|
9.5.3 su z A
(9:5:3) 2 e (@)’

< Cexp (A + 2ar\ — e E(L — 4M,)(4B)~1N).

Let s — s’ > 2. Take L large so that e “M;B~! < v and L > 4M; and
choose 7 > 0 such that

2a1 — e H(L —4My)(4B)"!' <0

then it is clear from (9.5.2) and (9.5.3) that
hllag (PAU, )|
sup —— -2

< Ce—ul)\
()= =
o ro<t+T .
with some v; > 0. We now assume
s > 6.

Recalling o9 = 1, 01 = 2, 0o = 4 and hence ¢ = 4 then we can choose s’ > 4
such that s — s’ > 2 and /s’ < 1. Taking 1 < k < s so that og/(s — k) < 1 we
now apply Lemma 9.4.1 to get

|U)\‘CO(Wt) S CB_C)\—’—O(A)
with some ¢ > 0 as A — oco. This gives a contradiction because
[Ux(z")] = 1.

This completes the proof of Theorem 9.1.1. O



