
Chapter 9

Not well-posed results

9.1 Introduction

For the second order di↵erential operator in R2 with real analytic coefficient
a(x0, x1) ≥ 0 defined near the origin

P = −D2
0 + a(x0, x1)D2

1

the Cauchy problem is C∞ well posed near the origin ([40]). Since then it has
been conjectured that the Cauchy problem is C∞ well posed for any second
order di↵erential operator of divergence form with real analytic coefficients

Pu = −D2
0u +

nX
i,j=1

Dxi(aij(x)Dxj u), aij(x) = aji(x)

where aij(x) are real analytic and
nX

i,j=1

aij(x)ξiξj ≥ 0, ∀ξ′ = (ξ1, ..., ξn) ∈ Rn.

In Section 8.1 we have shown that the operator Pmod is of divergence form and
hence this gives a counter example of the conjecture. In this chapter we show
somewhat stronger assertion on the well-posedness of the Cauchy problem for
Pmod, that is the Cauchy problem for Pmod + Q is not γ(s) well posed for any
s > 6 whatever the lower order term Q is. Recall that the coefficients of Pmod

are not only real analytic but also polynomials. This is a quite unexpected fact.
On the other hand note that the Cauchy problem for Pmod +Q is γ(s) well posed
for any 1 ≤ s ≤ 2 and for any lower order term Q, which is a particular case of
the general result proved in [9].

Let us consider again

(9.1.1) Pmod(x, D) = −D2
0 + 2x1D0D2 + D2

1 + x3
1D

2
2

in R3. Then we have

143



144 CHAPTER 9. NOT WELL-POSED RESULTS

Theorem 9.1.1 ([49]) The Cauchy problem for

P (x, D) = Pmod(x, D) +
2X

j=0

bjDj

is not locally solvable at the origin in γ(s) if s > 6 for any b0, b1, b2 ∈ C. In
particular the Cauchy problem for Pmod is not C∞ well posed for any lower
order term.

It is easy to modify the proof of Theorem 8.1.1 to get

Proposition 9.1.1 The Cauchy problem for

P (x, D) = Pmod(x, D) +
1X

j=0

bjDj

is not locally solvable in γ(s) if s > 5 for any b0, b1 ∈ C.

Thus in order to prove Theorem 9.1.1 we may assume that b2 ∕= 0. More-
over, making a change of the coordinate system; (x0, x1, x2) → (x0, x1,−x2) if
necessary, we may assume that b2 ∈ C \ R+.

In Section 10.2, following [18], [23] we construct an asymptotic solution Uλ

to PUλ = 0 which contradicts the a priori estimates, derived in Section 10.4,
when λ → ∞ and hence finally we prove Theorem 9.1.1.

9.2 Asymptotic solutions

Let us consider

P = −D2
0 + 2x1D0D2 + D2

1 + x3
1D

2
2 +

2X
j=0

bjDj , bj ∈ C.

Make a change of coordinates system

x0 = λ−1y0, x1 = λ−2y1, x2 = λ−4y2

so that we have

Pλ = −λ−2D2
0 + 2λ−1y1D0D2 + D2

1 + λ−2y3
1D2

2

+b2D2 + λ−2b1D1 + λ−3b0D0.

We switch the notation to x and set b2 = b so that we study

Pλ = −λ−2D2
0 + 2λ−1x1D0D2 + D2

1 + λ−2x3
1D

2
2

+bD2 + λ−2b1D1 + λ−3b0D0.
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Let us denote
Eλ = exp (iλ2x2 + iλφ(x))

and compute λ−1E−1
λ PλEλ which yields

λ−1E−1
λ PλEλ = λ

�
2x1φx0 + φ2

x1
+ x3

1 + b
 

+
�
2x1D0 + 2φx1D1 + 2x1φx0φx2 + bφx2 + 2x3

1φx1 − iφx1x1

 
+λ−1h(1)(x, D) + λ−2h(2)(x, D) + λ−3h(3)(x, D)

where h(i)(x, D) are di↵erential operators of order 2. We first assume that

Im b ∕= 0.

Take y1 ∈ R small so that

Im
b

2y1
> 0

and work near the point (x0, x1, x2) = (t, y1, 0) = x∗. We solve the equation

(9.2.1) 2x1φx0 + φ2
x1

+ x3
1 + b = 0

imposing the condition

φ = (x1 − y1) + i(x1 − y1)2 + ix2
2 on x0 = t.

Noticing

φ = (x1 − y1) + i(x1 − y1)2 + ix2
2 + φx0(t, x1, x2)(x0 − t) + O((x0 − t)2)

we conclude

Im φ = (x1 − y1)2 + x2
2 +

�
Im φx0(t, y1, 0) + R(x)

 
(x0 − t)

where R(x) = O(|x − x∗|). Note that

φx0(x
∗) =

−1 − b

2y1
− y2

1

2

and hence Im φx0(x
∗) < 0. Writing α = Im φx0(x

∗) we have

Im φ = (x1 − y1)2 + x2
2 + α(x0 − t) +

1
2
(�−1(x0 − t) + �R(x))2

−�−2

2
(x0 − t)2 − �2

2
R(x)2

= (x1 − y1)2 + x2
2 + (x0 − t)2 − �2

2
R(x)2

+
�
α − (

�−2

2
+ 1)(x0 − t)

 
(x0 − t) +

1
2
(�−1(x0 − t) + �R(x))2

= |x − x∗|2 − �2

2
R(x)2 +

1
2
(�−1(x0 − t) + �R(x))2

+
�
α − (

�−2

2
+ 1)(x0 − t)

 
(x0 − t).
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∗) we have

Im φ = (x1 − y1)2 + x2
2 + α(x0 − t) +
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2
(�−1(x0 − t) + �R(x))2

−�−2

2
(x0 − t)2 − �2

2
R(x)2

= (x1 − y1)2 + x2
2 + (x0 − t)2 − �2

2
R(x)2
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�
α − (

�−2

2
+ 1)(x0 − t)
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1
2
(�−1(x0 − t) + �R(x))2

= |x − x∗|2 − �2

2
R(x)2 +

1
2
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α − (

�−2

2
+ 1)(x0 − t)
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Thus −Im φ attains its strict maximum at x∗ in the set {x; |x− x∗| < δ, x0 ≤ t}
if δ > 0 is small enough. Let L be a compact set in R3. For t ∈ R recall that
we denote Lt = {x ∈ L | x0 ≤ t} and Lt = {x ∈ L | x0 ≥ t}. Then we have

Lemma 9.2.1 Let K be a small compact neighborhood of x∗. Then we have

sup
x∈Kt+⌧

{−Im φ(x)} ≤ 2|Im φx0(x
∗)|τ

for any small τ > 0. Let δ > 0 be small. Then there exist ν(δ) > 0 and τ(δ) > 0
such that

sup
x∈Kt+⌧∩{|x−x∗|≥δ}

{−Im φ(x)} ≤ −ν(δ)

for any τ ≤ τ(δ).

Let us denote

λ−1PλEλ = EλQλ, Qλ = Q0(x, D) + Q1(x, λ, D)

where(
Q0(x, D) = 2x1D0 + 2φx1D1 + 2x1φx0φx2 + bφx2 + 2x3

1φx1 − iφx1x1 ,

Q1(x, λ, D) = λ−1h(1)(y, D) + λ−2h(2)(x, D) + λ−3h(3)(x, D).

Let us set Vλ =
PN

n=0 v
(n)
λ and determine v

(n)
λ by solving the Cauchy problem

8>><
>>:

Q0(x, D)v(n)
λ = −g

(n)
λ = −Q1v

(n−1)
λ ,

v
(0)
λ (t, x1, x2) = 1,

v
(n)
λ (t, x1, x2) = 0, n ≥ 1

where v
(−1)
λ = 0 so that QλVλ = Q1(x, λ, D)v(N)

λ . Hence

(9.2.2) λ−1PλEλVλ = EλQ1(x, λ, D)v(N)
λ .

We turn to the case
b ∈ R, b < 0.

We follow the arguments in [18]. We write b = −γ2, γ > 0. We solve the
equation (9.2.1) under the condition

φ = −i(x0 − t) + ix2
2 on x1 = 0.

That is, one solves the equation φx1 =
p

γ2 − x3
1 − 2x1φx0 . It is clear that

φx1 =
�
γ + i

x1

γ

�
+ O(x2

1).
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One can write

φ = −i(x0 − t) + ix2
2 +

�
γ + i

x1

γ

�
x1 + R(x)

where R(x) = O(x3
1). Note that

Im φ = −(x0 − t) + x2
2 + γ−1x2

1 + R(x)
= (x0 − t)2 + γ−1x2

1 + x2
2 + R(x) +

�
−1 − (x0 − t)

 
(x0 − t)

and hence the same assertion as Lemma 9.2.1 holds. Noting that φx1 is di↵erent
from zero in an open neighborhood of x∗ = (t, 0, 0) we can solve the transport
equation in the x1 direction

8>><
>>:

Q0(x, D)v(n)
λ = −g

(n)
λ = −Q1v

(n−1)
λ ,

v
(0)
λ (x0, 0, x2) = 1,

v
(n)
λ (x0, 0, x2) = 0, n ≥ 1.

9.3 Lemmas

To estimate EλVλ, which is constructed in the previous section, we apply the
method of majorant following Ivrii [24]. Consider Q =

P
|↵|≤1 b↵D↵ where we

assume that the coefficient of D0 is di↵erent from zero near x = x∗. We first
recall the notion of majorant.

Definition 9.3.1 Let Φi(τ, η) =
P∞

j,k≥0 Cijkτ jηk, i = 1, 2 be two formal power
series in (τ, η). Then we write

Φ1 ≪ Φ2

if |C1jk| ≤ C2jk for any j, k ≥ 0. We say that Φ2 is a majorant of Φ1.

Lemma 9.3.1 Let Qv = g and let

Φ(τ, η; v) =
X

↵=(↵0,↵′)

τ↵0η|↵′|

α!
|D↵v(x∗)|.

Then we have

∂

∂τ
Φ(τ, η; v) ≪ C(τ, η)

∂

∂η
Φ(τ, η; v) + C(τ, η)Φ(τ, η; g)

with some holomorphic C(τ, η) at (0, 0) with C(τ, η) ≫ 0 which depends only on
Q.

Proof: Note that

∂

∂τ
Φ(τ, η; v) =

X
β

τβ0η|β′|

β!
|Dβ(D0v)(x∗)| = Φ(τ, η;D0v).
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On the other hand from Qv = g one sees D0v =
Pn

j=1 cjDjv + c0v. Since
Φ(τ, η; fg) ≪ Φ(τ, η; f)Φ(τ, η; g) and hence

∂

∂τ
Φ(τ, η; v) ≪ C(τ, η)

� nX
j=1

Φ(τ, η;Djv) + Φ(τ, η; g)
�
.

To conclude the assertion it is enough to note

∂Φ
∂η

≫
X
↵j=1

|α′|τ↵0η|↵′|−1

α!
|D↵̃(Djv)(x∗)|,

|α′|τ↵0η|↵′|−1

α!
=

|α′|τ ↵̃0η|↵̃′|

αjα̃!
≥ τ ↵̃0η|↵̃′|

α̃!
.

□

Lemma 9.3.2 Assume Qv = g and8<
:

∂

∂τ
Φ∗(τ, η) ≫ C(τ, η)

∂

∂η
Φ∗(τ, η) + C(τ, η)Φ(τ, η; g),

Φ∗(0, η) ≫ Φ(0, η; v).

Then we have
Φ(τ, η; v) ≪ Φ∗(τ, η).

Proof: Let Φ̃ be a solution to the Cauchy problem8<
:

∂

∂τ
Φ̃(τ, η) = C(τ, η)

∂

∂η
Φ̃(τ, η) + C(τ, η)Φ(τ, η; g),

Φ̃(0, η) = Φ∗(0, η).

Then it is clear that Φ(τ, η; v) ≪ Φ̃(τ, η) ≪ Φ∗(τ, η). □

Lemma 9.3.3 Assume 0 < a ≤ δa1 and 0 < b ≤ δb1 with some 0 < δ < 1.
Then we have

(i)
⇣
1 − η

b
− τ

a

�−1
⇣
1 − η

b1
− τ

a1

�−1 ≪ (1 − δ)−1
⇣
1 − η

b
− τ

a

�−1
,

(ii)
⇣
1 − η

b

�−1
⇣
1 − τ

a

�−1 ≪
⇣
1 − η

b
− τ

a

�−1
.

Proof: The assertion (i) follows from
nX�η

b
+

τ

a

�n
onX� η

b1
+

τ

a1

�n
o

=
X
n,m

�η

b
+

τ

a

�n� η

b1
+

τ

a1

�m ≪
X
n,m

δm
�η

b
+

τ

a

�n+m

≪
X
m

δm
X

n

�η

b
+

τ

a

�n
.
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To examine the second assertion it is enough to note that the coefficient of ηnτm

in
P

(η/b)k
P

(τ/a)j is b−na−m while that of ηnτm in
X �η

b
+

τ

a

�k

is b−na−m(n + m)!/(n!m!). □
Here we recall that if φ(τ, η) is holomorphic in a neighborhood of {(τ, η) |

|η| ≤ b, |τ | ≤ a} then we have

φ(τ, η) ≪ (1 − τ

a
)−1(1 − η

b
)−1 sup

|⌧ |=a,|⌘|=b

|φ(τ, η)|

which follows from the Cauchy’s integral formula. Assume that

C(τ, η) ≪ (1 − τ

a1
)−1(1 − η

b1
)−1B ≪

�
1 − τ

a1
− η

b1

�−1
B.

Lemma 9.3.4 Assume that Qv = g and

Φ(0, η; v) ≪ ω−1
�
1 − η

b

�−n
, Φ(τ, η; g) ≪ L

�
1 − τ

a
− η

b

�−n
eM⌧!.

We also assume that Ba/b ≤ (1 − δ) and B ≤ (1 − δ)M . Then we have

Φ(τ, η; v) ≪ Lω−1
�
1 − τ

a
− η

b

�−n
eM⌧!.

Proof: Let us denote (L ≥ 1)

Φ∗ = Lω−1
�
1 − τ

a
− η

b

�−n
eM⌧!.

It is easy to see by Lemma 9.3.3 that

∂Φ∗

∂τ
≫ C(τ, η)

∂Φ∗

∂η
+ C(τ, η)Φ(τ, η; g).

Then the assertion follows from Lemma 9.3.2. □
Let us denote

Φn
λ = Φ(τ, η; v(n)

λ )

and hence Φn
λ(0, η) = 0 for n ≥ 1 and Φ0

λ(0, η) = 1. We assume that

(9.3.1) Φn
λ(τ, η) ≪ An+1λ−n

2nX
k=0

ωn−kk!
�
1 − τ

a
− η

b

�−k−1
eM⌧!.

For n = 0 this holds clearly. Suppose that (9.3.1) holds for ≤ n − 1. Let

g =
⇣ 3X

j=1

λ−jh(j)(x, D)
⌘
v
(n−1)
λ = Q1(x, λ, D)v(n−1)

λ
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� nX
j=1

Φ(τ, η;Djv) + Φ(τ, η; g)
�
.

To conclude the assertion it is enough to note

∂Φ
∂η

≫
X
↵j=1

|α′|τ↵0η|↵′|−1

α!
|D↵̃(Djv)(x∗)|,

|α′|τ↵0η|↵′|−1

α!
=

|α′|τ ↵̃0η|↵̃′|

αjα̃!
≥ τ ↵̃0η|↵̃′|

α̃!
.

□

Lemma 9.3.2 Assume Qv = g and8<
:

∂

∂τ
Φ∗(τ, η) ≫ C(τ, η)

∂

∂η
Φ∗(τ, η) + C(τ, η)Φ(τ, η; g),

Φ∗(0, η) ≫ Φ(0, η; v).
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Φ(τ, η; v) ≪ Φ∗(τ, η).
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:

∂

∂τ
Φ̃(τ, η) = C(τ, η)

∂

∂η
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Lemma 9.3.3 Assume 0 < a ≤ δa1 and 0 < b ≤ δb1 with some 0 < δ < 1.
Then we have

(i)
⇣
1 − η

b
− τ

a

�−1
⇣
1 − η

b1
− τ

a1

�−1 ≪ (1 − δ)−1
⇣
1 − η

b
− τ

a

�−1
,

(ii)
⇣
1 − η

b

�−1
⇣
1 − τ

a

�−1 ≪
⇣
1 − η

b
− τ

a

�−1
.

Proof: The assertion (i) follows from
nX�η

b
+

τ

a

�n
onX� η

b1
+

τ

a1

�n
o

=
X
n,m

�η

b
+

τ

a

�n� η

b1
+

τ

a1

�m ≪
X
n,m

δm
�η

b
+

τ

a

�n+m

≪
X
m

δm
X

n

�η

b
+

τ

a

�n
.
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To examine the second assertion it is enough to note that the coefficient of ηnτm

in
P

(η/b)k
P

(τ/a)j is b−na−m while that of ηnτm in
X �η

b
+

τ

a

�k

is b−na−m(n + m)!/(n!m!). □
Here we recall that if φ(τ, η) is holomorphic in a neighborhood of {(τ, η) |

|η| ≤ b, |τ | ≤ a} then we have

φ(τ, η) ≪ (1 − τ

a
)−1(1 − η

b
)−1 sup

|⌧ |=a,|⌘|=b

|φ(τ, η)|

which follows from the Cauchy’s integral formula. Assume that

C(τ, η) ≪ (1 − τ

a1
)−1(1 − η

b1
)−1B ≪

�
1 − τ

a1
− η

b1

�−1
B.

Lemma 9.3.4 Assume that Qv = g and

Φ(0, η; v) ≪ ω−1
�
1 − η

b

�−n
, Φ(τ, η; g) ≪ L

�
1 − τ

a
− η

b

�−n
eM⌧!.

We also assume that Ba/b ≤ (1 − δ) and B ≤ (1 − δ)M . Then we have

Φ(τ, η; v) ≪ Lω−1
�
1 − τ

a
− η

b

�−n
eM⌧!.

Proof: Let us denote (L ≥ 1)

Φ∗ = Lω−1
�
1 − τ

a
− η

b

�−n
eM⌧!.

It is easy to see by Lemma 9.3.3 that

∂Φ∗

∂τ
≫ C(τ, η)

∂Φ∗

∂η
+ C(τ, η)Φ(τ, η; g).

Then the assertion follows from Lemma 9.3.2. □
Let us denote

Φn
λ = Φ(τ, η; v(n)

λ )

and hence Φn
λ(0, η) = 0 for n ≥ 1 and Φ0

λ(0, η) = 1. We assume that

(9.3.1) Φn
λ(τ, η) ≪ An+1λ−n

2nX
k=0

ωn−kk!
�
1 − τ

a
− η

b

�−k−1
eM⌧!.

For n = 0 this holds clearly. Suppose that (9.3.1) holds for ≤ n − 1. Let

g =
⇣ 3X

j=1

λ−jh(j)(x, D)
⌘
v
(n−1)
λ = Q1(x, λ, D)v(n−1)

λ
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and we first show that

Φ(τ, η; g) ≪ An+1λ−n
2nX

k=0

ωn−kk!
�
1 − τ

a
− η

b

�−k−1
eM⌧!.

As for terms c(x)D↵u with |α| ≤ 2 we have

Φ(τ, η; cD↵u) ≪ C
�
1 − τ

a1
− η

b1

�−1Φ(τ, η;D↵u)

≪ C
�
1 − τ

a1
− η

b1

�−1
h ∂2

∂τ2
+

∂2

∂τ∂η
+

∂2

∂η2

i
Φ(τ, η;u).

We now estimate

h ∂2

∂τ2
+

∂2

∂τ∂η
+

∂2

∂η2

i 2(n−1)X
k=0

ωn−1−kk!
�
1 − τ

a
− η

b

�−k−1
eM⌧!

which is bounded by

2(n−1)X
k=0

M2ωn+1−kk!
�
1 − τ

a
− η

b

�−k−1 + 2Mωn−k(k + 1)!a−1
�
1 − τ

a
− η

b

�−k−2

+ωn−1−k(k + 2)!a−2
�
1 − τ

a
− η

b

�−k−3

+Mωn−k(k + 1)!b−1
�
1 − τ

a
− η

b

�−k−2 + ωn−1−k(k + 2)!a−1b−1
�
1 − τ

a
− η

b

�−k−3

+ωn−1−k(k + 2)!b−2
�
1 − τ

a
− η

b

�−k−3

≪ ω
�
M2 + 2Ma−1 + a−2 + Mb−1 + a−1b−1 + b−2

� 2nX
k=0

ωn−kk!
�
1 − τ

a
− η

b

�−k−1

up to the factor Anλ−n+1eM⌧!. Taking A so that

A ≥ M2 + 2Ma−1 + a−2 + Mb−1 + a−1b−1 + b−2

we conclude that

Φ(τ, η; g) ≪ An+1λ−nω
2nX

k=0

ωn−kk!
�
1 − τ

a
− η

b

�−k−1
eM⌧!.

Recalling that Φn
λ(0, η) = 0 ≪ ω−1

�
1 − ⌘

b

�−1, n ≥ 1 for any ω and applying
Lemma 9.3.4 we see

Lemma 9.3.5 We have

Φn
λ(τ, η) ≪ An+1λ−n

2nX
k=0

ωn−kk!
�
1 − τ

a
− η

b

�−k−1
eM⌧!

for any ω ≥ 1.
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Lemma 9.3.6 There are h > 0 and δ > 0 such that

X
↵

h|↵|

α!
sup

|x−x∗|≤δ

|D↵v
(n)
λ (x)| ≤ Bn+1λ−n

2nX
k=0

ωn−kk!eM1!.

Proof: Note that

X
↵

η|↵|

α!
|D↵v

(n)
λ (x∗)| ≤ An+1λ−n

2nX
k=0

ωn−kk!
�
1 − η

a
− η

b

�−k−1
eM⌘!

and hence for 0 < η ≤ η0 we have

X
↵

η|↵|

α!
|D↵v

(n)
λ (x∗)| ≤ Bn+1λ−n

2nX
k=0

ωn−kk!eM⌘0!.

This shows that

|v(n)
λ (x)| ≤

X
↵

|D↵v
(n)
λ (x∗)|
α!

|(x − x∗)↵| ≤ Bn+1λ−n
2nX

k=0

ωn−kk!eM1!

for |x − x∗| ≤ η0. From the Cauchy’s inequality it follows that

sup
|x−x∗|≤⌘0/2

|D↵v
(n)
λ (x)| ≤ (η0/2)−|↵|α!Bn+1λ−n

2nX
k=0

ωn−kk!eM1!

and hence we have

X
↵

h|↵|

α!
sup

|x−x∗|≤δ

|D↵v
(n)
λ (x)| ≤ Bn+1λ−n

2nX
k=0

ωn−kk!eM1!

for 2h < η0 and 2δ < η0 with a possibly di↵erent B. □
Let us define

Vλ(x) =
NX

n=0

v
(n)
λ (x)

where N and ω are chosen so that

ω = 4N, λ = ωBeL

where L will be determined later. Then we have for n ≤ N

2nX
k=0

ωn−kk!eM1! ≤ ωneM1!
2nX

k=0

⇣ k

ω

⌘k

≤ ωneM1!
2nX

k=0

⇣1
2

⌘k

and hence
X
↵

h|↵|

α!
sup

|x−x∗|≤δ

|D↵v
(n)
λ (x)| ≤ Bn+1λ−nωneM1!

≤ Bn+1(B−1e−L)neM1! = Be−Ln+M1!.
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In particular one has

X
↵

h|↵|

α!
sup

|x−x∗|≤δ

|D↵v
(N)
λ (x)|(9.3.2)

≤ Be−LN+4M1N = Be−e−L(L−4M1)λ/4B .

On the other hand, we see

X
↵

h|↵|

α!
sup

|x−x∗|≤δ

|D↵Vλ(x)| ≤
NX

n=0

Bn+1λ−nωneM1!(9.3.3)

= eM1!B
NX

n=0

⇣Bω

λ

⌘n

≤ eM1!B = Be4M1N = Bee−LM1λ/B .

9.4 A priori estimates

In this section assuming that the Cauchy problem for P (x, D) is γ(s) well posed
we derive a priori estimates following [22], [24]. Let L be a compact set in R3.
Recall that

γ
(s),h
0 (L) = {f ∈ γ(s)(R3) | suppu ⊂ L, ∃C > 0, h|↵||∂↵

x f(x)| ≤ C(α!)s}

which is the Banach space equipped with the norm

sup
x,↵

h|↵||∂↵
x f(x)|

(α!)s
.

In the following sections we fix h > 0 and δ > 0 so that Lemma 9.3.6 holds and
hence we have (9.3.2) and (9.3.3). Consider

Pλ = P (λ−σx, λσξ)

where λ−σx = (λ−σ0x0, λ
−σ1x1, λ

−σ2x2) and σj ≥ 0. Then we have

Lemma 9.4.1 Assume that the Cauchy problem for P is γ(s) well posed near
the origin. Let W be a compact neighborhood of the origin. Then there are
c > 0, C > 0 such that

|u|C0(W t) ≤ C exp (c(λσ0/τ)1/(s−)) exp (λσ̄/s′
)
X
↵

sup
x0≤t+⌧

h|↵||∂↵
x Pλu|

(α!)(s−s′)

for any u ∈ γ
(s),h
0 (W0), any t > 0, τ > 0, any 1 < s′ < s, any 1 < κ < s where

σ̄ = maxj{σj}.

Proof: Assume that the Cauchy problem for P is γ(s) well posed. Let h > 0
and K be a compact neighborhood of the origin. From the standard arguments
it follows that there exists a neighborhood of the origin D such that for any
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f(x) ∈ γ
(s),h
0 (K0) there is a u ∈ C2(D) satisfying Pu = f in D and u = 0 in

x0 ≤ 0 such that for any compact set L ⊂ D there is C > 0 such that

|u|C0(L) ≤ C
X
↵

sup
h|↵||∂↵

x f(x)|
(α!)s

(see for example [39]). We may assume that K ⊂ D. Thus we have

|u|C0(L) ≤ C
X
↵

sup
h|↵||∂↵

x Pu|
(α!)s

, ∀u(x) ∈ γ
(s),h
0 (K0).

Let χ(r) ∈ γ()(R), κ < s, such that χ(r) = 1 for r ≤ 0, χ(r) = 0 for r ≥ 1 and
set χ1(x0) = χ((x0 − t)/τ) so that

(
χ1(x0) = 1 x0 ≤ t,

χ1(x0) = 0 x0 ≥ t + τ.

Let u ∈ γ
(s),h
0 (K0) and consider χ1Pu. Let v ∈ C2(D) be a solution to Pv =

χ1Pu with v = 0 in x0 ≤ 0. Since Pv = Pu in x0 ≤ t and hence

|u|C0(Lt) = |v|C0(Lt) ≤ C
X
↵

sup
h|↵||∂↵

x (χ1Pu)|
(α!)s

.

Recall that |∂β
xχ1(x)| ≤ C |β|+1(β!)τ−|β| and hence

X
↵

sup
h|↵||∂↵

x (χ1Pu)|
(α!)s

≤
X

sup
α!

α1!α2!
h|↵||∂↵1

x χ1||∂↵2
x Pu|

(α!)s

≤
X

sup
1

α1!α2!
h|↵||∂↵1

x χ1||∂↵2
x Pu|

(α1!)s−1(α2!)s−1

≤
X
↵1

sup
h|↵1||∂↵1

x χ1|
(α1!)s

X
↵2

sup
x0≤t+⌧

h|↵2||∂↵2
x Pu|

(α2!)s
.

Since

X
↵1

sup
h|↵1||∂↵1

x χ1|
(α1!)s

≤
X
↵1

C |↵1|+1τ−|↵1|h|↵1|

(α1!)s−

≤ C exp
⇣
c
�1
τ

�1/(s−)
⌘ X

↵1

(Ch)|↵1| ≤ Ch exp
⇣
c
�1
τ

�1/(s−)
⌘

we have

(9.4.1) |u|C0(Lt) ≤ C exp
⇣
c
�1
τ

�1/(s−)
⌘ X

↵

sup
x0≤t+⌧

h|↵||∂↵
x Pu|

(α!)s
.
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τ
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we have

(9.4.1) |u|C0(Lt) ≤ C exp
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c
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τ
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Let u ∈ γ
(s),h
0 (W0). Then it is clear that u(λσx) ∈ γ

(s),h
0 (K0) for large λ. For

v(x) = u(λσx) we apply the inequality (9.4.1) with t = λ−σ0 t̂, τ = λ−σ0 τ̂ to get

|v|C0(Lt) ≤ C exp
⇣
c
�λσ0

τ̂

�1/(s−)
⌘ X

↵

sup
x0≤t+⌧

h|↵||∂↵
x Pv|

(α!)s

where Pv = Pu(λσx) = (Pλu)(λσx) and hence

∂↵
⇥
(Pλu)(λσu)

⇤
= λ〈σ,↵〉(∂↵

x Pλu)(λσx).

Thus we have

|u|C0(W t̂) ≤ Cec
�

λσ0
⌧̂

�1/(s−) X
↵

sup
x0≤t̂+⌧̂

h|↵|λσ̄|↵||∂↵
x (Pλu)(x)|

(α!)s

= Cec
�

λσ0
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�1/(s−) X
↵

sup
x0≤t̂+⌧̂

h|↵|λσ̄|↵||∂↵
x (Pλu)(x)|

(α!)s′(α!)s−s′

≤ Cec
�

λσ0
⌧̂

�1/(s−)

ecλσ̄/s′ X
↵

sup
x0≤t̂+⌧̂

h|↵||∂↵
x (Pλu)(x)|

(α!)s−s′ .

This proves the assertion. □

9.5 Proof of not well-posed results

Take χ(x) ∈ γ
()
0 (W0) such that χ(x) = 1 in a neighborhood of x∗ supported in

{|x − x∗| ≤ δ} and 1 < κ < s. Let us set Uλ = EλVλχ ∈ γ
(s),h
0 (W0) and note

|Uλ(x∗)| = 1. Then we have from (9.2.2)

PλUλ = (PλEλVλ)χ +
X

|↵|≤1,1≤|β|≤2

c↵β(x, λ)∂↵
x (EλVλ)∂β

xχ

= EλQ1v
(N)
λ χ +

X
|↵|≤1,1≤|β|≤2

c↵β(x, λ)∂↵
x (EλVλ)∂β

xχ.

To estimate the right-hand side we note

Lemma 9.5.1 We have

X
↵

sup
K

h|↵||∂↵
x Eλ|

(α!)s
≤ C exp (cλ2/s + λ sup

x∈K
{−Im φ(x)}).

Proof: Recall that Eλ = exp (iλ2x2 + iλφ(x)). Since φ(x) is real analytic in a
neighborhood K of x∗ then it is not difficult to check that

|∂↵
x eiλφ(x)| ≤ C |↵|+1(λ + |α|)|↵|e−λIm φ(x), x ∈ K
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and hence we have

(9.5.1) |∂↵
x Eλ| ≤ C |↵|+1(λ2 + |α|)|↵|e−λIm φ(x), x ∈ K.

Noting that
h|↵|(λ2 + |α|)|↵|

(α!)s
≤ Cecλ2/s

we get the assertion. □
From Lemma 9.2.1 there exist ν > 0 and τ̄ > 0 such that −Im φ(x) ≤ −ν if

x ∈ supp [∂β
xχ]∩ {x0 ≤ t + τ}, 0 < τ ≤ τ̄ , |β| ≥ 1. Then from Lemma 9.5.1 and

(9.3.3) it follows that

X
γ

sup
x0≤t+⌧

h|γ||∂γ
x(∂↵

x (EλVλ)∂β
xχ)|

(γ!)s
(9.5.2)

≤ C exp (cλ2/s − νλ + e−LM1B
−1λ).

We turn to EλQ1v
(N)
λ χ. Thanks to Lemma 9.2.1 we have −Im φ(x) ≤ 2aτ

if x ∈ supp [χ] ∩ {x0 ≤ t + τ} where a = |Im φx0(x
∗)|. Thus from Lemma 9.5.1

and (9.3.2) it follows that

X
↵

sup
x0≤t+⌧

h|↵||∂↵
x (EλQ1v

(N)
λ χ)|

(α!)s
(9.5.3)

≤ C exp (cλ2/s + 2aτλ − e−L(L − 4M1)(4B)−1λ).

Let s − s′ > 2. Take L large so that e−LM1B
−1 < ν and L > 4M1 and

choose τ > 0 such that

2aτ − e−L(L − 4M1)(4B)−1 < 0

then it is clear from (9.5.2) and (9.5.3) that

X
↵

sup
x0≤t+⌧

h|↵||∂↵
x (PλUλ)|

(α!)s−s′ ≤ Ce−⌫1λ

with some ν1 > 0. We now assume

s > 6.

Recalling σ0 = 1, σ1 = 2, σ2 = 4 and hence σ̄ = 4 then we can choose s′ > 4
such that s − s′ > 2 and σ̄/s′ < 1. Taking 1 < κ < s so that σ0/(s − κ) < 1 we
now apply Lemma 9.4.1 to get

|Uλ|C0(W t) ≤ Ce−cλ+o(λ)

with some c > 0 as λ → ∞. This gives a contradiction because

|Uλ(x∗)| = 1.

This completes the proof of Theorem 9.1.1. □



154 CHAPTER 9. NOT WELL-POSED RESULTS

Let u ∈ γ
(s),h
0 (W0). Then it is clear that u(λσx) ∈ γ

(s),h
0 (K0) for large λ. For

v(x) = u(λσx) we apply the inequality (9.4.1) with t = λ−σ0 t̂, τ = λ−σ0 τ̂ to get

|v|C0(Lt) ≤ C exp
⇣
c
�λσ0

τ̂

�1/(s−)
⌘ X

↵

sup
x0≤t+⌧

h|↵||∂↵
x Pv|

(α!)s

where Pv = Pu(λσx) = (Pλu)(λσx) and hence

∂↵
⇥
(Pλu)(λσu)

⇤
= λ〈σ,↵〉(∂↵

x Pλu)(λσx).

Thus we have

|u|C0(W t̂) ≤ Cec
�

λσ0
⌧̂

�1/(s−) X
↵

sup
x0≤t̂+⌧̂

h|↵|λσ̄|↵||∂↵
x (Pλu)(x)|

(α!)s

= Cec
�

λσ0
⌧̂

�1/(s−) X
↵

sup
x0≤t̂+⌧̂

h|↵|λσ̄|↵||∂↵
x (Pλu)(x)|

(α!)s′(α!)s−s′

≤ Cec
�

λσ0
⌧̂

�1/(s−)

ecλσ̄/s′ X
↵

sup
x0≤t̂+⌧̂

h|↵||∂↵
x (Pλu)(x)|

(α!)s−s′ .

This proves the assertion. □

9.5 Proof of not well-posed results

Take χ(x) ∈ γ
()
0 (W0) such that χ(x) = 1 in a neighborhood of x∗ supported in

{|x − x∗| ≤ δ} and 1 < κ < s. Let us set Uλ = EλVλχ ∈ γ
(s),h
0 (W0) and note

|Uλ(x∗)| = 1. Then we have from (9.2.2)

PλUλ = (PλEλVλ)χ +
X

|↵|≤1,1≤|β|≤2

c↵β(x, λ)∂↵
x (EλVλ)∂β

xχ

= EλQ1v
(N)
λ χ +

X
|↵|≤1,1≤|β|≤2

c↵β(x, λ)∂↵
x (EλVλ)∂β

xχ.

To estimate the right-hand side we note

Lemma 9.5.1 We have

X
↵

sup
K

h|↵||∂↵
x Eλ|

(α!)s
≤ C exp (cλ2/s + λ sup

x∈K
{−Im φ(x)}).

Proof: Recall that Eλ = exp (iλ2x2 + iλφ(x)). Since φ(x) is real analytic in a
neighborhood K of x∗ then it is not difficult to check that

|∂↵
x eiλφ(x)| ≤ C |↵|+1(λ + |α|)|↵|e−λIm φ(x), x ∈ K

9.5. PROOF OF NOT WELL-POSED RESULTS 155

and hence we have

(9.5.1) |∂↵
x Eλ| ≤ C |↵|+1(λ2 + |α|)|↵|e−λIm φ(x), x ∈ K.

Noting that
h|↵|(λ2 + |α|)|↵|

(α!)s
≤ Cecλ2/s

we get the assertion. □
From Lemma 9.2.1 there exist ν > 0 and τ̄ > 0 such that −Im φ(x) ≤ −ν if

x ∈ supp [∂β
xχ]∩ {x0 ≤ t + τ}, 0 < τ ≤ τ̄ , |β| ≥ 1. Then from Lemma 9.5.1 and

(9.3.3) it follows that

X
γ

sup
x0≤t+⌧

h|γ||∂γ
x(∂↵

x (EλVλ)∂β
xχ)|

(γ!)s
(9.5.2)

≤ C exp (cλ2/s − νλ + e−LM1B
−1λ).

We turn to EλQ1v
(N)
λ χ. Thanks to Lemma 9.2.1 we have −Im φ(x) ≤ 2aτ

if x ∈ supp [χ] ∩ {x0 ≤ t + τ} where a = |Im φx0(x
∗)|. Thus from Lemma 9.5.1

and (9.3.2) it follows that

X
↵

sup
x0≤t+⌧

h|↵||∂↵
x (EλQ1v

(N)
λ χ)|

(α!)s
(9.5.3)

≤ C exp (cλ2/s + 2aτλ − e−L(L − 4M1)(4B)−1λ).

Let s − s′ > 2. Take L large so that e−LM1B
−1 < ν and L > 4M1 and

choose τ > 0 such that

2aτ − e−L(L − 4M1)(4B)−1 < 0

then it is clear from (9.5.2) and (9.5.3) that

X
↵

sup
x0≤t+⌧

h|↵||∂↵
x (PλUλ)|

(α!)s−s′ ≤ Ce−⌫1λ

with some ν1 > 0. We now assume

s > 6.

Recalling σ0 = 1, σ1 = 2, σ2 = 4 and hence σ̄ = 4 then we can choose s′ > 4
such that s − s′ > 2 and σ̄/s′ < 1. Taking 1 < κ < s so that σ0/(s − κ) < 1 we
now apply Lemma 9.4.1 to get

|Uλ|C0(W t) ≤ Ce−cλ+o(λ)

with some c > 0 as λ → ∞. This gives a contradiction because

|Uλ(x∗)| = 1.

This completes the proof of Theorem 9.1.1. □


