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Abstract. Let G(m,p,n) be a complex reflection group and R(G(m,p, n)) one
of its representation group, and let G(m,p,c0) and R(G(m,p,o0)) be their in-
ductive limits as n — oco. We study projective irreducible representations (=
IRs) of G(m,p,n) and their characters which we call spin characters of them.
We study in particular projective IRs of generalized symmetric groups G(m, 1,n)
and projective factor representations of G(m, 1, 00) and their characters, and also
limiting process as n — oo. Since R(G(m,1,n)) is a special central extension of
G(m,1,n) by the Schur multiplier Z = H?(G(m,1,n),C*), a projective IR 7 of
G(m,1,n) has its spin type, a character x of Z, such that 7(2) = x(2)I. In the
latter part of the paper we study in detail the case of a certain spin type and also
the relation to the non-spin case’

0 Introduction

1. In this paper we study projective (or spin) representations of infinite
family of complex reflection groups G(m,p,n), m > 1, n > 4, p|m, and their
inductive limits G(m,p,o00) = lim, .., G(m,p,n), and characters of such rep-
resentations, called spin characters. Our principal aims or problems here are
three-fold as

(A) Construct all the irreducible spin representations and calculate their char-
acters for finite groups G(m,p,n), n > 4.

(B) Analyse the limiting procedure of normalized irreducible characters of
G(m,p,n) as n — oc.
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(C) Determine all the spin characters of projective factor representations of
finite type of infinite groups G(m, p, 00), and give the explicit character formula.

2. Thanks to Schur [Schl|, we know that a finite group G has a finite number
of non-isomorphic representation groups. Take one of representation groups of
G and denote it by R(G). Then, any projective representation of G can be lifted
up to a linear representation of R(G), and any choice of representation group
R(G) of G gives an equivalent theory of projective representations of G. In this
sense, we may call R(G) a universal covering group of G, even though it is not
unique.

A representation group R(G) is a special kind of central extension of G by the
abelian group Z = H*(G,C™), called Schur multiplier of G. Schur multipliers
are given by Thara-Yokonuma [IhYo| for Weyl groups, by Davies-Morris [DaMo|
for general symmetric groups G(m, 1,n), and by Read [Real] for general complex
reflection groups G(m,p,n). For each of such groups G, they have determined,
on the way of calculating Schur multiplier H*(G,C™), one of its representation
groups, denoted by R(G) here. These groups R(G) are given by presenting a set
of generators and a set of fundamental relations together, and to go further we
are forced to manipulate these things well.

3. We have a constructive definition of an infinite family of complex reflec-
tion groups G(m,p,n) as the wreath product groups as follows. For p = 1,
G(m,1,n) = 6,(Z,,) = Du(Z,,) X S, wreath product of Z,, with the sym-
metric group &, where D,(Z,,) denotes the direct product (restricted direct
product if n = 0o) of n copies of Z,,. For p > 1, G(m,p,n) are a special kind of
normal subgroups &,(Z,,)%®) of &,(Z,,) (cf. §2).

We have studied, for this kind of wreath product groups, in case of n = oo,
characters of factor representations of finite type and construction of such kind of
representations, and also in case n < co, construction of irreducible representa-
tions and explicit character formula for them, and furthermore the limiting pro-
cedure of characters when n tends to co. Our results in [Hir| and [HH1| ~ [HH4|
for these non-spin cases of &,,(Z,,)°” = G(m, p,n) prepare a fundamental back-
ground of the spin case at present.

4. Among the category of G(m,p,n), the groups G(m,1,n) form an im-
portant subcategory called generalized symmetric groups, which were first in-
troduced by Osima [Osi]. For the study on projective representations and spin
characters, a generalized symmetric group G(m,1,n) with p = 1 can be con-
sidered as a mother group, whereas complex reflection groups G(m,p,n) with
p > 1 as her child groups. The reason why we use this terminology is that many
results for G(m,p,n) follow from those for G(m,1,n), as the results in §4 and
§6 indicate it (cf. in particular, Theorem 6.2). For instance, in some cases, the
restriction onto the subgroup G(m,p,n) of a character on G(m,1,n) is itself a
character of G(m,p,n).

5. The paper consists of two parts. Part I is the preparatory part for the
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whole of the future studies, which start from Part I and might continue so long,
of the subject in the title of this paper. It is mainly devoted to the general
theory of projective representations and spin characters of complex reflection
groups. Concerning to them, when we first read Nazarov’s paper [Naz, 1992| on
projective representations of the infinite symmetric group 6., = G(1,1,00), we
have a strong impression about the explicit form of spin characters. Then we
asked naturally several questions. In particular, “Why spin characters of S
unilaterally have such unbalanced supports ¢” In the finite case of G,,, n < oo,
spin characters have unbalanced supports or rather balanced supports according
as they are self-associate or non-self-associate (for the definition of self-associate,
cf. Definition 8.1 in [II]), and so we ask “What happened on the way of transition
from the finite case of G, n < oo, to the infinite case of Gy, n =00 27

By definition (cf. §6.1), a normalized spin irreducible character of G = G(m, p,
n), n < oo, or a normalized spin character of G = G(m,p, c0), is a function f
on R(G), normalized as f(e) = 1, which satisfies the conditions (i), (ii) and (iii)
below (then f satisfies automatically (iv) in addition):

(i) fis central (or invariant under inner automorphisms of R(G)),

(ii) positive definite,

(iii) extremal in the set K;(R(G)) of all functions satisfying (i)-(ii),

(iv) for some x € 7 with Z = H?(G,C*), f satisfies

f(zg) =x(2)f(z¢) (2€Z,g € R(G)).

The central character y € Z above is called the spin type (or simply type) of f.

At the starting point of the series of our present studies for G = G(m, p,n),
we analyse questions similar as above in the following way. To be fundamental,
we start from the most elementary assumption that a normalized central function
f on R(G) satisfies (iv), or has a certain spin type (and not assuming neither
positive-definiteness nor extremality). Then we study how many important in-
formations come out from this simplest assumption on f.

As basic foundations for the future, we study in §7, conjugacy relations (mod-
ulo Z) in R(G). Then we prove that very important informations, principally on
the evaluation of the support of f, come out from the above simple assumption:
in §§8-9, for finite case G = G(m,1,n), n < oo, and in §10, for infinite case
G = G(m,1,00). As is proved partly in §6.6 and mainly in §11, these informa-
tions are crucial for factorisability of characters, and also in the infinite case of
G(m, 1, 00), for the validity of the criterion (EF) for a normalized central f with
spin type to be a character, in each of different spin types. These informations
help us to foresee and to carry out the explicit calculations of irreducible spin
characters later. For the importance of evaluation of supp(f), also see §16.1 and
[II, Tables 21.2 and 25.1] for example.

6. At the end of Part I, we add one section, §14, to extend general theory
on the limiting process of (normalized) irreducible characters of an increasing se-
quence Hy — Hy — ... — H, — ... of finite groups, in particular the so-called
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Vershik-Kerov ergodic method [VK]. In addition, to understand the situations
better, we discuss also the case where H,’s are compact and H, is imbedded
into H, 11 continuously. This additional section serves as a preparatory section
for the present papers [I] and [II| both. Put Ho, = lim, o H,, = Up>1H,,. Tt is
called locally finite in |[Ker, p.5], when H,’s are finite, for which the following is
known in |VK],

(b-1) any normalized character f of Hy is a limit of normalized irreducible
characters X, ‘= Xx,/dimm, of IRs 7, of Hy.

In the case of wreath product H,, = &,(7T) of a compact group 7" with sym-
metric group &, this assertion is known by [HH5|, [HH6|, [HHH1| and [HoHH].
In the general case where H,,’s are infinite compact groups, the assertion (b-1)
and more are proved here in §14 (cf. Theorems 14.2 and 14.3 below).

We consider naturally a converse assertion to (b-1) as

(b-2) if a series of normalized irreducible characters X, has a pointwise
limit f, then it is necessarily a character of Hy . (97)

For a locally finite group H,, Kerov wrote on the middle of p.11 of [Ker| as

“Let us call a path t € T regular if the limits (5.2) exist. The cor-
responding limiting function ¢; is harmonic, though not necessarily
extreme. ...............

As is explained in §14.5, this means that a pointwise limit f,, = lim,, .., Xx, On
H is not necessarily a character, and so (b-2) does not always hold.

We call a limit f,, a bad limit if it is not extremal or not continuous. In
the case of symmetric groups 6,, /" G, the assertion (b-2) is true [VK]. It is
also true in the case of wreath product groups H, = &,(T) of a finite group
T with symmetric groups &,, as seen by [HH1| ~[HH4| and by [Boy|. On the
contrary, when 7" is an infinite compact group, the assertion (b-2) never holds
for H, = 6,(T) and Hy, = S,(T), because explicit examples of bad limits
are given in [HHH1] (cf. Theorems 6.1 and 7.1, loc.cit.) Actually we wish to
establish (b-2) in the case of the universal covering groups H, = R(G(m,p,n))
of G(m,p,n) = 6,(Z,,)5? and their limit Hy, = R(G(m, p, 00)).

7. The paper is organized as follows. In Part I, after a preparation in §1,
we give in §2, a constructive definition of G(m,p,n) as the wreath products
G,.(Z,,) = G(m,1,n) and their normal subgroups &,(Z,,)°® = G(m,p,n).
In §3, representation groups R(G) are explicitly given for generalized symmetric
groups G = G(m, 1,n) and for their child groups G = G(m,p,n), p|m, p > 1,
by giving pairs of a set of generators and a set of fundamental relations, from
the results of [DaMo| and [Real]. In §4, normal subgroups of R(G(m,1,n))
corresponding to child groups are studied. By this it becomes clear that the
study for mother groups G(m,1,n) is fundamentally important so that they
merit names of mother groups. In §5, the results in §§3-4 for the case of n finite
are extended to the case of n = co. In §6 we collects general aspects of characters.
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Since R(G) is a special kind of central extension of G by Z = H*(G,C™) as
1 —Z — R(G) 261 (exact), any (irreducible) character f of R(G) has its
own spin type y € Z given as f(zg) =x(2)f(¢) (€ Z, ¢ € R(G)). If x is
trivial, or x = 1z, then f is reduced to the base group G through the canonical
homomorphism ¢ : R(G) — G = R(G)/Z, and is essentially a non-spin character
of G. On the other hand, we say ¢’, k' € R(G) are conjugate modulo Z if there
exists b’ € R(G) such that A ¢g’h/~' = 2k for some z € Z. In that case, we have
f(d) = x(2)f(K'), and so f is fully determined if we know its values on a complete
set of representatives of classes of conjugacy modulo Z. Going down on the base
level G, we have hgh™' = k with g = ®(¢'),k = ®(k'),h = ®(I'), and in this
connection our former results for wreath product groups (e.g., [HH1| ~ [HH4|)
lead our calculations in §7 on the conjugation modulo Z. In §§8-9, starting from
a simple assumption that a central function f has a spin type, the support of
f defined as supp(f) := {¢’ € R(G); f(¢') # 0} is evaluated on the level of
G(m,1,n), according to the type x and to the parity of m. In §10 these basic
results on supp(f) for a central function f with spin type are extended to the
case of G = G(m,1,00), n = co. The properties of supp(f) depend heavily on
the spin type x of f.

A spin character f of G = G(m,1,00) is said to be factorizable if

f(d'9") = f(g)f(g")

for ¢, ¢" € R(G) with disjoint supports supp(¢’), supp(¢”) C N, where
supp(g’) := supp(®(¢’)) C N. Factorisability holds in general for non-spin
characters on the base level G = &,,(Z,,) and played important role in our pre-
vious works. But, for spin characters, this property does not necessarily hold for
some spin types. We can examine this situation in §11 using the result in §10.

A projective representation 7 of G is called of (spin) type x if 7(z) =
x(z)I (= € Z = H¥G,Z*)), where I denotes the identity operator. In §12,
for G = G(m,1,00), we study if finite-dimensional spin representations exist or
not for each spin type y. By [DaMo|, we have H?(G(m,1,00),Z*) = Z5 if m
is odd, and = Z23 if m is even. So the case of m even is more complicated and
interesting. Let the standard generators of Z = Z; be 21, 29, 23 (cf. Theorem
3.3), then spin type x € 7 is expressed by [ = (01,02, 03), 0: = x(z) = £1.
Except non-spin type 5 = (1,1,1), we have 7 different spin types. The results
in Part I for R(G(m,1,00)) with m even is summarized in §13 in Table 13.1,
depending on spin types, separated into Cases I to VII.

8. In Part II, which is the start of our detailed studies, the case of spin type
B = (1,1,-1), called Case VII, is studied along with the non-spin case with
B = (1,1,1), called Case VIII. These two cases have very intimate relation. In
§15, we recall known results of the non-spin case. All the characters in Case VII
can be obtained through a simple manner from those in Case VIII as is explained
in §16, and thus we can arrive to an explicit character formula in Case VII, Type
(1, 1, —1), which is the final result for the problem (C) in this case. The relation



of this result to the results of Dudko and Nessonov in [DuNe| on spin characters
of G(m,1,00), obtained by a different method, is simple in this case (cf. [II],
§25).

Starting from §17, we study the problems (A) and (B) in Case VIL. In §17,
all the irreducible spin representations of G(m, 1,n) of type 8 = (1, 1,—1) are
constructed as induced representations. In §18, all the spin irreducible charac-
ters of this type are calculated. On the other hand, spin theory of generalized
symmetric groups has been studied by Read |[Real|, Hoffman and Humphreys
[HoHul|, Stembridge [Stem|, and Morris and Jones [MoJo] etc. Our method here
is quite different from theirs. In §19, the limiting process as n — oo for series of
normalized spin irreducible characters of G(m, 1,n) of this type, is studied.

A short summary of the essential part of Part I was reported in [HHH2].

Part 1
General theory for complex
reflection groups

1 Projective representations and representa-
tion groups

1.1. Projective representations and spin characters.
A projective representation p of a group G is by definition an assignment for
each g € G a continuous operator p(g) on a Hilbert space V(p) satisfying

(1.1) p(g)p(h) =10, p(gh) (g9,h € G),

where r}, € C*. The C*-valued function r} , on G'x G is called the factor set of
p. Here in this paper we treat only discrete groups and so there is no demand on
the continuity of ¢ — p(g), but we assume that each p(g) is unitary. A character
of a projective representation, if it exists in any sense, is called a spin character
of G (and accordingly the representation itself is also called spin, as in [Mor]).
Two projective representations p and p’ are mutually equivalent if there ex-
ists a bounded linear operator R from V'(p) onto V' (p') such that R p(g )R I =
p'(9) (9 € G). They are called associated if their factor sets 77, and rgh are
mutually equivalent or if there exists a C*-valued function ¢, on G such that

Cq Cp,
(1.2) =

‘r;’:h (9,h € G).

Cgh

The equivalence class of r* o.h 1s an element of the cohomology group H (G, C™),
which is called Schur multzplzer of G.

o4
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Take a central extension G of G by an abelian subgroup Z:
(1.3) 1— 7 —G-2G—1 (exact),

where @ denotes the natural homomorphism from G onto G. Let 7 be a unitary
representation of G such that 7(z) = A(2) Iy(x) (2 € Z) with a non-zero scalar
A(z) and the identity operator Iy (r) on the representation space V() of 7. Take
a section ¥ : G — é, that is, a map such that ® o U is the identity map on G,
and put

(1.4) p(g) =7(¥(9)) (9€@),

then p is a projective representation of G with a factor set given by the character
Aof Z as

(1.5) 0 = MY (g) U(h)W(gh)™!) (9,heq).

A central extension G in (1.3) is called a representation group of G and
denoted by R(G) if it satisfies the following:

(PR1) any irreducible projective representation of G is equivalent to such a
one which is associated to someone obtained as in (1.4)—(1.5);
(PR2) among central extensions with the property (PR1), it is minimal.

For any finite group G, Schur proved in [Sch1| that there exists a finite number
of non-isomorphic representation groups of G, where (PR2) is replaced by “the
order |G| is the smallest. He also proved that the central subgroup Z for any
representation group is unique and isomorphic to Schur multiplier H?(G, C™).
Moreover he proved the following.

Lemma 1.1 ([Schl, §5|). Let G be a finite group. A central extension G in
(1.3) is a representation group of G if and only if it satisfies (1) and (2) below:
(1) the central subgroup Z is contained in the commutator group [é, é} :
Z C [é, é},
(2) among such G, the order |é| is the largest (which equals to |G|-|H?*(G, C™)| ).
Moreover the condition (2) can be replaced by (2') below :

(2) 12| = [H*(G, C™)].

We take one of representation groups of G and denote it by R(G). Any
projective representation of G' can be lifted up to a linear representation of R(G),
and the study of projective representations of G is translated to the study of
linear representations of R(G). This situation is similar also for the study of spin
characters. Any choice of representation group R(G) of G gives an equivalent
theory of projective representations of GG. In this point of view, a representation
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group R(G), even it is not necessarily unique, may be called as a wuniversal
covering group of G, comparing it to the case of connected Lie groups.

Definition 1.1. The spin type or simply type of a projective irreducible
representation (=IR) 7 of G is a character x of the central group Z = H*(G,C*)

such that 7(z) = x(2)lv(x). A central (or an invariant) function f on G, for
instance a spin character, is called of type x if

(1.6) flzg) =x(2) flg) (z€ 2, g €q).

In the sequel we study projective representations and spin characters (cf. def-
inition in §6.1) of complex reflection groups G(m, p,n), and also of their inductive
limits G(m, p,00) as n — oo.

1.2. Cases of finite and infinite symmetric groups.

In [Sch3, Part I|, it is proved that, for n-th symmetric group &,,, the Schur
multiplier H*(&,,,C*) = Z,, and there exist two non-isomorphic representation
groups %,,, T/ forn > 4,n # 6, and for n = 6 these two are isomorphic. Moreover,
for n-th alternating group 2, the cases of n = 6,7 are exceptional, and for
n>4,# 6,7, H*(A,,C*) = Z,, and there exists unique representation group
B, given as B, = [T, T, = [T, T ].

Theorem 1.2 (|Sch3|). (i) The n-th symmetric group S, is presented by
a set of generators and fundamental relations as follows, where e denotes the
identity element:

e set of generators: {si,Sq,...,S,_1} with s; = (i i+1) simple reflections ;
e set of fundamental relations:

(Sen) st=e (1<i<n-—1), (sisin)=e (1<i<n-—2),
o $iSj; = 858 (’Z—j‘ 2 2)

(ii) A representation group of &,,, which is denoted by %), in [Sch3], is given
by a set of generators and fundamental relations as follows:

e set of generators:  {z,ri1,r2, ..., Tho1};
e set of fundamental relations:
Z?=e, zri=rz (1<i<n-—1),

(T-n) ri=e (1<i<n-1), (rimn)’=e (1<i<n-2),

)

riry = zrri (Ji — g > 2);

{e} — Z={z¢e} — %, 56, — {e},

with the natural homomorphism: ®: % 51, — s, € G,,.
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We denote T by R(S,) or &, and prefer to use it in our study (rather
than ¥,). The infinite symmetric group &, is defined as the group of finite
permutations of the set of natural numbers IV, then it is an inductive limit of

S,asn — 00: 6y = lim &,. According to this, put T := lim T then we
n—oo n—oo

see that it is a representation group of S, and so denote it by R(S,) or éoo:

(1.7) S = lim 6,, R(6.)= lim R(&,).

Projective representations and spin characters of G, have been studied by
Nazarov |[Naz|, where he has chosen groups ¥, and T := lim, .. %, to be
studied.

2 Wreath product groups and complex reflec-
tion groups

2.1. Wreath products of symmetric groups with finite abelian
groups.

For a set I, denote by &; the group of finite permutations on I. For I =
I, = {1,2,....,n} or I = I, := N, the suffices I are usually replaced by n
or oo respectively: &y =6, Gy = G,. Take a finite abelian group 7" and
define the wreath product groups &,(T") as follows:

!/
(2.1) &/(T)=D/T)x6&;, D|(T)=][T;, T;:=T (eI,
jEI
where H/ denotes the restricted direct product if [ is infinite, and &; acts on

D;(T) naturally by permuting the components. For a subgroup S of 7', we have
a canonical normal subgroup of &;(7) given as

(2.2) &(T)° := Dy(T)° x &;, Di(T)°:={de Dy(T); P(d) € S},

where P(d) := [[;.;t; for d = (t;);er € Di(T). Replacing &; by its subgroup
2; consisting of even permutations, we define a subgroup A;(T)° of &;(T)"
similarly. Later on, the index [ is replaced by n or co according to I = I,, or
I=N.

Now let T' = Z,,, understood as a multiplicative group. Then the groups
S, (Z,,) were introduced in [Osi| and called generalized symmetric groups. Any
subgroup of T'= Z,, is given as

(2.3) Sp) ={tr;teT}=Z,, for a divisor p of m.
We put G(m,p,n) = &,(Z,,)°P for n finite and also for n = co. Then we have

(2.4) G(m,p,o0) = lim G(m,p,n) for p|m.

n—oo
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This is a constructive definition of finite and infinite complex reflection groups.

In [HH1], we have studied the characters of & (T) and of S (T)* for any
finite abelian group 7', and in [HH2]-|HH3|, similarly for the case of finite groups
T. They serve as basic ingredient in our present study.

2.2. Classification of complex reflection groups.

A linear transformation on a complex finite-dimensional vector space V is
called a complex reflection if it is of finite order and leaves a complex hyperplane
invariant pointwise. A group G is called a complex reflection group if it is gen-
erated by complex reflections. In [ShTo|, Shephard and Todd classified all finite
complex reflection groups G acting irreducibly on V. In their classification, the
groups G(m,p,n) are divided into 3 infinite subfamilies numbered as 1 to 3 as
follows, leaving other 34 exceptional groups aside:

1. symmetric groups &,, = G(1,1,n);
2. G(m,p,n) =6(Z,,)°P m>1, n>1, pm,

(this family contains generalized symmetric groups G(m,1,n) = 6,(Z.,) ) ;
3. cyclic groups G(m,1,1) = Z,,, G(m,p,1) = Z,,,, .

3 Representation groups of complex reflection
groups

3.1 Representation groups of generalized symmetric groups

For a generalized symmetric group G = G(m, 1,n) = &,(Z,,), Davies and Morris
|[DaMo| gave its Schur multiplier H*(G,C™) and also one of its representation
groups. First we choose generators and fundamental relations as follows.

Proposition 3.1. The generalized symmetric group G(m,1,n) = &,(Z,,)
1s presented by

e set of generators:  {S1,S89,. .., Sn_1, Y1, Y2, Yn}
where y; corresponds to a generator of T; = Z,, ;

e set of fundamental relations:

(relations (S-n) for {s1,..., 801},
y"=e (1<j<n),
(ST-mn) yiyk =wy; (U # k),

SiiS; = Yirt, SiYims; =y (1<i<n-—1),
\ siyjs =y (A LI+,

We can translate the result in [DaMo| as follows.
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Theorem 3.2 (Case m odd). Suppose 4 < n and m is odd.

(i) ForG(m,1,n) =6,(Z,), a representation group R(G(m7 1, n)) is given
as

{e} — Z — R(G(m,1,n)) = G(m,1,n) — {e},
e set of generators : {zl, ri(1<i<n-—1),n(1<j5< n)} ;
O(ri) =si(1<i<n-—1), ®(n;))=y; 1 <j<n);
e set of fundamental relations :
(i) 2%=e, 2 central element;

y ri=e (1<i<n—1), (rmp)’=e¢ (1<i<n-—1),
(ii) ¢ R
rir; =z (i —j] > 2),

i) nr—e  (1<j<n)
(iv)  myme =mkn; (5 # k),
(v) { ranry = Ny, iear; =m0 (1<i<n—1),
rir = (J# 1,0+ 1);
Z = H2(G(m,1,n),CX) = <Zl> = ZQ.

(ii) This representation group R(G(m, 1, n)) is 1somorphic to the semidirect
product of R(S,,) with D,(Z,,) as

(3.1) R(G(m,1,n)) = Dy(Z,,) x R(S,),
where R(S,,) = (r1,r2,...,1n_1) acts on Dp(Z,,) = (1,12, ..., 0n) through the
quotient group R(S,)/(z1) = &,,.

Theorem 3.3 (Case m even). Suppose 4 < n and m is even. Then for
G(m,1,n) = 6,(Z,,), a representation group R(G(m, 1, n)) is given as
{e} — Z — R(G(m,1,n)) 2, G(m,1,n) — {e},
e set of generators : {zl,zQ,z;g, ri(1<i<n-—1),n(1<j5< n)} ;
O(ri) =5 (1<i<n—1), ®(n;) =y; (1 <j<n);
e set of fundamental relations :
i) z?=e (1<:<3), 2z central element;

. ri=e (1<i<n-—1), (rrng)=e (1<i<n-—1),

(ii) ! S
riry = zirgri (|0 —jl > 2),

(i) nr=c  (1<j<n),

(iv)  nyme = zomeny (§ # k),

it = i, rigiar; =m0 (1<i<n-—1),
(v) ol ST
Tinry = 2375 (j#d,i+1);

Z = HQ(G(m7 17”)7CX) = <z1722723> = ZQ3'
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3.2 Representation groups of general complex reflection
groups G(m,p,n)
For a general complex reflection group G(m,p,n), Read [Real| gave its Schur

multiplier and one of its representation groups. The main part of the former is
given as below:

Table 3.1. Schur multiplier H? (G(m,p, n),C’X) ~Z/f,
¢=4{0(m,p,n), 5 <n.

CASE D qg=m/p|{(m,p,n)
00 odd odd 1 (n > 5 is a stable
OE odd even 3 range for the exponent
EO even odd 2 ¢ =1{(m,p,n))
EE even even 3

To give a representation group in each case, we present the complex reflection
group G(m, p,n) by giving a set of generators and that of fundamental relations.
Put

(32) { Ty = ylp (When p=m, 1= e)a

=y 'y (2<j<n).

Proposition 3.4. Let 4 <n < oo.
The complex reflection group G(m,p,n) = 6,(Z,,)°P is presented as fol-
lows:

o set of generators:  {s1,S82,...,Sn_1; T1,T2y. -, Tn};

o set of fundamental relations:

(i) sfi=e (1<i<n—1), (sisin)’=e (1<i<n—2),
sis; = 558 ([0 = j] 2 2);

{ r{=e withqg=m/p,

rm=e (2<j<n);

TjTp = TpTj (J#k);

1

o {SI esiseon,

Tl=a (2<i<n—1, j#ii+1,1<j<n),
{ s1w18] F = 1127,

-1 -1

;58

s1z8 P =xy 'z (3<j<n).

Note that the choice of generators in (3.2) is a little different from that of
Read [Real] for the convenience of considering inductive limits as n — oc.
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In [Real|, the Schur multiplier H> (G(m, D, n)) is given for any possible (m, p,n),
and on the way of calculating it, Read gave one of representation groups of
G(m,p,n), which we denote by R(G(m,p, n)) It is written in a unified form,
but we rewrite it separately in each of 4 cases in Table 3.1, since the structure of
R(G(m,p, n)) is one of fundamental ingredients of our study, and as our starting
point it should be clearly written in our notation.

Theorem 3.5 (Case O0). Assume 5 <n < oo and m is odd.
(i) A representation group R(G(m,p, n)) is given as

o set of generators: {7“1, Ty vy Tp_1; Wi, Wa,...,Wn_1, wn},
P(ri)=s5 (1<n<n-1), Pw;)=x; 1<j<n);

o set of fundamental relations:

(i) z2=e, 2 central element;

ri=c (1<i<n-—1), (rmpn)’=e¢ (1<i<n-—2),
rir; = zirr ([0—j| > 2);

w!=e with g =m/p,

w"=e (2<j<n);

Wjwy, = WiW; (j#k);
rawir; = Wi
riWiar; = w;
rawr, Tt = w; 2<i<n—1,j#ii+1,1<j<n);

7

2<i<n-1),

-1 __ /4
7”111)17”1 = W1 w2 y

-1 —1

B
=
—l—— = A=

rle'r’fl = w{le (3<j<n).

(ii) The representation group R(G(m,p, n)) is isomorphic to the semidirect
product of R(&,) with D,(Z,,)°® as

(3.3) R(G(m,p,n)) = D,(Z,,)°" x R(G,),

where R(6,) acts on D,(Z,,)°® = (wi,ws, ..., w,) through the quotient group
R(6y)/(z1) = 6.

Theorem 3.6 (Case OE). Assume 5 <n < 0o, p be odd and ¢ = m/p be
even (. m = pq even). A representation group R(G(m,p, n)) in this case is
given as follows:

o set of generators: {Zl,ZQ,Zg, 71,72, ...y Tn_1, W1, wg,...,wn};

o set of fundamental relations:

(i) 22 =z =2z'=e, z central elements;
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(i) ri=e 1<i<n-1), (rrin)l=e (1<i<n-2),
Tﬂ’j = 217’3‘7'1' (’Z —j‘ 2 2),
(i) wl =e ) with ¢ = m/p,
wm=2z"? (2<j<n);
(iv) WijWy = Z2WEWj (J#k);
-1
T Ww;T . = Wj+1 .
- v <1<n-—
1) { riwi-l-lri_l = W4 @sisn-1)
ravrt=w;  (2<i<n—1, j#ii+1, 2<j<n),
o =zw, (2<i<n—1);
(v-2) rowr, = zg(pfl)/ Z3 wy Wy,
1 Wa 7“1’1 = w{l,

rwgr = wy wy (3 <5 <n);
Z = H*(G(m,p,n),C*) = (21,22, 23) = Z.

Theorem 3.7 (Case EO). Assume 5 <n < oo, p be even and ¢ =m/p be
odd (. m even). A representation group R(G(m,p,n)) in this case is given
as follows:

o set of generators: {21,2’2, T1,79, ooy, Tp_1, W1, wQ,...,wn};

o set of fundamental relations:

(i) z2=e, zy=e, 2z central elements;
(i) r2=e 1<i<n-—-1), (rrin)l=c (1<i<n-2),
rir; = z1rir; (i — g > 2);
(i) wl=e with g =m/p,
wm=zm? (2<j<n);
(iv) wjwy = wpw; (j £k, 2< 5,k <n),
WiWE = WiW1 (2<k<n);
-1
TiwT; = Wiyl -
. i <i<n—
(v-1) { retwger ! = g 2<i<n-1),
ravr, P =w;  (2<i<n—1,j#ii+1, 1<j<n);
(v-2) rawr, b = 2P 2 wwd,
v 7”111127“1_1 = wz_l,

lej"’fl = w;le (B3<j<n)

Z = HQ(G(maP7n>7CX) = (21, 22) & 222-
Theorem 3.8 (Case EE). Assume 5 <n < oo and both p and q are even.
A representation group R(G(m,p, n)) s given as follows:

o sel Of genemtors: {21, 29,23, T1,72y...,Tp—1, W1 Wa,... ’U}n} N



[I] 4 Normal subgroups of R(G(m,1,n)) corresponding to G(m,p,n) 63

o set of fundamental relations:

(i) 2l =20 =z’ =e, 2 central elements;
ri=e (1<i<n-—1), (rimn)’=e (1<i<n-2),
rir; = zirir; (i —j| > 2);

w1 =e withg=m/p,
"=e 2§j§”)7

(IV) { Wy = 22 WEWy (]%k72§]ak§n)7

WiWE = WiW (2<k<n);

-1
T W;T; = Wi4+1

<i<n-
rar =, GSTSL

rawir; Tt = w; 2<i<n-—1,j#ii+1, 2<j<n),

raor; P =zmw; (2<i<n-—1);

-1 _ ,p/2 p

leﬂ“lil = w271wj (3 < ] < n)
Z = HQ(G(m,p,n),CX) = (21, 29, 23) = Z23;
Note that, in Theorems 3.6 ~ 3.8, Z = (21), (21, 22, 23), (21, 22), (21, 22, 23), in

respective cases is contained in [R(G’(m,p, n)),R(G(m,p, n))] as is demanded
in Lemma 1.1 (1).

4 Normal subgroups of R(G(m,1,n)) correspond-
ing to G(m,p,n)

In the exact sequence for the representation group of a generalized symmetric
group:

(4.1) {e} — Z — R(G(m,1,n)) = G(m,1,n) — {e},

we take the full inverse image &1 (G(m,p, n)), and compare it with the repre-
sentation group R(G(m,p, n)) of G(m,p,n).

Theorem 4.1 (Cases O0). Let 5 < n < oo, and both p and ¢ = m/p are
odd. Put

I P
(42) { wy 771_7

wh=n""n; (2<j<n),

in R(G(m, 1,n)). Then the full inverse image @_I(G(m,p, n)) is presented by
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the set of generators {ry,ro,...,rp_1; Wi, wh, ..., wh} and the set of
fundamental relations obtained from that of Theorem 3.5 (Case OO) by

replacing w; with w.

The normal subgroup ®~! (G(m,p, n)) C R(G(m, 1,n)) is canonically isomor-
phic to the representation group R(G(m,p, n)) under r; — r; (1 < i <n-—
1), w; — w; (1 <j<n).

Theorem 4.2 (Cases OE and EO). Let 5 <n < oo, and assume that one
of p,q is odd and the other is even. Put

/I _ P

wi =z (2< 5 <n).

in R(G(m,1,n)). Then the full inverse image ®~*(G(m,p,n)) C R(G(m,1,n))
1s presented by
the set of generators {ry,ra,...,rp_1; Wi, wh, ..., w} and the set of
fundamental relations obtained from that of Theorem 3.6 (Case OF) or
that of Theorem 3.7 (Case EQ) replacing by replacing w; with wy.

The normal subgroup ®~! (G(m,p, n)) C R(G(m, 1,n)) is canonically isomor-
phic to the representation group R(G(m,p, n)) under r; — r; (1 < i <n-—
1), w; —w; (1 <j<n).

Theorem 4.3 (Case EE). Let 5 <n < oo, and both p,q are even. Put w)
be as in (4.3) above. Let H' be the subgroup of R(G(m,1,n)) generated by the
set

(4.4) {ri,ro, .o oy W wh, .. w

Then the latter satisfies a set of relations obtained from that of Theorem 3.8
(Case EE) by replacing w; with w’; and also by reducing z3 to e.

In this manner, the normal subgroup H' of R(G(m, 1,n)) 18 canonically
isomorphic to the quotient group R(G(m,p, n))/<23) under the correspondence

ri =71 (1<i<n—1), w; —w; mod (23) (1 <j<n).

Sketch of Proofs of Theorems 4.1~ 4.5.

The assertion that the set {ry,ro,... 71 ; wi,wh, ... w)} satisfies the cor-
responding fundamental relations of the set of generators {7y, 72, ..., 7_1; w1, ws,
..., Wy} (resp. under modulo (z3) for Theorem 4.3) can be proved by calcula-
tions.

Hence we know that the map r, — r; (1 <i<n-1), w;, — w;- (1<j5<
n) (resp. w; — w; mod (z3) (1 < j < n)) from R(G(m,p,n)) (resp. from
R(G(m,p, n))/(zg) into R(G(m, 1, n)) ) is homomorphic.
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To prove that this homomorphism is actually an isomorphism, it is enough
to count the orders of both groups. O

Summarizing the main result, we obtain the following table.

Table 4.1. Inclusion relations between representation groups.

’ Case ‘ Inclusion Relation ‘
00, OE, EO R(G(m,p,n)) — R(G(m,1,n))
EE R(G(m,p,n)) /(=) = H' C R(G(m,1,n))

Remark 4.1. Thus we see that, in Cases OO, OE and EO, if we obtain
some results on (spin) characters of R(G(m, 1,n)), then by restriction we get the
corresponding informations on (spin) characters of R(G(m, D, n)), and similarly
for the case of n = oo (cf. Theorem 7.1 in [HH4| or §§6.3 ~ 6.4 and Theorem 6.2
below). Moreover the same assertion holds for

R(G(m,p,n))/(z) = H' C R(G(m,1,n)).

Additional discussions will help us to get rather complete information on (spin)
characters f of R(G(m,p,n)) for which f(z39') = —f(¢') (¢ € R(G(m,p,n))).

In this sense, we call generalized symmetric groups G(m,1,n), 4 < n < oo,
as mother groups and G(m,p,n) with p > 1 as her child groups of G(m,1,n).
The study on projective representations and spin characters of mother groups
is fundamental and plays a crucial role for studying the cases of child groups
(cf. §16.1 below).

The situation is also similar in the case of infinite general complex reflection
groups.

5 Infinite version R(G(m, 1, oo)) and R(G(m,p, oo))

It can be proved that the inductive limits limR(G(m, 1, n)) and limR(G(m, P, n))

n—oo

are representation groups of G(m,1,00) and G(m,p, 00) respectively, and so we
can denote them by R(G(m, 1, oo)) and R(G(m,p, oo)) Here we only list up
the similar results as in §§3 ~ 4 as follows.

5.1. Similarly as Proposition 3.1, the infinite generalized symmetric group
G(m,1,00) = lim G(m,1,n) has a presentation with
a set of generators {s; (1 <i<o00); y; (1 <j<o0)}, and
a set of fundamental relations in (ST-mn) in Proposition 3.1, but replacing
“]<i<n—1" by “1<i<o0”, and“1<j<n” by “1<j < o0”.

5.2. Quite similar theorems as Theorem 3.2 (Case m odd) and Theorem
3.3 (Case m even) hold under the above replacements.

5.3. Similar result as in Table 3.1 holds for G(m, p, co).
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5.4. Similarly as Proposition 3.4, the infinite generalized symmetric group
G(m,p,00) = lim G(m,p,n), p|m, has a presentation with

a set of generators {s; (1 <i<o00); z; (1 <j<o0)}, and
a set of fundamental relations in Proposition 3.4 but replacing
“i<n—1" and “i <n—2" by “i<o0”; and“j <n” by “j < o0’
5.5. Quite similar theorems as Theorem 3.5 (Case OO), Theorem 3.6 (Case
OE), Theorem 3.7 (Case EO) and Theorem 3.8 (Case EE) hold under the above
replacements, and we have the following.

Theorem 5.1. There exist canonical embeddings as normal subgroups:

{ R(G(m,p, oo)) — R(G(m, 1,00)) (in Case OO, EO, OE),
R(G(m,p,))/(z3) = H' C R(G(m,1,00)) (in Case EE),

where H' denotes the subgroup of R(G(m,p,0)) generated by {r; (1 < i <
o0), wi (1 < j < oo)} in Case EE.

5.6. Similar remark as Remark 4.1 holds also for the relations between
(spin) characters of a mother group R(G(m, 1, oo)) and those of child groups
R(G<m7p7 OO>)7
p > 1,p|m. This leads the direction of our study.

6 General aspects about characters of groups

6.1. Characters. We give here a definition of character in a certain narrow
sense, and we will utilize it hereafter except otherwise clearly stated.

In general, for a topological group G, denote by P(G) the set of continuous
positive definite functions on G, by K (G) the set of f € P(G) central or invariant
under G. Put K,(G) := {f € K(G); f(e) = 1} with the identity element e of
G, and E(G) := Extr(K,(G)) the set of all extremal points of the convex set
K,(G). We call a function f € E(G) a character of G. It corresponds 1-1 way
to the normalized character of a quasi-equivalence class of factor representation
of finite type of GG, that is, that of a finite-dimensional irreducible representation
or of a II; factor representation (cf. e.g., [HH3]).

6.2. Induction of characters from a subgroup.
Let H be a subgroup of G. Corresponding to taking a diagonal matrix element

of induced representation from H to G, we define trivial extension f of a positive
definite function f € P(H) as

(6.1 o= {1 o

Then fis positive definite on G, and is continuous if H is open in G.
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Moreover, in the case where G/H is compact, for a character f of H, we
define an inducing up F = Indgf of f as

(6.2) F(g) := G/Hf(kgkl)dff (9.k € G),

where k = kH € G/H and dk denotes the normalized invariant measure on
G/H. The function F is positive definite but its continuity is to be discussed.
This process f — F corresponds to the process of taking the normalized character
of an induced representation.

6.3. Restriction of characters onto a normal subgroup.

Let N be a normal subgroup of G. For g € G, the restriction of the inner
automorphism ¢(g) of G onto N is denoted by ¢|5(g), and the set of all ¢5(g), g €
G, is denoted by Autg(N).

Suppose a function F' on G is invariant. Then its restriction f := F|y onto
N is G-invariant or invariant under Autg(N) D Int(N). Put

K(N,G) :={f € K(N); fis G-invariant},
(6.3) Ki(N,G) == {f € K(N,G); f(e) =1},
E(N,G) := the set of all extremal elements in K;(N,G).

Lemma 14 in [Thol]| asserts the following (more generally, see [HH6, Theorem
14.1]):

Lemma 6.1 (|[Thol, Lemma 14|). Let G be a countable discrete group and
N its normal subgroup. For any character F € E(QG), its restriction f = F|N
belongs to E(N,G).

6.4. Restriction in the case of representation groups R(G(m, 1, oo)) .
Let G = R(G(m, 1, oo)) and N be its normal subgroup given as follows:

(6-a) In case m is odd, or in case m is even and Case OO, OE or EO, put
N = R(G(m,p, oo)) which is imbedded canonically into G as in Theorem 5.1 ;

(6-b) In case m is even and Case EE, put N = R(G(m, p,00))/(z3) imbed-
ded canonically into G as in Theorem 5.1.

Theorem 6.2. (i) The index [Autg(N),Int(N)] = p.

(ii) A function f on N is G-invariant if and only if it is invariant, and
E(N)= E(N,G).

(iii) The restriction map E(G) > F — f = F|y € E(N,G) = E(N) is
surjective.

Proof. (i) Here we give a proof only for Case OO, n = oo. For the other
cases we will give necessary comments afterwards. Let ZWN) = H;eN Z; be



68 T. HIrAI, E. HIRAT AND A. HORA

the restricted direct product of additive groups Z; = Z (i € N), and for a =
(a:)ien € ZWN), put d'(a) == nMn2--- € G = R(G(m,1,00)) and ord(d'(a)) :=
a1 + as + - -+, where the product and the sum are actually finite since a; = 0
except for a finite number of i’s by definition. Define

Z(N)(P) ::{a S Z(N); ar+ay+---=0 (modp)}, éoo = (r; (1 € N)),
Do = (n; (j € N)), D3P .= {d e D ; ord(d) = 0 (mod P},

Then there hold isomorphisms Dy = Z™) and D3P =~ z(™) (p). Also we have
semidirect product expressions as G = Dy, X G, and N = D3P % S, Whence

(6.4) L(G) = L(ﬁoo) X L(éoo), L(N) = L(Efo(p)) X L(éoo).

Hence [Autg(N):Int(N)] = [L(G)’N L(N)] = [L(Eoo)|N : L(f)igp))]
To calculate the latter index, we consider a map C on ZWN) as

(65) C: Z(N)Baﬁb:(bl)leNEZ(N), bz = — A4 (ZGN)

Then we see that C is an automorphism of Z™), and the inverse C~'(b) = a is
given by the formula a; = . ;b;. Denote by ZMN)((p)) the image of ZMN)(p)
under C.

On the other hand, we can prove, by calculation using Theorem 3.2, the
following formula: with w; = nf,w; =n,"'n; ( > 1),

(6.6) { L(d’(a))ﬁ = (w{l) ' 'bfla
o(d(a))ry == (w7 )" -y (0> 1),

and ¢(d'(a)) = the identity on Do, where b = C(a). Moreover we see by calcu-
lation using Theorem 3.5 that this formula holds also for N with a € Z™)(p).

Since C is bijective, we can define, for any b = (b;)jen € ZW (resp. b €
Z(N)((p))), an automorphism ©(b) of G (resp. of N) by putting

{ Ob)ry == (wy )™ -,

6.7
(6.7 O(b)r; = (wiwi;l)bi Ty,

and O(b) := the identity on Do (resp on ﬁfo(p)), and there holds on Z™) (resp.
between Z™N)(p) and Z™((p))).

(6.8) (d'(a)) =0O(b), b=C(a).
Thus we see that [L(IN)OOHN ; L(Eﬂp))} = [Z(N) ; Z(N)(p)] =p.

Now, for other cases, the proof is essentially similar with the help of Theorems
3.3 and 3.6—3.8. Only the difference is that there appear multiplicative factors
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coming from the central subgroups (zs, z3) for the case EO and EE, and (z5) for
the case OE.
(ii) For any ¢’ € G,h' € N, if ¢ € N, there exists an element ¢ € G
commuting with A’ modulo Z such that ¢'¢” € N. Cf. Theorem 16.2 in [HH6|.
(iii) We can discuss as for Theorem 15.1 in [HH6|. O

Theorem 6.2 above tells us that if we know all the spin characters for a
generalized symmetric groups G(m,1,00), a mother group, then the results for
spin characters of complex reflection groups G(m,p,o0), her child groups, are
obtained simply by restriction, except Case EE. The last case needs some more
additional studies.

6.5. (Spin) types of projective representations and of spin char-
acters.

For a complex reflection group G(m,p,n),5 < n < oo, take one of its repre-
sentation groups as

(6.9) {e} — Z — R(G(m,p,n)) 2, G(m,p,n) — {e}.

A projective representation w of G(m,p,n) is called of (spin) type x € 2,
if it satisfies m(2) = x(2)lv(x), where x is a one-dimensional character of the
central group Z. An irreducible representation or a factor representation of
R(G(m,p, n)) has its own type.

A character [ € E(R(G(m,p, n))) of R(G(m,p, n)) has its own (spin) type

X € Z because of its extremality, that is,

(6.10) f(zd)=x(2) flg") (2€Z, ¢ € R(G(m,p,n))).

For example, in the case of G(m,p,n) with ¢ = m/p is even, a character x of
7 = (21, 22, z3) is given as

In the following, type x is often called type 3.

6.6. Factorisability of spin characters of complex reflection groups.
For a ¢ = (d,o) € G(m,1,n) = D,(T) x 6,,T = Z,,, define supports
supp(d), supp(c), supp(g) as

supp(d) :={i € I, ; t; # er} with d= (t;)ier,, t: €T, =T,
(6.12) supp(o) :={j € I, ; o(j) # j},
supp(g) := supp(d) |Jsupp(o),

where er denotes the identity element of 7. For a ¢’ € R(G(m,p, n)) such that
9=2(¢') € G(m,p,n) C G(m,1,n), we put supp(g’) := supp(g).
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Definition 6.1. A normalized central (or invariant) positive definite func-
tion f € Ki(G'), G' = R(G(m,p,n)), 5 < n < oo, p|m, is called factorizable
if

(6.13) flg'g") = fd)f(g"),
for any ¢, ¢” € G' with supp(¢’) (supp(¢”) = 2.

We will check in §11 if the following criterion for f € K1(G'), G'=R(G(m, 1, 00)),
to be extremal, or to be a character, holds or not, for each of spin types of f
separately :

(EF) f is extremal <= f is factorizable.

Denote by F(G') the set of all factorizable f € K;(G’), then F(G') C E(G")
in general (see just below), and F'(G') = E(G’) if the criterion (EF) holds.

In some of previous works, this criterion was proved and played important
roles, for instance, for G(1,1,00) = G in [Tho2|, for spin characters of &
in [Naz|, for G(m,1,00) = G (Z,,) in [HH1], for G(m,p,o0) = G(Z,,)5P
in [HH2| and [HH4|, and for &,,(T) with T" a compact group in [HH5|-[HH6].
Contrary to these cases, for Cases II, III and VII of the present groups G' =
R(G(m,1,00)), the criterion (EF) does not hold (cf. Theorem 11.1 below).

Before going into §§7-10 of rather long studies on conjugacies in G) =
R(G’(m, 1, n)), 4 < n < oo, and on supports of f € K (G’) for Cases Y=1~ VII,
which prepare basic informations for our later study, we prove here impatiently
the following theorem, borrowing some results in §7 in advance.

Theorem 6.3. For the infinite group R(G(m, 1, oo)), the implication
factorizable = extremal

is always true. In other words, for f € K (R(G(m,l,oo))) of certain type

X € 2, “to be factorizable” is sufficient for “to be a character”.

Proof. This assertion can be proved similarly as the “if”-part of the proof
for Satz 1 in [Tho2, pp.42-44|. In fact, let f € Ki(G'), G’ = R(G(m,1,)),
be in Case Y and of type xY, then f is completely determined if its values
for representative elements of conjugacy classes modulo Z is known. Let the
notations be as in 7.1.3, Case of R(G(m,1,00)). The set Ky (G’) is compact
and convex, and the parameter space SY for factorizable f’s are imbedded into
it through SY > s — f, € KY(G'). We apply Gelfand’s theorem on uniform
convergence in the space of continuous functions C(SY) on the compact set
SY, and the Choquet-Bishop-de Leeuw representation theorem using the set of
extremal points EY (G’) in K'(G’). For more details, see e.g. [HH4, §15]. O

Note 6.1. The implication “factorizable => extremal” in Theorem 6.3 is
not true for any finite group R(G(m, 1,n)), n < oo. In fact, let f = . the
delta function supported by the identity element e. Then it is factorizable in the
trivial sense, but it is the normalized character of the regular representation.
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7 Conjugation in R(G(m,p, n)) modulo 7

7.1 Conjugacy classes modulo Z of a representation group

R(G(m,p, n))

7.1.1. For mother groups G(m,1,n) we take usually as n > 4, and for child
groups G(m,p,n),p > 1, we take usually as n > 5 because of Theorems 3.2~ 3.3
and Theorems 3.4 ~ 3.8 respectively. Let f be an central positive definite function
on R(G(m, 1,n)),4 < n < o0, or on R(G(m,p, n)),p > 1,5 <n < oo, of type
X- Then

(7.1) FERGN ) =x(2)flg) (2€Z, ¢, I € R(G(m,p,n))).

Therefore f is totally determined if the values f(¢') are given on a complete
set of representatives of conjugacy classes modulo Z. Here we say ¢',¢" €
R(G(m,p, n)) are mutually conjugate modulo Z if ¢ = zh'¢’W~" for some
2 € Z, h e R(G(m,p, n)), where Z is (z1) or (z1, 29, 23) according as m is
odd or even. As a general terminology, we call a function f on R(G) a spin
function of spin type x € Z if f(zg) =x(2)f(d) (s € Z, ¢ € R(G)).

To study spin characters of G(m,p,n) (containing the case of n = o), we
are asked

(7-1) to fix a complete set of representatives of conjugacy classes of R(G(m,
D, n)) modulo Z;

(7-2) tostudy structure of every conjugacy classes modulo Z of R(G(m, P, n)),

(7-3) to fix a section ¥ from G(m,p,n) to R(G(m,p,n)), especially for
elements in the set of representatives.

Then we will apply the results to a central function f on R(G) with a certain
non-trivial spin type Yy, to evaluate its support and so on.

7.1.2. Case of G(m,1,00). For the demand (7-1), we recall the case of
G(m,1,n) = 6,(1),T = Z,,, 4 <n < oo, from [HH1|. Define for g = (d,0) €
G(m,1,n) = 6,(T), d = (t)ier, € Do(T), t; € T, =T, 0 € S,, their supports
as in (6.12). An element g = (d,0) € 6,,(T) is called basic if

CASE 1: o is cyclic and supp(d) C supp(o),

CASE 2: o =1 and for d = (t;)er,, t, # er only for one q € I,.

The element (d,1) in Case 2 is denoted by &, = &,(t,) = (¢4, (q)), where (q)
denotes the symbolic permutation of length 1 consisting of one point ¢q. An
arbitrary element g = (d,0) € &,,(7T) is expressed as a product of basic elements
as

(7'2) 9= §Q1£¢I2 o '5%«9192 © s

with ¢g; = (d;,0;) in Case 1, and ¢1,¢a, - . ., ¢r,supp(g;) (1 < j < s) are mutually
disjoint. This is called the standard decomposition of g even though it is unique
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only up to the orders between &, ’s and between g;’s. For a basic component
g9; = (dj, 0;), put

{; :=(0;) = |supp(a;)],
(7.3) { Kj :=supp(o;), dj:= (ti)ick,;, P(d;):= HieKj L.

Theorem 7.1. The conjugacy class of g € &,(T),T = Z,,, is characterized
by the set

(7.4) {(ta. 1) A<k <7), (P(d;),l(0;)) (1<) <)}

According to this, we prepare the set Q := {(¢,¢);t € T,¢ > 1} as a
fundamental ingredient of a set of representatives of conjugacy classes of the
infinite group G := G(m, 1, 00), and [g] is parametrized by n(g) := (nw(g))wGQ €

(Zzo)m), where n,(g) denotes the multiplicity of w = (¢, ¢) in (7.4). For a central
function f on G, if it is factorizable, similarly as in Definition 6.1, then it is
expressed as

(7.5) flg) = s,

weN

where s, = f(g.) for a fixed representative g, € G of w € Q. Put s = (8,)weq;
then it belongs to the direct product [] .o D. of unit discs D, = {z € C;|z| <
1}. Denote f in (7.5) by f;. Then the positive definiteness of f = f; is expressed
by the set of inequalities expressed by polynomials of finite number of s, s, and
so the subset S of [] . D., consisting s from f = f; € K;(G) is closed and so
compact. In [HH4, §15], Theorem 12 asserts the validity of the criterion (EF)
for G = G(m, 1,00). In that occasion, to prove the implication “factorizable =

extremal”, we utilize the compact set S in a clever manner following the idea of
|Tho2).

7.1.3. Case of R(G(m,1,00)). We can imitate this method for the covering
group G’ := R(G(m7 1, oo)) too. However the situation is a little complicated.
For each w € Q, fix once for all a representative g/, € G’ such that ®(g)) = g.
with ® in (6.9). Denote the conjugacy class of ¢’ € G’ modulo Z by [¢']7, then
it corresponds bijectively to the conjugacy class [g] of ¢ = ®(¢') € G, hence
it is parametrized by n(g') = n(g) € (Z>0)(Q) with n,(¢') = n,(g9). Any
element ¢" € [g.)] is expressed as ¢” = z’W g W' "' with 2 € Z, h' € G, and for
f € KX (G, we have, by (7.1), f(¢") = x¥(')s, with s, := f(g.,).

Now, fora ¢’ € G’, put g = ®(¢’) and let (7.2) be its standard decomposition.
Taking appropriate preimages ; (k € I,)), g} (j € L) of corresponding elements
such as ®(§; ) = &, etc., we have a decomposition of ¢', called standard as

(7.6) g =& E gigh g
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Let the parameters in 2 corresponding to {;k and g; be respectively be w®) and
wbl. Then there are 2, 2Vl € Z such that & ~ zWg , and ¢} ~ 2Vlg
where ~ denotes the conjugacy under G'. If an f € K (G') is factorizable, then

(7.7) F(g) =xY (V- 20 H 5 M),

we

Denote this f by fY, then the subset S¥ of [] ., D. consisting s from fY €
KY(G') is closed and so compact. This fact is utilized to prove Theorem 6.3
above.

7.2 Conjugation around a ¢’ € R(G(m,1,n)) modulo Z
(preparation)

For the demand (7-2), we proceed as follows. First recall the exact sequence for
generalized symmetric group G(m,1,n) = 6,(Z,,), n > 4, as

(7.8) {e} — Z — R(G(m,1,n)) == G(m,1,n) — {e},

with Z = (z1) if m is odd, and Z = (21, 29, z3) if m is even.
To prove the results in this section, we appeal to calculations using the fol-
lowing lemmas on the structure of representation groups.

Lemma 7.2. Put, fO’f‘j < k, Tjk = (Tjrj-i-l ce Tk_g)rk_l(Tk_Q cee ?"j+17”j), Tkj =
Tk m R(G(m, 1, n)) . Then, (I)(T'jk) = (Sjstrl s 3k72>5k71<3k72 L 8j+18j) =

(U k)
=: s, the permutation of j and k.
Q) { Tirjkri_ll = 21Tk 1 (j,k #i,i+ 1),
TET = Tkl Tt =715 (J #4104 1).
-1 k—j—1
Tk i = %3 Mk
(i)  In case m is even, T = 2y

Tjkm'?”j;l = 237); (i # 7, k).

Proof. (1) ripr, ' =2ir, (p# 4,0+ 1),
7“1'(7”@'—17“i7“i+1)7“¢_1 =TiaTiTi—1 - 1Ty = 217170541 - Ti—174,
7“1(7”i+17’i7’i71)7”¢_1 =TiTiy1 - Ti—1TiTi—1 = 217571 - T 1 TiTi—1,
rirjkri’l =
= 212(1_1_])+2(7”j7“j+1 e 1T ) (Tim 1) X
7’2'(7’1'+2 o 'Tk—z)rkz—l(?“k—z o 'Ti+2)7"¢_1 : (7’1'7”1'—1)(7"@'“7“@'7%—1 ce 7“j+17“j)
= 21(7“j7’j+1 .- '7“i717“i7”i+1)(7“z’+2 e 'rk72)7"k71(7“k72 o 'Ti+2)'
(PipaTiliog s Tjeary) = 210

Suppose j < i, then

T = Ti(TjTjH Tl a2 0 7“j+17”j>7”i
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(ryrjsn - ric2)ririari(rice - rjpary)
= (rjrj+1 e 70@'72)7"1;717%'7%‘71(7'”,2 e Tj+17"j) = ’I"j72'+1.
(i) rjpmyryn = (Frjn s Thoolho1Tho2 = Tja 7)1 -
(P T2l 1Th—2  TT)

= (ryrjp o) (e - rary) = 2 -

Take an element ¢’ € R(G(m, 1, n)), G(m,1,n) = 6,(Z,,), and put
(7.9) Z(g) = {I' € R(G(m,1,n)) ; ®(WgI ") = d(g)},

which is the centralizer of ¢’ modulo Z. We study the group Z(¢') or more exactly
the set of elements z € Z appearing as h'¢’h’~" = z¢ under the conjugations
g — Wgh ' by W € Z(¢). Put g = ®(¢'), h = ®(I'), then h € Z(g) =
{h € G(m,1,n); hgh™" = g}. Then a set of generators of the centralizer Z(g) C
G(m,1,n) of g can be obtained rather easily, and using it we have the following.

Lemma 7.3. Let 4 < n < co. For ¢ € R(G(m,1,n)), let the standard
decomposition of g := ®(¢') € G(m,1,n) be as

9= (I)(g/) = (da U) = 5(115112 e 'gqr gi192---9gs € 6n<Zm) = G(m> 17”)'

Then, the stationary subgroup in R(G(m, 1,n)) of ¢', considered modulo the
central subgroup Z, contains the following elements:

(i) m for k,k+1¢supp(q),
(ii) ne for k & supp(q),
(i) n, (1<i<n),

(iv) gj such that ®(g}) =g; (1<j<s),

CITES | e )}

where the product for n; depends on the order of taking product by a factor z5".

Notation 7.1. For a cyclic permutation o € &, let (o) be its length. For a
general o € G, let L(0) be its length with respect to simple reflections, and take
its cyclic decomposition o = 0y -+ -0, then L(o) = > ., (¢(o;) — 1) (mod 2),
and sgn(o) = (—1)5). For o’ € R(&,) with 0 = ®(¢') € &, we put

(7.10) L(¢") :=L(0), sgn(c’) :=sgn(o).

7.3 Conjugation around a ¢ € R(G(m,1,n)) modulo Z
(Case of m odd)

Theorem 7.4 (Case modd, 4 < n < 00). Forg' € R(G(m,1,n)),G(m,1

1,m) =
Gn(Z), 4 < n < oo, m odd, let the standard decomposition of g = ®(¢') €
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G(m, 1,n) be as in (7.2), then the conjugations by elements in (i) and (vi) give
the following conjugacy relations, and (ii), (iii) and (v) give trivial ones:

(i) Tkg'rk_l = ZIL(U) g if |supp(¢’)] <n —2 and supp(¢’) # k, k+1;
(iv) g;g/g; -1 _ Zl(L(U)_L(Uj))L(Uj) g (1<j<s).

Theorem 7.5 (Case m odd, n = 00). For g € R(G(m,1,00)),G(m,1,00) =
Soo(Znm), let the standard decomposition of g = ®(¢') € G(m,1,00) be as in
(7.2), then the congugations by elements in in (i) and (vi) give the following
conjugacy relations, and (ii), (iii) and (v) give trivial ones:

(i) reg'r ' = ZlL(a) -,

(iv) g;g/g} -1 _ ZI(L(U)*L(Uj))L(oj) g (1<j<s).

7.4 Conjugation around a ¢ € R(G(m,1,n)) modulo Z
(Case of m even)

Definition 7.1. For d = y/"yy?-- -y € D, (Z,,), and for d’' € D(Z,,) =
(M1, ...,mn) such that d = ®(d’), we put

(7.11) ord(d) := Z aj (modm), ord(d"):=ord(d).

1<j<n

Theorem 7.6 (Case meven, 4 < n < o). Forg' € R(G(m, 1,n)), G(m,1,n) =
S, (Zm), 4 < n < oo, m even, let the standard decomposition of g = ®(¢') €
G(m,1,n) be as in (7.2), then the conjugations by elements in (i) ~ (v) give the
following conjugacy relations:

() rrg'rt = 2" 2D g i |supp(g))| < n—2 and supp(¢') F k. k + 1;

(i) megn, ' = zzord(d) : z3L(J) g, if |supp(¢’)| <n —1 and supp(¢’) # k;
(i) g, " = 2T Oy (1<i<r),
(iv) g;g,g;- -1 _ Zl(L(U)*L(Uj))L(Uj) ) ZQ(Ord(d)*Ord(dj))ord(dj) )
_ZSL(U)Ord(deOYd(d)L(Uj) d 1<j<s),
(v) ﬁjg/ﬁj—l _ ZQOrd(d)(L(Uj)+1)+L(Uj)—Ord(dj) ) ZSL(U)(L(Uj)+1) g (1<j<s).

Proof. (i) Take h' € R(G(m,l,n)) such that ¢” = Wgh' ™' satisfies
supp(g”) # 1,2.

noo—1 L(o) ord(d) i no —1 7, —1 /. —1 1, —1\—1
g T =cs 23 +g" mg'ry = (rhry g (k)T

ZlL(U) . Zgord(d) . g// _ (h/—lrlh/)g/(h/—lrlh/)—l'
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(V) Let g/ = g//g;g///7 (g//) — fql .. 'qugl i1, q)(g;) =yg; = (d],aj), q)(g///) _
gj+1- - gs, then with K; := supp(o;)

~ y~_ ord(d)—ord(d;))l(o; L(o)—L(cj))(o; ~ f~_
g = A (LO-LE) g it g g

g; = Hpeanp“p -05, O(0f) =0y, 05 =mne-- e,
A ap =1 _ Zp#q ap ap
TNq HpeKj Ty ™ Ty 2 HpeKj "y

ﬁ..H nap.’ﬁ"*lzzzqu¢qapn nap
J peEK; p J 2 PEK; p

_ (supp(oj)=1) 32, ap ap _ , ord(d;)(é(o;)—1)
e pEanpp % HpGK ’
put 7 -0 - ﬁ] = zQBz3CUJ, then,
& = Do) (oYL M) g1 ord) )= (B C ry o
_ 2(0rd(d)*Ord(dj))(L(Uj)+1)+0rd(dj)L(ij)+BZ3(L(U)*L(UJ'))(L(UJ) n+C g
_ Z2ord(d)(L(0'j)+1)70rd(dj)+BZSL(U)(L(Uj)+1)+C g/ 7
put O'; =TTy Temy with £ = {(oy),
0; = (I)(U;) = @(7“17“2"'7“5_1) = 8189...80-1 = (1 23 ... f),
~ (-1)(e-2)
Nj - TiT2 Ty = 23 S(rare e Tes1) cMe MmN Mot

= 2 iy ) e ey = 2 (Piry - ey < 7,
B = L(s;), C =0.
Fg = L RUDLT D) +Lloy)-ord(dy) , LOVLos D) | o1 -

In the proof, we have seen the following.

Lemma 7.7. Let g; = HpeKj m" o, ®(o)) =05, 7= HpeKj np. Then

~ y~ ord 1)L(o;
(7.12) Mgt = 2T gl

Theorem 7.8 (Case m even, n = c0). Forg' € R(G(m,1,00)),G(m,1,00) =
Soo(Zm), m even, let the standard decomposition of g = ®(¢') € G(m, 1,00) be
as in (7.2), then the conjugations by elements in (i)~ (v) give the following
conjugacy relations:

i) gt =" Mg
(i) mgn =22 g
(it) mogn, " =2 o 27 g (1<i<n),
(v) dog, " = ZI(L(a)fij))L(aj) | ford(@—ordd)ord(@;)
@) +ord@ L) 1<i<s)
(v) ﬁjg/nj—l Od(d)( (05)+1)+L(oj)—ord(dy) ZSL(J)(L(UJ)+1) .q (1<j<s).
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Note 7.1. When we look into details on conjugacy among g;’s and that
among &,,’s, we may have some elements in Z(g’) which are not generated by
elements listed up in Lemma 7.3 as follows.

1) Suppose g; = (dj,0;) an s = (dj, o4 ) are similar, that 1s, there exists

i) S 9j dj,o;) and g, djr,0; imil hat is, th i
a 7 € 6, only permuting K; and K; such that 7g¢; 77! = gy, i.e., 707! =
ojyr, Td;7~t = d;. Then T € Z(g). Take 7/ € R(G) such that ®(7’) = 7, then
(7.13) ' S ZI(L(U)*l)L(Uj) ZQOYd(dj) Zgord(d)L(Uj) g

(ii) Suppose &, and &, are similar, that is, 76,77 = &, with 7 = (p ¢). Take
an element 7 with 7 = ®(7’) € Z(g), then

(714) 7', g, 7-/71 — ZlL(U) Z2ord(tq) ZBOI'd(d) g/'

8 Supports of spin characters of G(m,1,n) (m
odd)

8.1 Evaluation of supports of spin characters of G(m, 1,n),
m odd

As basic foundations for later studies (in |I], |[II] and so on), we are interested
in checking that a central function f on R(G) with a certain spin type (not
necessarily a character) has what kind of restrictions on its support, in general.
So, in consecutive sections, §§8 ~10, the main objects are central spin functions
f on R(G) with certain spin types, containing spin characters in particular.

Here assume 4 < n < oo, m odd. An irreducible character f of R(G), G =
G(m,1,n), has spin type x: x(z1) =: /1 = £1. According as #; = —1 or ; = 1,
f is a spin or non-spin character.

We obtain the following from Theorems 7.4 and 7.5 respectively.

Lemma 8.1 (Case modd, 4 <n < 00). Let G = G(m,1,n) = 6,(Z,,), 4 <
n < oo, m odd. Let f be a central spin function on R(G), in particular a spin
character of G. For ¢ € R(G), let the standard decomposition of g = ®(¢') € G
be as in (7.2).

(a) Conjugacy relations in (i) and (vi) in Theorem 7.4 give

i) flg) = (D" f(g) if [supp(g)| < n —2;
(iv) flg') = (—1) HI=HEDHE) £ (g (1<j<s).
L(o)
L(o) =

Lemma 8.2 (Case m odd, n = 00). Let G = G(m,1,00) = 6(Z,,), m
odd. Let [ be a central spin function on R(G), in particular a spin character

) 0, L(oj) =0 (1<j<s); or
b S A= { 1, fsupp(g)] = n— 1.
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of G. For ¢ € R(G(m, 1,00)), let the standard decomposition of g = ®(g¢') €

G(m,1,00) be as in (7.2).

(a) Conjugacy relations in (i) and (vi) in Theorem 7.5 give

(i) flg) =

(b)

(—1) " f(g"),

(1<j<s).

f(¢)#0 = L(o)=0, L(o;) =0 (1 <j<5s).

8.2 Supports and factorizability of spin characters of
G(m,1,00), m odd

The results for R(G), G =
Table 8.1 below. Note that R(G) =

G(m,1,00)

00
Doo(

N

G(1,1,00) = S for m = 1.

G
m) X

S

(Z.m), m odd, is summarized in
R(6..) with R(6..) = T, and

Table 8.1. On characters of R(G(m, 1,00)), m odd.

x(z1) = %1 Existence of spin |extremal | Support (mod Z) of f:
(spin) Type of | finite-dimensional & fl¢)#0 =
Case factor represen- | irred. represen. 7; | factori- | Condition for g = ®(¢’)
tation Reason why zable = (d,0),0 = 010205
x(z1) = -1 —-dr o€ Ay, and
Lodd || R(6x(Znm)) YES | L(o;) =0 (Vi)
seed represen. if 37, then the smallest normal subgr.
in [DaMo] Ker(m) D N 3 = N =01 (A (Z,,)°)
x(z1) =1 31-dimensional No condition
ITodd || 65(Zm) characters : YES | the smallest non-trivial
char. formula Xe ¢ normal subgroup :
in [HH1] (e=0,1;C € Zpm) N =Uoo(Z )"
x(z1) = -1 o=>o(0') € As, and
Ill.odd || spin symmetric -3 L(o;) =0 (Vi)
R(6x) || group R(6w), | YES
=% || charac.formula | if 3, then the smallest normal subgr.
in [Naz| Ker(m) D N 3 z N =d1(2Ay)
x(z1) =1 No condition
VI.odd || the symmetric Jcharacters YES
G group G Xe = sgn® the smallest normal subgr.
cf. [Tho2] (e=0,1) N =2

in Case ILodd, one-dimensional characters x.c(g) = sgn(c)°¢(P(d)) for g = (d, o)

e in the 2nd column, “the type (spin or non-spin) of a character f”;
e in the 3rd column, “existence or non-existence of a finite-dimensional rep-
resentations m, with reason”
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(if 7 exists, then Ker(m) necessarily contains {r;ry, n;n, '} (cf. §12.1), and
accordingly the smallest normal subgroup N containing ®~! (Q[OO(Zm)e), given
in the last column);

e in the 4th column, “does the criterion (EF) hold or not ?” (the answer
YES in Case I.odd is obtained similarly as for R(S), cf. §11);

e in the 5th column, “ evaluation of the support supp(f) (mod Z) of a charac-
ter f of R(G(m, 1, oo)) ” and “ the smallest proper normal subgroup N containing
O (Ase(Z,0)°) .

9 Supports of spin characters of G(m,1,n) (m
even)

We evaluate the support supp(f) (mod Z) of a normalized irreducible character
f of R(G(m, 1, n)), in each case of (spin) type x. Here, to be more fundamental,
we assume simply f is a central spin function with a non-trivial spin type on
R(G), G =G(m,1,n), 4 <n < oo, m even, and study what kind of restriction
on its support we can get. Then the results can be applied immediately to
characters. The results are important to calculate spin irreducible characters and
also to study limiting behavior of a series of irreducible characters as n " oo,
and thus to get all the characters of the inductive limit group R(G(m, 1, oo))
From Theorem 7.6, we get the following.

Lemma 9.1 (Case I, Type (—1,—1,—1)). Let f be a central function of
this spin type.
(a) f satisfies a system of relations coming from (i) ~ (v) of Theorem 7.6 as

(i) flg) = (=1)Hred@ p(gyif |supp(g))] < n —2;
(i) f(g") = (=)D f(g) if |supp(g)] < n—1;
(iii) f(g) = (—1)ord@mordCa)=E @) f(gh) (1<i<r);
(lV) f(g/) _ (_1)(L(a)+1)L(crj)+(ord(d)+1)0rd(dj)+L(U)ord(dj)+ord(d)L(aj) f(g/)

(1<j<s);
(v) f(g’) — (_1)Ord(d)(L(Uj)+1)+L(Uj)—Ord(dj)+L(U)(L(0j)+1) f(g') (1<j<s).

(b) fl¢)#0 =
ord(d) + L(o) =0, ord(§,) =0 (Vi), ord(d;) + L(oj) =0 (V) ;
ord(d) + L(o) = 1, lsupp(g)] = n, ord(€,) = 1 (¥i),
ord(d;) = 1 (Vj).

We can discuss similarly in each case, and omitting part (a) of the assertion,
only the part (b) is given in the form of a complete list, which is convenient to
check and refer. The detailed data in the list will be also applied to the case
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of n = 0o with necessary modifications: in the part (b) in each Case below, we
omit the word ‘or’ after semicolon ‘;’.

Case I1, Type (—1,-1,1): (b)) f(¢)#0 =
[ ord(d) =0,L(c) =0, ord(&,) =0 (Vi), ord(d;) + L(o;) = 0 (V5) ;
ord(d) =0, L(0) =1, a;
ord(d) =1,L(c) =0, |[supp(¢’)| =n, ord(§,,) =1 (Vi), ord(d;) =1 (Vj),
L(oj) =0 (V) (= r+s odd);
ord(d) =1,L(c) =1, [supp(¢’)| =n, ord(§,,) = 1(Vi), ord(d;) =1 (Vj)
\ (= r+s odd).
Case III, Type (—1,1,—1): (b) f(¢)#0 =
[ ord(d) =0, L(c) =0, L(oj) =0 (Vj);
ord(d) =0,L(c) =1, |supp(¢’)| =n, r =0, ord(d;) =0 (V})),
Lioj) =1(Yj) (= s odd);
ord(d) =1,L(c) =0, |supp(¢’)|>n—1;
ord(d) =1,L(c) =1, [supp(¢')| =n, ord(d;) =1, L(o;) =1 (V)
\ (= s odd).
Case IV, Type (—1,1,1): (b)) f(J)#0 =
L) =0, Lio,)=0(¥)):
L(o) =1, [supp(g)] > n—1, ord({,) = 0 (Vi),
ord(d;) = 0 (Vj), L(oj) =0 (V)).
Case V, Type (1,—1,—-1): (b) f(¢)#0 =
(ord(d) =0, L(0) =0, ord(§,) =0 (i), ord(d;) =0 (Vj), L(o;) =0 (¥y);
ord(d) =0,L(c) =1, [supp(¢’)| =n, ord(&,) =1 (Vi), ord(d;) =1 (V))

(= 7+ seven);

ord(d) =1,L(c) =0, [supp(¢’)| =n, ord(&,) =1 (Vi), ord(d;) =1 (V)),
L(cj) =0 (V) (= r+s odd);
ord(d) =1,L(c) =1, |supp(¢’)| > n—1, ord(&,) = 0 (Vi),
\ ord(d;) + L(o;) = 0 (Vj).
Case VI, Type (1,-1,1):  (b) f(¢)#0 =
ord(d) =0, ord(&,) =0 (Vi), ord(d;) =0 (V7),
L(oj) =0(Y)) (= Llo)=0);
ord(d) =1, |supp(¢’)| =n, ord(&,) =1 (Vi),
ord(d;) =1 (V)), (:> r+s odd).
Case VII, Type (1, 1,—-1): (b)) f(¢)#0
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Table 9.1. For finite group R(G,), G, = 6,(Z,,)

\

0, L(0) = 0,
0,L(c) =1,
1,L(eg) =0,

=1,

4<n<oo, m=2m':

No additional condition;

lsupp(¢’)| =n, =0, s odd, ord(d;) =0 (V}),

L(o;) =1 (V))

lsupp(¢')| =n, 7 =0, s odd, ord(d;) =1 (¥y),

L(o;) =1 (V9)

81

(= n even);
[supp(g")| = n =1, L(g;) = 0 (V7)
(= r+s odd);

(= n even).

G(m,1,n),

1— Z ={z1,29,23) — R(Gy) 2 G, —1:

(B1, B2, 03) | f(g') #0 = Condition for g =@(g') = (d,0)
(spin) Type - E(h " 'gfhgl s qu‘, - (tqm (qi))a 9; = (djv J])
Case || of factor ord(d) + L(c) = 0 (mod 2) ord(d) + L(c) = 1 (mod 2)

Y represen- ord(d) =0 ord(d) =1 ord(d) =0 ord(d) =1
tation L(o) = Lio)y=1 L(o) = L(o) =
(_17_1a_1) |supp(g’)| =n

I seed repre. ord(€,,) =0 (1<i<r) ord(€,,)=1(1<i<r)
in [ThYo], ord(dj)+ L(o;) =0 (1 <j < s) ord(d;) =1 (1<j<s)
in [DaMo]

[supp(g")| = 7 [supp(g’)| = n
(-1,-1,1) | L(c) =0 r+s odd r+s odd

I1 ord(&,,)=0 (Vi) | ord(&,,) =1 (Vi) %) ord(&,,) = 1 (Vi)
seed repre. | ord(d;) + L(o;) | ord(d;) = 1(¥5) ord(d;) =1 (V)
in [DaMo] =0(Yy) | Lio)=1 L(oj;) =0 (Vj)

C A, (T)° n even, [supp(¢’)| =n
I || (—-1,1,-1) r=20, s odd, |supp(¢’)|=n—1
L(o;) =0 (Vj) | ord(d;) = ord(d) (Vj)
Lloj) =1(Vj), 9=9192-"-9s
(-1, 1, 1) | cA.(T)° c A, (T),

IV || seed repre. |supp(¢’)| = n —1
in [IhYo|, | L(o;) =0 (V) L(oj) =0 (V))
in [DaMo|] | o =010 o=01 04

C A, (T)° supp(g’)| Z2n—1 | |supp(g')| =n | |supp(g’)| =n
ord(&,,) =0 (Vi) | r+s even r+s odd

V || (1,-1,-1) | ord(&,,) =0 (Vi) | ord(d;) + L(oj) | ord(&,)=1(Vi) | ord(&y,) = 1 (Vi)

ord(d;)=0 (Vj) =0(Vj) |ord(dj)=1(Vy) | ord(d;) =1 (V))
L(o;)=0(Vj) | L(o)=1 Lio)=1 L(oj) =0 (V))
C A (T)? [supp(¢)| = n [supp(¢)| = n
VI || (1,-1, 1) |ord(§;,)=0 (Vi) | r+s odd %) r+s odd
ord(d;)=0 (Vj) | ord(&g,) =1 (Vi) ord(&g,) =1 (Vi)
L(o;) =0 (Vj) | ord(d;) =1 (Vj) ord(d;) =1 (Vj)
(1, 1,-1) | cA(T)° n even, [supp(¢’)| =n |[supp(¢’)|=n—1

VII r=20, s odd,
seed repre. | No other ord(d;) = ord(d) (V) L(o;) =0 (V))
in [ThYo| condition L(cj)=1(Vj), g=0192- " 9s

v || @, 1, 1) ( Case of non-spin charz}c'ters of 6,(Zn) )
No condition
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In the table above, notations are as follows: (spin) type is (51, 52, #3) with
X(z) = B; (1 < i < 3) according to Case Y (Y=I~VIII); L(o) denote the
length of o € &,, with respect to simple reflections {s1, s2,...,s,-1}, and £(o;)
the length of a cycle oj; S :=S512) ={t}t €T} =2 Zyp0, T = Z,,, U, (T)° :=
{(d,0) € 6,(T);0 €U, P(d) € S}.

10 Supports of spin characters of infinite gen-
eralized symmetric groups G(m, 1, c0)

Since the situation in the case of m odd is simple, we treat here mainly the case
of m even. The case of m odd can be easily estimated from it. Let f be a central
spin function on R(G(m, 1, oo)) with a non-trivial spin type, in particular, a spin
character of G(m,1,00), m even.

An evaluation of support of f can be obtained from Theorem 7.8, similarly
as for finite groups G(m,1,n),n < co. In each Case Y (Y =1, II, ..., VII) for
n = 00, the evaluation of supp(f) is given by the system of conditions listed up in
§9.2 after “(b) f(¢’) =7 but without the restrictive conditions “|supp(¢’)| =
n” and “|supp(g’)| > n—1”. Their proofs are by easy calculations and omitted
here. We call this system of conditions as Condition Y.

The subset of the representation group R(G(m, 1, oo)) consisting of ¢’ satis-
tying (Condition Y) is denoted by O(Y). Then our results are stated as follows.

Theorem 10.1 (m even). Let f be a central function on R(G(m,1,00))
with the spin type in Case Y. Then, in each Case Y (Y =1, II, ..., VII),

(10.1) fg)#0 = ¢ €O(Y), or O(Y) D supp(f).

Definition 10.1. A non-empty subset O of R(G(m, 1, oo)) is called weakly
multiplicative (resp. multiplicative) if it has the following property:

(10.2) k' e O, supp(h) supp(k') =2 = KWk €O
(10.3) (resp. K, K'eO = hWK €O).
Definition 10.2. A non-empty subset O of R(G(m, 1, oo)), containing the

central subgroup Z, is called factorizable if it has the following property: for any
g €0,

g =nk, n kK e R(G(m, 1,00)), supp(R’) (supp(k') =@ = K,k € O.

Definition 10.3. A non-empty subset O of R(G(m, 1, oo)), containing the

central subgroup Z, is called commutatively factorizable for type x, x € Z, if it
has the following property: for any ¢ € O,

(10.4) g =Wk, I'.K € R(G(m,1,00)), supp(h')(\supp(k') = @
. = N,k € O and Wk'Ker(x) = k'hWKer(y).
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Table 10.1. Subsets O(Y) C R(G(m,1,00)), G(m,1,00) = 6(Z,) ,
O(Y) D supp(f), f € EY(R(G(m,1,00)) :
Type x = Type 8, B = (B1,02,03) with §; = x(z;) for m even.

Subset || (51,52, 3) | (Condition Y) for O(Y): | O(Y) | OY) [0F) | O)
o) Type of g=o(¢") = (d,o) = Fac- commu. | weakly | multi-
in factor rep- g1 €q,.91 " Gss tori- facto- | multi- | plica-
Case Y || resentation g;=(d;,05) zable | rizable | plica. | tive
m  ODD
B L(o;) =0 (mod 2)
O(Lodd) || x(z1)=—1 G <j<s | YES | YES | YES | NO
m  EVEN
1 ord(&,,) = 0(mod 2) (Vi)
O || (=111 | o 1 Ly <0y | YES | YBS | YES | NO
ord(d) =0, L(o)=0,
o) (—=1,-1, 1) | ord(&,) =0 (Vi), NO NO YES NO
ord(dj) + L(O’j) =0 (V])
ord(d) =0,
o || (-1, 1,1 | FEVZ0 NO | NO | YES | NO
i) =
oav) || (-1, 1, 1) fL("j) =0(v3), YES | YES | YES | NO
Or 0 = 010205
ord(&,,) =0 (V4),
o) || a,-1,-1) | ord(d;) =0 (¥j), YES | YES | YES | NO
L(o;) =0 (Vj)
Ord(gfh) =0 (\V’Z),
o) || (1,-1, 1) | ord(dy) =0 (Vy), YES | YES | YES | NO
L(o;) =0 (V)
oW || (1, 1,-1) OLr(i()d)::O 0 NO | NO | YES | YES
O(VIII) (1, 1, 1) No condition YES YES YES | YES
non-spin

Notation 10.1. In Case Y, denote by EY (R(G(m, 1,00))) the set of all nor-
malized spin characters of Type x Y (or of type 3 = (51, 82, 33), Bi = x¥ (21),1 <
i <3) of G(m,1,00), and by Ky (R(G(m,1,00))) the set of normalized central
positive definite functions on R(G(m, 1, oo)) of (spin) type xY. Put

(10.5) GY(m,1,00) := R(G(m,1,00))/Ker(x¥), Z¥ :=Z/Ker(x").

Then ZY¥ = Z, is of order 2. Note that EY (R(G(m,1,00))) is the set of
extremal points of the convex set K’ (R G(m, 1, oo))), and that a central positive
definite function f € K (R(G(m,1,00))) can be considered as a function on the

quotient group G¥ (m, 1, 00). We have a disjoint union

(10.6) E(R(G(m,1,00)) = || EY(R(G(m,1,00)),
Y=I ~ VIII

and similarly for K;(R(G(m,1,0))).
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We have a central extension (or a covering group) of G(m, 1,00) as

(10.7)  {e} — 2¥ — G¥(m, 1, 0) AN G(m,1,00) — {e} (exact).

Diagram 10.1. Covering groups of G(m,1,c0).

upper level R(G(m, 1, oo)) covering group

! degree of covering = 22 = |Ker(xY)|
upper level éY(m, 1, oo)) double covering group

1 degree of covering = 2
lower (non-spin) level  G(m, 1, 00) basic group

When we consider a spin character f of Type x = x¥, we take O = O(Y).
If it is commutatively factorizable for type x, the property in Definition 10.3
implies that the images of A/, k' € O(Y) C R(G(m, 1, oo)) down in the quotient
group GY(m, 1, 00) are mutually commutative, and so f(h'k') = f(k'h).

To check if the subset O = O(Y) satisfies or not the conditions for the
corresponding x = x¥ € 2, we apply the fundamental relations listed up in §9.2.

Remark 10.1. Noting (1 2 3)(2 3 4) = (1 2)(3 4), we see that the
condition “ L(o;) = 0 (Vj)” is not “ multiplicative”, and accordingly that the
subset O(Y) is not multiplicative except Y = VII, VIIL

For Cases Y, Y = II, III, VII, consider a strengthened condition (str-Condition
Y)on g € R(G(m, 1, oo)) demanding that each component &, , g; of ¢ = ®(¢’)
satisfies itself (Condition Y), and denote by O (Y) the subset of ¢’ defined by
(str-Condition Y).

Lemma 10.2. (i) For Case Y, Y =11, III, or VII, the condition (str-
Condition Y) for ¢’ € R(G(m, 1, oo)) is given by

(str) ord(§,) =0 (1 <i<r), L(o;) =0, ord(d;) =0 (1 <j<s),

and the subsets O (Y) are all equal to the subset O(str) defined by the condition
(str) above and equal to O(V) = O(VI).

(i) In such CaseY, if f € K (R(G(m7 1, oo))) is factorizable (cf. Definition
6.1), then we have supp(f) C O**(Y) = O(str).

Lemma 10.3. (i) Put O'(Y) as

O(Y) for Y =1Iodd, I, IV, V, VI,
(10.8) O'(Y) ==

Ost(Y) for Y — 11, 111, VII.
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Fora g € O(Y), take any of its basic components h' such that h = ®(h') equals
one of &, (1 <i<r)andg; (1 <j<s). Let J:=supp(h') and

(10.9) G = {k' € R(G(m,1,00)) ; supp(k') N J = &},

then b and G'; commute with each other elementwise modulo Ker(xY), that is,
h'kE'Ker(xY) = K'WKer(xY) (K € GY), where x¥ € 7 corresponds to Case Y. In
other words, going down to the quotient GY (m, 1, 0) =R(G(m,1,00))/Ker(xY),
they commute with each other.

(ii) In Case Y, Y =11, III, VII, take ¢ € O(Y) \ O**(Y), then ¢ has a
basic component h' such that I/ is not commutative with some elements of G';
modulo Ker(xY).

11 Factorisability for spin characters of G(m, 1, c0)

Contrary to the non-spin case (Case VIII) of infinite generalized symmetric
groups G(m,1,00) = 6.(Z,,) in [HH1|, the factorizability criterion (EF) for
characters in §6.6 : R

for f € Ky (R(G(m, 1, oo))) of certain type x € Z,

(EF) f extremal <= f factorizable,

does not necessarily hold for the spin case, that is, for representation groups
R(G(m, 1, oo)) if m is even. As a result of our study, the validity of factorizabil-
ity criterion (EF) corresponds to that of the factorizability for the subset O(Y) in
§10, as seen below. Recall that the implication “factorizable = extremal” is
always true as seen in Theorem 6.3. In other words, for f € K (R(G(m, 1, oo)))

of certain type y € 2, “to be factorizable” is sufficient for “ to be a character”.

Theorem 11.1. (i) The converse implication “extremal = factoriz-
able” holds in Case Y,Y =lLodd, I, IV, V, and VI, and the criterion (EF)
holds in these cases.

(ii) The criterion (EF) does not holds in Case VII.

Proof. (i) Since f(z') = x¥(2)f(I') (z € Z,I € R(G(m,1,00)) ), f can be
considered as a function on the quotient group GY(m,1,00) = R(G(m,1,0))/
Ker(xY), and we can and do discuss on GY through modulo Ker(xY) C Z.

Consider Case Y, Y=I.odd, I,IV,V, or VI. Take ¢’ € G¥(m, 1,00) such that
f(¢g') # 0. Then ¢ belongs to the subset O(Y). Let J = supp(¢’) and put as in
(10.9),

G, ={N € éY(m, 1,00); supp(h') N J = o}
By Lemma 10.3, ¢’ and G’; commute with each other elementwise. Let N be the
order of ¢/, and Zy = (¢’) the cyclic group generated by ¢, then

InNGy={e} or ZynG), =27,
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where ZY := Z/Ker(xY), since Z/Ker(xY) = Z,. Then the direct product
Zn x G’} is a subgroup of GY in the first case, and (Zn x G'})/ZY is imbedded
into GY as such a one in the second case. B

The group G'; is naturally isomorphic to G (m,1,00) and any conjugacy
class of the latter meets with the former. Hence the restriction ]? = f\Gf] onto
G'; determines f naturally, and fAis extremal in K;(G’)) or ]/”\6 E(G).

Moreover we have E(Zy x G')) = E(Zy) x E(G"), and thus we can follow
the proof of “only if”-part of Satz 1 in [Tho2|.

(ii) We know from Lemma 10.2 (ii) that if a spin character f in Case VII has
support supp(f) ¢ O**(Y) = O(str), then it is not decomposable. Such a spin
character is given by the normalized trace character quk of two-dimensional
IRs (see Theorem 12.2 below).

Thus the proof of Theorem 11.1 is completed. O

Remark 11.1. In Cases II and III, the criterion (EF) does not hold as in
Case VII, principally because of the property of O(Y) in Lemma 10.3 (ii), for
Y =11, III, VII. But its proof is postponed until a succeeding paper, since it
needs an example of characters with supports touching O(Y) \ O (Y).

12 Finite-dimensional spin representations of
G(m, 1, 00)

12.1 Spin type admitting finite-dimensional IRs for
R(G(m,1,00))

00 ) Then 7 has its

Let m be even, and 7 a finite-dimensional IR of R( (m, 1,
1 < < 3) with the identity

own type 3 = (b1, 2, B3) given by 7(2) = Gl (

operator I.

Since R(G(m,1,00)) = lim, ..o R(G(m,1,n)), there exists an ng such that =
is irreducible already on a finite subgroup (m, 1, no)). For n > ny, elements
of the form r;ry (i,4/ > n) or mn, " (j,k > n) commute with R(G(m,1,n)),
and so
(12.1) w(rire) = Nl w(yt) = piad

where X v, i € C*. From (r;7:11)% = e and (riry)* = 21 (i —¢'| > 2), we get

Niis1)’ =1, (N disrize)® = B

It follows from this that A; ;41 \iy112 = 31, and so 3> = 1 whence 3; = 1. Thus
we have A\;;4+1 =1 (i > ng) and \;» =1 (4,7 > ng,i # ¢'). This forces that 7 is
trivial on the subgroup ®*(%As) C R(G(m,1,00)). Thus,

(12.2) m(r)) =n(r) (i>2), =(r)=:J with J?=1
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F Amom — W\ — 0 -1 _ ) 71)_1 o —ym _  m(m-1)/2 _ _ m/2
rom TJ(UJ’?jH )T 1j+17; (77J77j+1 ; (77]77j+1> %9 Z9 '
—1\m m/2 — —
(77j77j+21) = 2 / , and n;ny ! *MeMke+1 = 77j77k+i= we get

o —1 mo__ m/2
g1 = Hj it s (1) =By "7,

m m/2 .
(g gerpiang2)™ = 8o Hiktterss = piger (G < k),
whence 627”/2 =1, (4j;+1)*> = 1. Moreover from 7,141 = 221j417;, we have
77j77j+_11 = Z277j+_1177j = Z277j+_11(77j77j+_11)77j+1a and so fij41 = Boptj i1, Whence
B = 1.

Finally ri,(nm, r ' = zsnmey (5 < k) gives e = Bapbner = Bafbj bbb hot1s
and

Prgr1 = B3 (VE),  pjr = B30 (5 < k).

{ w(n) = Bsm(njs1),  w(ny) = B¢ 'w(m), w(m) = K,

So
ar)=J, JP=1 Km=1IJK =K/

Thus we have a unique spin type 5 = (51, 02,03) = (1, 1,—1), Case VII,
which may admit finite-dimensional representations.

12.2 Type (1, 1,—1): Finite-dimensional irreducible spin
representations

To obtain such representations, we are lead to look for pairs { K, J} which satisfies
(12.3) J* =1, K"=1, JK=-KJ, {J K} isirreducible.

Also we can treat it by the method of induced representations for the semidi-
rect product group R(6,(Z,,))/(z1,2). However, in this reduced case where
n(ri) = w(r) = J (i > 2) and 7(n) = B 'w(m) = (1)K (j > 2),
it is enough to consider a simpler group given as H := D x R with D :=
(z) x (m), R:= (r;) and with fundamental relations

22 =e, =z central, r?=ec¢,
(12.4)

et =-e, Timry= 2N

Let D~ be the set of characters x of D for which X(z) = —1. Then

(12.5) { D= {C0: Gy Gnn }y Grlm) = WP,

w = €2™/™ = a primitive m-th root of 1.

The action of 1 on D~ is given by (x — Cgirnmy with m’ = m/2, where the index
k + m' is understood modulo m. In fact,

(r1(¢) (m) = Ge(ri(m)) = =Ce(m) = —w* = WET™ = G ().
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In this way we get all finite-dimensional irreducible spin representations of
H, and then those of R(G(m,1,00)) as follows.

Theorem 12.1. Let m be even.

(i) The type of spin factor representations of G(m,1,00), which admits
finite-dimensional irreducible ones, is uniquely 5 = (1, 1,—1), Case VII.

(ii) For Case VII, Type B = (1, 1,—1), all finite-dimensional irreducible
spin representations are 2-dimensional. A complete set of representatives of
their equivalence classes is given by {ma¢, ; 0 <k <m'=m/2}, where

120 ma () =m0 = (] o) 22

wk-i—(j—l)m’ 0

(12'7) 7T2,Ck(77j) = (_1)3‘—17@,%(771) = ( 0 wk+jm’> (] > 1)'

Introduce new generators 1n; = z3j_177j (j € N) for Do = (z3,m1,M2,...), then

mat) = (M _50) = (5 L) vem

Put ord(d') =3 na; for d =[lcnm™ € Do, then

, wk ord(d") 0
(128) UPXS (d) = (( )0 (_wk)ord(d’)) :

We note that this explicit form of two-dimensional representations is a little
different from those in [IhYo| and [DaMo] in appearance.
The trace character f = xr, . Is of type 0 = (1, 1,—1) and it can be

considered as a central function on G := R(G(m,1,00))/(z1, 22) and

(12.9) G=Dux Gy Du=1(z)x [[ ) )= Znm.

JEN

Theorem 12.2. Let m be even, and m ¢, two-dimensional irreducible spin
representation of G(m,1,00) of Case VII given above. Then its trace character
Xy, U completely determined if its value is given for

(12.10) G=(d,0)eG with d =z H n, 0 € Sy.

J
jEN

Then, with notations L(o) in §9 and ord(d') := >, aj,

2. (_1>awk~ord(d/) =9. (_1)&Ck<n1)ord(d’)
(12.11) Xra e, (9) = if L(o)=0, ord(d')=0,

0 otherwise.
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Note 12.1. If we keep to the original generators {n:,m,...} of Ds, we
should have a kind of sign function on D, as follows: for d' =[] jeN njaj € Dy,
put

sgn(d') := H(—l)(j_l)“j, ord'(d') := Z aj,
jEN jEN
then
Sgn(d’) wk~ord/(d’)

no_ 0 .
T2,G (d) = ( 0 sgn(d/) (_wk)ord’(d’)> (] S N)

13 Summary of results for R(G(m, 1, oo)), m even

For the convenience of later use, we summarize in the following table.

Table 13.1. For infinite group R(G(m,1,)).

3 . /
Case (61, B2, Bs) Existence of spin extimal Z]uolilpd(i{i)o.n J;(g ) zé ?I) (:,;7
Type of factor finite-dimensional . F9= 9)=
Y tati irred. represen. 7 factori- | (d,0) = &g, *++&q.01 "+ 95,
representation - rep . zable gj = (dj, o)
(—1,-1,-1) ord(&,,) = 0 (mod 2) (Vi)
I seed represen. — 3 (not exist) m YES e, &g = (tg,, (qi)), tg, €S,
[ThYo], [DaMo] ord(d;) + L(o;) = 0 (V5)
CAL(T)®, ie.
(_17 _15 1) ~ — 4 :’
I seed represen. SEE NO®™) ord(d) = L(O) . 0, and
in [DaMo] ord(§g,) =0 (Vi),
ord(d;) + L(e;) = 0 (¥))
C A (T)°, and
I || (=1, 1,-1) —~3n NO™ | ord(d) =0,
L(o,) =0 (¥))
(-1, 1, 1) C Ao(T), and
IV || seed represen. -d7 YES L(o;) =0,i.e.,0; even (V)
[ThYo], [DaMo] for 0 = 01090,
CA(T)%, and
\% (1,-1,-1) -3 YES ord(§,,) =0 (Vi),
ord(d;) = L(oj) = 0 (V9)
C A (T)%, and
VI || (1,-1, 1) -3 YES | ord(&,) =0 (Vi),
ord(d;) = L(oj) = 0 (¥5)
(L) eenta C %eo(T)", i,
VII seed represen. ' Wp ' NO ord(d) =0,
] 2:Ck —
in [ThYo] (0< k< m/2) L(e)=0
(1, 1, 1) 31-dimensional
vin || Se(Zm) character YES | No condition
char. formula Xe¢
in [HH1] (e=0,1;¢eT)

(¥) A proof for this will be given in the succeeding paper.
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In the table above, the following are given:

e in the second column, (spin) type of factor representation or of spin charac-
ters, and the information on the basic representations given in [Ih'Yo| or [DaMo]
which are called here as seed representation;

e in the 3rd column, information on finite-dimensional representations ;

e in the 4th column, information on the validity of the criterion (EF);

e in the 5th column, (Condition Y) to define O(Y) for which supp(f) C
O(Y).

The results in Table 13.1 for R(G(m7 1, oo)), m even, are complicated and
accordingly very interesting.

14 Limits of irreducible characters of an in-
creasing sequence of groups

Let Hy — Hy — ... — H, — H,.; — ... be an increasing sequence of
compact groups such that the imbedding H,, — H, 1 is continuous, and put
Hy = lim,, . H, = Uo<n<ooHn be its inductive limit with the inductive limit
topology. Then, H, is a topological group which is discrete if all H,, are finite,
and it is no more locally compact if H, are not finite and not stable for n
sufficiently large (cf. [TSH|, §5). We summarize in this section results on limiting
processes of (normalized) irreducible characters of H,, as n — oo, and extend
them in some extent. When all H,, are finite groups, the infinite group H., is
called locally finite in [Ker, p.5|. For this kind of groups, the study was initiated
by Vershik-Kerov [VK] for symmetric groups &,, /" &4, and by [HH1|-[HH3|
and by [Boy| for the case of wreath product groups &, (7T") with a finite group
T, and also by [HH5|, [HH6] and [HHH1| for more general case of &,(T") with
a compact group 7. More general branching graphs, not necessarily induced
by inductive limit groups, are treated in [KOO]| (Jack graph), [BO], [Ols], and
[HoHH] (more general graphs) and so on.

Even though we need here only the case of locally finite groups, it is preferable
to discuss together the case of infinite series of compact groups, for which we will
prove below general results (Theorems 14.2 and 14.3) and give a comment on
counter examples.

14.1. An increasing sequence of compact groups.

We assume that Hy = {e} the trivial group of the identity element e, and
H,, are strictly increasing. For the duals H, of H,’s, we introduce an adjacent
relation * as follows: for « € H and § € H.\ |, o /' [ means « is actually
contained in 3|y, and denote by x(«, (3) its multiplicity. We put x(a, 5) = 0 if
a /" (3 does not hold, for later conveniences. Put G,, := H, and G := |_|n>o G,
where the unique element in Gy is denoted by &.
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Let f,, be a central, continuous, positive-definite function on H,,, normalized
as fn(e) = 1. Then it has an absolutely convergent Fourier series expansion as

(14.1)  fulh) = Y pal@)xalh) = Y dima- () - Xalh) (b€ Hy),

CMGGn aEGTL

where Y, is the usual trace character of a, and Y, = xo/dim « is the normalized
irreducible character with dim o = dimension of . Then

(14.2) on(a) >0, Z dima - p,(a) =1,

OLEGTL

so that the support of ¢, {a € G,,; () > 0} is at most countable.

14.2. Branching graph and central measures.

A branching graph consists of the stratified vertex sets G = |_|n>0 G, and
the edges satisfying the following conditions, where G, is called the vertexes of
the n-th level.

(BG1) Two vertexes «, 3 € G can be adjacent only if they belong to consec-
utive levels. If « € G, and 3 € G,,.1 are adjacent, we express it as a ' [ and
call (o, 3) the ingoing [resp. outgoing| edge of (3 [resp. af.

(BG2) Gy consists of the unique element @ that has no ingoing edges.

(BG3) For any vertex except @, its ingoing [resp. outgoing| edges form a
nonempty finite [resp. non-empty (possibly infinite)] set.

(BG4) If o " B holds, the edge («, ) carries multiplicity x(«, 5) > 0.

For a € G,, 8 € G, 11, we put k(a, ) = 0 if they are not adjacent.

A non-negative real-valued function ¢ on G is called harmonic if
(14.3) pla) =) wla.B)e(f) (a€q),
Bia,/pB

and normalized as ¢(&) = 1, and supp(p) is at most countable.
Let T = T(G) denote the set of all infinite paths on G starting at &, for
which ¢t € ¥ is expressed as

L= (H0) S 1(1) /e S tn) S ), tn) € G

Its truncated path up to the n-th level is ¢, = (¢(0) / ¢(1) /" --- / t(n)). Ty
denotes the set of all finite paths up to n-th level. For a finite path v connecting
a€ Gy and f€G, (m<n)asa=ulm) - uln) =0, its weight w, is
defined by

(14.4) wy =[] (@), ui+1),
m<i<n
and we define the dimension function d on G by

(14.5) do,B) = > w,

pathu: o ™ /3
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From [HoHH, §2|, we quote the following assertions (1°), (2°) and (3°).
(1°) A harmonic function ¢ on G satisfies, for any m < n and o € G,

pla) = dla,8)p(B).

BeGH

A subset G° C G, with edges inherited from G, is called a subgraph if for
any 8 € G°, any path in G connecting @ to [ is also a path in G°. For each

u=(u(0) /- u(n)) €%Z,, put
C,:={te%; tk) =u(k), 0<k<n},

and denote by B(T) the Borel field of T generated by the set of all C,’s. A prob-
ability measure on measurable space (¥,8B(%)) is called central if it is supported
by the path space T(G) of some countable subgraph G of G, and

(14.6) —

for all n and u,v € T, with a common terminating vertex.

(2°) There exists a bijective correspondence between the central probabilities
M on T and the harmonic functions ¢ on G through
(14.7) M(C,) == w, - p(a)

for any o € G, and u € T,, such that u(n) = a (n > 0).

Define a random variable X,, : ¥ — G, by X, (t) = t(n), then B(%) is
generated by X, Xs,.... Let 8, be the sub-o-field generated by X,,, X,,11,...
and put B, = ﬂ@o B,,.

(3°) Let M be an extremal central probability on . Then M is trivial on
B, that is, M(B) =0 or 1 for B € B.

14.3. Limit of Martin kernels on a branching graph.
On the branching graph G, we regard the ratio

d(e, B)
d(@,0)’
as a Martin kernel on G. Let M be a central probability on ¥ = ¥(G) which

is supported by T(G®) of a countable subgraph G°. Then M can be traced to
probability M on sub-o-field B° = B(T) N T(GY).

a,feG

Theorem 14.1 [HoHH, Theorem 3.2]. Let M be an extremal central prob-
ability measure on (T,B(%)), and G° a countable subgraph associated with M
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as above. Let ¢ be an extremal harmonic function on G associated with M as
in (2°). Then, for M-almost sure t € T,

) d(a,t(n)) B 0

14.4. Limits of irreducible characters.

As in 14.1, let Hy — ... — H, — H,,; — ... be an increasing se-
quence of compact groups and define, H,, = lim,, .., H,, G = |_|n>0 G, G, =
Hri\7 ’{<aaﬁ> = [/8|Hn : Oé] for a € Gmﬁ € Gn-‘rl; then

(14.9) Xolm = Y K@) Xa-

acGp:a,/ B

A character of G = H,, is, by definition, an extremal element among the
continuous, positive-definite, central and normalized functions on G. The follow-
ing two are straight forward generalizations of Theorem 4.2 and Theorem 4.3 in
[HoHH]| respectively.

Theorem 14.2. Let G = H,, be the inductive limit of an increasing se-
quence H, — H, .1 of compact groups such that each imbedding is continuous.
Then there exist bijective correspondences between the following three objects:

(1) the set E(G) of characters of G,

(2) the set of extremal harmonic functions ¢ on T(G),

(3) the set of extremal central probabilities M on (G).

To be precise, f in (1) and ¢ in (2) are connected as

(14.10) fla, =Y @(a) X,

acGp
and the bijection between (2) and (3) is given in (2°).

Under the above bijective correspondences, we apply Theorem 14.1 to obtain
the following result on limits of irreducible characters of H, as n — oco.

Theorem 14.3. Let G = H,, be the inductive limit of an increasing se-
quence of compact groups H, such that each imbedding is continuous. For any
f € E(G), let M be the corresponding extremal central measure in Theorem
14.2. Then, for M-almost sure t € T, the convergence

(14.11) im Xym) = f

1s true and uniform on each Hyp, k > 1.
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Sketch of proof. We follow the proof of |[HoHH, Theorem 4.3|. For k < n,
there holds

(14.12) Xalme = Y d(B,7) xs (v € G).

BEGy

Under the correspondence f < ¢ < M in Theorem 14.2, put G* = supp .
Then G° is a countable subgraph of G, and we see from Theorem 14.1 that, for
M-almost sure (= M-a.s.) t € %,

(14.13) nh_)rglo% = ¢la) (aeGY).

Take a path t € T(G") satisfying (14.13), then
(14.14) a € Gy and d(o,t(n)) >0 = a € G) =G, NG".
Put for a € G, k <n,

d(a, t(n))

(14.15) Qi) (@) := W

d(@,a), Qa) = p(a)d(D, ).
Then both are probabilities supported by G. We estimate the difference of
(14.16) Newla = Y Quen(@)Xar  flo, = D Q) Xa

Gy Gy

where the first equality follows from (14.12) and (14.15). For € > 0, there exists
a finite subset F' C G such that 1 — Q(F) < e. Equality (14.13) shows that,
for M-a.s. path t € T(G"), and n sufficiently large,

’Qt(n)(F) - Q(F)| <6 and,

Qi) (F°) <1 = Q(F) + |Quny (F) = Q(F)| < 2e.
Putting them into (14.16), we have for h € Hy,

Xetmy (B) = L) <D Qe (@) = Q)] + Qun) (GR\ F) + Q(GY\ F) < de.

aclF

Hence, for M-a.s. path ¢, lim sup ’)?t(n)(h) — f(h)‘ = 0. O

n—00 pe fry,

The case of H,, = U(n), the unitary group of order n, and H.,, = U(o0) :=
lim,, o U(n), is treated in [Ols].
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14.5. Are limits of irreducible characters always extremal ?
Under the general setting of Theorem 14.3, assume that, along with a path
t € €, the pointwise limit
(14.17) fi(h) == nh_}Iglo Xty (R) (h e G = Hy)
exists on G, where Y;(,) denotes the normalized character of t(n) € G, = H,.

Here we are interested in paths ¢ not picked up by any M-measure 1 subset in-
dicated in that theorem and study the following assertion:

Assertion (?7?). Suppose that the limit function f; in (14.17) exists point-
wise, then f; is always a character of G, or f; is continuous and extremal, i.e.,

fi € E(GQ).

This assertion is proved for infinite symmetric group G = &, by Vershik-
Kerov already in [VK]|. On the other hand, Kerov gives the following general
comment in |Ker, p.11] for a locally finite group G:

“ Let us call a path t € T regular if the limits (5.2) exist. The corresponding
limiting function ¢, is harmonic, though not necessarily extreme. ...... 7

Here for a path ¢t = (v, va,..., Uy, ...), Uy € [, the limits (5.2) is

)
N = 0,

Ael,

with ' = |_|n>0 I',, a branching graph. For a locally finite group G, the existence

of a limit ¢, is equivalent to the existence of a pointwise limit f; of Xy») on G.

We call a limit f; a bad limit if it is not in E(G). Then Kerov’s above comment

means that, for certain locally finite groups G, there exist bad limits f; on G.
In [BO, p.5], Borodin-Olshanski give a comment as

“ In all examples of the graphs G considered in the present paper

one can embed (the vertices of) G into Q(G) in such a way that
any point w € Q(G) can be approximated by a sequence of vertices
{A(n) € G, },=12,., and for any such sequence

. dimg(p, A(n))
K, w) = lim e A) ”
(11,0) nh dimg A(n)

not referring an assertion like Assertion (77). Here Q(G) denotes the set of ex-
treme points in the set of normalized, non-negative, harmonic functions on G.

For wreath product groups G = &,(T) = H,, with H, = &,(T) and T a
finite group, Assertion (??) is affirmed by |[HH1|-[HH3|, and also by |Boy| by
reducing it to the case of G,(Z,) (see [Boy| §2, especially Theorem 2). For the
original case of G, see |[VK], §1-4, especially Eqs (2) and (6).

For the general case of series of infinite compact group H,, the following as-
sertion, weaker than Assertion (77), is more natural :
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Assertion (??7?). If the limit function f; in (14.17) exists compact uni-
formly, then f; is always a character of G, or f, is continuous and extremal,
i.e., ft € E(G)

For the case of unitary groups U(n)  U(oco), this assertion is affirmed in
[Ols] (Proposition 10.9). For the case of wreath product groups &,,(7) /" S (T)
with any compact group 7', we gave all the characters of G in [HH6|, and studied
limit process X¢n») — f; in [HHH1| and [HoHH]|. In [HHH1], it is proved that,
if T is not finite, then Assertion (??) never holds since we can give explicitly
pointwise limits f; in (14.17), along paths ¢ € ¥, which are discontinuous, and
so do not belong to E(G) (bad limits). A necessary and sufficient condition on
the path ¢t € T is given for that f; is actually a character (cf. Theorems 6.1 and
7.1, ibid.), and Assertion (77?7) is affirmed by Theorem 7.1, ibid.

As far as we know, a general affirmation to Assertion (??7) has not yet been
given for locally finite groups G = H.,, except the above mentioned case of
wreath products G = &,(T") with T finite. In this connection, we are very much
careful at this point for the covering groups H, = R(6,(Z,,)) of G(m,1,n) =
S,(Z,) and Hy, = R(G(m,1,00)) (and also for H, = &,(T,,) with finite groups
T, growing up to 7).



Part II
Detailed study in Case VII

15 Explicit formula for characters of G(m, p, o)
in Case VIII

Our results for characters of G(m, p,n) = &,(Z,,)°® and G(m, p, ) = Go(Z,,)°P
in [HH1| prepare a background of the spin case at present. We review them
briefly. Recall the definition of &;(T") in §2.1: for a finite abelian group 7" and

its subgroup S,

&1(1) = Dy(T) % &, D(T):=[[ | T Ti=T (iel),
(15.1) &/(T)° = Dy(T)* x &y, Dy(T)*:=1{d = (t;)ier; P(d) == Higt" € S}.

Let T be the dual of T, and x. be the one-dimensional characters of G, given
by X:(0) = sgng_(0)° (0 € &; € = 0,1). For the parameter of characters,

we prepare a set A 1= <(O'/C75)((,a)ef><{0,l}; u) satisfying the condition
(
age = (Qcep)pen,

Q¢ el Z Q¢ e:2 2 Qg3 2 e 2 07

ac. (CeT,ee{0,1}) {

(15.2) -
= <“C)CGT’ pe >0(CeT), |ul:= Z(ef He¢

| 2cer 2eepoy lacell + el =1 llacell == 2 pen cen s
and the set of all such A’s is denoted by A(f)

Theorem 15.1 (cf. [HH2, Theorem 2|). Let G = S (T) be the wreath
product of the infinite symmetric group S with a finite abelian group T'. Every
normalized character of G is factorizable and is parametrized by a set A € A(T)
as fa. For a g € G, let its standard decomposition be

(15'3) 9= 5%6% o '£QTg1g2 © 1 Gs; €q¢ = (tqw (Qi))v 9; = (dj7 Uj)'

Then the value f(g) is given by the product of

159 fae) = z( S Sac, + u<>><<(tq),

ceT \e€{0,1} peN

(15.5) falgy) = Z( > Z<a4,a;p>““ﬂxe<oj>>x<(P<dj>)-

¢ceT \e€{0,1} peN

97



98 T. HIrAI, E. HIRAT AND A. HORA

Theorem 15.2 (|[HH2, Theorem 4|, [HH6, Theorem 7.1]). Let S C T be a
subgroup of a finite abelian group T, and G° = & (T)° be the normal subgroup
of G = G (T) given in (15.1). Then the restriction of a character of G onto G°
is a character of G°. Conversely any character of G® is obtained by restriction

from G.

About the condition on the indices A that the restrictions fa|gs coincide with
each other, see |HH6, Proposition 7.2|.

In the case of T' = Z,,, as seen in §2.1, we have S(p) = {t?;t € T} =
Z n/p, plm, and

Gue(T) = G(m,1,00), Guo(T)*" = G(m,p,00), T={G:0<k<m—1}.

16 Formula for spin characters of G(m,1,00) in
Case VII

16.1 Correspondence between (non-spin) characters of
Aso(Z,,)°? and spin characters of G(m, 1, c0)

Let m be even, and 7 ¢, 2-dimensional irreducible spin representation of R(G (m, 1, oo))
of Case VII, Type # = (1, 1,—1), given in Theorem 12.1. Put for Y = VII,

G:=GY = R(G(m, 1, oo))/Ker(XY) = R(G(m, 1, oo))/(zl, 2),
= Do X 6o, Do = (23,m; (j € N)), Ss = (s; (i € N)),

(16.1)  {e} = (z) = G & G(m,1,00) — {e}, ¥ () = p; (1< j < 0),
with fundamental relations :

(i) =27 =e, =23 central element;
{ sti=ec (1<i<0), (sisip1)?=-¢e (1<i<o0),
sisj = 88 (i —j] = 2),
(i) nm"=e (1<j<o0),
(iv)  nyme =mn; (5 # k),
) { sz'%:ll = Ni+1, sz'+.18i_'1 = (1<i<o0),
sigs; - =z (JFGI+H]1).

The trace character xr, . is a function on G given in (12.11) for § = (d',0) €
G with

(16.2) d =z H n e D, ;= 2/ "'n; (j €EN), 0€6,,
jEN
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2. (=1)2wkord@) it L(g) =0, ord(d') =0,

(16.3) X, (G) =
0 otherwise.

We denote by %mk the normalized character X, Ck /2.
Consider the tensor product my, ¢, = Ta¢, ® Tac,. Then it is a (non-spin)
linear representation of G = G(m, 1, 00).

Lemma 16.1. The tensor product representation mi¢, ¢, = Ta¢, @ Tag,
splits into 4 one-dimensional characters of G = G(m,1,00) = 6 (Z,,) as

®
(16.4) Ta,CCe = T2,6, @ T2¢, = Z <Xk+£ - sgn® @Xk-i—ﬁ—i—m’ 'Sng) )
e=0,1

where the characters x (0 < k < m) and sgn® on G is defined as

(16.5) xi((d,0)) == ¢.(P(d)), sgn®((d,0)) :=sgn°(c) ((d,0) € G).
The character of Ta¢, ¢, i given as: for g = (d,0) € G = 6(Z,,),

(16.6) (g) = 4 . k+0ordd)if [(5) =0, ord(d) =0,

' Xmigpe\9) = 0 otherwise.

In particular, in case k = ¢ = 0, the normalized character %774,40,40 = ()ZWQ,CO)Q
is the indicator function of the normal subgroup N = A (Z,,)°? of G =
Soo(Zm).

Let f be a spin character of G(m, 1, 00) of Case VII. Then, as seen from Table
10.1, supp(f) € O(VIT) = @ 1(N), N = A (Z,,)°?, and f can be considered

as a function on G. Let EV := EVI(R(G(m,1,00))) be the set of all spin
characters of G(m,1,00) of Case VII, Type (1, 1,—1).

Definition 16.1 (Maps M and N). Between the set of normalized central
positive definite functions K1(N) on N = A..(Z,,)°? and the set of such func-
tions K}/H(R(G’(m, 1, oo))) of Case VII, we define maps M and N as follows:
for F € Ki(Aoo(Z,,)°?) and f € KY"(R(G(m,1,00))), put

(16.7) M(E)NG) = Xmag,(9) - Flg),  with g = ®(g'),
| NG = Xmg,(9)-f(g),  with g = ().

Recall that K™ (R(G(m, 1, oo))) is the set of normalized central positive defi-
nite functions f on R(G(m, 1, 00)) with the homogeneity f(zg') = xV"(z:)f(¢'),
g € R(G(m, 1, oo)), where xV1(z;) =1, 1,—1 for i = 1,2, 3 respectively.

Note that similarly as for a spin character of Case VII,

for any f € K}/H(R(G(m, 1, oo))), its supports supp(f) is contained in the
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subset O(VII) = ®~Y(N), N = A (Z,,)°?.

Moreover note that (55@740)2 is the indicator function of N C G(m,1,00) if
considered as a function of g = ®(¢') through modulo Z, and is the indicator
function of the subset O(VII) = ®~'(N) as a function in ¢’ € R(G(m,1,0)).

These facts guarantee that M and A are mutually the inverse of the other
and so both are bijective. Moreover since they are both linear, they map the sets
of extremal points F(N) and EV"'(R(G(m,1,00))) mutually each other. Thus
we obtain the following.

Theorem 16.2. The map M from K (%oo(Z,,)°?) to KY"(R(G(m,1,00)))
maps characters of oo(Z,,)°? to spin characters of G(m,1,00) of Case VII,
Type (1, 1,—1), bijectively :

M
-—

(16.8) E((Z,,)°®) EYT(R(G(m, 1,00))).

—

N

16.2 Character formula for spin characters of G(m,1, o)
of Case VII

Theorem 16.3 (|[HH2, Theorem 15|, [HH6, Theorem 15.1]). Let T be a
finite abelian group and S a subgroup of T. For G = &, (T), define a normal
subgroup N := A (T)% of G as

Aeo(T)° = {9 = (d,0) € Go(T) = Doo(T) % G ; 0 € Us, P(d) € S}.
Then, for a character [ of G, its restriction f|y onto N is a character of N,

and the map E(G) > f — f|nv € E(N) is surjective.

We apply this theorem to the case where T' = Z,,, m = 2m’ even, and
S=S5(2)={t*;teT}=Z,,. Let y be a generator of the cyclic group Z,, for
which the product is multiplicatively written. Then

(16.9)  T={G:0<k<m—1}, Gly) =w* w=e"/m

Let A = ((O'/C@)(C,a)efx{o,l};u) € A(f) and f4 be as in Theorem 15.1. We
have two involutive actions 7: A — A and k: A — R(()A on the parameter
space A(T) as

(1610) tA = ((O/C,S)(C,E)E?X{OJ};M/) with O/C,g = O et N/g = H¢ s

(16.11) R(Gw)A := ((aé,s)(c,s)efx{o,l};'u,> with af . = ac cer He = e

where ¢ + 1 is calculated modulo 2. Then 72 = 1, k2 = 1, 7k = k7. The

following is a part of [HH6, Theorem 16.2] but we add here a rather detailed
proof.
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Theorem 16.4. Let m = 2m/ be even, and N = Uoo(Z,,)°? the normal
subgroup of So(Z,,) = G(m,1,00). Then fA|N = far|y for another parameter

Al = ((a2,5>(<,6)efx{0,1};ﬂl> Zf and O’rl,ly Zf

(16.12) A e {A, TA, KA, TKA = KTA }

Proof. For a g € N, let its standard decomposition be g = (d,o0) =

€Qi§q2 o 'gqr ’
9192+ s, Eg; = (L0 (@), 95 = (d;,05). Put t, = yb, P(d;) = y~. Note that
x1(07) = sn(3) = (~ 1)1 and CelyP) = wh*, Ge(y) = w'*. Then

(16.13) H (-1t =1, Z b; + Z ¢; =0 (mod 2);

1<j<s 1<i<r 1<j<s

falg) = H { Z (Z (ac, 0p + ¢ 1) + Mcki>Ck,-(ybi)} X

1<i<r \ 0<k;<m—1 peN

X H { Z (Z (<O‘Ck;,0;p)e(0j) — (_Oéckgzl;p)e(gj)))gk; (y9) }

1<j<s N 0<kj<m—-1 peN

Then the equality fa(g) = fia(g) (9 € N) on N follows from

H (<a<k§' ’0;p)£(”j) N (_ackﬁ’l;py(%)) = H ((O‘Ck;d;p)e(oj) - (_O‘Ck; ’0;p)£(0j))‘

1<j<s 1<j<s

Now consider a transformation R((,) on T given by ¢ — G or (p —
Corm (0 <k <m—1) (k+m'is counted modulo m). Then

G(y) = b = Gm(y) =" = —0F = —((y),

I @ I o) = 11 Geem @) 11 Gepme(v)

1<i<lr 1<5<s 1<i<r 1<j<s
b. .
= I .6 TI o).
15i<r 1<j<s

This proves that f4(g9) = fr,,)4(g) for any g € N.

To prove the converse, that is, fa|y = fa|y gives necessarily A’ = A, ‘A, R((w)A,
or R(Cu)(*fA), we can discuss using the expansion of f4(g) into the sum of the
product terms above, so-called monomial terms, for instance as in [HH4, §14.2].

We omit the details. O

Theorem 16.5. Let m = 2m’ be even.
(i) Any spin character f of G(m,1,00) of Case VII, Type 5 = (1, 1,—1),
1s obtained as

(16.14) f=M(F)=Xn,, - F.  F€E@u(Z,)°?).



102 T. HirAI, E. HIRAT AND A. HORA

(ii) In turn, any character F' of the group N = oo (Z )P is obtained by
restriction of a character

(16-15) fA S E(Goo(zm))a A= <(ag,a>(<,€)€§;x{o’1}§ﬂ> y = (MC)CGZ;a

where fa is given in Theorem 15.1 by (15.4)—(15.5). Moreover fa|ly = far|n if
and only if A" = A, 'A, R(Cuw)A, or R(()(*A).

Note 16.1. The above theorem gives a parametrization of spin characters
of type (1, 1,—1) of G(m, 1, 00), and the relation to the work [DuNe] is direct as
is reviewed in §25 of the paper [II].

Example 16.1. We have normalized characters of two-dimensional irre-
ducible representations fy = Xr, ., in EVH(R(G(m,l,oo))), 0<k<m -1
The inverse image of f;, under M is F, = N(fx) € E(N) a one-dimensional
character given as follows: for g = (d,0) € N = As(Z,,)°?, we have ord(d) =
0, L(c) =0, and

(16.16) Fi(g) = w"rd@ = ¢ (P(d)) .

The characters f4 € E(G(m,l,oo)), which gives F} by restriction on N,
are 4 one-dimensional characters X, given as: for g = (d,0) € G(m,1,00) =
Sl(Z.)

(16.17) Xew(9) = G (P(d)) sgn(o) (K'=k, k+m'; e=0,1),

which correspond to A = <(aC75)(§,s)€fx{0,1}; ,u) with a¢, . = (1,0,0,, ...) and
all other components in A are trivial, i.e., o s = 0, = 0.

17 Projective IRs of G(m,1,n) in Case VII

From now on we study finite generalized symmetric groups G(m, 1,n). Projective
representations of these groups have been studied by Read [Rea2|, Hoffman and
Humphrey [HoHul| and Morris and Jones [MoJo]. Here we give a construction
of projective IRs as induced representations using the semidirect product struc-
ture (17.1) below of their covering groups G(m,1,n) so that we can calculate
completely their characters. N N

Let n > 4. Define a covering group G(m,1,n) = GV(m, 1,n) of G(m,1,n)
by the set of generators and the set of fundamental relations as follows (cf. §16.1):

(m,1,n) := R(G(m,1,n))/(z1,22) = D(m,1,n) x &,,

(17.1) n
(van) <Z3a77j (1§]§n>>7 6n:<3i (1§i§n—1)>7

(17.2)

oy
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(i) 2z =e, z3 central element ;
(i) si=e (1<i<n—1), (sisip1)P=¢e (1<i<n-—2),
ii
$iS; = S5 ("l —j| > 2)>
(i) pm=e (1<j<n),
(iv)  nyme=mn; (G # k),
simis; L = Mgty simi1s; L=m (1<i<n—1),
(v) L S
5i1j8; = 230); (J#i,i+1).
Then G(m,1,00) = lim,_ G(m,1,n) is the covering group of G(m,1,00) of
Case VIIL
In this section we construct IRs, and then in the next section (§17) we cal-

culate their characters, and in the last section (§18) we study limiting process of
characters as n — oo.

~

17.1 G,-orbits in the dual of the abelian group D, :=

D(m,1,n)

To construct IRs of CNJ(m, 1,n), we apply the standard method of induced repre-
sentations for semidirect product groups (for a detailed account of the method,
cf. e.g., [HHHI, §3.2]).

First we take the dual group ﬁ(m, 1,n)" of the abelian group ﬁ(m, I,n) =
D, = (z3) X (M, ...,nn). Then, consider a complete system of representatives of
its &,-orbits for spin characters Y, or characters Y such that Y (z3) = —1. Let

(17.3) Y(z3)=—1, Y(p)=w” (0<bj<m—1,1<j<n).

Denote this character by Y =Y}, with b = (b1, ba,...,b,).

Lemma 17.1. The action of s; € S,, on 5(m, 1,n)" is given by

/ / —
b; = biy1, biyy = by,

ZY Y/-,b/: b,,b/,...,bill . ..
) = Vel b = ot { T S

Proof. From the above fundamental relations we have

Si (Yb)(ni) = Yp(s; 'misi) = Yo(nig1) = w1,
Si (Yb) (77z'+1) = Yb(si_lnz’+1si) = Yb(m) = wbi,
si(Yo)(m;) = Yo(s;, 'mjsi) = Yo(zamy) = —wb = w¥+™ (j £i,i+1). O

For convenience of calculations, choose another set of generators of lN)n as
- ‘
(17.4) {2z ;=20 n(1<j<n)},

then the fundamental relations becomes
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(iii') 7" =e (1<j<n),
(') mjmy, = mymy (5 7 k),
(V) { siis; =20y, sifas; =2 (L<i<n—1),
silys; =z (G A4 i+1).
Accordingly Yp(n;) = Yo(z§ 'n;) = (—1)7wh = w%+0=D™ and we change

the parameter b to v = (71,72, ..., M), 7V :=b; + (j — 1)m’ (mod m), and put
Y7 :=Y,. Then the transformation by s; is described as

(17.5) i Y() = Y7 (), v = (%)
{= i, Ay = b
with { 7, i , .7+} . !
Vi=+m (§ #4041,
Note that every permutation in 2(,, acts on vy naturally (without adding m”’s),
then we can obtain a set I' of 7 representing all &,-orbits of D(m,1,n)" as

follows. First we prepare a set of integers mutually different from each other
modulo m’ such that

0<c<e<..<cg<m,

(17.6) S K for1< K <K' <m,
OSCK+17 sy CRr <M,

and a partition of the interval I,, = {1,2,...,n} C N into disjoint consecutive

intervals as

In:(llulzu uIK)|_|<]K+1u uIK,>,
Ix| >2(1<k<K), |=1(K<k<K'),

(17.7)
Iy = Iy + U I _ (empty set admitted) (1 <k < K),
such that j < j forje Iy, 7 € I,
with only one possible exception I = I _ U lxy when |[Ix| = 2 (the order

between Ik, and Ik _ is reversed).
Then consider v = (71,72, - - - V) satisfying a condition

(1) vi=c (GE€ELy), vi=ca+m (jely_) forl <k<K,
vi=cx Iy ={j}) for K <k <K'

This condition on 7 means that, on each interval Iy, v; (j € 1)) are ranged
as

[Cky o sChy cx M, o +m],
(17.8) : . . :
with one possible exception [cx +m/,cx] when |Ix| = 2.

Furthermore we put the following condition :

(-9) { one possible exception can occur only when

Liol=L_|=1 1<k<K), K-K<L
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Denote by I' the set of 7 satisfying the conditions (I'-1) ~ (I'-2).

Lemma 17.2. Any v = (7,%2,---, M), 0 <9 <m—1(1<j <n), is
conjugate under &,, to one of v € I'. This means that any spin character Y of
D(m,1,n) is conjugate under &, to some Y7 v €T,

Example 17.1. A general v € I' looks like

/ /. .
(Cry..oyer, co4m! oo eq+m's o ek, Ok
(17.9)

/ /.
cx+m!, . ex+m' e, oo CKr),
: ?
and exceptional 7’s are

{ (cr,er+m's oo ck_1,ck1+m'; cx+m/ ek k1) when n=2K + 1

/. . /. !/
(cr,e1+m's .5 cx_1,cx1+m; cx+m ck) when n = 2K.

Note 17.1. There remain still some more conjugacies among elements in I'.
To give exactly a complete set of representatives of conjugacy classes as a subset
of I', the calculations are elementary but cumbersome and so omitted here.

17.2 Stationary subgroups of a character Y of D(m,1,n)

Let Y7 be a character of D(m,1,n) with v € I in (17.6)-(17.8) together with
([-1) ~ (I'-2) (cf. Example 17.1). Let us determine the stationary subgroup
SY") C 6, of Y.

Let 0 € S(Y7). Since the integers cy,...,cx are assumed to be different
from each other modulo m/, we see that

(17.10) ce ] &n= ][ e

We see from (17.5) the following.
In case sgn(o) = 1, we have 0 € [, < (&1, X &1, ).
In case sgn(o) = —1, we have K’ = K and I, = | |, (Ir+ U I~ ), and

(17.11) o(lps) =1y (1<k<K), andso

(17.12) il = [le-| >1 (1 <k<K).

Such a o exists if |I; | > 2 for some k. Suppose contrarily that |[ 4| = 1 for
any k, or

/. . /. /!
(cr,e14+m' 5 ... 5 cx1,ck1+m' 5 ek, cx +m'), or

(17.13)  ~ = {

/. . /. /
(cryer+m' 5 oo cxo1, ek +m ;5 e +m k).

Then, if K is odd, o0 = (1 2)(3 4)--- (2K —1 2K), and if K is even, no such o
exists.
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With these results, we obtain the next proposition. Put, for disjoint subsets
J, (1 <p<N)ofI,,

(17.14) m(HlSPSNc‘st) =0Tl .S

Proposition 17.3.
(Case S-1) SY")=H" = Q((H

if  (a) K'>K, or
Iyal # || for some k, or,
(b) K'=K and I+ =1(1<k<K), K even
(n=2K <m).

(Case S-2) SY")=H" |_|0H7, H" = Ql(l_[1<k<K<61k’+ X Gfk,_)),

if K'=K, |I4+|=l-| (1<k<K), and |Iy+| >2 for somek, where

(17.15) { 0=010--0k, 0r€6, (<k<K),

ok(Iys) = Iz (1 <k <K), sgn(o)=—L

In this case n = 2n’. When n' is odd, s can be taken as s*> = e, and when n'

. . 2 . .
is even, s can be taken as s = 18" with ' = e, 7 = ‘a transposition in one of
Ik,:l: ’,

(Case S-3)  S(Y)={e.o}=H"| |oH", H"={e},

if K'=K, |Iy|=|Ir-| =11 <k <K), with K odd, where

g = HISkSK(ik1+ Z'k7_), ]kd: = {ik,i} (1 S k S K), and n=2K S m.

2

In this case o® =e, sgn(o) = —1.

17.3 Relations between IRs of G and H, in case G D H
with |G/H| =2

Let G be a finite group and H its subgroup with |G/H| = 2. Take an element
s ¢ H, then G = H 1 sH. Then, G = sH U s*H, and so s?H = H and
s? € H, sH = s7'H. Moreover G = sHs ' Ll sH, and so sHs™! = H whence
the subgroup H is normal. Then we can define a sign character ¢ on G as
e:G—G/H=Z,™ {+1}.

Take an IR p € H of H and consider the induced representation IT = Ind$ p.
The representation space V(II) of II consists of V' (p)-valued functions ¢ on G
satisfying

@(hg) = p(h)p(g) (he H,ge€qG).
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Take a system of representatives {e, s}, then the map V(II) 3 ¢ — (¢(e), ¢(s)) €
V(p) x V(p) gives an isomorphism. On the latter space, II is realized as follows:

o - (0 4 w3 1)

where p*(h) := p(shs™') (h € H).
The following lemma gives relations between IRs of H and IRs of G, through
inducing up from H to G and restricting from G onto H.

Lemma 17.4. Let |G/H| = 2, and the notations be as above.

(CASE P-1). Assume p® = p. Then, for any 7 € G, p” = p. Let S be an
intertwining operator such as p*(h) = S p(h)S™' (h € H), then S can be chosen
such that p(s*) = S?. The induced representation T1 = ind%p splits as

/ / H/(h) - (6 : H,) (h) - p(h) (h € H),
17.17) I =11 il
( ) Ge b { II'(s) =8, (e-I')(s) =—5.
(17.18) ' eI, 1|, = (c-II)|, = p=p’
[ 2x,(9) ifg€H,
(17.19) the character xu(g) = { 0 if g € sH.

(CASE P-2). Assume p % p*. Then 11 =1Ind$p is irreducible and
(1720) HO=e-1, |, =(-0)|,Zpsp

+ x,(sgs™? if g€ H,
(17.21) the character yp(g) = Xp(9) + Xp(s9577) g
0 if g € sH.

174 IRsof H=H"=A(]],.pcr (&1, x 61, ))

Take a v € I" in (Case S-2) or in (Case S-3), and put £ = K7 :={1,2,..., K}.
We apply Lemma 17.4 to

(17.22) G =] (&r, % &y ) and H=A(T] (&1, x &5 ).

kek kek

Take any s € G\ H. Then, sgn(s) = —1 and (g) = sgn(g) (g € G).

For a finite subset / C IN, let &; be the symmetric group acting on /. Then
the set & of equivalence classes of its IRs is parametrized by Young diagrams
of size [I|. An IR 7 of G =[],k (61, , x &y, ), identified with its equivalence
class, is parametrized as wp by a set A of Young diagrams as

(17.23) TA = kgc(m’” X 7TA,€,_)7
A= (Ak’ﬁ)kelc —»  Age parametrizes a: (e ==).
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Moreover, denoting by ‘Aj . the transposed of A, we have

(1724) SgI -+ TA = A, tA = (tAk’E)kEK,e:ﬂ: :

Lemma 17.5 (cf. [Fro4, §2|).
Let G = [liex (GI,C’Jr X 6[,67_), H = Ql(HkE,C (Gfk,+ X le,_)), and put
PA = TA| -
pa = pp  irreducible,
(CASE TA-1). Assume ‘A # A. Then (pA)S & pa,
Indfl,o/\ = p D Tip.

(CaSE TA-2). Assume'A = A. Then
PA = pg\o) b ps\l), pg\o) 2 pf\l) irreducible,

()" = oy,

Ind$p = 1) =70 (@ =0,1).

17.5 Restriction of IRs of Ql(HbeB 61b> onto [ [, 5%y,

Lemma 17.6 ([Fro4, §2|). A complete representatives of equivalence classes
of IRs for n-th alternating group UA,,,n > 4, is given as follows: let mp be an IR
of &,, parametrized by a Young diagram A\ of size n, then

pA = WAlan’ in case "A # A, in this case pi = py ;

ps\o), pg\l), in case ‘A = A, where 77,\‘2[ = ps\o) @ pg\l).

We assign an element g € &, its parity v = v(g) as v = 0 or 1 depending
on g € A, or not, that is, sgn(g) = (—1)". Also, putting B=B" := K x {£} =
{1,2,..., K} x {£}, we give a parity v(g) for an element g € G =[], o« (le,+ X
S1, ) =I5 S1, as follows:

(17.25) 9= (91,091, 9K+ 9r,—) = (G)bes € HGIM
bels

(17.26) v=u(g):= (s with v, =v(g) (b€ B).

We call g € G even or odd according as |v| := Y,z is even or odd. Then
sgn(g) := [Tpepsen(gs) = (=1) =1 or = —1 according as g is even or odd, and
H consists of even elements of GG. According to the notation in Lemma 17.6, we

put for each component &;, (b € B) as WAb’mI = p‘AOb) ® pg\lb) in case ‘A, = A, .
b

Define a subgroup Hy = H,' of H = H” as

(17.27) Hy=Hy =[] ., x2, ) =[] 2
kel beB
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Lemma 17.7. In Case TA-2 in Lemma 17.5 or if A = A, the superfices

(0), (1) of irreducible components pﬁ{)), ps\l) can be adjusted so that the following

holds: for k =0,1,

K ~ @ €
(17.28) pf\)‘Ho = Z pg:), € := (€p)pes, l€| = Zeb,
le|=r (2) beB bl

where the orthogonal direct sum runs over all components satisfying |e| =
K (mod 2).

17.6 IRs of S(Y?")=H"||o H” in Case S-2
In Case S-2, we apply again Lemma 17.4 to the triplet (G’, H, o) with

G =Sy =H| |oH', H=H :m(HeQ, B=B =K x{+},
beB
and refer to Diagrams 17.1 and 17.2 below to see inclusion relations of groups

which interplay, and also refer rows of (Case S-2) in Table 17.1 below. Here y € I’
satisfies with K = {1,2,..., K}

(17.29) K =K, |Liy|=|Lk_| (k€K), [Ix+| >2 forsome k € K,

q {020'10'2"'01(, UkEGIk (k’EIC),
al
ok(Ip+) =I5 (k€ K), sgn(o) = —1.

We know IRs of H in Lemma 17.5. For an IR p of H, we study the symmetry
p — p° with p?(h) = p(cho™) (h € H). Let A = ((Ak,+,Ak7_))keK. Then, for

G = erlc (6[k,+ X 611@,—)7

(17.30) T = k?}C(WAk’+ X 71'Ak’7), (WA)U i~ kzgc(ﬂAk" X 7rAk}+) = Mpo,

with A7 = ((AL,,AH), (AK,,,AK,+)> (exchange of Ay, Ay_).

For A = ((Ay+, Ak’_))kelc’ we call

(CASE AX-1) if A7 £ A and A% # A,
(CASE AX-2) if A=A or A7 ="A.
Case TA-1: 'A # A.

Since *(A%) = (*A)? # A7, both py = ﬂ-Ale and pye = (py)” = (WA)U‘HW are
irreducible.

e (Case AX-1) In this case, (pa)” = pae % pa. By Lemma 17.4 (Case P-2)
for (G',H) = (S(Y"),H"), we obtain an IR II(A) of the stationary subgroup
S(Y7) through

S(Y”
(17.31) M(A) == Tnd3Y Vpa, A= (Ake) oes
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and  TI(*A) 2 II(A) 2 TI(A”).

o (Case AX-2) In this case, (pA)J = pa. By Lemma 17.4 (Case P-1) for
(G',H) = (S(Y"), H"), we obtain two non-equivalent IRs II(A, 0), II(A, 1) of the
stationary subgroup S(Y7) as the irreducible components of TI(A) = TI(*A) &
II(A%) as

(17.32) TI(A) :=Ind5" 'pa = I(A)Q @ TI(A)D, TI(A)D 22 sgn - TT(A)D,

Case TA-2: ‘A =A.
In this case, "Ay, = A, for any b = (k,¢) € B = K x {£}, and we have non-
equivalent IRs pg\o), ,05\1) of HY C G by restriction from G as ’ﬂ'A‘HW = pg\o) 5] pfxl).

e (Case AX-1) In this case, A # A =*A and so by Lemma 17.6

(087 205 (k=0,1),

because 7p|pgr = ,05\0) &) pg\l), (TA)7 = TTao, Tac|pr = pf&) &) ,05\13 Therefore,

by Lemma 17.4 (Case P-2), we get, for each k = 0,1, an IR H(A; (KJ)) of the
stationary subgroup G' = S(Y7) as

(17.33)  TI(A; (1)) :=Indf,p”, TI(A; () = sgn - TI(A; (1)) (k= 0,1),

!/

each of which is equivalent to one of II(A%; (x)) (k' = 0,1) respectively.

Note 17.2. In (Case TA-2)+(Case AX-1), since (mp)? 2 mp for G =
[I,c5 S1,, we see
from Lemma 17.4 (Case P-2), applied for inducing up 75 of G to G:=GU oG,

that TI(A) ::~Indg7rA is irreducible. Moreover, since Indgypx“) >~y (k=0,1),
we have Ind&TI(A, (k)) = Indgypff) >~ TI(A) irreducible for both & =0, 1.

Diagram 17.1. Relations among IRs
in (Case TA-2)+(Case AX-1): A7 # A ="A,

G=GUoG TI(A) := Indgm\ = Indgm\a
/ AN
A G:HbeBe,b G'=S(Y")=H"UocH"  TI(A;(0)), II(A;(1))
AN /

H =A([],_&n) Vs A maly, =00 @l

o (Case AX-2)
In this case, A = 'A = A% and so Ay = Ay = A (k € K). For
H=H"= Q[(HbeB GIb) C G, we have two IRs p&“),/f = 0,1, through FA‘H,Y =



[I] 17  Projective IRs of G(m,1,n) in Case VII 111

pf\o)@ps\l). To get IRs of G’ = S(Y7) = HUo H, we need to study if (pf\”))o o pf\”)
or not, for each k = 0, 1. For that, we apply Lemma 17.7. If (pf("))o > pg\”), then
Ind$ p{™ is irreducible, and vice versa.

For any Ay, b = (k,€) € B, we have ‘A, = A;, and 7rAb|QlIb = pE&) D pg\lb),
and the IRs pg\”) (k = 0,1) are defined by (17.28) using the normal subgroup
Hy = [[yep s, of H. We adjust the superfices (0), (1) of pf\olzﬁ,pgl;i so that the
representation (pgfiﬁ)gk(h) = pffzﬁ(okhakfl) (h € ™Ay, ) is equivalent to PE\E;JF-
For an IR T'(¢) := ®b63pﬁf:) with € := (€&)pes, of Hp, put

(17.34) T(e)?(h) :=T(e)(cha™) (h € Hy).

Then, since Ay + = Ay _ in the present case, we have exchanges of €, 1, €, (k €
K) as

T(e) =T(e?) with € := ((e,a_,e,.mL))ke]C for e = ((ek,+,ek7_))k€,c.

For a g = (go)ses € H = A(T,e5S1,), let its parity be v = (14)pep, then
ogo~! is an exchange of components of g for (k,+), (k,—) for k € K as

(17.35) ogo ' = ((Jkgkﬁ_ok_l,akgk,Jrak_l))keK with parity v7,

where 17 is defined similarly as €?. Denote by V' (T'(€)) the representation space of
T'(€). Then the operator (ps\”))g(g) = pg\”)(aga_l) sends V (T'(€)) onto V(T (e+
1/")), where € + v? is calculated componentwise modulo 2. In fact, for h =
HbeB hy € Hy, hy € Ql[b, we have

h =g 'hg = beshg, hy = g, 'hogy € Uy,

-1 -1
PV () = (P5)" (h), (p)" = with vy, = v(gy).

Lemma 17.8. Letgec H = Ql(HbeB 61,,) and v be its parity.
(i) Under the action of Hy = [[,c5 s, through (pxi))g(h) (h € Hy), the op-
erator (py))g(g) = pg\”)(aga_l) sends the subspace V (T'(€)) onto the subspace

V(T(e" + V)) in the space of pf\ﬁ) decomposed as

(17.36) V() = > V(TE).

le|=x (2)

(ii) Under the action of Hy through pgf)(h) (h € Hy), the operator pg\”)(g)
sends the subspace V(T(e)) onto the subspace V(T(e + 1/)) m V(pg\“)).

Lemma 17.9. In (Case TA-2)+(Case AX-2), the representation (pg\'{))a
of H = H" = Ql(HbeB GIb) 1s not equivalent to pff). Accordingly, for each
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k= 0,1, the representation of G' = S(Y") = HUoH induced from H = H" 1is
irreducible:

I(A; (k) == Ind3 o, sgn-TI(A; (k) 2 II(A; (k) (k= 0,1),

and T1(A;(0) ZT1(A; (1)), TI(A; (8))] 5, = 087 @ (1)

Proof. The first assertion is obtained by comparing (i) and (ii) in Lemma

17.8.
The assertion for non- equlvalenc is obtained by comparing irreducible com-

ponents of H(A)(“)’H0 ‘Ho (pA) ‘Ho (k=0,1). O

Note 17.3. In (Case TA-2)+(Case AX-2), since m(A)” = 7(A) for G =
[I,c5 S1,, there exist, by Lemma 17.4 (Case P-1), two non-equivalent IRs

I(A)®), TT(A) )

of G == GUoG as TI(A) = Indgm\ = II(A)©@ ¢ II(A)D. So we have the
following diagram :

Diagram 17.2. Relations among IRs
n (Case TA-2)+(Case AX-2): A7 = A ="A.

G=GUosG TN, IIA)D : II(A) = II(A)@ & (AW

/! AN
A G:Hbeg&b G'=S(Y")=H'UcH"  TI(A;(0)), TI(A; (1))
AN /

o =], _&1) o o maly = @ sy

17.7 Projective IRs of G(m, 1,n) of Case VII, Type (1, 1,—1)

By the similar method as in [HHHI, §3|, we are now on the last step of con-
structing all irreducible projective representations of G(m,1,n) of Case VII,
Type (1, 1,—1), by inducing up from D, % S(Y) to D, x 6, = CNJ(m,l,n)
with D, :== D(m,1,n).

Let us recall some notations. We have chosen a new set of generators {25, n; =
2! n (1<j< n} for the abelian normal subgroup D,,. The set T' consists of
~ satisfying the conditions (I'-1) ~ (I'-2). For a v = (71,7%2,---,7) € [, a one-
dimensional character Y7 of D, is defined as Y7 (z3) = —1, Y'(7;) = w¥ (1 <
j <n), and S(Y7) denotes the set of 7 € S,, which preserves Y.

Let IT be an IR of S(Y7), and consider an IR of D, x S(Y7) as

(17.37) YOI : D, xSY") 3 (d,7) — Y'(d)-II().
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Then, by inducing up, we get an IR of CNJ(m, 1,n) as

(17.38)

Ind YOI = Indg(m’l’") Y EII.

W XS(Y )

113

For IRs Ind Y7 O 1II in the table below, recall Conditions (I'-1), (I'-2) and Ex-

ample 17.1.

Table 17.1. IRs Ind Y"[II ofé(m, 1,n) in Case VII, Type (1, 1,—-1).

Y=01,72 M), 0K <K', K=K":={1,2,...,K},
b=(k,e)eB=B" =K x {£}, A= (Ab)beB'

Structure of v € T’ Stationary Relations of the set IRs of Name of
for a character subgroup of Young diagrams IRs of
_ G'=8(Y) .

Y7 of D(m,1,n) SY")C &, | A with ‘A and A° G(m,1,n)

(Case 5-1) (Case TA-1) pA
(a) K'> K, or | s(v7) = : (onzpn) | TN
(b) K' = K, and o= A#A pia = PA
(Hk) |Ik,+‘ 7& ‘Ik,7‘7 or m(HbEB 61};) (Case TA_Q) p&lﬂ) T(’Y,A7 (K}))
|Ik7:|:| =1 (k S ,C) .
K even (n=2K<m) A=A (k=0,1) (k=0,1)
(Case TA-1; AX-1)
II(A) =
(Case 5-2) ‘A # A, o T(y:A)
AT £ A PA Indz, pa
K' =K, and
’ SY") = (Case TA-1; AX-2) . .
|Ik,+‘ = |Ik,f| HYUog HY " H(A)( ) T(%A)( )
g AF#A, _ _
(k€K), (sgn()——1) A7 = K ontA (k=0,1) || (k=0,1)
(3k) Lg,x| > 2 gno)= =
TI(A;
(Case TA-2) I(d’G(’H))(F") T(V; A; (m))
= 11 ~ p
tA - A H A = 1
(Ii — 07 1) (I€ O? )
(Case S-3)
= Iz
K=K () = {e.0) g T sgn)
i+ | = [Ir—| =1 o — A=o (n=0,1)
(ke k), Koda | (H'={e}) (sen(o)=—1) || #=01
(n=2K <m)

Theorem 17.10. For every v € I', take IRs 11 of the stationary subgroup
S(Y") C &,, which are listed in §17.4 and §17.6, and consider IRs of

G(m,1,n) = R(G(m,1,n))/(z1, 22)

obtained as Ind Y LI II. Then any irreducible projective representations of
G(m,1,n) in Case VII, Type (1, 1,—1), is equivalent to one of the above IRs.

Example 17.2. Consider a special case of (Case S-1) (b), where K’ = K =
lLand (I;, ) = (I,,0) or (I, 4,1, ) = (0,1,) for v. Put £ = v, = ¢; or
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¢ = = ¢ +m’ accordingly, and (,(y) := Wwh (€ 2; a character of Z,,, = (y).
Then Y7(n;) = wt, n; = z3]_177j, or

Y7(n;) = (—1) '’ = (=17 "'G(n;) under T; 3 n; =y € Zp,

and HY = 2,. Take A = @ and Il = 1y, the trivial representation of A, = H".

Then the IR ma¢,, 1= Indenln)Y7 [JTI is a two-dimensional representation
given by

JL0 0 1
(1739) 7T27C87n(77;) = (0 _wé) ) 7727@,71(31’) = (1 0) )

for 1 <j<mnand1 <i<mn-—1 As the limit under n — oo, we get two-
dimensional IR my ¢, = lim, oo T2,¢,n of G(m,1,00), and ma¢, = mac,, ,. These
are nothing but the spin IRs my, of G(m,1,00) of Type (1, 1,—1) given in
Theorem 12.1.

18 Irreducible spin characters of G(m,1,n),m
even, Case VII, Type (1, 1,—1)

18.1 Irreducible spin characters of G(m,1,n) of Type
(1, 1,-1)

We can give explicitly all irreducible spin characters of G(m,1,n) of Case VII,
Type (1, 1,—1), as induced characters from D, % S(Y7) to Dpx 6, = CNJ(m, 1,n)
for y € T

We quote a general formula for the character of an induced representations
with which our calculations are going on. For this, we set up newly some no-
tations only for this subsection. Put H, = D, x S(Y?), G, := D, x &,
(N;'(m, IL,n), m, :=Y"HII and II, IndG” 7,. The normalized characters of 7,
and II,, are denoted respectively by X and X1, -

Then, for ¢ € G, not conjugate to an element in H,, X, (¢') =0; and for
h e Hn,

(18.1) T () = o 3 T ("W,
‘Gn{ g”eén

where Y, is extended from H to Gy, by putting = 0 outside H,.
Let W' = (d',0) € H, = D, x S(Y"). For ¢" = (d",7) € G,, = Dy, X &, we
have

-1 - -1 - -1 - —
g//h/g// —d'r-do-T ld// — (d”-Td/T l-lid” K 17 TOT 1>’
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where & := 707 1. Suppose ¢"h'¢" "' € H,. Then k = 707! € S(Y7), and so
Y (kd's™h) =Y (d"),
(18.2) oo IL("Hg" Y =Y (rd'7™") -M(rorH).

/a1, /a2

Moreover, let d' = n}*'n5* - - n,*", then
(18.3) rd'r7! = 2O ) Tr@) My s

(18.4) Y7 (ler_l) = (_1) ord(d")L() ,w%u)a1+%(2)a2+~~-+77(n)an‘

Theorem 18.1. For IR 11, = Indg”wm m, = YVEII, of G, = é(m, 1,n),
its normalized character is given for h' € H, = D, SY7) by

X, (R') = |6 ‘ Z Y7 (Td/Til) Xu(ror™h),
7'0'7'7;61 Sg (;Y"Y)

and xu,(g) =0 ifg € G, is not conjugate to any element in H,. Moreover
the character value Y7 (rd't™1) is given by (18.3)-(18.4).

In the case where ord(d’) = 0 (mod 2), explicit calculations of the sum in
the right hand side are similar as, and simpler than those in [HHH1, §4|. The
character formula itself in this case is also similar to that in loc. cit. (cf. §19.1),
and is omitted here since to write it down we should prepare still more some
notations.

Except the above case we see from Table 9.1 that i, (¢') # 0 = |supp(¢’)| >
n — 1, and so it has no influence to analyse the limit process of the normalized
character xy, as n — o0o. The explicit calculation of the value i, (¢') is ele-
mentary but rather cumbersome paying attention on the sign factor coming from
Y7(z3) = —1, and omitted here.

18.2 Tensor products of two-dimensional IRs of G(m, 1,n)
with an IR 7 of G(m,1,n)

We prove here a relation between irreducible spin characters of G(m,1,n) of
Type (1, 1,—1) and irreducible characters of G(m,1,n). Using this relation we
can translate the results for the latter to that for the former or for the covering
group G(m, 1,n) (see e.g., §19.2).

Let {n; = z/7'n; (1 < j < n)} be new generators of D, = D(m,1,n) =

(23,M1,M2, ..., M), then we have, for two-dimensional IR 75 ¢, ,, of CNJ(m, 1,n),

: 1 0) . 0 1\"?
(18.5) 7T2,<o,n(77j): 0 —1 (jel,), mopnlo)= 1 0 (0 €6,).
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Definition 18.1. A character sgn(-) of the abelian group D, = (z3, n; (1<
j < n)) is defined for d' = 2Ln"'ny* - -0, € D, ,

(18.6) sen(d) == (=1 (=)@ ord(d) = ar +az + - - - + an.

Let m be an IR of G := G(m,1,n), and we study its tensor product II' :=
Ta.con @ T which is a representation of the covering group G .= é(m, L,n).

From (18.5), we see that II’ is expressed as follows. Put H := D, (Z,,) x 2,
and take s € &, such that sgn(s) = —1, s> = e, then G = H U sH. For
W=(do)eG, d=ztn" > 0., put h=®) e H and p := 7|, then
7w(h) = p(h), and

asn) = (Y ) 0= (7 o)

The character of IT' is given for ¢’ = (d',0) € D,, x &,,, g = ®(¢'), as

(—=1)"2 xx(9)
(18.8) X1 (9') = Xmygyn(9) - X (9) = if ord(d') =0, L(c) =0 (mod 2) ;

0 otherwise.

Lemma 18.2. (i) Let p be an IR of H = D, x . Then we have two
IRs of H := D, x4, as follows: for i = (d',0) € H, d' = 2 [[,.;.,m}" €
D,, h=®)=(d,o) € H,

Wo— (=1)p(h), I —sgn(d)p(h) = (=1)° (1)@ p(n).

These are not mutually equivalent.
(ii) Let p be an IR of H such that p® % p forans € &, sgn(s) = —1, s =e.
Then any two of the following four IRs of H are not mutually equivalent:

W — (=1)°p(h), h' — (=1)°p°(h), B — sgn(d')p(h), h' — sgn(d)p*(h).
We give the proof in the Appendix and here we apply it.

Let m be an IR of G := G(m,1,n) = D,, x &,,.

(Case 18.2.1) If p:= 7|y is irreducible. Then p* = p, p*(h) := p(shs™1).
As is seen from (18.7), the tensor product II' = my ¢, , ® 7 is irreducible.

(Case 18.2.2) If p = 7|y is reducible. Then p = p; @ p{, p % p1 with an
IR pi1, and

(18.9) () = <pléh) pf(zh))’ r(s) = <? é)
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For b = (d',0) € H == Dy x Uy, d = 2 T],c;cnn®™ € Du, h = O() =
(d,o)e H=D, x,,

(—=1)°p1(h) 0 0 0
_ 0 (=1)°p7 (h) 0 0
B 0 0 sgn(d)pi(h) 0 ’
0 0 0 sgn(d')py*(h)
0001
/ 0 m(s) 0010
H():(ﬂ(s) o>:0100
1000

An intertwining operator U of II' = my ¢, ,® is of the form U = diag(al,bl,cl,dl),
and UIl'(s) =1I'(s)U gives us (d,¢,b,a) = (a,b,c,d), or d=a,c=>. Hence
U, = diag(1,0,0,1), Uy = diag(O,1,1,0) are intertwining projections. The
IRs IIj, := UpIl'Uy (k = 1,2) and their characters are given as follows:

(o ) = (0 1)

(OO ) 6= (1)

{ Xz, (') = (=1)"Xp, (B) + sgn(d') X, (shs™"),

(18.10) I\ (%)

(18.11)  II()

(18.12) -
xir, (sh') = 0 on sH =D, x s, ;

(18.13)

X, (0) = (=1)°X,, (shs™) + sgn(d')x,, (h),
(sh') =0 on sH = D,, x s, .
)

(18.14). anz(h' = anl(sh’s_l) = (—1)°rd(d/) XH’1<h/>
for W' = (d',0) € D, x &, = G(m,1,n).

Theorem 18.3. Let w be an IR of G(m,1,n) = D, x6&,, and II' = my ¢, , @7
the tensor product representation of G(m,1,n).

(i) Assume m|y be irreducible. Then 11" is irreducible and its character is
given by (18.8).
(i) Assume 7|g be reducible. Then 7|y = p1 @ py, and

W@, () 2 (-0 k),

for i = (d',0) € Dy x &, = Gm,1,n), d = 2T],.;c,m," € Dy. Their
characters are given as in (18.12)-(18.13) with h = ®(h'). Moreover,
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if ord(d') =0 (mod 2), then xu (R')= xm (k') = (=1)"xx(h) ;
if L(oc) =1 (mod2), then xm (M)=xm(h)=0;
if ord(d’) =1 (mod 2) and [supp(h’)| <n—2, then xm (M) = xm(h')=0.

Proof. For the last assertion in (ii), if [supp(h’)] < n — 2, take p,q €
I, \ supp(h’). Then s =s-(p q) € AU, and

shs™' = sohsg " (or more exactly sh's™' = 2 son’s ),
and therefore ,, (shs™!) = x,,(sohsg ') = X, (h) (h € H = O(H)). O

Note 18.1. In case of infinite group G(m, 1,00),n = oo, for a spin character
f of Case VII, Type (1, 1,—1), we see from Table 13.1 that, if ¢ € supp(f),
then g = ®(¢') = (d,0) € Aoo(Z)*?, or

(18.15) ord(d') =0, L(o) =0 (mod 2).

19 Limits of irreducible spin characters of
G(m,1,n) as n — oo, in Case VII

19.1 Limits of irreducible spin characters of G(m,1,n)

Let II,,,n > 0, be a series of spin IRs of G(m,1,n) of Type (1, 1,—1), and
denote by X, their normalized characters xr, / dim II,,. Using the explicit form
of X, on CN}’(m, 1,n) calculated by means of Theorem 18.1, we can determine
their limits on é(m, 1,00) = lim,, . é(m, 1,n), and analyse the limit process.
The method and the result are similar to those in [HH4, §§11 ~ 14] and [HHHI,
§55 ~ 8.

Here we note that, to analyse the limits, only the values X1, (h'), b’ = (d', o) €
D,, x S(Y7), in the case where ord(d’) = 0, L(c) = 0 (mod 2), should be taken
into account. Because in other cases, 1, (k') # 0 only when |supp(h’)| > n — 1.
Thus there is no special affection caused by Y7(z3) = —1, to carry out the
calculations.

Comparing with the result in Theorem 16.5, we get the following theorem.

Theorem 19.1. Let m be even. Any normalized spin character f of
G(m,1,00) of Type (1, 1,—1) is a pointwise limit of a series of normalized irre-
ducible characters Xn, of G(m,1,n) of the same type, i. e., for g’ € é(m, 1,00) =
R(G(m,1,n))/(z1, 22),

(19.1) f(g') = lim Xm,(g).

n—oo
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19.2 Second proof for limits of irreducible spin charac-
ters of Type (1, 1,—1)

By means of Theorem 18.3, we can give another proof of Theorem 19.1 and also
clarify a criterion on the convergence. Let f be a spin character of G(m,1,00) =

Soo(Z ) in Case VII, Type (1, 1,—1),0r f € EVH(R(G(m, 1,00)). Put

(19.2)  F(9) =Xmc,(9) - f(d) (9="2(d), ¢ € G(m,1,00)).

Then F(g) = 0 outside Ao (Z,,)°?, and by Theorem 16.5, its restriction F' :=
Fly..(z,)s@ is a character of Uoo(Z,,)°?. Moreover, by Theorem 16.3, F” is in
turn a restriction of a character F” of 6. (Z,,).

For the wreath product group S (Z,,), which is an inductive limit of &,,(Z,,),
the limits of normalized irreducible characters X, of &,(Z,,) are well studied,
where 7, denotes an IR of &,(Z,,) (cf. [HH1]-[HH4]|, [Boy| and more generally
[HHH1| and [HoHH]). We know the following:

(19.2.1) any character of S (Z,,) is a pointwise limit of some series X, as
n— oo ;

(19.2.2) a criterion is given for a series of irreducible characters X, to be
convergent.

By (19.2.1), we can take for F" a series of irreducible characters y, such
that [ = lim, . Xr, pointwise, where m, is an IR of &,(Z,,) for each n > 0.

(Case 19.2.3) If 7, is in Case 18.2.1, put II, := my ¢, ® T,, a spin IR of
é(m, L,n).

(Case 19.2.4) If 7, is in Case 18.2.2, put II, be any of two irreducible
components

IT,, I, of mocypn ® T, of G(m,1,n).

Then, by (18;8) and by Theorem 18.2 (ii) respectively, we have for g =(d,o) e
Dn A Gn = G(ma 17”)7 dl = Z3b Hlﬁjﬁn 779% € Dm g = (I)(g/),

(—=1)°Xx,(g9) iford(d) =0, L(c) =0 (mod 2),

In Case 19.2.3,  Xn,(¢') = { 0 otherwise

(—=1)°Xx,(g) iford(d') =0, L(c) =0 (mod 2),

In Case 19.2.4,  xn,(¢) =
n Case X1, (9') { 0 if |[supp(g’)| < n — 2, in other cases.

Hence limy, .o X, (¢) = (=1)"F"(9) = (=1)"F"(9) = (=1)"F(9) = Xr,,(9) -
F(g) = f(¢'). Thus we obtain for ¢’ € G(m, 1,00) = lim,, ., G(m, 1,n),

f(¢") = lim xu,(g) pointwise.

n—oo
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20 Appendix. Proof of Lemma 18.2

Proof of (i). Two IRs are mutually equivalent if and only if
Xp(h) = (_1)0rd(d) Xp(h)7 h = (d7 U) € Dn A anv

and, in turn, this condition is equivalent to x,((d,o)) = 0if ord(d) = 1 (mod 2).
But this is not the case. In fact we can prove it by constructing IR p by Mackey
type method as induced representations using semidirect product structure H =
D,, x 2, and then calculating x, explicitly as in [HH1|. Let us give the realization
of IRs more in detail. A character of D, = (y1,y2,...,ys) is given as

_ e27r/m

X’Y(yj):w’yj (]EI’n)? w , V= (’717727"%771)7 OS’Y]<m

The action of o € 2, on D, is given by o(Xy) = Xov, Where (07); = Vo-1(;). Take

—

the stationary subgroup A, C 2, of x, € D,, and then take its IR 7. Consider
an IR x, 0w, of D, x A, as (xy D7) (d,0) := x,(d) - 7 (o), and induce it up
as

(20.1) H(vy,m,) = Indgnwl7 (x,BOm), H=D,x,.

Then we get an IR of H and any IR of H is equivalent to such a one. The mutual
equivalences among II(vy,m,)’s are all given by conjugations of the parameter
(v, m,) under the action of ,,. Thus the pair (v, ), modulo the conjugation

under 2A,,, can be taken as a parameter of the dual H of H.
Note that the character d — (—1)°"%9 of D,, is given by v(©) := (m/,m/, ..., m/),
m' =m/2, and that x. ) is 2,-invariant. Then we see that if p = TI(v, ), then

(—1)°90p 2 TI(y + 49, 7)),

Since v and 7+~ = (yy +m/, v +m’, ..., 7, +m’') are not conjugate under 2,,,
we have p %% (—1)40)p, O

Proof of (ii). For p =1II(v,m,), let us determine the parameter of p*. The
representation space V' (p) for p = II(~, m,) consists of V(m,)-valued function ¢
on H satisfying

90<d7—h) = XV(d)ﬂ-W(T)(p(h) (d S Dnu T € AV’ h < H)a

and the representation is given by p(ho)p(h) = ¢(hho) (ho,h € H). Then p® is
given on the same space V(p) as

(20.2) o (ho)e(h) = plh - shos™) (o, h € H).
Put ¢ (h) := p(shs™) (h € H). Then,

(20.3)  W(dimh) = xy(s(d1)) Ty (s71s™ )p(shs™)
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= 57 () (d)m) (1) D(R) = X1, (dr) 7 (1) ().
Here 71 € s 'A,s = As-1,, and 77 is an IR of A,-1, and so can be denoted as
Ts—1r.
Moreover, through the map ¥ : ¢ — 1), define a representation of H on the
space of 1 as P(h) := U - p*(h) - U~!. Then the formula (20.2) takes the form

Pho)b(h) = @(hho) (ho, h€ H).
Thus the representation P is identified as
P=M(s""y,me1,), P(h)=0-p*(h)- ¥ "

Now returning to the assertion (ii), p 2 p° means that the parameters (v, 7,)
and (s 1v, Tg-1,) are not mutually conjugate under ,,. Four IRs under question
have respectively the following parameters:

(777(7)7 (3_1%77'3*17)7 (’7+7(0)’7Tw)7 (5_17"_'7(0)773*17)-

We can choose s as s = s; = (1 2). Then it can be seen easily that v and
s~y 4+~ cannot be conjugate under 2,,.
This completes the proof of the assertion (ii). 0
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T. HirAl, E. HIRAI AND A. HORA

List of definitions and symbols for [I] :

Definitions:
basic element g: 7.1
criterion (EF): 6.6

CASE OO, OE, EO, EE: Table 3.1
Condition Y : just before Th.10.1
Criterion (EF): just after Def. 6.1
factorizable for f: Def. 6.1
factorizable for O: Def.10.2

Symbols:
A= ((aC,E)(C’E)GTX{()’l};M) : (15.2)
Qlf( ). 2.1, 9.1
Aoo(Zm)®: 8.2, 9.1
AutG( ): 6.3
Di(T), Dn(T ) (2.1)
Di(T)%, Dn(T)%: (2.2)
Do, DS7: 6.4
E(G): 6.1
E(N,G): (6.3)
EY(R(G(m,1,00))): Notation 10.1
fa: Th.15.1
gj = (dj,o5): (7.2)
G(mvpvn) = 6n(Zm)S(p) 2.1
G(m,p,00): 2.1
GY(m,1,00): Notation 10.1
H' c R(G(m,1,n)): Th.43
n; (j €I,): Th’s3.2,3.3
In:{1,2,...,77,}
K(G>7 Kl(G) 6.1
K(N,G), Ki(N,G): (6.3)

KY(R(G(m,1,00))): Notation 10.1
t; = L(o;) = [supp(c;)|: (7.3)
L(o), L(¢’): Notation 7.1

M, N: Def.15.1

g = &ltq) = (tq; (@)= (7.2)
O(Y): just before Th.10.1

length {(o) of a cycle: Notation 7.1
(weakly) multiplicative: Def. 10.1

spin type (type) of a projective IR: Def. 1.1
standard decomposition of g:  (7.2)
standard decomposition of ¢':  (7.7)

type x of central function: Def. 1.1

type X, type B = (B1,P2,03): 6.5

O'(Y): Lem.10.3
ord(d), ord(d’): Def. 7.1
et (12.6)
P(G): 6.1
Ti (Z S Infl) :
R(G(m,p,n)):
R(6n), R(6x):
sgn(o’) = sg ( ):
Sgn(dl) (d" € Dy):
S:(T )7 (T)
&1(T)%, 6,(T)°:
(d

Th’s 3.2, 3.3

just before Th. 3.5
1.2

Notation 7.1

Def. 18.1
(2.1)
(2.2)

G, G5: 1.2
supp(d), supp(c), supp(g): (6.12)
® on R(G(m,1,n)): Th’s 3.2, 3.3
®Y on R(G(m,1,00)): (10.7)
wi (j € I,): Th's 3.5-3.8
w) (je€In): Thsd.143
xY: Notation 10.1

Q: just after Th. 7.1
zj (j€lI,): Prop.3.4
yj (j €I,): Prop.3.1

z1,%22,23: Th’s 3.3, 3.6, 3.8

Z(g): just below (7.9)

Z(g): (7.9)



