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Chapter 8

Deformation spaces of real projective
structures on 2-orbifolds of negative Euler

characteristic: An introduction

The main purpose here is to introduce real projective structures on 2-orbifolds to the

readers. The theoretical aspects are not completely written here but the readers

can find them in articles mentioned. Additionally, we discuss the computational

aspect of this theory in a more detailed way.

First, we will give some introduction to real projective structures on orbifolds

with relationships to hyperbolic structures. Next, we give some examples of real

projective structures on annuli, a torus with one-hole and the orbifolds based on a

triangle.

We also give a survey of real projective structures on manifolds (and orbifolds)

from a historical point of view: the Hilbert metrics, the topological work of Choi

(1994a,b) and Goldman (1990), the gauge theory point of view using Higgs bundles,

the Hitchin’s conjecture and the group theoretical work of Benoist (2001).

Next, we study real projective structures on 2-orbifolds of negative Euler charac-

teristic. We present Theorem 8.3.1 characterizing the topology of the deformation

spaces of convex real projective structures on 2-orbifolds of negative Euler charac-

teristic. Next, we study the relationship between the deformation spaces and the

Hitchin-Teichmüller components of the spaces of PGL(3,R)-characters in Section

8.3.1. We try to now understand the deformation spaces of real projective structures

on orbifolds. We discuss the geometric constructions available for such structures

and the elementary 2-orbifolds and their real projective structures using the work

of Goldman (1990). From these, we should be able to prove Theorem 8.3.1 char-

acterizing the topology of the deformation space of real projective structures on

2-orbifolds. However, we do not present the full detail.

8.1 Introduction to real projective orbifolds

Let X be the real projective plane RPn and G the group PGL(n + 1,R) of

collineations, i.e., projective automorphisms of RPn. An RPn-structure or real pro-

jective structure on an n-dimensional orbifold Σ is an (RPn,PGL(n+1,R))-structure

on Σ. Two RPn-structures on Σ are equivalent if an isotopy from the identity map
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IΣ of Σ induces one from the other. A real projective orbifold or a RPn-orbifold is an

orbifold with this structure. The deformation space RPn(Σ) of RPn-structures on

Σ is the space of equivalence classes of RPn-structures with appropriate topology.

A hyperbolic space can be represented by the Klein model. We have a standard

ellipsoid in RPn bounding a convex open domain Ω: This set corresponds to the

space of rays in a convex cone in Rn+1 given by the equation

x0 >
√
x2

1 + · · ·+ x2
n.

Then the hyperbolic isometry group is precisely the subgroup of PGL(n+1,R) acting

on Ω, and a discrete group Γ of isometries becomes a discrete group of projective

automorphisms. The quotient Ω/Γ has a real projective structure. These are called

hyperbolic real projective structures. (See Section 3.1.6 for details.)

Given a hyperspace in RPn, we recall that the complement has the natural affine

structure whose geodesic structure extends to projective ones. We call this the affine

subspace. (See Section 3.1.4 for details.) A domain Ω in RPn is convex if it forms

a convex domain in the affine subspace or equals RPn itself. (We can prove this by

taking an inverse image in Rn+1 with components that are convex cones and we use

supporting hyperplanes. See the book [Berger (2009)] for details.) An open domain

Ω is properly convex if it is contained in some bounded convex closed domain in an

affine subspace of RPn. For a convex domain Ω, this is equivalent to the fact that Ω

does not contain a complete 1-dimensional affine space, i.e., a complete affine line.

If the boundary of a convex domain Ω does not contain a straight segment, then Ω

is said to be strictly convex.

In fact, for any convex open domain Ω and Γ acting on Ω cocompactly and

properly discontinuously, we obtain a real projective 2-orbifold.

Define Sn = (Rn+1 − {O})/ ∼ where v ∼ w iff v = kw for k > 0. Sn has a

real projective structure as a double cover of RPn. A real projective sphere Sn is

Sn with the real projective structure and has a group of projective automorphisms

Aut(Sn) isomorphic to the group SL±(n+ 1,R) of linear maps of determinant ±1.

A closed real projective orbifold is said to convex if any arc in a relative homotopy

class can be homotoped to a line relative to the end points. It is properly convex if

it does not contain a complete affine line, i.e., a subspace projectively isomorphic

to a complete real line. A closed real projective orbifold is convex if and only if it

is diffeomorphic to Ω/Γ or Sn/Γ for a convex domain Ω in an affine subspace and a

real projective automorphism group Γ acting on it or on the real projective sphere

Sn properly discontinuously. It is properly convex if and only if it is diffeomorphic

to Ω/Γ where Ω is a properly convex domain (Choi, 1994a,b).

There are closed convex real projective orbifolds that are not hyperbolic, which

we will state later in detail.

A closed 2-orbifold Σ with χ(Σ) < 0 with an RP2-structure is convex if and

only if it is projectively diffeomorphic to the quotient of a properly convex do-

main in an affine patch by a properly discontinuous action of a group of projective

automorphisms.
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An arc in Σ that is locally a line is called geodesic or projective geodesic. If each

component ∂Σ is locally a line, Σ is said to have geodesic boundary. A closed curve

in Σ whose lift develops into a line connecting the unique attracting and repelling

fixed points of its holonomy is said to be a principal closed geodesic.

When ∂Σ 6= ∅, boundary components are required to be principal geodesic.

Let us discuss for RP2. A projective automorphism is said to be positive hyper-

bolic if it is diagonalizable and the maximum and minimum modulus eigenvalues

are positive and have multiplicity one. Let A be a positive hyperbolic projective

automorphism. The conjugation invariants of a positive hyperbolic element A are

eigenvalues λ1, λ2, λ3 with

0 < λ1 < λ2 < λ3, λ1λ2λ3 = 1.

Thus, A has three fixed points in RP2, that are noncollinear, one of which is an

attracting fixed point, another one is a repelling one, and the last one is a saddle-

type one. There are three A-invariant lines bounding four triangles in RP2.

The space of invariants for positive hyperbolic matrices is given by 0 < λ1, 0 <

λ1 < λ2, λ1λ
2
2 < 1. Here λ1 and λ2 completely characterize the conjugacy classes.

We denote the region byD, homeomorphic to an open disk. Another way to describe

this space is by the Goldman invariants of A given by λ = λ1, τ = λ2 + λ3. These

satisfy

0 < λ < 1,
2√
λ
< τ < λ+

1

λ2
.

In general, a projective automorphism of RPn is represented by a matrix with

determinant ±1 where the largest norm eigenvalue is positive. A projective auto-

morphsim is positive proximal if the largest and smallest norm eigenvalues of the

corresponding matrix are positive and of multiplicity one.

The following is a summary of the most general results about the geometry of

convex real projective manifolds and orbifolds, following [Benoist (2008)]. (Histor-

ically, these results were obtained by Kuiper (1954), Benzecri (1960, 1962), Koszul

(1965, 1968) and so on.) Recall that group is hyperbolic if its Caley graph is Gromov

hyperbolic, and a closed curve is essential if the fundamental group of the closed

curve injects.)

Theorem 8.1.1. Let Ω/Γ be a closed n-dimensional real projective orbifold M

where Ω is a properly convex domain in an affine subspace of RPn and Γ is a

discrete group of real projective automorphisms acting on Ω and is a hyperbolic

group.

• Ω is strictly and properly convex.

• The holonomy of each essential closed curve is positive proximal with exactly

two fixed points in bdΩ which are an attracting fixed point and a repelling one

and acts on the open line in Ω connecting the two fixed points.

• Each essential closed curve in M is realized by a closed geodesic.
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• Suppose that the essential closed curve is homotopic to a simple closed curve. If

M is an orientable 2-orbifold, then there exists a unique closed geodesic isotopic

to it which is a principal closed geodesic or it double covers a segment with

two endoints in singularites of order two. If Ω/Γ is not orientable, the closed

geodesic is either simple or it double-covers a segment as above or a simple

closed geodesic.

• bdΩ is C1,α and is an ellipsoid if C2. (Benzecri)

Note that these hold for each hyperbolic surfaces as well where the corresponding

group to Γ is considered a subgroup of PSO(1, 2) and Ω is the interior of a conic.

The following theorem states in the surface case, convex ones are the most

important ones. (Choi, 1994a,b).

Theorem 8.1.2. Let Σ be a compact orientable real projective surface with principal

geodesic or empty boundary and χ(Σ) < 0. Then Σ has a collection of mutually

disjoint simple closed geodesics the components of whose complement have closures

that are properly convex real projective surfaces with principal geodesic boundary of

negative Euler characteristic or elementary annuli.

(See Section 8.1.1 for the definition of elementary annuli.)

From this, we obtained later in the paper [Choi and Goldman (1997)].

Theorem 8.1.3. The deformation space of real projective structures on a closed

orientable surface of genus g, g > 1, is an infinite countable union of open cells of

dimension 16g − 16.

8.1.1 Examples of real projective 2-orbifolds.

We recall the terminology and facts in Section 3.1.4:

8.1.1.1 Elementary annuli

Let ϑ be a collineation represented by a diagonal matrix with distinct positive

eigenvalues. Then it has three fixed points in RP2: an attracting fixed point of the

action of 〈ϑ〉, a repelling fixed point, and a saddle-type fixed point. Three lines

passing through two of them are ϑ-invariant, as are four open triangles bounded by

them. Choosing two open sides of an open triangle ending at an attracting fixed

point or a repelling fixed point simultaneously, their union is acted properly and

freely upon by 〈ϑ〉. The quotient space is diffeomorphic to an annulus. The RP2-

surface projectively diffeomorphic to the quotient space is said to be an elementary

annulus. (See the left part of Figure 8.1.)

A principal geodesic boundary is one connecting an attracting fixed point of ϑ

with a repelling one. This definition is independent of orientation. There is a unique

principal geodesic component among the two components. The other component is
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Fig. 8.1 Elementary annuli of hyperbolic and two quasi-hyperbolic types as quotients of domains

and actions on them. The thicker lines indicate the included boundary components.

said to be weak.

A pasting of two boundary components of real projective surfaces with geodesic

boundary can be described as attaching and projectively identifying thin regular

neighborhoods of the geodesics in some ambient open surface. The necessary con-

dition for pasting to take place is that the holonomy of the generator of the fun-

damental group of the boundary component is conjugate to the holonomy of the

corresponding generator for the other boundary component. This is also the suf-

ficient condition when the boundary components are principal geodesic. ( Also, if

both boundary components have complete affine lifts, it is also sufficient.)

A real projective annulus with geodesic boundary can be obtained by pasting

the above elementary annuli along geodesic boundary of same types.

Goldman showed that each annulus with principal geodesic boundary is obtained

by pasting elementary annuli. (See also the article [Sullivan and Thurston (1983)].)

In fact, we can draw an arc in RP2 in a certain manner as in Figure 8.2 and obtain

an annulus. This corresponds to the pasting construction.

One can also have an annulus with geodesic boundary where ϑ is quasi-

hyperbolic, i.e., represented by a non-diagonalizable matrix with two positive eigen-

values. It has two fixed points in RP2. One is a repelling or attracting fixed point,

say x and the other y. A 1-dimensional subspace m passing through x and y is

invariant by ϑ. ϑ has an attracting and repelling fixed points x and y on m. There

is another ϑ-invariant subspace l of dimension one with unique fixed point y on it.

ϑ acts as a translation on l−{y} identified with a complete affine line. (See Figure

8.1.)

Let L be a component of RP2− l−m. An elementary annulus is the quotient of

L∪m−{x, y} or the quotient of L∪ l′∪m1 for a unique component m1 of m−{x, y}
and the component l′ of l − {y} adjacent to L so that a segment s connecting a
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Fig. 8.2 Any immersed arc so that the directions of the action arrows do not change as it crosses

the invariant lines corresponds to an annulus with geodesic boundary. To see this, simply act by g
and the two arcs will bound a strip glued to an annulus. This was discovered by Goldman (1977).

For a fixed holonomy, one can classify them by a free semigroup of rank two.

point of m1 to l′ is disjoint from ϑ(l). (Note that a wrong choice would give us a

non-Hausdorff space.)

We note that the elementary annuli of quasi-hyperbolic type do not occur in

convex real projective closed surfaces or 2-orbifolds of negative Euler characteristic.

(See [Choi (1994b)].)

8.1.1.2 π-Annuli

Let ϑ be a hyperbolic projective automorphism. Take two adjacent ϑ-invariant

triangles with three open sides of them all ending in an attracting fixed point or

a repelling fixed point. Then the quotient of the union by 〈ϑ〉 is diffeomorphic to

an annulus. The projectively diffeomorphic surfaces are said to be π-annuli (Choi,

1994a,b).

A reflection in RP2 is an involution fixing a line and an isolated point. A

reflection in a projective space is determined uniquely by a line of fixed points and

a fixed point outside the line with a matrix conjugate to a diagonal matrix with

entries 1, 1,−1.

There is a reflection sending one triangle to the other inducing an order-two

group. The quotient map is an orbifold map, and the quotient space carries an

orbifold structure so that one boundary component is made of mirror points. Thus,

the π-annulus is a double of an elementary annulus with a silvered boundary com-

ponent.
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Now, let ϑ be a quasi-hyperbolic projective automorphism. Then we define

one of the two types of annuli to be a π-annulus: that is, an elementary annulus

of quasi-hyperbolic type with the lifts of two boundary components ending at a

common point.

Also the pasting of two elementary annuli of quasi-hyperbolic type along the

boundary components corresponding to the complete affine lines is another type of

a π-annulus. (See Figure 8.3.)

Fig. 8.3 The π-annuli of hyperbolic type and two of quasi-hyperbolic type.

We mention that Nagano and Yagi (1974) and Goldman (1977) essentially clas-

sified the real projective structures on annuli, Möbius bands, tori and Klein bottles.

To this date, the work was not yet generalized to 2-orbifolds of Euler characteristic

zero. The topology of the deformation spaces are still unknown. See [Baues and

Goldman (2005)] also.

8.1.1.3 An example: a bending torus with a disk removed

Consider H2 as the inside of a standard ellipse in RP2 given by the set of null vectors

in R3 with the standard Lorentzian metric from the quadratic form x2
0 − x2

1 − x2
2.

Take an orientable hyperbolic 2-orbifold S. Then S = H2/Γ for a discrete

subgroup Γ ⊂ Isom(H2) = PSO(1, 2) ⊂ PGL(3,R). Thus, S is identified with a

quotient space of a convex open domain in RP2. Here, H2 is represented by the

Klein model; i.e., it is identified with the standard unit disk in RP2.

Let S be an orientable hyperbolic closed 2-orbifold or a hyperbolic compact

2-orbifold with geodesic boundary. We can deform this to a parameter of nonhy-

perbolic real projective surfaces by so-called “bending” first discovered by Thurston

(1977). Again denote by π1(S) the group of deck transformations of the universal

cover S̃ of S.

An essential simple closed curve is homotopic to a simple closed geodesic by

Theorem 8.1.1. Let S contain a simple closed geodesic c.
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We have that S̃ is identified with H2. The inverse image L of c is a disjoint union

of straight lines ending in bdH2. Take a component l and the other components are

of form g(l) for g ∈ π1(S). Let the cyclic group generated by γ ∈ π1(S) acts on l

so that it corresponds to the covering l→ c, where l and c are oriented along γ.

We can find an element of PGL(3,R) namely an element of Isom(H2) that pre-

serves H2 and sends l to any segment. Therefore, we choose a projective coordinate

system so that l has endpoints [0, 1, 1] and [0,−1, 1]. Then γ is now represented as

a matrix with eigenvalues λ, 1/λ, and 1 at respective points [0, 1, 1], [0,−1, 1], and

[1, 0, 0] for λ > 1.

Then any projective transformation η with a diagonalizable matrix with eigen-

values a, 1/(ab), and b respectively at the above points commutes with γ. For each

component g(l) of L for g ∈ π1(S), we glue the relative closure of the left adjacent

component C of H2 − L with a right adjacent component C ′ by η.

This construction amounts to the following “cut and paste” construction: Cut

S by a simple closed curve c and obtain S − c. Complete it by the induced path

metric to S̄ with two boundary components c′1 and c′2. Find an open ambient real

projective 2-orbifold S′ containing c′1 and c′2. Now, η induces a real projective

diffeomorphism η′ from an open neighborhood N1 of c′1 in S′ to one N2 of c′2 in S′.
Let S1 be the copy of S − c in S′, we take S1 ∪N1 ∪N2 in S′, and we identify N1

an N2 by η′. The resulting 2-orbifold S′ is still diffeomorphic to S.

This construction is said to be a projective bending of S. For each nonidentity

η, we obtain a projective bending. For a parameter of η, we obtain a parameter of

bendings. The resulting projective 2-orbifold S′ is still properly convex (Goldman,

1990).

In fact, we could have started with any orientable compact properly convex 2-

orbifold with geodesic boundary. Each simple closed curve is realized as a simple

closed geodesic.

As a specific example, we consider a torus with one hole, i.e., a genus-one ori-

entable hyperbolic surface with one boundary component where S decomposes into

one pair-of-pants. We obtain various pictures of deformations and the convex do-

mains that cover the deformed real projective surface.

Let us explain some explicit construction that can be obtained by some computer

algebra systems. We did the computation with Mathematica
TM

.

A hyperbolic pair-of-pants with geodesic boundary is first constructed: In H2

find a geodesic l1 passing [0, 0, 1] with endpoints [1, 0, 1] and [−1, 0, 1] and another

geodesic l2 passing [0, 0, 1] with endpoints [0, 1, 1] and [0,−1, 1]. We find a matrix

A acting on l1 with eigenvalues λ, 1/λ, and 1 for λ > 1 with respective fixed points

[−1, 0, 1], [1, 0, 1], and [0, 1, 0] and K acting on l2 with eigenvalues µ, 1/µ, 1 for µ > 1

with respective eigenvectors [0, 1, 1], [0,−1, 1], and [1, 0, 0]. Let B = KA−1K−1.

For λ, µ sufficiently large, one can make A−1(l2) and B(l2) are disjoint

geodesics. C := BA has an invariant geodesic l3 meeting A−1(l2) and B(l2)

at distinct points and containing the shortest segment between them. Then
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2

1
H

3
l

1

l

l

B

K

[0,−1,1]

[0,1,1]

A

[1,0,1][−1,0,1] [0,0,1]

R(H ) 1

Fig. 8.4 The diagram for a torus with one-hole.

l1, l2,K(l1), B(l2), l3, A
−1(l2) bound a hexagon H1. Reflect H1 using a reflection

R fixing l2 and [1, 0, 0]. The free group F2 := 〈A2, B2〉 acts freely and properly

discontinuously on H2 and
⋃
g∈F2

g(H1 ∪R(H1)) forms a universal cover of a pair-

of-pants P with geodesic boundary corresponding to A2, B2, A2B2. This constructs

one pair-of-pants. (Actually, this is a double of a hexagonal 2-orbifold with three

silvered edges and three boundary components.)

Consider the group generated by A2, B2,K. Then this generates a group Γ and

H2/Γ is diffeomorphic to a torus with one hole. (We are attaching the boundary

component corresponding to A with that of B by K here.)

Let η be a matrix commuting with A with eigenvalues δ, η, 1/(δη) and eigenvec-

tors at [−1, 0, 1] [0, 1, 0], and [1, 0, 1]. The bending by η corresponds to changing

K to Kη. This gives us a two-parameter space of bendings. (See Bending1.nb and

Bending2.nb)

Another computations of bending constructions are given by Pat Hooper. See

http://merganser.math.gvsu.edu/~david/~reed03/~projects/hooper/ containing an

applet of bendings with parameters. (This was a student project in “Mathematical

Graphics: Introduction to Java” in the MSRI Summer School - Reed College, July

13 - July 26, 2003. http://www.math.ubc.ca/~cass/msri-summer-school/)



July 30, 2012 15:46 World Scientific Book - 9.75in x 6.5in msjbooksub0729

142 Geometric structures on 2-orbifolds: Exploration of discrete symmetry

-1.0 -0.5 0.5 1.0

-0.2

0.2

0.4

0.6

0.8

1.0

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Fig. 8.5 The orbits of bent real projective structures.

8.1.1.4 Projective triangle reflection groups due to Kac and Vinberg

Next, we discuss the examples due to Kac and Vinberg (1967). These examples

provided the first class of real projective 2-orbifolds and surfaces that are properly

convex but not hyperbolic.

Consider a hyperbolic triangle reflection group. H2 contains a hyperbolic

triangle with vertices v1, v2, v3 with respective angles π/p, π/q, π/r satisfying

1/p + 1/q + 1/r < 1. Let R1, R2, and R3 denote the projective reflections at

the edges opposite v1, v2, and v3 respectively. Then we obtain

(R1R2)r = I, (R2R3)p = I, and (R3R1)q = I. (8.1)

A triangle determines the sides of the reflections. We choose the reflection points

p1, p2, p3 for the sides e1, e2, e3 respectively. Call the resulting reflections R1, R2,

and R3 respectively. They need to satisfy the relations 8.1. Putting the vertices

v1, v2, and v3 to [1, 0, 0], [0, 1, 0], and [0, 0, 1] respectively, we obtain the matrices of

R1, R2, and R3 as below:

R1 =



−1 0 0

2b1 1 0

2c1 0 1


 , R2 =




1 2a2 0

0 −1 0

0 2c2 1


 , and R3 =




1 0 2a3

0 1 2b3
0 0 −1


 (8.2)

where we have p1 = (−1, b1, c1), p2 = (a2,−1, c2), and p3 = (a3, b3,−1).

The necessary and sufficient condition for R1R2 to be of order r for r ≥ 2 is that

4a2b1 − 1 = tr(R1R2) = tr(R1R2)−1 = 1 + 2 cos 2π/r if r > 2

and a2 = 0, b1 = 0 for r = 2. Thus, we obtain

4a2b1 = 2 + 2 cos 2π/r if r > 2 or a2 = 0, b1 = 0 if r = 2, (8.3)

4b3c2 = 2 + 2 cos 2π/p if p > 2 or b3 = 0, c2 = 0 if q = 2, and (8.4)

4a3c1 = 2 + 2 cos 2π/q if q > 2 or a3 = 0, c1 = 0 if r = 2. (8.5)



July 30, 2012 15:46 World Scientific Book - 9.75in x 6.5in msjbooksub0729

Chapter 8. Deformation spaces of real projective structures on 2-orbifolds 143

From this, we obtain that if p, q, r > 2, then there is a one-parameter space of solu-

tions of the above equations. This gives us a one-parameter space of real projective

structures on the disk-orbifold with corner-reflectors of orders p, q, r. We mention

that a single parameter value corresponds to the hyperbolic structure (Vinberg,

1971; Kac and Vinberg, 1967).

If any of p, q, r is 2, then there is just one solution. This corresponds to the

hyperbolic structure. We computed some examples in TrianglegroupProj.nb and

TrianglegroupProj2.nb. See Figure 8.6 for developing images.

1.0 1.5 2.0 2.5 3.0 3.5

1

2

3

4

0.15 0.20 0.25 0.30 0.35 0.40

0.2

0.4

0.6

0.8
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Fig. 8.6 The developing images of two triangle reflection 2-orbifolds of order (3, 5, 5) and (3, 3, 4).

8.2 A survey of real projective structures on surfaces of negative

Euler characteristic.

In this section, we sketch some histories of real projective structures.

Historically, Cartan (1924) defined projectively flat structures or real projec-

tive structures on manifolds as structures that are “geodesically Euclidean but

with no metrics”. More precisely, a projectively flat structure on a manifold is

given as a torsion-free projectively flat affine connection. “Projectively flat” here

means that the connection has same geodesics structures as Euclidean metrics up

to reparametrizations.

Later Ehresmann [Pradines (2007)] and Thurston (1977) identified this structure

as being a maximal atlas of charts to RPn with transition maps in PGL(n+ 1,R);

that is, it is a geometric structure modeled on (RPn,PGL(n + 1,R)). (For an

introduction, see the article [Sullivan and Thurston (1983)].)

Kuiper (1954) first studied the convex real projective structures on closed sur-

faces and showed that they are either a real projective sphere, a real projective plane,



July 30, 2012 15:46 World Scientific Book - 9.75in x 6.5in msjbooksub0729

144 Geometric structures on 2-orbifolds: Exploration of discrete symmetry

a torus or a Klein bottle that is a quotient space of an open triangular domain in

RP2 or is a quotient surface of genus g, g > 1 of a properly and strictly convex open

domain in RP2 by a discrete group of projective automorphisms. Benzecri (1960)

later generalized this to n-dimensional convex real projective manifolds.

Koszul (1965) showed that convexity is preserved for a closed convex real pro-

jective manifold if one deformed the projective structures by a sufficently small

amount.

As shown above, Kac and Vinberg (1967) were first to find examples of convex

projective surfaces that are not hyperbolic by deforming. The examples are based

on Coxeter groups. (See Section 8.1.1.)

Kobayashi (1984) studied metrics on projective manifolds: Given a connected

real projective manifoldM , he considers projective maps

l ⊂ RP1 →M

from a bounded interval l and take maximal ones. Using the Hilbert metric of l, he

defines the Kobayashi metric. Kobayashi metric is a metric if and only if M has no

complete real lines if and only if M is projectively isomorphic to Ω/Γ where Ω is a

properly convex domain in RPn.

In this case, the Kobayashi metric is Finsler and a Hilbert metric given by

d(p, q) = | log[o, s, q, p]|
for p, q ∈ Ω and o and s are end points of the maximal line containing p, q and o, q

separates p, s (See Section 3.1.4.) If Ω = Hn, the metric is the standard hyperbolic

metric. (See Figure 8.7.)

p

q

o

s

Fig. 8.7 The figure illustrating the cross ratios and the Hilbert metric. The boundary is conic
here so that the metric is really a hyperbolic one.
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8.2.1 Topological work

Nagano and Yagi (1974) classified affine structures on tori, and Goldman (1977)

classified projective structures on annuli with geodesic boundary in his senior thesis

(Sullivan and Thurston, 1983).

There is a construction called grafting : On a closed orientable convex real pro-

jective surface of negative Euler characteristic, an essential simple closed curve is

homotopic to a simple closed projective geodesic. (See the article [Choi (1994a)]

for details.) We cut along the geodesic and complete it to obtain a surface with

two new geodesic boundary components. We paste by projective maps the above

annuli with principal geodesic boundary to the boundary components with conju-

gate holonomies. That is, one can insert this type of annuli into a closed convex

projective surface to obtain non-convex projective surfaces.

The convex decomposition theorem [Choi (1994a,b)] shows that a closed ori-

entable real projective surface of negative Euler characteristic can be constructed

from a closed convex orientable convex real projective surface of negative Euler

characteristic by grafting.

Goldman (1990) classified convex projective structures on closed orientable sur-

faces. Let Σ be a closed orientable surface of genus g > 1 and let CD(Σ) denote

the deformation space of convex real projective structures on Σ. Then CD(Σ) is

homeomorphic to an open cell of dimension 16g − 16 = −8χ(Σ). He gave an ex-

plicit parameterization to construct back any real projective surface diffeomorphic

to Σ. This and Theorem 8.1.2 imply Theorem 8.1.3. Here, the classification is a

constructive one.

8.2.2 The gauge theory and projective structures.

Atiyah and Bott (1983) studied self-dual connections on surfaces. Corlette (1988)

showed that the space of flat connections for manifolds can be realized as the space

of harmonic maps to certain symmetric space bundles.

8.2.3 Hitchin’s conjecture and the generalizations.

Let G be the adjoint group of the split real form of a complex simple group.

Hitchin (1992) used the Higgs fields on principal G-bundles over surfaces to ob-

tain parametrizations of flat G-connections over surfaces.

Let Σ be a closed 2-orbifold of negative Euler characteristic. Recall from Chapter

6, the space of homomorphisms

Hom(π1(Σ), G)/G.

We denote by Hom+(π1(Σ), G) the subspace of representations which act com-

pletely reducibly on Lie algebra of G. It includes the subspace of irreducible rep-

resentations. (A representation acts completely reducibly if every invariant sub-
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space has a complementary invariant subspace. See [Hitchin (1992)] and [Corlette

(1988)].)

A Higgs bundle is a pair (V,Φ) where V is a holomorphic vector bundle over a

fixed Riemann surface Σ and Φ is a holomorphic section of EndV ⊗K where K is

the canonical line bundle. A Teichmüller space T (Σ) is mapped locally homeomor-

phically by hol to a component of the space

Hom+(π1(Σ),PSL(2,R))/PSL(2,R)

of conjugacy classes of Fuchsian discrete faithful irreducible representations by The-

orem 6.2.2. A hyperbolic surface naturally corresponds to a conjugacy class of a

discrete faithful and irreducible representation Γ → PSL(2,R) for its fundamental

group Γ. Thus, hol is a homeomorphism to the component.

The Hitchin-Teichmüller component is a component of

Hom+(π1(Σ), G)/G

containing the compositions of form

π1(Σ)→ Γ→ PSL(2,R)→ G. (8.6)

where the first map is a Fuchsian representation and the second map is the natural

irreducible representation PSL(2,R) → G of Kostant. (See Section 4 of [Hitchin

(1992)].)

To find a flat connection on a given Higgs bundle, we solve for a unitary con-

nection A

FA + [Φ,Φ∗] = 0

given a holomorphic section Φ ∈ EndV ⊗K. The theory of holomorphic sections of

holomorphic bundles shows that the Hitchin-Teichmüller component is homeomor-

phic to an open cell of dimension (2g − 2) dimGr.

Now we restrict our attention to PGL(n,R). For n > 2, Hitchin proved that

Hom+(π1(Σ),PGL(n,R))/PGL(n,R)

has three connected components if n is odd and six components if n is even.

A Fuchsian representation is a representation π1(Σ)→ PSL(2,R) with image Γ

such that H2/Γ is homeomorphic to Σ. PSL(2,R) can be identified as an irreducible

subgroup of PSL(n,R).

A Hitchin representation in PSL(n,R) is a representation which deforms to a

Fuchsian representation, i.e., the ones of form

Γ→PSL(2,R)→PSL(n,R), (8.7)

i.e., those in the Hitchin-Teichmüller component.

A convex projective surface is of form Ω/Γ. Hence, there is a representation

π1(Σ)→ Γ determined only up to conjugation by PGL(3,R). This gives us a map

hol : CD(Σ)→ Hom(π1(Σ),PGL(3,R))/PGL(3,R).
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This map was known to be a local-homeomorphism by Ehresmann and Thurston as

in Section 6.2.3.2 and is injective to an open subset as shown by Goldman (1990).

Recall that PGL(3,R), PSL(3,R), and SL(3,R) are isomorphic to one another.

When Σ is orientable, we obtain a local homeomorphism

hol : CD(Σ)→ Hom(π1(Σ),SL(3,R))/SL(3,R).

The map is in fact a homeomorphism onto the Hitchin-Teichmüller component as

shown by Choi and Goldman (1997). (See Section 6.2.3.)

This result was naturally but unexpectedly extended in the early 2000s to

the higher-Teichmüller theory developed by Labourie (2006) and Burger, Iozzi,

Labourie, Wienhard (2005); however, we will not elaborate on this rather large and

rapidly growing topic.

8.2.4 Group theory and representations

As stated earlier, Benzecri (1960), Kac and Vinberg (1967), and Koszul (1965)

started to study the deformations of representations Γ → PGL(n + 1,R) from the

discrete faithful representation Γ → PSO(n, 1) corresponding to hyperbolic mani-

folds. There is a well-known deformation due to Thurston called bending for pro-

jective and conformally flat structures: Given a totally-geodesic submanifold S of

codimension one in a convex real projective manifold M so that the holonomy

homomorphism h restricts in π1(S) to one fixing a point in RPn, we have a cen-

tralizing element η in PGL(n + 1,R) in a one-parameter family of such elements.

We can remove S from M and complete it to obtain a manifold with two copies

of S as boundary component. Using the centralizing elements, we can re-glue in

one-parameter ways. (See Section 8.1.1.3.)

Johnson and Millson (1987) found that certain hyperbolic manifolds have defor-

mation spaces of projective structures that are singular by studying one with many

totally geodesic submanifolds codimension one meeting transversally. (They also

worked out this for conformally flat structures.)

An element γ of GL(m,R) is proximal if there is an eigenvalue of multiplicity one

which is of largest modulus among eigenvalues. Recall that γ is positive proximal

if γ is proximal and the largest modulus eigenvalue is positive. A subgroup Γ of

GL(m,R) is positive proximal if every proximal element is positive proximal. (This

means that it has a pair of an attracting and a repelling fixed point in RPm−1.) We

say that Γ divides Ω if its image in PGL(m,R) acts on a properly convex domain

Ω ⊂ RPm−1 properly discontinuously but not necessarily freely so that the quotient

space is compact.

Theorem 8.2.1. Let Γ be an irreducible torsion-free subgroup of GL(m,R). Then Γ

divides a strictly convex domain Ω if and only if Γ is positive proximal and discrete.

If Ω is not a domain bounded by a conic, then Γ maps to a Zariski dense subgroup

in PGL(m,R) under the projection GL(m,R)→ PGL(m,R).
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This is proved by Benoist (2000).

The recent work of Benoist (papers “Convex divisibles I-IV”) proves the follow-

ing theorem. (See also the survey article [Benoist (2001)].)

Theorem 8.2.2. Let Γ be a discrete torsion-free subgroup of GL(m,R) dividing an

open convex domain Ω in RPm−1. Let C be the corresponding cone on Rm. The

projectivization Γ0 of Γ is the isomorphic image group in PGL(m,R). Then the

following holds

• One of the following is true exclusively:

– C is a product, i.e., a product of irreducible cones in subspaces,

– C is homogeneous; i.e., Γ0 is Zariski dense in a copy of PSO(1, 1−m) in

PGL(m,R) acting on Ω transitively,

– Γ0 is Zariski dense in PGL(m,R).

• If the virtual center of Γ0 is trivial, i.e., every finite-index subgroup of Γ0 has

a trivial center, then

EΓ0
= {ρ ∈ HΓ0

| The image of ρ divides a convex open domain in RPm−1}
is closed in

HΓ0
:= Hom(Γ0,PGL(m,R)).

The openness was obtained by Koszul (1965).

• Let Γ0 be as above. Then the following conditions are equivalent:

– Ω is strictly convex.

– bdΩ is C1.

– Γ is a hyperbolic group.

– The geodesic flow on Ω/Γ is Anosov.

Benzecri (1960) showed that the boundary of Ω is C1 or is an ellipsoid for closed

convex projective manifolds. (See also [Goldman (1988)].)

This completes our survey. However, there were further developments of signif-

icance by Cooper, Long, and Thistlethwaite (2007, 2006) which we cannot cover

here.

8.3 Real projective structures on 2-orbifolds of negative Euler

characteristic.

We begin the study of the deformation spaces of real projective structures on 2-

orbifolds.

Recall the orbifold Euler characteristic of orbifolds, a signed sum of the number

of open cells with weights given by 1 divided by the orders of groups associated

to the open cells. Let Σ be a connected compact 2-orbifold with χ(Σ) < 0. The

subspace of the deformation space RP2(Σ) of RP2-structures on Σ corresponding
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to convex ones is denoted by CD(Σ) and the closed subspace corresponding to

hyperbolic projective structures is denoted by T (Σ), identified as the Teichmüller

space of Σ as defined by Thurston (1977). Then we see that T (Σ) is a subspace of

CD(Σ), and CD(Σ) is an open subset of RP2(Σ).

Theorem 8.3.1 (Choi, Goldman). Let Σ be a compact 2-orbifold with χ(Σ) < 0

and ∂Σ = ∅. Then the deformation space CD(Σ) of convex RP2-structures on Σ is

homeomorphic to an open cell of dimension

−8χ(XΣ) + (6kc − 2bc) + (3kr − br)
where XΣ is the underlying space of Σ, kc is the number of cone-points, kr the

number of corner-reflectors, bc the number of cone-points of order two, and br the

number of corner-reflectors of order two.

Let us denote by CT (Σ) the unique component of

Hom(π1(Σ),PGL(3,R))

containing the holonomy homomorphisms of hyperbolic RP2-structures on Σ. Then

CT (Σ) is also a component of

Hom(π1(Σ),PGL(3,R))

in the part

Hom(π1(Σ),PGL(3,R))+

where PGL(3,R) acts properly, and CT /PGL(3,R) is the Hitchin-Teichmüller com-

ponent as described by Hitchin (1992). We prove:

Theorem 8.3.2. Let Σ be a closed 2-orbifold with negative Euler characteristic.

Then

hol : CD(Σ)→ CT (Σ)/PGL(3,R)

is a homeomorphism, and CT (Σ) consists of discrete faithful representations of

π1(Σ).

Corollary 8.3.3. The Hitchin-Teichmüller component CT (Σ)/PGL(3,R) is home-

omorphic to an open cell of the dimension as above in Theorem 8.3.1.

We study small 2-orbifolds with rigid hyperbolic structures; i.e., ones with the

Teichmüller spaces consisting of singletons.

Corollary 8.3.4.

• The sphere Σ with cone-points of order p, q, r satisfying p ≤ q ≤ r, 1/p+ 1/q +

1/r < 1 has as its Teichmüller space a single point.

– If p = 2, then so is CD(Σ).

– If p > 2, then CD(Σ) is homeomorphic to R2.
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• Let Σ be a 2-orbifold whose underlying space is a disk and with one cone point

of order p and a corner-reflector of order q so that 1/p+ 1/2q < 1/2 has as its

Teichmüller space a single point.

– If q = 2, then so is CD(Σ).

– If q > 2, then CD(Σ) is homeomorphic to R.

• Let Σ be a 2-orbifold whose underlying space is a disk and with three corner-

reflectors of order p ≤ q ≤ r, 1/p + 1/q + 1/r < 1. Then T (Σ) is a single

point.

– If p = 2, then so is CD(Σ).

– If p > 2, then CD(Σ) is homeomorphic to R.

8.3.1 Real projective 2-orbifolds and the Hitchin-Teichmüller com-

ponents

From now on, we are concerned with explaining the proof of Theorem 8.3.1 but we

will not prove it actually.

By an RP2-structure or projectively flat structure on a 2-orbifold Σ we mean an

(RP2,PGL(3,R))-structure on Σ. From now on, we look at RP2-orbifolds, that is,

2-orbifolds with RP2-structures. Here, we require that the boundary components

of a surface with a real projective structure are always principal geodesic.

We define the deformation spaces of RP2-structures on 2-orbifolds, describe local

properties, and define convex RP2-structures (when the 2-orbifolds are boundary-

less).

We discuss the relationship between the RP2-structures and holonomy represen-

tations. First, we deduce that the deformation space is Hausdorff from the corre-

sponding property of the holonomy representation variety. Next, we discuss convex

RP2-structures. We show that the deformation space of convex RP2-structures on

a 2-orbifold is an open subset of the full deformation space. We identify the defor-

mation space of convex RP2-structures on a 2-orbifold with a subset of the space

of conjugacy classes of representations of its fundamental group using the above

relationship.

8.3.1.1 Types of Singularities

Recall that an automorphism of RP2 is a reflection if its matrix is conjugate to




1 0 0

0 1 0

0 0 −1


 .

A reflection has a line of fixed points and an isolated fixed point, which is said to

be the reflection point. An automorphism of RP2 is said to be a rotation of order
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n, n = 2, 3, . . . , if its matrix is conjugate to



cos 2π
n − sin 2π

n 0

sin 2π
n cos 2π

n 0

0 0 1


 .

A rotation has a unique isolated fixed point, called a rotation point, and an

invariant line. A one-parameter family of invariant ellipses fills the complement

in RP2 of the rotation point and the invariant line. A rotation of order two is a

reflection also and conversely.

For RP2-orbifolds, the singular points have the neighborhoods with model open

sets and finite group actions corresponding to one of the following:

(i) A mirror point: An open disk in RP2 meeting a line of fixed points of a reflection.

(ii) A cone-point of order n: An open disk in RP2 containing a rotation point of

the rotation of order n.

(iii) A corner-reflector of order n: An open disk in RP2 containing the intersection

point of the lines of fixed points of two reflections g1 and g2 generating a dihedral

group of order 2n.

8.3.1.2 The deformation spaces and holonomy

We recall some facts from the general (G,X)-structures. (See Chapter 6 for details)

We define the deformation space RP2(Σ) of RP2-structures on a connected 2-orbifold

Σ with principal geodesic boundary as follows (assuming Σ is connected and has

empty boundary): Give the C1-topology to the set Ŝ(Σ) of all developing pairs

(dev, h) on Σ̃. Two pairs (dev, h) and (dev′, h′) are equivalent under isotopy if

there exists a self-diffeomorphism f of the universal cover Σ̃ of Σ commuting with

the deck transformations so that dev′ = dev ◦ f and h′ = h. (We can easily show

that Ŝ(Σ) is homeomorphic to S(Σ) in Section 6.2.1.) We denote by RP2∗(Σ) the

space of equivalence classes with the quotient topology.

The pairs (dev, h) and (dev′, h′) are equivalent under the PGL(3,R)-action if

there exists an element g of PGL(3,R) so that dev′ = g ◦dev and h′(·) = gh(·)g−1.

The quotient space of RP2∗(Σ) under the PGL(3,R)-equivalence relation is denote

by RP2(Σ).

Another interpretation of the deformation space is to consider all RP2-structures

on Σ and quotient by the isotopies. One can easily obtain a one-to-one correspon-

dence between the above two spaces.

If two RP2-structures are distinct up to isotopy, they are isotopically distinct.

Isotopically distinct RP2-structures represent different points in the deformation

spaces. An example is a pair of RP2-orbifolds with non-conjugate holonomy homo-

morphisms (see [Choi (2004)] for details).

By forgetting dev from the pair (dev, h), we obtain an induced map

hol′ : RP2∗(Σ)→ Hom(π1(Σ),PGL(3,R))
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to the space of homomorphisms of π1(Σ) since the isotopy does not change the

holonomy homomorphism.

Since Σ is a compact 2-orbifold, we see that π1(Σ) is a finitely presented group

by Corollary 4.7.2. From now on, we denote

H(Σ) = Hom(π1(Σ),PGL(3,R))

for the R-algebraic subset of PGL(3,R)n satisfying the relations corresponding to

the relations of the presentation of π1(Σ) where n is the number of the generators

of π1(Σ).

Choi (2004) shows that the map H′ is a local homeomorphism since π1(Σ) is

finitely presented. (See Section 6.2.3 for detail. )

Let Un denote the open subset of PGL(3,R)n consisting of (X1, . . . , Xn) such

that no line in R3 is simultaneously invariant under X1, . . . , Xn. The PGL(3,R)-

action is proper and free on the set

U(Σ) := H(Σ) ∩ Un

(Goldman, 1990).

Theorem 8.3.5. Let Σ be a connected closed 2-orbifold with χ(Σ) < 0.

Then RP2(Σ) has the structure of Hausdorff real analytic variety modeled on

U(Σ)/PGL(3,R), and the induced map

hol : RP2(Σ)→ U(Σ)/PGL(3,R)

is a homeomorphism onto an open subset.

8.3.2 Understanding the deformation space of real projective

structures

8.3.2.1 The deformation space of 2-orbifolds

Here, we discuss how to use the above facts to study the deformation space of a

given 2-orbifold, in a manner parallel to the Teichmüller space cases. We do not

provide the complete proofs here. (See [Choi and Goldman (2005)] for more details.)

Recall that a principal geodesic is a geodesic that lifts to an arc developing to a

straight line connecting an attracting fixed point and a repelling fixed point of its

holonomy automorphism. A full 1-orbifold is principal if an inverse image of it in

the universal cover develop into a straight line joining an attracting fixed point and

a repelling fixed point of the composition of holonomies of the two reflections.

Recall that the projective invariant of a principal closed geodesic c of a real

projective 2-orbifold is given by a point in the domainD(c). The projective invariant

of a principal full 1-orbifold c is given as the cross-ratio of the four points in its

lift given by the two reflection points and the end points. Hence, we let D(c) be

identified with R+ by taking the absolute values of the logarithms of the cross-ratios.

As in Chapter 7, we can decompose an orientable compact convex real projective

2-orbifold Σ with χ(Σ) < 0 and principal geodesic boundary by a mutually disjoint
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family of essential simple closed principal geodesics or geodesic principal full 1-

orbifolds c1, . . . , cn so that the orbifold Euler characteristic of the completion of

each component of Σ − c1 − · · · − cn is negative. The completed 2-orbifolds have

all principal geodesic boundary. Moreover, these 2-orbifolds are elementary in the

sense that we cannot apply the above steps any more.

8.3.2.2 Geometric constructions.

To understand this, let S be a 2-orbifold with principal boundary components. The

pasting map f is defined on open neighborhood U of the union of the associated

boundary components in an ambient open 2-orbifold S′ where f satisfies the equa-

tion f̃ ◦ ϑ = ϑ′ ◦ f̃ where f̃ is a lift of f defined on Ũ the inverse image and ϑ and

ϑ′ are respective deck transformations acting on components of the inverse images

in S̃′ of boundary components of S to be pasted by f̃ .

In the real projective structures, it is sufficient that f is a locally projective map

in some ambient real projective surface, the boundary components are principal,

and ϑ and ϑ′ have the same projective invariants described above.

Actually, we can think of the above condition as f ◦ h(c) = h(c′) ◦ f where h(c)

and h(c′) are holonomy of the closed curves c and c′ and the boundary components

are principal: The equation is necessary since if the pasting succeeded, then the

equation holds. The additional principal geodesic condition is then the sufficient

condition.

The geodesics and the full 1-orbifolds are principal always when we are splitting

and pasting. (Actually, we need this condition so that the result of pasting is

properly convex when the initial real projective 2-orbifolds are properly convex.

See [Choi and Goldman (2005)] or [Goldman (1990)])

We describe how to construct convex real projective structures on a larger

2-orbifold from smaller ones. Recall the type of topological constructions with

1-orbifolds from Chapter 7. Suppose that they are boundary components of 2-

orbifolds whose components have negative Euler characteristics.

(A)(I) Pasting or crosscapping along a simple closed curve.

(A)(II) Silvering or folding along a simple closed curve.

(B)(I) Pasting along two full 1-orbifolds.

(B)(II) Silvering or folding along a full 1-orbifold.

Now we suppose that the simple closed curves and 1-orbifolds are geodesic and try

to obtain geometric versions of the above.

Suppose that the involved 1-orbifolds are geodesic boundary components of a

properly convex real projective 2-orbifold with principal geodesic boundary.

(A)(I) For pasting two closed geodesics, we have an R2-amount of real projective

automorphisms to do this. They would create convex real projective struc-

tures inequivalent in the deformation spaces. (Here the invariants of two closed
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geodesics have to be the same. ) The possible projective automorphisms B sat-

isfy AB = BA′ where A and A′ are holonomies of the two closed geodesics. The

equation becomes AB′ = B′A since we can define A′ = P−1AP for B′ = BP−1

and an invertible P . The solution space of B′ is the space of commuting ma-

trices of A and hence is parametrized by R2.

(A)(I) For cross-capping, we have a unique pasting map. The map must be a

real projective automorphism that preserves the orientation of the boundary

component but reverses the normal direction and whose second power is the

holonomy of the boundary component. The equation is AB = BA and B2 = A

where A is the holonomy of the principal boundary component and B is the

pasting map. There is no condition on A other than its positive hyperbolicity.

B has eigenvalues that are square roots of those of A and one of middle absolute

value has a negative eigenvalue. B is determined since A is positive hyperbolic.

! ’

’""

l’l

!

Fig. 8.8 (A)(I) Pasting of two closed principal geodesics

(A)(II)(i) For folding a closed geodesics, we have an R-amount of real projective

automorphism f to do this. They would create convex real projective structures

inequivalent in the deformation space. The choice depends on the choice of two

fixed points of the pasting map. The equation is AB = BA−1 and B2 = I

and B fixes a point p of the principal geodesic l invariant under A. B is

uniquely determined by the fixed point p and vice-versa since B switches the

two eigenvectors of A and acts on the eigenspace of A of dimension-one as a

reflection. Here, BAB−1 = A−1 and A ∼ A−1. Therefore, A has eigenvalues

λ, 1, λ−1. This is a restriction on the holonomy type of boundary components

that we can do folding on.

(A)(II)(ii) For silvering, we have a unique real projective automorphism of order

2 that reverses the normal direction but fixes the points of the boundary com-

ponent and commutes with the holonomy of the boundary component. The

equation is AB = BA and B2 = I and B fixes each point of the principal
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geodesic of A and acts on an eigenspace of dimension one as a reflection. Then

B is a unique reflection.

!

"

!1"!"

"#

#
l

Fig. 8.9 (A)(II)(i) Folding a principal closed geodesic.

(B)(I) For pasting along two geodesic full 1-orbifolds, we have an R-parameter

ways to do this, and the invariants of the 2-orbifolds have to be the same:

The boundary full 1-orbifolds have holonomy A1 and A2 associated with each

boundary points, i.e., silvered points where A2
1 = A2

2 = I. A1A2 represents

a closed curve around the full 1-orbifold lifting to a simple closed curve in a

double cover of our properly convex real projective 2-orbifold. Hence, it is pos-

itive hyperbolic. The equation is AiB = BA′i for i = 1, 2 and Ai and A′i are

the holonomy elements of the generators of the local groups of the two bound-

ary points of the full 1-orbifolds, acting on the principle geodesics. Moreover,

A1A2B = BA′1A
′
2 since A1A2 and A′1A

′
2 are corresponding closed paths to be-

come homotopic after pasting. (This corresponds to the cross-ratio invariants

of the two full 1-orbifolds being the same.) Since A′i = P−1AiP for i = 1, 2, the

above equation becomes AiB
′ = B′Ai and A1A2B

′ = B′A1A2 for B′ = BP−1

and i = 1, 2. Since A1A2 is positive hyperbolic, the solution space is home-

omorphic to R as B′ fixes each point of the principal geodesic of A1A2 and

acts on the eigenspace of A1A2 whose corresponding point in RP2 is not on the

geodesic.

(B)(II)(i) For silvering, we have a unique real projective automorphism since there

is a unique projective automorphism commuting with the reflections at the end

and fixing each point of the boundary component. The equation is AiB = BAi
and A1A2B = BA1A2 and B2 = I and B fixes each point of the principal

geodesic fixed by A1A2 and acts on an eigenspace of A1A2. Here, B is uniquely

determined.

(B)(II)(ii) For folding, the full 1-orbifold ends at boundary points. The projective

automorphism must send the the full 1-orbifold to itself and make the boundary
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segments to extend each other where they are sent. There is a unique such

automorphism. The equation is A1B = BA2 and B2 = I and B fixes a point

of the principal geodesic. Here, B is uniquely determined. (This is similar to

(A)(II).)

’
r

r

r
1

2

! !

l l’

" "’

Fig. 8.10 (B)(II)(i) Pasting full 1-orbifolds

8.3.2.3 Elementary 2-orbifolds and their real projective structures.

To prove Theorem 8.3.1, we need to study the deformation space of elementary

orbifolds and use results in Section 8.3.2.2. The details are in [Choi and Goldman

(2005)]. We partially discuss the deformation space of convex real projective struc-

tures on elementary orbifolds with principal geodesic boundary. We discuss more

about the computational aspects.

8.3.2.4 A pair-of-pants

We first discuss a pair-of-pants P . The deformation space was first studied by Gold-

man (1990). The geodesic boundary components of a convex real projective surface

P with principal geodesic boundary are first oriented by a boundary orientation.

Recall that D(c) for a boundary component c of a real projective surface denote

the space of invariants (λ, τ) satisfying

0 < λ < 1 and
2√
λ
< τ < λ+

1

λ2
.

Given a hyperbolic automorphism ϑ of RP2, we have that the invariant for ϑ is given

by taking the smallest eigenvalue and the sum of the two other eigenvalues. We

define CD(∂P ) as the product space
∏3
i=1D(ci) where ci are boundary components

of P . Goldman (1990) proved that

F : CD(P )→ CD(∂P )
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for a pair-of-pants P is a principal R2-fibration for a pair-of-pants P where F is given

by sending the structure to the invariants of h(ci) for the boundary components

c1, c2, c3 of P .

[0,1,0]

[0,0,1]

[1,0,0]

[a  ,−1, c  ]

[a  ,b  ,−1]

a

c

A

0

b

∆

∆

∆

∆

B

C

[−1, b  , c  ]11

3 3

22

Fig. 8.11 The four adjacent triangles used to understand the convex real projective pair-of-pants

We explain this: Give P an orientation and the induced orientation on ∂P as

well. There is a lamination with three leaves that tend to the boundary components

in its end and it wraps around each boundary component in the reverse direction

to the orientation. We can straighten each leaf so that it is a geodesic. This is

accomplished by the fact that P is convex. P − ∂P is a union of two triangles

T1 and T2 bounded by three lines and vertices removed. In the universal cover P̃ ,

we have a tessellation by these triangles. Under the developing map, each triangle

is mapped to a triangle with vertices removed in RP2. Take one triangle T0 and

adjacent ones T1, T2, T3. Notice that T0 is in one class of triangles corresponding to

T1 or T2 and T1, T2, and T3 correspond to the other one.

There exists a deck transformation A sending T1 to T2 and B sending T2 to T3

and C sending T3 to T1. We have CBA = I. In fact, A,B,C correspond to closed

curves homotopic to the boundary components in the oriented direction. Since

the developing map is a homeomorphism, A,B, and C correspond to elements of

PGL(3,R).

Note the isomorphism SL(3,R) with PGL(3,R). We think of A,B,C as matrices

of determinant 1 abusing notations.

We can put T0 to a standard triangle with vertices: [1, 0, 0], [0, 1, 0], and [0, 0, 1]

by a projective automorphism and then we obtain:
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• T1 has vertices [−1, b1, c1], [0, 1, 0], and [0, 0, 1],

• T2 has vertices [1, 0, 0], [a2,−1, c2], and [0, 0, 1], and

• T3 has vertices [1, 0, 0], [0, 1, 0], and [a3, b3,−1].

Here b1, c1, a2, c2, a3, b3 > 0. This position is not canonical. We can still act by

transformations with diagonal matrices. Thus, we may assume that b1 = 2, c1 = 2

without loss of generality. (See Figure 8.11.)

The matrices must be of form

A :=



α1 α1a2 + γ1c2a3 γ1a3

0 −β1 + γ1b3c2 γ1b3
0 −γ1c2 −γ1


 ,

B :=



−α2 0 −α2a3

−α2b1 β2 β2b3 + α2a3b1
α2c1 0 −γ2 + α2a3c1


 , and

C :=



−α3 + β3a2b1 β3a2 0

−β3b1 −β3 0

γ3c1 + β3b1c2 β3c2 γ3




(8.8)

where αi, βi, γi > 0 are positive real numbers satisfying equation:

α1α1α3 = 1, β1β2β3 = 1, γ1γ2γ3 = 1, α1β1γ1 = 1, α2β2γ2 = 1, α3β3γ3 = 1.

This follows since the determinants must be 1 and CBA = I.

Solving for CBA = I, we obtain without difficulty: Given l1, l1,2, l2, l2,2, l3, l3,2
square roots of smallest positive eigenvalues of A,B,C respectively so that li < li,2
for i = 1, 2, 3, we have two parameter solutions for s > 0, t > 0:

α1 = l21, α2 =
l3
l1l2s

, α3 = s
l2
l3l1

,

β1 = s
l3
l1l2

, β2 = l22, β3 =
l1
l2l3s

,

γ1 =
l2
l3l1s

, γ2 = s
l1
l2l3

, γ3 = l23,

a2 = t, a3 = 2, b1 =
1

t

(
1 +

l2l3
l1
τ3s+

l22
l21
s2

)
, b3 = 2,

c1 =
1

2

(
1 +

l1l2
l3
τ2s+

l21
l23
s2

)
, and

c2 =
1

2

(
1 +

l3l1
l2
τ1s+

l23
l22
s2

)

where τ1 = l21,2 +
1

(l21l1,2)2
, τ2 = l22,2 +

1

(l22l2,2)2
, and τ3 = l23,2 +

1

(l23l3,2)2

(8.9)

hold. The importance of the solution is that we can choose arbitrary boundary

invariants li, li,2 for i = 1, 2, 3, there exists two parameter family of solutions pa-

rameterized by s, t > 0 proving that F is a principal R2-bundle projection. (See

Triangle10.nb for computations here.)
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8.3.2.5 Small orbifolds

Let P be an orbifold that is either an annulus with a singularity p, p ≥ 2, or a disk

with singularity p, q, p > q ≥ 2 and a sphere with singularity p, q, r, 1
p + 1

q + 1
r < 1.

As above, we can divide P into two triangles by segments ending at singular points

or winding around components of the boundary in the opposite direction to the

boundary orientation. We introduce transformations A,B, and C as above.

In case of the sphere Sp,q,r with singularities p, q, r, 1
p + 1

q + 1
r < 1, we obtain

from the paper [Choi and Goldman (2005)] as the solution space parameterized by

s > 0, t > 0:

α1 =1, α2 =
1

s
, α3 = s,

β1 =s, β2 = 1, β3 =
1

s
,

γ1 =
1

s
, γ2 = s, γ3 = 1

a2 =t, a3 = 2, b1 =
1

t
(1 + τ3s+ s2), b3 = 2,

c1 =
1

2
(1 + τ2s+ s2), and c2 =

1

2
(1 + τ1s+ s2)

where τ1 =2 cos

(
2π

p

)
, τ2 = 2 cos

(
2π

q

)
, and τ3 = 2 cos

(
2π

r

)

(8.10)

hold.

We do not examin the other cases because of length. The interested read-

ers can download some mathematica files from the authors webpages. See Tri-

angle5graphic.nb,Triangle10graphic.nb, and Triangle10graphicII.nb. We give some

examples of the developing images.

8.4 Notes

For computations, one can experiment with various packages that the author and

Gye-Seon Lee wrote. Gye-Seon developed from the maple package I wrote. These

contain computations where one or more of the cone-point orders are two. One

has to be careful about adjusting the coordinates since some points would develop

across the line at infinity. This creates problems. But theoretically, a well-chosen

affine space would contain the convex domain. These packages will be maintained

at http://mathsci.kaist.ac.kr/~schoi/MSJbook2012.html.

As a historical note, the closedness of the deformation spaces of real projective

structures on closed surfaces of genus ≥ 2 was questioned by Thurston and was

given to the author as a doctoral thesis problem in 1985.
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Fig. 8.12 The developing figure of a sphere with cone-points of order 3, 5, 5. See Trian-

gle5graphic.nb
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Fig. 8.13 The orbit points of a sphere with cone-points of order 3, 5, 5. See Triangle5graphic.nb
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Fig. 8.14 The developing figure of an annulus with cone-points of order 3. See Trian-

gle10graphicII.nb
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Fig. 8.15 The developing figure of a pair-of-pants. See Triangle10graphic.nb



July 30, 2012 15:46 World Scientific Book - 9.75in x 6.5in msjbooksub0729

162 Geometric structures on 2-orbifolds: Exploration of discrete symmetry


