Chapter 4

Energy-transport model

This chapter is devoted to showing Theorem 2.4, which asserts that the time global solution
for the energy-transport model converges to that for the drift-diffusion model as the param-
eter ¢ tends to zero. The proof is discussed in several sections. We firstly prove in Sections
4.1-4.3 the existence of the time global solution for the energy-transport model with the
large initial data (pg,6p) € H'(Q), which is summarized in Theorem 4.2. The relaxation
limit from the energy-transport model to the drift-diffusion model is justified in Section 4.4.
These discussion complete the proof of Theorem 2.4.

The unique existence of the time global solution (9, 79, ¢9) for the drift-diffusion model
with the initial data py € H*(Q2) has been shown in Theorem 2.4 in the authors’ previous
paper [33]. This result is, however, insufficient in the present paper as we take the initial data
(po,bo) € H'(Q) to consider the relaxation limit. Hence we show the time global solvability
of the model for py € H'(£2) in the next lemma by applying Theorem 2.4 in [33]|. Here and
hereafter, we use the function spaces

([0, 7)) = C*([0,T]; L*(2)) n C((0, T]; H*(Q)) 0 H'(0, T H'(%)),
Dioc((0, 7)) 1= C*((0,T); L*(2)) N C((0,T); H*(2)) N Hyoo(0, T3 H' (2)),
3([0,T]) := C([0, T]; H*(Q)) N L*(0, T; H*(2)) N H(0,T; L*(Q)),
310(’(( )) C(( ) ( )) N Lloc(ovT; HQ(Q)) N Hlloc(OaT; LQ(Q))>

where ¥) is defined in Section 2.3.

Lemma 4.1. Let (ﬁg,jg,&g) be the stationary solution to (2.18), (2.20) and (3.2). Suppose
that the initial data py € H*(Q) and the boundary data p;, p, and ¢, satisfy (2.4), (2.6), (2.7a)
and (2.10a). Then there exists a positive constant dg such that if & < &g, the initial boundary
value problem (2.15), (2.12a), (2.4) and (2.6) has a unique solution (p3,j3,#3) satisfying

o — 78 € 3(10,00)) NV (0, 50)), 3 — Jo € C([0,00); LAR)), ¢ — &y € C([0,00); H*(S2)) N

37
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H'(0,00; H*(Q2)) and the positivity (2.10a). Moreover it verifies the estimates

min{B,,, inf po} < pd(t,z) < max{ By, suppo}, (4.1a)
~ . ~0 <0 —a
16 — P0)OII + 11 Go — 7o) (DI + [1(d5 — da) ()II5 < Ce™, (4.1b)

tll({p0}e: {p0}aa) )] +/0 I(po}e: {p0}ae) (DI + Tl (p0)ae (DI dT < C(L+1)  (4.1c)

for x € Q and t > 0, where C and o are positive constants independent of t and 6.

Proof. In order to apply Theorem 2.4 in [33], we take an approximation sequence {pg; }32; C
H?(Q) such that {pg;}32, converges to the initial data py strongly in H'(Q) and each py;
satisfies the compatibility condition pg;(0) = p; and pg;(1) = p,. Theorem 2.4 in [33] shows
that the problem (2.15), (2.12a), (2.4) and (2.6) has a unique solution (p;, j;, ¢;) in the space
2)([0,00)) x 3([0,00)) x C([0,0); H*(R)) for the initial data py;. It is shown by a similar
computation as in [33] with using the maximum principle and the energy method that the
sequence {p;}$2, is bounded in the space 3([0,7]) NY([s, T]) for arbitrary positive constants
s and T. Applying the energy method again to the equation for the difference p™ — p™,
we show that {p;}32, is the Cauchy sequence in 3([0,7]) N Y([s,T]). Hence, there exists a
function p in 3([0,77) N Viec((0, T)) such that p; converges to p in 3([0, 7)) NY([s,T]). Let
J = pdy — pr and ¢ := P[p], where D[] is defined in (4.17). It is easily to see that (p, J, ®)
is the desired solution with the initial data py € H*(Q). The estimates (4.1) are also shown
similarly as in [33]. O

The stability theorem for the energy-transport model is summarized as

Theorem 4.2. Let (5, ],0,¢) be the stationary solution of (2.18)(2.20) and (3.1), which is
constructed in Theorem 3.5. Suppose that the initial data (po,6o) € H' () and the boundary
data p, p, and ¢, satisfy (2.4), (2.6), (2.7a), (2.10a) and (2.10b). Then there exist positive
constants dg and (o such that if 6 < &y and ¢ < (o, the initial boundary value problem (2.14),
(2.12a), (2.12c) and (2.4)~(2.6) has a unique solution (p,j,0,) satisfying p — p,0 — 0 €
3([0,00)) NYioe((0,00)), 5 — 5 € C([0,00); L*(2)) N 310c((0,00)), ¢ — ¢ € C([0, 00); H*(2)) N
HY([0,00); H2(Q)); the positivity (2.10a) and (2.10b). Moreover, it verifies /tpa, 10z €
L*(0,00 : L*(2)) and the decay estimates

G =P+ 1o = 5,6 = OO + (6 — D)5 < Ce™, (4.2a)
t(Ge = 7)1 + %II(9 OO +th(p— 5,6 = O) (D)3 < Ce, (4.2b)

where C' and « are positive constants independent of , 6 and t.
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To study the initial boundary value problem (2.14), (2.12a), (2.12¢) and (2.4)—(2.6) with
the positivity (2.10a) and (2.10b), it is convenient to employ new unknown functions

=logp, w:=logh

and rewrite the system of the equations (2.14) as

( 3/:;}/2 )t—A[uw] < Z} )m+ ( 3(1 _60 v 12¢ ) = G, w], (4.3a)

[ e” ev o g1[v, w]
Al w] = ( e’ e¥+ Koe > » Glo,u] = ( g1[v, w] + 3ga[v, w]/2 > ’
gilv, 0] = ¥ (vy + wy)? — €’ + D — v, (®[e”]),, (4.3b)
Golv, w] := — (g(d)[e“])x - gewwx> {ve + w, — e (D[e"])s } + gﬁg( )’

where we have used (2.8) and (2.14d). Note that the matrix Afv,w] is symmetric and
positive definite. The initial and the boundary data for (v,w) are also derived from (2.4)-
(2.6), (2.12a) and (2.12c) as

v(0,z) = vo(x) :=log po(x), w(0,x) = wy(x) :=logby(x), (4.4)
v(t,0) =logp;, wv(t,1) =logp,, (4.5)
w,(t,0) = w,(t, 1) = 0. (4.6)

Apparently, (4.3)—(4.6) is equivalent to (2.4)—(2.6), (2.12a), (2.12¢) and (2.14) if the density
p and the temperature 0 are positive. Namely, once it is shown that the problem (4.3)—(4.6)
has a solution (v,w), the existence of the solution to the problem (2.14), (2.12a), (2.12¢) and
(2.4)—(2.6) immediately follows. In fact, letting

p:=ce", ji=—(e"€"),+e"(Ple"])s, 0:=¢€", ¢:=D[e"], (4.7)

we see that (p, j, 0, ¢) is the solution to the problem (2.14), (2.12a), (2.12¢) and (2.4)—(2.6).

. . . ~0 ~0 ~0 ~0 .
We also rewrite the stationary solution (pg, 32, 0¢,¢¢) to the energy-transport model, which
is constructed in Theorem 3.5, as

= logﬁg, w = log @2.

It is obvious that (0,w) satisfies the equation

—Alp, ] ( v )+< (1_60 )/2<> o, i (4.8)
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and boundary conditions (4.5) and (4.6), where A and G are defined in (4.3b).
We prove Theorem 4.2 in following steps. It is an essentially same procedure as in the
authors’ previous paper [33], where the isothermal hydrodynamic model is studied.

First step. We discuss the unique existence of the time local solution (v,w) to the problem
(4.3)—(4.6) in Section 4.1. Here it is shown in Corollary 4.5 that there exists certain positive
time T, independent of ¢ such that the solution for the energy-transport model uniquely
exists until 7,. This independence is crucial in order to construct the time global solution
by taking the parameter ¢ sufficiently small. Here we can take the initial data (vg,wp)
arbitrarily large as far as it belongs to H*(Q).

Second step. In Section 4.2, a “semi-global existence” of the solution (v, w) is established.
Precisely, we prove in Theorem 4.9 that the solution with the arbitrary initial data (vg, wp) in
H(Q) exists until arbitrary time T by taking the parameter (7 is sufficiently small subject
to T. Here we also show that the difference between the non-stationary solution (v, w)(T, z)
and the stationary solution (9, @)(x) becomes arbitrarily small if 7" is sufficiently large. This
result is summarized in Corollary 4.10.

Third step. Owing to Second step, we see that the perturbation (v—=, w—w)(T, ) becomes
arbitrarily small by taking T" large (and thus {7 small). Hence, in order to complete the proof
of Theorem 4.2, it suffices to show Theorem 4.11, which asserts that the asymptotic stability
of the stationary solution for the energy-transport model with the small initial disturbance.
Consequently, the proof of Theorem 4.2 follows from Theorem 4.11, Corollaries 4.5 and 4.10
in Sections 4.1-4.3.

4.1 Uniform estimate of local solution

We show in this section that there exists a certain positive time T, independent of the
parameter (, such that the solution for the energy-transport model uniquely exists until
T.. This argument is essentially same as in [33]. We firstly state the unique existence of
the solution to the problem (4.3)—(4.6), where the existence time 7, may depend on the
parameter (. The proof is postponed until the Appendix.

Lemma 4.3. Suppose the initial data (vg,w) € HY(Q) and the boundary data py, p, and ¢,
satisfy (2.4)~(2.6) and (2.7a). Let N be a certain positive constant satisfying ||(vo, wo)|j1 <
N. Then there exists a positive constant T¢, depending on ¢ and N, such that the initial
boundary value problem (4.3)~(4.6) has a unique solution (v,w) € 3([0,T¢]) N Vioe((0,T¢)).
Moreover, it satisfies \/tvu, Vtwy, € L*(0,T; : L*(Q)) and the convergence

tl| (ve, Wy Vs W) ()]|2 — 0 as t— 0. (4.9)
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In the above lemma, the existence time of the solution is denoted by T¢ for the clarity of
its dependence on (. This existence theorem is insufficient in the following discussion, which
require that the existence time is independent of . The independence is shown in Corollary
4.5. For this purposes, we derive the estimates (4.11) and (4.12) below. For positive constant
T and M, define X (T'; M) by a set of the functions

(Uv U}) € 3([0’ T]) n 2)[06((0, T))
satisfying
(v, w) ()] < M (4.10)
for t € [0, 7.

Lemma 4.4. There exists a positive constant M, depending on ||(ve,wo)||1 but independent
of ¢, such that if the solution (v,w) to the problem (4.3)~(4.6) belongs to X (T;2M), then it
satisfies

1w, w)OIF < M+ C[M]t, (4.11)

t
1
/0 zllW(T)H?ﬂL (Ve e ) (T)][* dr < C[M](1 +t) (4.12)
fort € [0,T], where C[M] is a positive constant depending on M but independent of ( and
t.

Proof. Taking the inner product of (4.3a) with the vector (v,w) in L*(0,¢; L*(Q2)) and ap-
plying the integration by part yield

Lo + 2w + / / "3 (e Ywddr
2 4 oJo 2<€w
1 2 3 2 ! ! T
= Sl + 2ol + [ [ (0 w0) (Al )0 w20) + Gl ) dar
0J0
]‘ 2 3 2 ¢ 2
< ol + JlanlP + e | (vars ) (P dr+ Clin, M, (4.13)

where p is an arbitrary positive constant to be determined. In deriving the above inequality,
we have also applied the Sobolev and the Young inequalities to the right hand side with
using the inequality

[@[e"](t)]]2 < C[M], (4.14)

which holds due to the formula (2.8) and (v,w) € X (7T';2M). Next, take the inner product
of (4.3a) with the vector (=, —w,,) in L*(0,t; L2(2)), apply the integration by part and
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use the boundary conditions v (t,0) = v¢(t,1) = w4 (t,0) = w,(t,1) = 0. Then estimate the
resulting equality by using (4.14) as well as the Sobolev and the Young inequalities to get

5 w? dadr
G’UJ

1 3 t rl1 t rl1
ﬂM®W+ﬂ%®W+//@mwMMwM%w%fmw+//
2 4 0J0 0J0 2<

1 3 bt
= Sl + Shnal? + [ [ (vnes020)Glo, ) dndr
2 4 0Jo
1 2, 3 2 ' 2
< Sllvoll” + llwoell” + 4 | I(va, wee) (TP dr + Clu, M]2. (4.15)
0
Notice that the third term in the left hand side of (4.15) is estimated from below as
t t e
c[M}/ | (Vaz, Wae ) (T)||> dT < // (Vo W) AV, W] (Vg Wae)' dadr (4.16)
0 0Jo

since the matrix Afv, w] is symmetric and positive definite. Thus, by adding (4.13) to (4.15),
taking p sufficiently small and then using the estimate (4.16), we have

Loz + 2oz + /t/1 (e~ 1w+ —2—w? dudr
2 1y YUl 2¢Cev 20ew *
¢ 1 3
+ C[M]/O (020, wae) (P)” dr < SllwollT + Zllwoll? + C[M]t. - (4.17)
Now determine the constant M by

3
M = loolt + 5 llwoll?,
which is apparently independent of (. Then the estimate (4.17) immediately means the

desired estimate (4.11). It also implies the estimate (4.12) due to the mean value theorem.
0

Lemma 4.4 yields that the existence time of the solution (v, w) in Lemma 4.3 can be taken
independently of (. In addition, it gives the estimate of the time local solution uniformly in
(. These results are proven in the next corollary.

Corollary 4.5. Suppose the initial data (vy, wo) € HY(Q) and the boundary data py;, p, and ¢,
satisfy (2.4)—(2.6) and (2.7a). Let Ny be a certain positive constant satisfying ||(vo, wo)ll1 <
Ny. Then there exists a positive constant T, depending on Ny but independent of , such
that the initial boundary value problem (4.3)—(4.6) has a unique solution (v,w) € 3([0,T])N
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Dioc((0,Ty)). Moreover, it satisfies \/tvg, Vtwg € L*(0,Ty; L*(2)), the convergence (4.9)
and the estimates

[l(v,w)(®)} < C, (4.18a)
| 1@l + e d < (4.18b)
[ par<c (4.180)

fort € [0,T.], where C is a positive constant independent of  and t.

Proof. Take a positive constant T, so small that the right hand side of (4.11) is less than 2M
for an arbitrary ¢ € [0, T,]. Here T, is apparently independent of (. On the other hand, define
T, by the supermum of time 7" until which the solution (v, w) to (4.3)—(4.6) exists in the set
X(T;2M). The existence of T} is ensured in the Lemma 4.3 even though it may depend on
¢. We show that the solution exists in the time interval [0, Ts] and belongs to X (T5;2M) as
follows. For arbitrary to in [0,7%), [|(v,w)(to)|| < 2M holds owing to (v,w) € X(to;2M).
Regarding ¢y as the initial time and (v, w)(t) as the initial data, and letting N := 2M, we
apply Lemma 4.3. Hence, there exists a positive constant T, depending only on N and (,
such that the solution (v,w) exists in X (to + Tp;2M). Since ty is arbitrary in [0,7}), the
solution exists in 3([0, T +9)) N Dioc((0, Ts +to)). Consequently, the solution (v, w) belongs
to X (Ts;2M).

To show T, is the desired existence time, it suffices to prove the inequality T, < Ti.
This inequality is proven by contradiction as follows. Suppose that T; < T,. Lemma 4.4
means that the solution contained in X (7%; 2M) satisfies the estimate (4.11) for an arbitrary
t € [0,T;]. Applying Lemma 4.3 with regarding T as initial time, we see that there exists
a positive constant t; such that the solution exists until the time T, + ¢ty and belongs to
X(T; + to;2M). Apparently it contradicts the definition of T;. Hence we have T, < T,
which means that the solution (v, w) belongs to X (7%;2M).

In constructing the time local solution in Lemma 4.3, we have already proven the con-
vergence (4.9). The estimates (4.18a) and (4.18b) apparently hold owing to Lemma 4.4.
Moreover, solve the first component of the system (4.3a) with respect to v, and take the
L2-norm of the result. Then, by using the inequalities (4.18a) and (4.18b), we have the
desired estimate (4.18c). O

4.2 Semi-global existence of solution

This section is devoted to proving the semi-global existence of the solution in Theorem 4.9,
which asserts the solution to (2.1) exists until arbitrary positive time T provided that ( is
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sufficiently small. It is proven by the essentially same argument as in the proof of Corollary
4.5 together with a-priori estimates in Lemmas 4.6 and 4.8.

Hereafter in this section, (vc,w,) denotes the solution to the problem (4.3)-(4.6). For
the solution (pd, jO, #9) to the problem (2.15), (2.12a), (2.4) and (2.6) define

= log pf.
Then we have
(Ug)t - (U(()))xx =g [U(())a 0]/ (419)
where gy is given in (4.3b). The notations
Re = v — vy, Q¢ == we,
Le(t) = sup [[(Re, Q)(7)]
T.<r<t

are frequently used in the following discussions. Here and hereafter in this section, the

constant T, means the one defined in Corollary 4.4 with Ny := ||(vg, wo)]|1. Subtracting the
equation (4.19) from the first component of the system (4.3a) gives
(B = (Re)ze = €(Qc)aa — (€ = 1) (v0)aw + grlve, we] — ga[vg, 0] (4.20)

Subtract the first component of the system (4.3a) from the second component of the system
(4.3a) to obtain

2 2 1 1
Q0= 300~ @)+ ¢ (1 iz ) = e (421
The boundary conditions for R, and QC are derived from (2.4) and (2.5) as
RC(t7 O) = R((ta 1) = (Qé)m(ta 0) = (Qf)m(t7 1) =0. (4'22)

Lemma 4.6. Let T be an arbitrary positive constant greater than or equal to T,, and
(ve,we) € 3([0,T]) N DVine((0,T)) be a solution to (4.3)-(4.6). Then there exist positive
constants 8y and 61 such that if § + ¢ < &y and L:(T) < &1, then the estimates

I(ve, we) BT + | @[e™](t)]2 < C, (4.23a)

/ Zllwe (M + [({ve}e {vc}aws {weae) (PP dr < C(1 +1), (4.23b)

éllw(t)llf+t||({v<}t7{vc}z17{wc}zz)(t)ll2+ w13

+%”(w<)m(7)\\2 + 71wk, {vctar, {we}ae) (7)|* dr < Ce™ - (4.23¢)

hold for an arbitrary t € [0,T], where C' and 3 are positive constants independent of t, 6 and

¢,
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Proof. The estimate (4.18a) and the definition of L¢(T') immediately give ||(ve, we)(t)||F < C,
which together with the formula (2.8) shows |®[e¥](¢)]s < C. Hence the estimate (4.23a)
holds. The inequality (4.23b) is derived similarly as the derivations of (4.12) and (4.18c).

We derive the estimate (4.23c) as follows. Multiply the equation (4.21) by tw./¢ and
integrate the result by part over [0,7] x 2 to obtain

t/0121<(w<)2dx+/t/1 g2Tw< (e" — 1)w, dudr
// % (we)® + = ( (ve)e + 3212 (wg)m+92[vc>w<]) we ddt
sﬂ/gw<wfnUW+cwa+ﬁy

In deriving the last inequality, we have also used the estimates (4.23a) and (4.23b). Making
1 in the above inequality so small that the inequality

t

*Ilwg( )"+ oz

holds. Taking the inner product of (4.3a) with the vector (—t{v¢ }uut, —t{w¢ }aut) in L*(0, ¢; L*($2))
and applying the integration by parts, we have

llwe(r)[? dr < C(1+12) (4.24)

} + ({")C}wxv {wé}m) ["}Cv wC]({UC}mm {wC}m)T dx

C €w<
*f/VﬂwMP+i«memm
*4/HMW@MM{%W®#//{MW@MM([WWDMM

T

# [ [ 30uchen ) Al (G e + (05 ) 1w dadr
SMW%MWQ®W+NATM%M%KﬂWW

+C[M]/Ot <1+H< vm,wu> >H<wz vwwu>

In deriving the last inequality, we have used the Sobolev and the Young inequalities as well
as the estimates (4.23a), (4.23b), (4.24) and

2 dr + Cu)(1 +#%).

Q

1)@ < el + Cliveke, {wckee) O + €, (4.25)
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which follows from the equation (4.21). As the matrix A is positive definite, taking u
sufficiently small and using the Gronwall inequality yield that

¢
¢
Multiply the equation (4.21) by —t(w¢)s»/¢ and integrate the result by part over [0, T] x €.

Then estimate the resulting equality by using the estimates (4.23a), (4.23b), (4.24) and
(4.26). The result is

1(we)a @O+t ({vc e, {we}aa) )] +/O TN ({ve}or, {weha) (7)|[2 dr < Ce™. (4.26)

@) + Ll weea(P)]2dr < O, ,
/0 T ()P + Z ()P ar < € (4.27)

The estimate (4.23c) except the term (v¢); immediately holds with aid of (4.24), (4.25),
(4.26) and (4.27). Solve the first component of the system (4.3) with respect to (v¢): and
take the L?-norm of the result. These computations yield the estimate of (v¢);. Hence, the
proof is completed. 0

The next corollary immediately follows from the same computations as in the proof of
Lemma 4.6.

Corollary 4.7. Let (ve,we) € 3([0,T]) N Dioe((0,T)) be a solution to (4.3)—(4.6)
solution (ve,wc) verifies the estimate (4.18) uniformly in ¢ for arbitrary t € [0,T]
verifies the estimate (4.23) uniformly in ¢ for arbitrary t € [0,T].

. If the
, it also

The next lemma ensures that L¢(T") becomes arbitrarily small if ¢ is taken sufficiently
small.

Lemma 4.8. Let T' be an arbitrary positive constant greater than or equal to T,, and
(ve,we) € 3([0,T]) N Dioe((0,T)) be a solution to (4.3)~(4.6). Suppose that the inequali-
ties in (4.23) hold for t € [0,T]. Then it holds that

t
IR+ [ IR ar < cce, (4.980)
|QcII* < [[1og fol2e "< + C¢e™, (4.28b)
Bt
IR} QDI < O, (4.280)
efT
L(T) < CC— (4.284)

fort € (0,T], where v, 8 and C are positive constants independent of t, § and (.
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Proof. Firstly, we show the estimate (4.28a). The straight forward computation leads to the
estimate

1B[e] — @8]z < C|Rell- (4.29)

Multiply the equation (4.20) by R and integrate the resulting equality by part over the
domain €2. Then apply the Sobolev and the Young inequalities to the resultant equality
with using (4.1), (4.23a) and (4.29). These computations give

[ 3rrwars [ [ . duar

- /0/0 (Qc)z(€" Re)e + {7 = 1) (v¢)aw — Grlvg, we] + g1[vg, 0]} Re dardr
< /O (R + Cla {1 + @) aa (D) Re(I? + 1Qc(7) 2} dr,

where y is an arbitrary positive constant. Then taking 1 small enough and using the estimate
of Q¢ in (4.23b), we have

IR0 + / IR ()| dr < C / (1 + [ (0)ea (DI Re (PP dr + CC(1+ 1), (4.30)

The estimate (4.28a) is derived by the application of the Gronwall inequality to (4.30) with
aid of (4.23b).

Secondly, the estimate (4.28b) is shown. Multiplying the equation (4.21) by €"/Q. where
v is a positive constant to be determined and integrating the resultant equality by part over
the domain 2 yield

1 ur/{ M‘/C
"t/</ Qo) dm+// o (=) dia:dr—// w )2 dxdr
9 vt/¢
/ / ngv {(Qo)e Y dudr = / ~(log 0y)? dz
[ 0

-/ / e { S Q) + 3 0 + el el | Qe dadr. (431)

Use the estimate (4.23a) and the mean value theorem to handle the second term in the left
hand side of (4.31) as

1 1/7'/( t VTC )
/ / (€% — 1)(Qc) dudr > ¢ / 1Qc(r)|2dr, (4.32)

C@wf
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where ¢ is a positive constant independent of (. Moreover, by the estimates (4.23a) and
(4.23b) as well as the Sobolev and the Young inequalities, the last term in the right hand
side of (4.31) is estimated as

t eVT/C
¢

Substituting (4.32) and (4.33) in (4.31), making x and v so small that ¢ > p+v/2 and then
dividing the result by e”¥/¢, we obtain (4.28b).

Thirdly, we derive the estimate (4.28¢). For this purpose, it suffices to show the estimate
of R since the estimate of Q¢ have been already shown in (4.23c). By the Poincaré and the
Sobolev inequalities as well as (4.1), (4.23a) and (4.29), the L%norm of the right hand side
of the equation (4.20) is handled as

(last term) < Q¢ ()| dr 4 Cu)Ce” ¢ (1 + t). (4.33)
0

t ]| (right hand side)|* < Ce™||(Re, Qo) (8)IIF + CtI{Qc}ua (). (4.34)

Multiplying the equation (4.21) by —t(R¢)s., integrating the result by part over the do-
main [0, ] x © and then estimating the resulting equality by the Sobolev and the Schwartz
inequalities as well as (4.23b), (4.23c), (4.28a) and (4.34), we have

5 | (@i [ [ iR dsar
= [ [ AR Qo € - 1) a4l ] - 16,01} (Re)es
< [ TIRaa()IP dr + Clilce™

Then making u sufficiently small yields the desired estimate (4.28c). Lastly, the estimate
(4.28d) immediately follows from the estimates (4.28a)—(4.28¢). O

Now we are at the position to prove the “semi-global existence” of the solution to the
energy-transport model.

Theorem 4.9. Suppose that the initial data (vo,wy) € HY(Q) and the boundary data py, p,
and ¢, satisfy (2.4), (2.6) and (2.7a). For arbitrarily positive time T, there exist positive
constants dg, independent of T, and (r, depending on T, such that if § < dy and ¢ < (r, then
the nitial boundary value problem (4.3)—(4.6) has a unique solution (ve,we) € 3([0,T]) N
Dioe((0,T)). Moreover, it satisfies \/tvy, Vtwy € L*(0,T; L*(Q)) as well as the estimates
(4.23) and (4.28).
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Proof. Corollary 4.5 ensures the solution (vc,w,) exists until time T, independent of (.
Moreover, (v, w,) satisfies (4.18), which immediately means (4.23) owing to Corollary 4.7.
Then we can apply Lemma 4.8 and see that the estimate (4.28d) holds. Hence L.(T%)
becomes arbitrarily small by taking ¢ small enough in (4.28d). Here it is crucial that the
existence time T, is independent of (.

To construct the solution (v¢, w,) until the time T', take § and ¢ so small that 6+ ¢ < d,

L((T*) < (517 (435)
¢ < 0,T./20e°T, (4.36)

where §g and §; are defined in Lemma 4.6 as well as T, C' and § are given in (4.28d).
The condition (4.36) makes the right hand side of (4.28d) be less than 0,/2. Let T* be the
supermum of time ¢ until which the solution exists and satisfies L¢(¢) < 61, that is,

T? :=sup{t > 0; L;(t) < 1}
t

It is obvious that T, < T? owing to (4.35). Since L¢(t) < d; holds for arbitrary ¢, in [T, %),
we have

[[(ve, we) (to)lh < 61 + sup [[od(t)]ls-
0<T,

Regarding the right hand side above as Ny in Corollary 4.5, t; as the initial time and
(ve,we)(to) as the initial data, we see that the solution (v, w¢) exists in the time interval
[T, T?] and satisfies L (T?) < 05.

We show T' < T? by contradiction. Suppose that 77 < T. As L¢(T¢) < 61 which means
the assumptions in Lemma 4.6 hold, the solution satisfies the estimate (4.23) for ¢ € [0, T?].
Thus it is possible to apply Lemma 4.8 and get L. (T7) < 01/2 due to (4.28d) and (4.36).
Applying Lemma 4.3 with regarding 77 as initial time, we see that there exists a positive
constant T such that the solution exists until 7% + T, and satisfies Lc(T7 + Tp) < 6;. It
contradicts the definition of 7. Consequently, we have T' < T that is, the solution exists
until time 7. 0

The difference between the solution to the non-stationary problem and the stationary
solution becomes arbitrarily small as the time 7" is taken large enough, and thus ( is small
enough, in Theorem 4.9. This property is shown in the next corollary.

Corollary 4.10. Let (0¢,w¢) be the stationary solution to the problem (4.8), (4.5) and (4.6).
Suppose the same assumptions as in Theorem 4.9. For an arbitrary positive number A, there
exist positive constants Ty and Cn such that if ¢ < (a, the solution (ve,w¢) to the problem
(4.3)~(4.6) exists in the function space 3([0,Ta]) N Vioc((0,TA)) and verifies

(v — ¢, we — we)(Ta)llr < A (4.37)

Moreover, it satisfies \/tvy, \Vtwy € L*(0,Ty; L*(Q)) as well as the estimates (4.23).
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Proof. Tt is sufficient to show the inequality (4.37) as the other assertions are proven in
Theorem 4.9. Use the inequalities (3.49), (4.1b) and (4.28a), and then take T} sufficiently
large to obtain
I(ve = ) (Tl < I R(Tw) | + 1l (wh — To)(Ta) + 1176 — e
< C{¢M2eN2 4 ¢} + A8, (4.38)
where 7)) := log 5). We take (4 so small that the right hand side of (4.38) is smaller than

A/4 for an arbitrary ¢ € (0,(a]. As the other estimates in (4.37) are shown similarly, the
proof is completed. O

4.3 Global existence of solution

In this section, we prove the time global existence of the solution and the asymptotic stability
of the stationary solution for the large initial data. For this purpose, it suffices to show the
stability theorem with the small initial disturbance by virtue of Corollary 4.10.

Theorem 4.11. Let (0,w) be the stationary solution for (4.8). Suppose that the initial data
(vo,wp) € HY(Q) and the boundary data p;, p. and ¢, satisfy (2.4), (2.6) and (2.7a). Then
there exists a positive constant 6, independent of ¢, such that if

6+ ¢+ |[(vo = 0, w0 — D)1 < 6, (4.39)

then the initial boundary value problem (4.3)—(4.6) has a unique solution (v,w) satisfying
(v—0,w—1) € 3([0,00))NY10e((0,00)). Moreover, the solution (v, w) verifies \/tvy, Viwy, €
L*(0,00; L*(Q)) and the convergence (4.9). It also satisfies the decay estimates

(v =0, w—w, ®le’] — ®e’])()|]? < C||(vo — ¥, wy — W)]||2e, (4.40a)

3 - - ~ ~ ~ —a
le(w — )OI +tll(v — 5,0 — @) (B3 < Cll(vo — 5, w0 — W)|[Fe™™, (4.40D)
where C and « are positive constants independent of t, § and (.

To show Theorem 4.11, we regard the solution (v,w) to the non-stationary problem
(4.3)-(4.6) as a perturbation from the stationary solution (0,w) to (4.8):

u(t,z) == v(t,z) — o(z), w(t,x):=wt z)—0(x).

Subtracting (4.8) from (4.3a), we see that (u, @) verifies the equation

< 3wu/2 )t — Alp 4 u, ¥ + @] ( ; >m+ < _3(6%7@0_ ) /2 ) =H, (44la)

v

H = {A]D 4+ u,w + w] — A[v, 0]} ( e ) + G0+ u,w + w] — G[v, 0] (4.41b)
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The initial and the boundary conditions to the system (4.41) follow from (4.4)—(4.6) as

w(z,0) = ug(z) := vo(z) — v(x), w(z,0)=wp(x):=we(z)— w(x), (4.42)
u(t,0) = u(t, 1) = w,(t,0) = w,(t,1) = 0. (4.43)

Theorem 3.5 and Corollary 4.5 apparently mean the local existence of the solution (u, @) to
the initial boundary value problem (4.41)—(4.43).

Lemma 4.12. Suppose that the initial data (ug, @) belongs to H*(QY). Then there exists a
positive constant T, independent of ¢, such that the initial boundary value problem (4.41)-
(4.43) has a unique local solution (u,w) € 3([0,T]) N Vioc((0,T%)). Moreover, it verifies
Vg, V't € L20,T,; L*()) and the convergence (4.9).

The standard continuation argument with the local existence in Lemma 4.12 and an a-
priori estimate (4.44) in Proposition 4.13 yields the existence of the solution globally in time
to the problem (4.41)—(4.43), stated in Theorem 4.11. To show the a-priori estimate (4.44),
we use a notation

N(t) = sup {(um)(r)l n ﬁwml i \/in(wxm} |

0<r<t

Proposition 4.13. Let T > 0 and let (u,) € 3([0,7]) N Vioc((0,T)) be a solution to
(4.41)(4.43) satisfying \/tug, Vtw, € L*(0,T;L*()) and the convergence (4.9). Then
there exists a positive constant oy, independent of T and (, such that if No(T)+ 0 + ¢ < b,
then the estimate

1
¢

i /o (1+7) (i“w(T)ll? +[{@[e™] = @[e"] o (T + [I(u, W)(T)H%) dr

(L +8) (1w, @) O1F + [{2[e™] — D[} (D7) +1 ( l= (7)1 + (umwm)(t)HQ)

t 1 , ) 2
+/0 T (CQw(r) + 1| (gt @) (7)) ) dr < C||(uo, @o)|)? (4.44)

holds for t € [0,T], where C is a positive constant independent of T, § and (.

Proof. The proof is divided into the three parts studied in Lemmas 4.14-4.16. Multiply the
estimate (4.57) by a, the estimate (4.58) by a?, and the estimate (4.68) by o®, respectively.
Summing up these three resulting inequalities and the estimate (4.54), using the estimate
(4.66a) and making o and N¢(T') +6 + ¢/ sufficiently small, we obtain the a-priori estimate
(4.44). O



52 CHAPTER 4. ENERGY-TRANSPORT MODEL

We begin detailed discussions with deriving the basic estimate (4.50) in Lemma 4.14. For
this purpose, an energy form

_ 5\ 1 Y2 3 - (8
& = pfu (P 7{—95} 2w (2 445
v ot (2) 4 {0 -0} + S (5 (1.45)
U(s):=s—1—1logs.
is employed. Here & is equivalent to |(u,w, {®[e"™] — ®[e’]},)|* if |(u, @)| is sufficiently
small since W(s) is equivalent to |s — 1|? if s > ¢ > 0. Namely, there exist positive constants

do, ¢1 and Cy such that if |(u, )| < dp, then the next inequality holds:
2

or |(u,w, {@[e™] = e}, |* < & < O |(u, 0, {@[e"] - @[e})|
Moreover, the energy form &; verifies the equation

(€ 2 =1+ 550 = 0+ SO =01 = {0 =0 = D)} + (Ra)o + Ra,
(4.47)

(4.46)

Ri=(¢— )b~ Q)u+ (0 — ) —J) — Oulj —j

)+g°(9—9)(9—0~)z7
Rz:=—3(1—1> (G —J)+ 0. (J—J)—9J—Jx\lf(z
3

L2 )+ S0 - 00 -,

_{g(jgz—jéz)ﬁ-}(vm@—ﬂzé)—(Ij;_;) (9C )“"’5)}(999)'

Here the potentials are given by the formula (2.8):
¢ = Dle’], &= Ple"].
Owing to the boundary condition (2.6), we have
(6= )(,0) = (¢ = $)(t,1) = 0. (4.48)

The equation (4.47) is seen as a special case of the equation for an energy form (5.63) to the
hydrodynamic model (2.11). Actually, it is derived similarly as (5.63). See Section 5.3 for
the derivation.

In the proof of the following lemma, we use the estimates

cllu@®)lli < lto = 2)(®)l: = lI(e” — "))l < Cllul®)]l:, (4.49a)
cla(@)ll: < 16 =)Dl = (e’ —e?)(t)lls < Cllw(®)ll, (4.49D)
I(@[e™*] = @[e"])a ()14 < Cllu®)l: (4.49¢)

G = J) DI < Cllue(B)] (4.49d)

for i = 0,1, 2, which immediately follow from the equation (2.14a).
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Lemma 4.14. Under the same conditions as in Proposition 4.13, the following estimate

holds fort € [0,T].
(L +8) (1w, @) O + [1(2[e™] = 2[e")a (D)%)

" /0 (1+7) <z~||7ﬂ(7)||2 +[l(w, @) (7 + [[(@[e™] - é[eﬁ})z(T)HZ) dr

SCII(UO,WO)HQﬂLC(Nc(T)+5+C1/4)/0(1+T)||ut(T)||2dT, (4.50)

where C' is a positive constant independent of T, § and (.

Proof. Multiplying the equation (4.45) by t* for k = 0, 1 and integrating the resulting equal-
ity by part over €2 give

d ([ k/ll' w2, 9P 52, ko A2

— ("] &d t —(j — —(0 -0 —{(0—-06).}d

G (¢ [ean) v [2G-32 4 20002+ (60~ 0.1 do

= ktht /1€1da:—tk(9—§)(j—j)(t,1)+t’“(9—§)(j—})(t,O)+tk/1R2d:c (4.51)

since the integration of (R;), over € is zero owing to the boundary conditions (4.43) and
(4.48). Applying the Sobolev and the Young inequalities with using (4.49b) yields

10— )G — (Dl < CIO— HOI(O — DD + 16 — 0.1 - HO)L
< oo (énw(wn? T —3)@)%) . (1.52)

Moreover, using the inequalities (3.11a), (3.25) and (4.49), we estimate the last term of
(4.51) as
1
| Rade < 0@ + D). 05 - DO (4.53)
0
Substituting (4.46), (4.52) and (4.53) in (4.51) and then using (4.49), we have
d ! - 1 -
& (# [ erde) +t (16 - DO+ =0 + l=2(0]? ) < kot w20l
e o=
+ V(D) +5+ 0k (LI + [ = o) O ) - (459)

Divide the equation (2.14d) by ™ and the equation (3.1d) by €?, respectively. Take the
difference between the two results and multiply the resulting equation by u,. Then integrate
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the resultant equality by parts over Q and use the equations (2.14¢) and (3.1c) as well as
the boundary condition (4.43) to get

1
tk/ e®(uy)? + u(e”™ — ') da
0

= tk/o {(e"”w — ™), + v (€T — eP) + (eﬂ{r“ - ejv) } Uy dx
<t {ullua(B)]* + C(N(T) + 8)[[w®)l]; + Clull(G =, @, @) ()7} (4.55)

where p is an arbitrary positive constant to be determined. In deriving the above inequality,
we have also used (3.25) and (4.49) as well as the Schwarz and the Sobolev inequalities. The
left hand side of (4.55) is estimated from below by ct¥||u||? for a positive constant ¢ due to
the mean value theorem. Using this fact with (4.49¢) and letting p sufficiently small, we
obtain

a1} + ¢5ll(@[e”] = @[e])a (1)1
< CH{(N(T) + ) [u®F + 11 = J @, @) D)} (4.56)
Multiply (4.56) with & = 1 by o, (4.54) with k& = 1 by o? and (4.56) with & = 0 by
«a, respectively, where a is an arbitrary positive constant. Then sum up these results and

(4.54) with k = 0, let v and N¢(T') + 6 + ¢1/* small enough, and then integrate the resulting
inequality with respect to ¢. These computations give the desired estimate (4.50). O

Lemma 4.15. Under the same conditions as in Proposition 4.13, the following estimates
hold fort € [0,T].

(14 6) (1t ) (8)]2 + / (1+7) (énwxmn% ||<um,wm><7>||2) dr
< (g, wo)|2 + C / (1+ 1), @)(7)|2dr,  (457)

t tr ‘1
Zle@®*+ | Flw(@)|?dr < 0/ (O + 7| (w, @) ()13 dr, (4.58)
¢ 0o ¢ S

where C' is a positive constant independent of T, § and .

Proof. Take the inner product of the equation (4.41a) with the vector (—t*u,,, —tfw,,) for
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k=0,11in L*(Q) and apply the integration by part to get

d 1 3 !
— t'“/ —(ug)? + ~(w,)?dx | + tk/ (U W) A0, W] (U, ) dit
at \' J, 2 4 A

+ tk /1 i(ww)Qd‘%‘ = k’tk71 /1 1(11192)2 + §(w9§)2 dx
0 2Ce” 0 4

L3 1
3w 1 1
k T & /

Notice that the L2-norm of H, which is defined in (4.41b), is estimated as
1H 1 < Cll(u, @) 11 + Cll (@) L[| (s ) |2 (4.60)
This inequality together with (3.25d) gives the estimate of the right hand side of (4.59) as
(vight hand side) < it (e, @) 1)+ Clalt* | (1, ) O + R (g ) (1), (461)

where p is an arbitrary positive constant. Since Afv, w] is symmetric and positive definite,
substituting (4.61) in (4.59) and making p sufficiently small yield the inequality

d (tF 3tk 1

4 (S + 21wl ) + ot (Wm0 + a0

< Ot*[|(u, @) ()] + CRE* | (g, wa) ()] (4.62)

Summing up the estimates (4.62) with k = 0,1 and integrating the result with respect to ¢,
we have the desired estimate (4.57).

Taking the inner product of the equation (4.41a) with the vector (0, —tw /() in L*(Q)
and applying the integration by part yield

d (3t (' , 3t [/ 1 1
— (= do | — — —— — — | wd
dt <4</0w x) 242/0 (ew ew)w )

3 t [
_ 3 / dr L / (0,%) (Afv, ) (ttae, @oa)’ + H) dr. (4.63)
4¢ Jo ¢Jo
Due to the mean value theorem, the second term on the left hand side is estimated as
ct ) 3t (M1 1
Slwor<-25 [ (m - ) wd (464)

from below. Substituting (4.64) in (4.63) and computing similarly as in the derivation of
(4.62), we have

4 (F1=0R) + Gl < Cl=0 + Cle=)0f @6

Integration of (4.65) with respect to ¢ gives the desired estimate (4.58). O
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To derive the estimates for the second derivatives, we use

luell < Cl(u, @)]l2, (4.66a)
]| < Cllwll/¢ + Cll(u, @)ll2, (4.66D)
[He|| < C(1+ ||(w, @) [|2)]] (ur, ) |1 (4.66¢)

They follow from the equation (4.41a), the estimates (3.25), (4.60) and
1(@[e™] = @[e"Dae(t) |1+ < Cllue(t)]: (4.67)
for i =0, 1.

Lemma 4.16. Under the same conditions as in Proposition 4.13, the estimate

2 E . 2 tT Ugt, T, T 2 T U, ™ 2

+c/ T e + u+ﬂ(waM+mvam)m-@%>

holds for t € [0,T], where C is a positive constant independent of T, § and (.

Proof. Taking the inner product of the equation (4.41a) with the vector (—tuyqy, —tt0ee) in
L2(Q) and applying the integration by part yield

G (5 [ e Al vl )+ ) [+ S
dt ) 0 Uz, Wea U, W(Ugqy Wiy 4Ceu~}w¢ x 0 Uyt 9 Wyt X

d ! L3 3t [t 1 1
= - t TTH led = 2d - x —_— — —= zd
dt(/o(u az) m)+/o TR T (ew ew)wt !

+/01(um,wm){;(tA[v7w])t(umwm)T+(tH)t} i

gi@ﬂmm@mMQ+wwmmww+m]nmm2

C2

+owu+w(wme+<mwme, (4.60)

¢

where p is an arbitrary positive constant. In deriving the last inequality, we have used the
Sobolev and the Young inequalities as well as the estimates (3.25d), (4.60), (4.66) and

V(I (u, @) Ol + lw(@)ll1/¢) < ON(T) < C.
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Making p small enough, we obtain

d(t [! 3, t ot )
(U, W) AV, W] (U, D) + —wodr | + 3 (ugt)” + () dx
0 0

dt \ 2 2¢e®
d ' t 2 1 2 2
sz, (Uaw, Tao ) H d +C§Hw(t)|| +C(1+1) Z||w(t)||1+ [(w, @) (@)I3 ) -
(4.70)
The first term of the right hand side of (4.70) is handled by using
1
t/ (tos Daw) H dt < p't]| (s 00) () + C' It (w, @) ()11, (4.71)
0

where g/ is an arbitrary positive constant. The inequality (4.71) follows from the estimate
(4.60). On the other hand, the first term in the left hand side of (4.70) is handled by

1
Ct”(uxmwm)(t)”Z < t/ (U, wm)A[vvw](umvwm)T dx < Ot||(umvwm)(t)||2v (4.72)
0

which holds as A[v, w] is positive definite. Integrate (4.70) over [e, ], substitute (4.71) and
(4.72) in the result, and then let p’ sufficiently small. Finally, letting ¢ | 0 yields the desired
estimate (4.68) since the right hand side both of (4.71) and (4.72) converge to zero due to
(4.9). 0

Proof of Theorem 4.11. The existence of the time global solution is established by the stan-
dard continuation argument with the local existence in Corollary 4.12 and the a-priori esti-
mate in Proposition 4.13. Hence, to complete the proof of Theorem 4.11, it suffices to show
the decay estimates in (4.40).

Multiply (4.56) with k = 0 by 3, (4.54) with k = 1 by 82, (4.56) with k = 1 by 3%, (4.62)
with & = 0 by 84, (4.62) with k = 1 by 5%, (4.65) by 35, (4.70) by 7, respectively. Here
B € (0,1] is a constant, to be determined. Summing up these results and the estimate (4.54)
with k£ = 0, we have an ordinary differential inequality

%E(t) +eD(t) < CLAD(t)
L ON(T) 46+ (1 + 1) (énw(t)n? G- DO + ||<u,w><t>§) . (@73)
B(t) = /0 (14 B*)E + (B* + B°t) <;(ux)2 + i(wx)Q) + 662—2w2 + /6’74?; a

575 (s D) ALY, 0] (s D) = BTH(ta0, 0 H i,
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D(t) ==(1 + %) ((j G+ énzv(t)?) (54 B[] — BT, ()]
3 2 4, 25 2 1 - 2 61 (D)2
(B4 B + (5 + 5°%) ((umwm(wn +2 x(t)ll>+ﬁ e

If the constant [ is sufficiently small, we see from (4.71) and the Poincafe inequality that
E(t) is estimated as

t
¢
where ¢ is a positive constant. Let £ so small that both (4.74) and ¢; — C18 > 0 hold. Then

take N¢(T)+6+¢** small enough in (4.73) and use ¢E(t) < D(t), which holds for a suitably
chosen small positive constant ¢, to get an ordinary differential inequality

cll(w, @) D)7 + (1 + ) (2[e™] = "N + e (DT + ctll (w, @) D)l < E(2), (4.74)

d
B0 +aB(t) <0, (4.75)

where « is a positive constant. Solving (4.75), we have the inequality
E(t) < B(0)e™" < C|(uo, wo)|[fe™".

This inequality together with (4.74) yields the decay estimates in (4.40). O

We are now at the position to complete the proof of Theorem 4.2, which shows the time
global existence of the solution for the energy transport model (2.14) with the large initial
data.

Proof of Theorem 4.2. Determine the constant A in Corollary 4.10 so small that the assump-
tion (4.39) in Theorem 4.11 holds. Applying Theorem 4.11 with regarding the time Ty in
Corollary 4.10 as the initial time, we see that the initial boundary value problem (4.3)—(4.6)
has a unique time global solution (v,w) satisfying (v — 0, w — @) € 3([0,00)) N Vioe((0, 0))
without any restriction on the norm of the initial data. The decay estimates in (4.40) im-
mediately means

(v —3,w — @, @[e’] — ®[e"])()||7 < Ce™™, (4.76a)

2w = @)O + 0 — 5w - @)O)]3 < O, (4.76b)

¢
for t € [0, 00). Owing to (4.66b), it also verifies

1 . . -
A Z”(w_w)(T)”%"’ | (vt Voz = Vay Wera _wm)(T)”Q+T||(wt:vxt:wwt)(7)”2d7 <C. (4.77)
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In computing (4.77), we have divided the integral interval [0, 00) into two parts [0, T,] and
[Th, 00], and then used (4.23) and (4.44), respectively. The estimate (4.77) shows the solution
verifies /vy, vViwy € L*(0,00; L2(Q2)).

Letting

pi=¢", ji=—(e"€¢")y+ e’ (Ple"])s, O:=e", ¢:=P[e"],

we see that (p, 7,0, @) is the desired time global solution. Moreover, the estimates (4.2) follow
from (4.76). |

4.4 Energy relaxation limit

In this section, we justify the relaxation limit of the energy-transport model to the drift-
diffusion model. Since we have already constructed the time global solutions to the both
models, it suffices to show the estimates (2.25)—(2.27) in order to complete the proof.

Proof of Theorem 2.4. By virtue of Corollary 4.10, the time global solution (v,w), constructed
in the proof of Theorem 4.2, satisfies the estimates in (4.28) for arbitrary time ¢ € [0, T4].
We show that (4.28) holds for ¢ € [0, 00). As the solution (v, w) verifies (4.76a), the formula
(2.8) gives (4.23a). Moreover, the estimates (4.23b) and (4.23c) are shown for ¢ € [0, 00) by
the same manner as in the proof of Lemma 4.6. Consequently, since the assumption (4.23)
in Lemma 4.8 holds, the estimates in (4.28) follow for ¢ € [0, c0).

Secondly, we show the estimates (2.25)-(2.27). Let A € (0,1) be an arbitrarily fixed
constant and define a constant T := (log 1/¢*)/3. By the estimates in (4.28), the difference
(P — P, 02 — 63) between the solutions of both models is estimated as

1(o¢ = PO < ClR(B)]* < Ce™ < O, (4.78a)
162 = 6 OI* < ClQDI” < Cllo — 1|*e™¢ + C ¢, (4.78D)

1({P8 = pote: {02 = O0}a) DI < ClI(Re, Q) (DI}
<Ol — 1P oA+t <oA1+t (4.78¢)

for t <Tj. If t > Ty, it holds from the estimates (3.54), (4.1b) and (4.2a) that

- ~0 ~ - ~0 ~0
1p¢ = po. 02 = D)O)IIT < Cli(p¢ = . oo — P, ¢ — BB + CII (62 — O, 0. — D(B)IT
<C(eM4+¢) <C ("™ +¢). (4.79)

Let v := min{l — A\, aA\/B}. Then the estimates (2.25)—(2.27) follow from (4.78) and (4.79)
together with (2.8), (2.14d) and (2.15c¢). O
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4.5 Additional regularity

We improve, in this section, the regularity of the solution for the energy-transport model
by assuming additional regularity of the initial data. This discussion is necessary since the
regularity, shown in the previous sections, are insufficient to justify the relaxation limit, which
is discussed in Section 5.4. Precisely, we study the regularity of the solution (p, j, 8, ¢) for the
energy-transport model with the initial data (pg, 6p) € H?(2) in place of (pg, 0y) € H*(Q) in
Theorem 4.2.

Corollary 4.17. Let (j, 7,0, ) be the stationary solution of (2.18)(2.20) and (3.1), which is
constructed in Theorem 3.5. Suppose that the initial data (po,6o) € H*(Q) and the boundary
data py, pr and ¢, satisfy (2.4), (2.6), (2.7a), (2.7b), (2.10a) and (2.10b). Then there exist
positive constants oy and (y such that if § < dy and ( < (o the initial boundary value problem
(2.14), (2.12a), (2.12¢) and (2.4)~(2.6) has a unique solution (p, j,0, ¢) satisfying (p— p,0 —
0) € D((0,00)), j —j € C(10,00); H(Q)) 1 H'(0, 50 LX), 6 — 6 € C([0,00); H());
the positivity (2.10a) and (2.10b). Moreover, it verifies the additional reqularity p;,0; €
Dioc((0,00)), pits Ot € 310e((0,00)) and O, € L2, (0, 00; L*(2)), the convergence

loc

Hputs 0o) Ol + oI >0 as ¢ 0 (4:50)
and the estimates
;relsfz P ;gsfle >c, (4.81a)
R 1 ~ - ~ o
1G = DT+ =10 =)D+ [1(p — 5,0 = O) (D)3 + o ()]]> < Ce, (4.81Db)
¢
t(pat, o) (D)]> < CA+1),  Ellpu®)| < O+ %), (4.81c)
t
| Nontd @I + il ar < c, (4.81d)
0
t
/ T”(ptta th ezzt)(T)HQ + ||gzzz(7—)||2 dT S C(]- + t)7 (4816)
0
t t
/ T2 (0t pase (T)||2 dr < C(1 + 12), / 73 pre(T) [P dT < O(1 4 %) (4.81f)
0 0

fort € [0,T], where C and ¢ are positive constants independent of § and t.

Proof. The proof of Corollary 4.17 is divided into the five steps, which are stated in Lemmas
4.19-4.23. Once they are proven, Corollary 4.17 immediately follows from the relations in
(4.7) with aid of the estimates (4.76a) and (4.77). O

Remark 4.18. For the special case 6y = 1, the constant C in (4.81b)—(4.81f) is taken
independently of C. It is shown similarly as in the proofs of Lemmas 4.19-4.23. This fact is
utilized in the proof of Remark 2.6.
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Lemma 4.19. Let (0,w) be the stationary solution for (4.8). Suppose that the initial data
(v, wo) € H3(Q) and the boundary data py, p. and ¢, satisfy (2.4), (2.6), (2.7a) and (2.7b).
Then there exists a positive constant 0y and (o such that if 6 < dg and ¢ < (o, then the initial
boundary value problem (4.3)—(4.6) has a unique solution (v,w) satisfying (v — 0, w — W) €
2([0,00)) and wyy, € L}, (0,00; L*(Q)). Moreover, the solution (v, w) verifies the additional
reqularity

Vg, W € Vioe((0,00)), v, Wiy € B10e((0, 00)), (4.82)

the convergence
0 (Vats war) ()P + (1 (vet, Wet, Vawts Wawt) (O + | (Vo ware) (P =0 as ¢ =0 (4.83)

and the estimates

1

lee()]1* + clw= DY O+ 1(Var = Vaw, Waw — W) (1) < Ce™, (4.84a)

¢
/ | (we, Var, wer ) (7)||2 dT < C, (4.84Db)

0

t
/ |Wame (T) || dT < C(1+ ) (4.84c)

0

fort € [0,00], where C' and « are positive constants independent of § and t.

Proof. Theorem 4.2 ensures the existence of the time global solution (v,w) for the initial
data (vo,wp) € HY(Q). As the initial data (vg,wp) belongs to H?(S), it is obvious that the
solution verifies (v—0, w—w) € Y([0,00)). Moreover, the regularity w,,, € L} (0, 00; L*(Q))
is shown by the straight forward computation with using the equation (4.21).

We derive the estimate (4.84). It is shown that the estimates (4.84a) and (4.84b) hold
for t € [0,1] by the essentially same computation as in the derivation of (4.23c). On the
other hand, the estimates (4.84a) and (4.84b) apparently hold for ¢ € [1,00) thanks to the
estimates (4.66a), (4.76b) and (4.77). To show (4.84c), differentiate the equation (4.21)
with respect to x, multiply the result by —w,,, and integrate by part over the domain €.
Then apply the Sobolev and the Young inequalities to the resulting equality with using the
estimates (3.25d), (4.84a) and (4.84b). The result is

2 sz 2
// 3:3 ac:cw 2 (w d dr = // ow Wy + (wt - gvt - 92[U<7w<]> Wape drdT

<y / g ()P + %nwmmu dr + Clul(1+ 1),

where p is an arbitrary positive constant. Taking p sufficiently small gives the desired
estimate (4.84c). Finally, the solution (v, w) verifies the regularity (4.82) and the convergence
(4.83) by the standard theory of the parabolic systems. O
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The assertion on the regularity and the convergence in Corollary 4.17 follows from Lemma
4.19. In order to complete the proof, it suffice to derive the estimates of higher derivatives.
Differentiating the equation (4.3a) yields

( 31;)/2 )ttA[W”] ( Z, >m+ ( 3wt/02<ew ) = (Afv, w])e ( Z; >M+(G[v,w])t. (4.85)

The L?*-norm of the derivatives of A and G in ¢ are estimated as
(Ao, w))elIF + (G (fo, w))]1* < Cll (v, we) )17 (4.86)

with aid of the estimates (4.76a) and (4.84a). Moreover, differentiate (4.85) in ¢ again to
obtain

(e ), =001 (). G ),

~ bl () {nan( ) @) @

w

Lemma 4.20. Under the same conditions as in Lemma 4.19, it holds that

| (vats wae) ()] + /O Tl (Vawts Waat) (T) 1> + g”th(T)HZ dr < C(1+1), (4.88a)
/OtTHUtt(T)Hz dr < C(1+1t) (4.88b)

fort € [0,00), where C' is a positive constant independent of 6 and t.

Proof. Take the inner product of the equation (4.85) with (—tvgpt, —twas) in L?(2) and
apply the integration by part to obtain

1 1 1
i t/ 7(”11&)2 + §(u}a:t)Q d$ + t / (Uzzh wzzt>A[U7 w} (Uzzh wzzt)T dI
at\" J, 2 1 )

1 1 1

3 1 3 3w
t o) dr = [ =(vn)? + S (wa)? d: t/ = Wi,y d:
+ /0 2§ew(w”t) x /02(11 ¢) +4(w‘,t) T+ i QCeU’wtw”t T

- t/o (Vaats Wawt) {(A[U,w])t(vm,wm)T + (G[U,w])t} dr. (4.89)

Applying the Schwarz and the Sobolev inequalities to the right hand side of (4.89) with
using the estimates (4.76a), (4.84a), (4.86) and |jw,||*/¢ < C, which follows from (3.25d)
and (4.84a), we have

1

(right hand side) < pt <||(U1'1't7 W) (8)|)* + c

IIwm(t)IIZ) +Clul (X + )l (v, w) (D], (4.90)
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where p is an arbitrary positive constant. On the other hand, the second term on the left
hand side is estimated by c||(Vzer, Wezt)||* from below since A is positive definite. Substitute
(4.90) in (4.89), integrate the resultant inequality with respect to ¢ and successively let u
small enough. The estimates (4.77) and (4.84b) as well as the convergence (4.83) give the
desired estimate (4.88a).

By solving the first component of the system (4.85) with respect to vy and then taking
the L2-norm, we obtain

leu@®I* < Cll (v, wo) (B3, (4.91)
which immediately yields the estimate (4.88b) with aid of (4.77), (4.84b) and (4.88a). [

Lemma 4.21. Under the same conditions as in Lemma 4.19, it holds that

et 2 it 2 k+1
O + [ Tl ar < o+ 80, (4.922)
t
/ 72w (7)||> dr < C(1 + 1) (4.92b)
0

for k=0,1 and t € [0,00), where C is a positive constant independent of 6 and t.

Proof. Taking the inner product in L%(€2) of the equation (4.85) with (0, —t**1w,/¢*) for
k = 0,1 and applying the integration by part lead to

k+1 ol k+1 pl

jt<tck/o i(wt)de> " zkﬂ/o o (w)? o
horlg 1l

= (k+ 1)5/0 Z(wt)2 dz + 7/0 (0, wy) {A[v,w](vzz7wzm)T+G[u,w}}t dx

ht1 tk

< MCWHwt(?f)H2 + C[ult* | (v, wo) (D13 + C@

where p is an arbitrary positive constant. In deriving the last inequality, we have used
the Schwarz and the Sobolev inequalities with the estimates (4.76a), (4.84a) and (4.86).
Integrating (4.93) with £ = 0 in ¢, making u sufficiently small, and then using the estimates
(4.77), (4.84b) and (4.88a), we have the estimate (4.92a) with k& = 0. The estimate (4.92a)
with k& = 1 follows from the similar computation as above, where we have to utilize (4.92a)
with k = 0. Finally, solve the second component of the system (4.85) with wy, take L?norm
and use (4.86), (4.88a) and (4.92a) to get the estimate (4.92b). O

[[wi(8)]|*, (4.93)

Owing to the estimates (4.76a), (4.84a), (4.88a) and (4.92a), the estimate (4.86) is rewrit-
ten to
t(Afw, w])elf + t(Glo, w])el* < C(1+1). (4.94)
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Similarly, the second derivatives of A and G are estimated as
)1 (Afv, w])allF + (Glv, w])ul® < CO+ )| (ve, w) ()3 + CL| (v, we) ()] (4.95)

Lemma 4.22. Under the same conditions as in Lemma 4.19, it holds that

t2 t
]| (et Vaats Wawr) () ||* + Zwat(t)HQ +/ T2 (Vate, woue) ()| * dr < C(1 + 17) (4.96)
0

fort € [0,00), where C is a positive constant independent of 6 and t.

Proof. Take the inner product of the equation (4.85) with the vector (—t*v,py, —t*Weey) in
L2(2) and apply the integration by part to get

(5 [ ) Al 0] v+ )+ [ + S
= 2 ([ ) (A w0 + (Gl

1 2

1 3t

+ / 5 (’Uzzta wzzt) (tQA[’Ua th (Uzzh wzzt)T 2( w o o WeWet Wt dI
0

1 2
+ <4?2tew> W2, + (Ut Waat) {2 (A0, 0] (00, w,0)T + E(Glo, )}, da. (4.97)
0 t

We integrate (4.97) with respect to ¢t. The left hand side gives the positive terms appearing
in (4.96) since A is positive definite. We handle the right hand side by applying the Sobolev
and the Schwarz inequalities with using using the estimates (4.76a), (4.84a), (4.88a), (4.92a),
(4.94) and (4.95) as

(integration of right hand side in t)
< it || (Ve o) (1)|* + u/ot (| (vate, ware) (T) || d7 + Clp (1 + ¢2)
+ 0l [ Pl @l dr+ Chda+0) [ Tl + o w))
< it? || (Ve Wawe) (8)|* + u/ot 2| (vate, wate) (7| d7 + Clp) (1 + £2), (4.98)
where p is an arbitrary positive constant. In deriving the second inequality, we have also

used the estimates (4.77) (4.84b), (4.88) and (4.92). Letting p sufficiently small and then
using (4.91) yields the estimate (4.96). O
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Lemma 4.23. Under the same conditions as in Lemma 4.19, it holds that
7_73

¢
/t T v (7)||? dr < C(1+t7) (4.99b)
0

t
£ (Vatts ware) (1) |2 +/ 73| (Vawtts Waatt) (T)[|> + — [ wene (7)|IP dr < C(1 +1%),  (4.99a)
0

fort € [0,00), where C' is a positive constant independent of 6 and t.

Proof. Taking the inner product of the equation (4.87) with the vector (—t3v,utt, —t3Wrtt)
in L2(2) and applying the integration by part, we have

d "1 3 !
N t3 a (Uxtt)Z + 7(tht)2 dl' + tS (Uxxtt> wxwtt)A[Ua w] (Uxoctta wxwtt)—r d(L’
0 2 4 0

1 1 1
. 3 3 9 . 3w,
+ 3 / 72(6“’ (’wztt)2 dr = t* / i(vztt)Q + Z(wztt)Q dx + / 72{6“’ Wit Wt AT
0 0 0

t3 ‘3 2 A T d
- /0 e (010t (s 022) A0, s 5
1
_tg/ (U.mtawmt){(A[U,w])t(vm7wm)T—I—(G[uw])t}t dx. (4.100)
0

Integrating (4.100) with respect to ¢, we have the positive terms appearing in (4.99a) from
the left hand side. On the other hand, the right hand side is estimated as

(integration of right hand side)

t 3
<u / 3 (Umates Wamee) (7|2 +
0

r
¢

where g is an arbitrary positive constant. Hence, integrating (4.100) in ¢ and making u
small enough give the desired estimate (4.99a). Moreover, solving the first component of the
system (4.87) with respect to vy, taking the L:norm and using the estimates (4.94)(4.96)
and (4.99a), we obtain (4.99b). O

lweee(T)||* dr + Clul(1 + ¢7), (4.101)



