
CHAPTER 6

Combable functions and ergodic theory

In this chapter we study quasimorphisms on hyperbolic groups, especially
counting quasimorphisms, from a computational perspective. We introduce the
class of combable functions (and the related classes of weakly combable and bi-
combable functions) on a hyperbolic group, and show that the Epstein–Fujiwara
counting functions are bicombable.

Conversely, bicombable function satisfying certain natural conditions are shown
to be quasimorphisms; thus quasimorphisms and bounded cohomology arise natu-
rally in the study of automatic structures on hyperbolic groups, a fact which might
at first glance seem surprising.

The (asymptotic) distribution of values of a combable function may be de-
scribed very simply using stationary Markov chains. Consequently, we are able to
derive a central limit theorem for the distribution of values of counting quasimor-
phisms on hyperbolic groups.

The main reference for this section is Calegari–Fujiwara [50], although Picaud
[166] and Horsham–Sharp [113] are also relevant.

6.1. An example

6.1.1. Random walk on Z.

Definition 6.1. A sequence of integers x = (x0, x1, · · · ) is a walk on Z if it
satisfies the following two properties:

(1) (initialization) x0 = 0
(2) (unit step) for all n > 0, there is an equality |xn − xn−1| = 1

The length of a walk x is one less than the number of terms in the sequence x.
So, for example, (0, 1, 2) has length 2, while (0, 1, 0,−1,−2) has length 4.

0 1−1

Figure 6.1. Walks on Z of length n are in bijection with walks
on Γ of length n.

Knowing the successive differences xn − xn−1 ∈ {−1, 1} determines x, so there
is a bijection between walks of length n, and strings of length n in the alphabet
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164 6. COMBABLE FUNCTIONS AND ERGODIC THEORY

{−1, 1}. This correspondence may be encoded graphically as follows. Let Γ be the
directed graph depicted in Figure 6.1. A walk x on Z “determines” a corresponding
walk x′ on Γ starting at the initial vertex (labeled 0) where the labels on the vertices
in the itinerary of x′ are exactly the sequence of successive differences xn − xn−1.
In other words,

x′n = xn − xn−1

Formally, x′ is a kind of discrete derivative of x. The advantage of the corre-
spondence x → x′ is that it replaces a random walk on an infinite (but homoge-
neous) graph (i.e. Z) with a random walk on a finite graph.

Let Xn denote the set of walks on Z of length n, and let v : Xn → Z be the
function which takes each walk to the last integer in the sequence. For example,
v(0, 1, 2, 1) = 1 and v(0,−1,−2,−3,−2) = −2.

Figure 6.2. histogram showing the frequency of outcomes for all
walks of length 30 on Z

There are 2n walks of length n. The set of values of v on Xn are the integers of
the form 2i− n for 0 ≤ i ≤ n, and the number of elements of Xn taking the value
2i− n is

(
n
i

)
= n!

(n−i)!i! . A histogram of this data for the case n = 30 is contained

in Figure 6.2.
This figure has some significant qualitative features: left-right symmetry, the

fact that all realized values have the same parity, and so forth. Most notable are
the long flat tails on either side. If we rescale the graph horizontally by a factor
of n−1, and vertically so that the total area under the graph is equal to 1, the
distribution becomes more and more peaked and “limits” to a Dirac distribution
with all the mass centered at the origin (technically, this is convergence in the sense
of distribution). However, if we instead rescale the graph horizontally by a factor
of n−1/2, the distribution converges to the familiar “bell curve”, or Gaussian. If
we let v̄n denote the value of v on a random element of Xn (with the uniform
distribution), then v̄ is not a number but rather a (discrete) probability measure
on R. The Central Limit Theorem for binomial distributions (see [96], Thm. 9.1)
says that there is convergence in the sense of distribution

lim
n→∞

P(s ≤ n−1/2v̄n ≤ t) =
1√
2π

∫ t

s

e−x
2/2dx

where P(·) denotes probability, and s ≤ t are any two real numbers.

6.1.2. Random value of a homomorphism. Given a group G and a func-
tion f : G→ R it is natural to ask how the values of f are distributed on G. If G
is finitely generated, we can study statistical properties of the values of f on the set
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of elements of G of (word) length n, as a function of n. This analysis will be most
informative when the function f is adapted to the geometry and algebra of G; the
most important case therefore is when f is a homomorphism.

In order to keep the discussion concrete, we restrict attention in what follows
to free groups. Let F denote the free group generated by two elements a, b, and let
ρ : F → Z be the unique homomorphism which sends a to 1 and b to 0 (writing Z

additively). A basic question is to ask what is the distribution of the values of ρ on
the group F .

If we take S = {a, b, a−1, b−1} to be a symmetric generating set for F , the
Cayley graph CS(F ) is an infinite regular 4-valent tree. Let γ denote a geodesic
in CS(F ) starting at id, and let ρ(γ) denote the corresponding walk in Z, whose
itinerary consists of the values of ρ on successive vertices of γ. As in the case of
a random walk on Z, the situation is clarified by considering, in place of ρ(γ), the
discrete derivative; i.e. by considering how the value of ρ changes on successive
vertices of γ.

6.1.3. Digraphs. Every element of F is represented by a unique reduced word
in the generators, corresponding to the unique geodesic in CS(G) starting at id and
with a given endpoint. Reduced words are certified by local data: a word is reduced
if and only if no a follows or precedes an a−1, and if no b follows or precedes a b−1.
Let S∗ denote the set of all finite words in the generating set S, and let Wn denote
the set of reduced words in S∗ of length n. Let W = ∪nWn.

0 1
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Figure 6.3. The digraph Γ parameterizes the set of reduced words
in F

Elements of F are in bijection with elements of W by taking each element to the
unique reduced word which represents it. Moreover, elements of W are in bijection
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with certain walks on a directed graph Γ, depicted in Figure 6.3 (ignore the numbers
on the vertices for the moment). There is a special initial vertex with no incoming
edges, and four other vertices which have both incoming and outgoing edges. In
computer science and combinatorics, a directed graph is usually called a digraph,
and we use this terminology in what follows. If we need to stress that a particular
digraph has an initial vertex, we call it a pointed digraph. So Γ in Figure 6.3 is a
(pointed) digraph.

A reduced word w ∈ W determines a directed path in Γ starting at the initial
vertex, by reading the letters one by one (from left to right) and traversing at each
stage the edge of Γ labeled by the corresponding letter of w. Conversely, a directed
path in Γ starting at the initial vertex determines a reduced word, determined by
the string consisting of the edge labels visited in the path. Under this bijection,
elements of Wn correspond to directed paths in Γ of length n.

The information in a digraph can be encoded in the so-called adjacency matrix.

Definition 6.2. Let Γ be a digraph with vertices vi. The adjacency matrix of
Γ is the square matrix whose entries are determined by the formula

Mij =

{
1 if there is a directed edge from vi to vj

0 otherwise

Spectral properties of M reflect geometric properties of Γ. The most explicit
example of this is the following Lemma, which says that directed paths in Γ are
counted by the entries of powers of M .

Lemma 6.3. For any n and any vertices vi, vj the number of directed paths in
Γ from vi to vj of length n is (Mn)ij .

Proof. We prove the statement by induction. It is tautologically true for
paths of length 1, so assume it is true for paths of length n− 1. By induction, for
any vk there are (Mn−1)ikMkj paths of length n from vi to vj whose penultimate
vertex is vk. Summing over k gives the desired result. �

The following topological property of digraphs is the analogue of irreducibility
in the algebraic context.

Definition 6.4. A digraph is recurrent if there is a directed path from any
vertex to any other vertex.

By Lemma 6.3, a digraph is recurrent if and only if for any i, j there is some n
(which may depend on i, j) for which (Mn)ij is positive.

Definition 6.5. A matrix with non-negative entries is a Perron–Frobenius
matrix if for any i, j there is some n for which (Mn)ij is positive.

The graph Γ of Figure 6.3 is not recurrent, but the subgraph Γ′ consisting
of vertices and edges disjoint from the initial vertex is recurrent. Let M be the
adjacency matrix of Γ′, so

M =




1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1




Since Γ′ is recurrent, the matrix M is a Perron–Frobenius matrix. In fact, every
entry of Mn is positive whenever n ≥ 2.
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For such matrices, one has the fundamental Perron–Frobenius Theorem:

Theorem 6.6 (Perron–Frobenius). Let M be a real non-negative matrix so that
every entry of Mn is positive for some n > 0. Then the following statements hold.

(1) M has a positive real eigenvalue λ. Every other eigenvalue ξ satisfies
|ξ| < λ.

(2) The algebraic and geometric multiplicities of λ are both equal to 1.
(3) There are left and right eigenvectors of M with eigenvalue λ, spanning

their respective 1-dimensional eigenspaces, with positive entries.

See for example [11] for a proof. A matrix M with the property above is
sometimes called regular.

If M is symmetric, the left and right λ-eigenvectors of M are transposes of each
other, but for general M this need not be the case.

For the case of Γ′ as above, the matrix M is symmetric, and the vector
v = (1/4, 1/4, 1/4, 1/4) (resp. vT ) is a left (resp. right) eigenvector for M with
eigenvalue 3 and L1 norm equal to 1.

If M is merely non-negative (with no assumption that there is a power all of
whose entries are strictly positive), the situation is more complicated. Since we will
need to study this case in the sequel, we state the following proposition.

Proposition 6.7 (Weak Perron–Frobenius). Let M be a real non-negative ma-
trix. Then M has a positive real eigenvalue λ with left and right eigenvectors, and
every other eigenvalue ξ satisfies |ξ| ≤ λ.

If for every i, j there is an n (possibly depending on i, j) for which (Mn)ij is
positive, then every eigenvalue ξ with |ξ| = λ has the form ωλ for some root of unity
ω. Moreover, for every ξ with |ξ| = λ the algebraic and geometric multiplicities of
ξ are equal, and there are left and right λ eigenvectors for ξ with positive entries.

See [11]. A matrix with the property that for all i, j there is n depending on
i, j such that (Mn)ij is positive, is sometimes said to be ergodic or irreducible. An
ergodic matrix which is not regular is sometimes called cyclic.

To say that the algebraic and geometric multiplicities of an eigenvalue ξ are
equal just means that the Jordan block of the eigenvalue ξ is diagonal; i.e. that
the generalized ξ-eigenspace is a genuine eigenspace. The weak Perron–Frobenius
Theorem can be deduced from the (ordinary) Perron–Frobenius Theorem by ap-
proximating a non-negative matrix by a positive matrix.

6.1.4. Random walks on Γ′. For each integer n ≥ 0, let Xn denote the set
of walks on Γ′ of length n starting at any vertex. For each m < n there is a prefix
function pn,m : Xn → Xm which just forgets the last n−m terms in the sequence.
Each map Xn → Xn−1 is finite to one. The inverse limit

X := lim
←
Xn

is topologically a Cantor set, and parameterizes the set of right-infinite walks on Γ′.
We write a typical x ∈ Xn as a finite sequence x = (x0, x1, · · · , xn) and an element
x ∈ X as an infinite sequence x = (x0, x1, · · · ). It comes together with prefix maps
pn : X → Xn satisfying pn,mpn = pm for all m < n.

Definition 6.8. The shift map S : X → X takes a walk to the suffix consisting
of all but the first vertex. In co-ordinates,

S(x0, x1, · · · ) = (x1, x2, · · · )
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Definition 6.9. A cylinder is an open subset of X determined by fixing a
finite number of the co-ordinates xi of an element x.

Let B denote the σ-algebra on X generated by all cylinders. Note that B is
the Borel σ-algebra on X associated to its natural inverse limit topology.

The shift map S acts continuously onX , and therefore measurably with respect
to B. Any measurable map on a compact space preserves some probability measure.
In our example, there is a unique probability measure µ on X which is invariant
under S, with the property that for all n, the pushforward (pn)∗µ is equal to the
uniform probability measure on Xn.

If π : X → Γ′ takes an element to its initial vertex, and x ∈ X is chosen at
random, the sequence

π(x), π(Sx), π(S2x), · · ·
is an infinite random walk on Γ′, where the transition probabilities to move from
vertex to vertex at each stage are given by the matrix

N =




1/3 1/3 0 1/3
1/3 1/3 1/3 0
0 1/3 1/3 1/3

1/3 0 1/3 1/3




N is a stochastic matrix, meaning that the entries are non-negative, and the vector
1 := (1, · · · , 1)T is a right eigenvector with eigenvalue 1. The uniform probability
measure on Γ′ is stationary for N , meaning that 1T is a left eigenvector with
eigenvalue 1. Again, in general, a left eigenvector for a stochastic matrix will not
correspond to the uniform measure, however a stationary measure exists by the
Perron–Frobenius Theorem 6.6.

The essential property of the process (x0, x1, · · · ) corresponding to a random
x ∈ X (with respect to the uniform measure) is that for each i, the probability
that xi+1 will be in a given state depends only on xi, and not on xj for any j < i.
Informally, this can be summarized by saying that future states depend only on
the present, and are independent of the past. This property of a random process
is generally called the Markov property, and the usual terminology for this is that
a random walk on Γ′ is (governed by) a stationary Markov chain. The Perron–
Frobenius property of the transition matrix N is summarized by saying that this
Markov chain is ergodic.

For each n, let Yn be the subspace of Xn consisting of walks that begin at the
initial vertex. Elements of Yn are in bijection with elements of F of word length n.
Each element of Yn corresponds to a cylinder in X consisting of infinite walks that
begin with a given prefix. The measure µ induces in this way a measure on each
Yn; after scaling, this is the uniform measure in which each element has probability
1/(4 · 3n−1). The homomorphism ρ determines a function dρ from Γ′ to Z by the
formula

dρ(s(ws)) = ρ(ws)− ρ(w)

where s : Yn → Γ′ sends a (finite) walk to its terminal vertex. In other words, the
function dρ measures how much the value of ρ changes on the increasing prefixes of
a reduced word. If a vertex vi of Γ′ is encoded as a column vector, the function dρ
can be encoded as a row vector of the same length, and evaluation of the function
amounts to contraction of vectors. In our example, dρ is the vector (1, 0,−1, 0).
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Let S̄n be a random variable whose value is

S̄n =

n∑

i=1

dρ(xi)

where x = (x0, x1, · · · , xn) is a random element of Yn. In other words, S̄n is the
value of ρ on a random element of F of word length n.

Technically, S̄n should be thought of as a probability measure on R, supported
in Z. Every x ∈ Yn determines an integer

∑
dρ(xi), and this determines a map

Yn → Z. The (uniform) measure on Yn pushes forward under this map to a measure
on Z, which by definition is S̄n.

The Central Limit Theorem for ergodic stationary Markov chains (see [179]
p. 231) says that there is a convergence in the sense of distribution

lim
n→∞

P

(
s ≤ S̄n − nE√

σ2n
≤ t
)

=
1√
2π

∫ t

s

e−x
2/2dx

where E is the mean of dρ on Γ′ with respect to the stationary measure (which is
equal to 0 in this case) and σ2 is an algebraic number which can be determined
from N , µ and dρ.

6.1.5. More complicated examples. The homomorphism ρ in the example
above is a very simple example of a big counting quasimorphism; explicitly, ρ = Ha

in the notation of Definition 2.25. We would like to study the distribution of Hw

on F for an arbitrary reduced word w ∈ F . The problem is that the digraph Γ
defined in the last section is not adequate for our purpose. A reduced word in F
determines a walk in Γ, but the vertex at each step only “remembers” one letter
at a time. In order to count occurrences of a word w or its inverse w−1 we need
a more complicated digraph whose vertices remember enough information to keep
track of each occurrence of w or w−1.

Definition 6.10. Let Γ be a pointed digraph. Define Γ0 = Γ. For each n > 0,
define inductively a pointed digraph Γn as follows.

The vertices of Γn consist of an initial vertex, together with one vertex for
every directed path in Γn−1 of length 1 (with any starting vertex). The edges of Γn
(except for those which start at the initial vertex) correspond to pairs of composable
paths; i.e. pairs of paths of length 1 which can be concatenated to form a path of
length 2.

Finally, for every path of length 1 in Γn−1 starting at the initial vertex, add a
directed edge in Γn from the initial vertex to the corresponding vertex of Γn.

Γn is called the nth refinement of Γ.

Remark 6.11. The construction of a refinement makes sense for any pointed digraph.

Remark 6.12. Notice that each Γn is finite if Γ is, and contains a unique maximal recurrent
subgraph Γ′

n if Γ does.

See Figure 6.4 for an example of the first refinement Γ1, where Γ is the example
from Figure 6.3. For the sake of legibility, labels on the arrows (which are elements
of the generating set S) have been suppressed. Note how complicated this example
is, with 17 vertices and 52 edges. In general, the graph Γn contains O(λn) vertices
and O(λn+1) edges, where λ is the Perron–Frobenius eigenvalue of the transition
matrix of Γ, so actually constructing Γn is typically not practical, even for moderate
values of n.
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Figure 6.4. The digraph Γ1 is the (first) refinement of Γ. dHab

is a function from the states of Γ1 to Z.

By induction, the stationary measure for each Γn is the uniform measure on
the subgraph Γ′n, and the transition matrix has equal probability for each edge of
Γ′n.

For any n,m ≥ 0 there is an equality (Γn)m = Γn+m. Moreover, by induction,
Γ′n = (Γ′)n. Vertices in Γ′n correspond to paths of length n in Γ′. Let w ∈ F
be a reduced word of length n, and let Hw = Cw − Cw−1 be the big counting
quasimorphism. Define dHw : Γ′n → Z by setting dHw equal to 1 on the vertex
corresponding to the path w in Γ′, and −1 on the vertex corresponding to the
path w−1 in Γ′. The Central Limit Theorem for ergodic stationary Markov chains
implies the following theorem.

Theorem 6.13 (Calegari–Fujiwara). Let Hw be a big counting quasimorphism
on a free group. If H̄w(n) denotes the value of Hw on a random word in F of length
n (in a standard symmetric generating set), then there is convergence in the sense
of distributions

n−1/2H̄w(n)→ N(0, σ)

for some σ depending on w.

It is one of the goals of this chapter to generalize this theorem to a broader
class of quasimorphisms on arbitrary word hyperbolic groups.

6.1.6. Hölder quasimorphisms. The property of big counting quasimor-
phisms described in Theorem 6.13 holds for other interesting classes of quasimor-
phisms on free groups, including those with the so-called Hölder property.

Definition 6.14. For any g ∈ F , and any function ψ on F , define

∆aψ(g) = ψ(g)− ψ(ag)

For x, y ∈ F let (x|y) denote the Gromov product; i.e.

(x|y) = (|x|+ |y| − |x−1y|)/2
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In other words, (x|y) is the length of the biggest common prefix of the words x, y.
Say that a quasimorphism ψ ∈ Q(F ) is Hölder if for any a ∈ F there are

constants C, c > 0 such that for any x, y ∈ F there is an inequality

|∆aψ(x) −∆aψ(y)| ≤ Ce−c(x|y)

Note that the constants C, c depend on a, but not on x or y.
Horsham and Sharp [113], extending some results in Matthew Horsham’s PhD

thesis, prove the following theorem:

Theorem 6.15 (Horsham–Sharp). Let ψ be a Hölder quasimorphism on a free
group. If ψ̄(n) denotes the value of ψ on a random word in F of length n (in
a standard symmetric generating set), then there is convergence in the sense of
distributions

n−1/2ψ̄(n)→ N(0, σ)

for some σ.

The argument involves (nonstationary) Markov chains obtained from subshifts
of finite type, and the associated thermodynamic formalism. These results can also
be generalized to surface groups.

Big counting quasimorphisms are trivially seen to be Hölder, since ∆aψ(x) =
∆aψ(y) whenever (x|y) is bigger than |a|. But small counting quasimorphisms are
not, as the following example (from [50]) shows.

Example 6.16. Let h := habab. Then

h(babab · · ·ab︸ ︷︷ ︸
4n+1

) = n, h(ababab · · ·ab︸ ︷︷ ︸
4n+2

) = n

but
h(babab · · ·ab︸ ︷︷ ︸

4n+3

) = n, h(ababab · · ·ab︸ ︷︷ ︸
4n+4

) = n+ 1

Although small counting quasimorphisms are not Hölder, they nevertheless
have a great deal in common with big counting quasimorphisms: both are examples
of bicombable functions, to be defined in § 6.3.2. Ultimately, we will prove a version
of the Central Limit Theorem valid for all bicombable functions on arbitrary word-
hyperbolic groups.

6.1.7. Rademacher function. There are natural ways to filter elements in
free groups other than by word length. If one thinks of a (virtually) free group as the
fundamental group of a cusped hyperbolic surface (orbifold), it is natural to count
conjugacy classes (which correspond to closed geodesics) and sort them by geodesic
length. The noncompactness of the surface leads to quite distinctive features of
the theory. In this context, we mention a result of Peter Sarnak, showing that the
Rademacher function on conjugacy classes in the group PSL(2,Z) has values which
obey a Cauchy distribution, in contrast to the Gaussian distributions discussed
above.

Ghys [91] gave an elegant topological definition of the Rademacher function.
The group PSL(2,Z) acts on the hyperbolic plane H2 by isometries, with quotient
the (2, 3,∞)-triangle orbifold ∆. Each element A of PSL(2,Z) whose trace has
absolute value > 2 fixes a unique axis in H2, which covers a geodesic in ∆. This
geodesic lifts to an embedded loop γA in the unit tangent bundle UT∆ which is
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homeomorphic to the quotient PSL(2,R)/PSL(2,Z). As is well known, UT∆ is
homeomorphic to the complement of the trefoil knot T in S3.

Definition 6.17. For A ∈ PSL(2,Z) with |tr(A)| > 2, define R(A) to be the
linking number of γA and T in S3.

Ghys relates R(A) to the classical Rademacher function, which is defined in
terms of Gauss sums, and is intimately related to the Dedekind η function. If we

think of PSL(2,Z) as a subgroup of Homeo+(S1), and S̃L(2,Z) as its preimage

in Homeo+(R)Z, then there is a rotation quasimorphism rot on S̃L(2,Z). Let ρ :

S̃L(2,Z)→ Z be the unique homomorphism that takes the value 6 on the generator
of the center (i.e. the element that acts on R as z → z+1). Then 6 ·rot−ρ descends
to the quasimorphism R on PSL(2,Z).

Conjugacy classes of elements A in PSL(2,Z) with |tr| > 2 correspond to closed
geodesics γA in ∆. Let |γA| denote the length of γA. For each real number y, define

π(y) := #{A : |γA| ≤ y}

The behavior of π(y) for large y is known; in fact,

π(y) = Li(ey) +O(e7y/10)

where

Li(x) =

∫ x

2

dt

log t
∼ x

log x

Sarnak shows that the Rademacher function R, filtered by geodesic length, satisfies
a Cauchy distribution; i.e.

Theorem 6.18 (Sarnak). With notation as above,

lim
y→∞

1

π(y)
#{A : |γA| ≤ y and a ≤ R(A)

|γA|
≤ b} =

1

π

(
arctan(

bπ

3
)− arctan(

aπ

3
)

)

The “reason” for the difference in observed distributions has to do with the
relationship between word length and geodesic length in PSL(2,Z). The group
PSL(2,Z) is virtually free, containing a subgroup Γ of index 12 which is isomorphic
to F2. The surface ∆ is non-compact, with a cusp. A geodesic γA which winds a lot
around the cusp might have length as small as O(log(n)) where n is the word length
of A. If w is a reduced word in F2 of the form an1bn2 · · ·ankbnk then the length of
w is

∑
ni but the length of the geodesic γw is O(

∑
log(ni)). Since quasimorphisms

are homomorphisms on cyclic subgroups, such a word probably has an unusually
large value of R for its word length, and especially for its geodesic length, thus
giving rise to the fat tails of the Cauchy distribution.

6.2. Groups and automata

Our analysis in § 6.1 depended crucially on the fact that elements in a free
group could be parameterized by directed paths in a digraph, namely the digraph
Γ from Figure 6.3 and its refinements. The proper generalization of this fact for
more complicated groups involves the theory of combings and regular languages.
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6.2.1. Regular languages. Let S be a finite alphabet, and let S∗ denote the
set of all (finite) words in the alphabet S.

Definition 6.19. A language is a subset L ⊂ S∗. A language is prefix closed
if every prefix of an element of the language is also in the language.

Definition 6.20. A finite state automaton on a fixed alphabet is a digraph with
a distinguished initial vertex (the input state), and with oriented edges labeled by
letters of the alphabet, such that at each vertex there is at most one outgoing edge
with any label.

The vertices are also called the states of an automaton. A word w ∈ S∗

determines a directed path in the automaton, which starts at the initial vertex at
time 0, and moves along a directed edge labeled wi at time i, if one exists, or halts
if not. The resulting path in the automaton is said to be obtained by reading the
word w.

Some subset of vertices are labeled accept states. If the automaton reads to the
end of w without halting, the last vertex of the path is the final state and the word
is accepted if the final state is an accept state, and rejected otherwise.

Definition 6.21. A regular language is the set of words in some fixed alphabet
accepted by some finite state automaton.

Remark 6.22. For regular languages which are prefix closed, one can restrict attention to
automata in which every state is an accept state. In the sequel we shall be exclusively
interested in prefix closed regular languages, and therefore every state in our automata
will be an accept state.

The concept of a finite state automaton or a regular language is best understood
by considering some simple examples.

Example 6.23. Let S = {a, b}. The following languages are regular:

(1) The set of all words in S∗

(2) The set of all words in S∗ which contain the string baa but not the string
abba

(3) The set of all words in S∗ with at least 5 a’s
(4) The set of all words in S∗ for which the number of a’s and b’s have different

parities

The following languages are not regular:

(1) The set of all words of the form anbn

(2) The set of all palindromic words
(3) The set of all words with prime length
(4) The set of all words which contain more a’s than b’s

In words, a finite state automaton is a machine with a finite amount of memory.
It reads the letters of w in order, and cannot go back and re-read some subword. In
practice, automata can be described informally in terms of the task they perform,
rather than explicitly in terms of vertices and edges.

Suppose L is regular and prefix closed. Then there is a finite state automaton
A which accepts L and for which every vertex is an accept state. The underlying
digraph Γ of the automaton A parameterizes L, in the sense that there is a natural
bijection

directed paths in Γ starting at the initial vertex←→ elements of L
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Notation 6.24. Suppose Γ parameterizes L. Let w ∈ L and as above, let wi
denote the ith letter of w. We let γi(w) denote the ith vertex of the corresponding
path in Γ, respectively γi if w is understood, and let γ(w) (resp. γ) denote the
endpoint of the path in Γ.

Warning 6.25. For a fixed regular, prefix closed language L there are many
digraphs Γ which parameterize L. For instance, if Γ parameterizes L, then so does
every resolution Γn.

6.2.2. Combings.

Notation 6.26. If G is a group and S is a generating set, there is a natural
evaluation map e : S∗ → G taking a word in the generators to the element in G it
represents. Sometimes, where no confusion can arise, we omit e, so that the same
symbol w may represent a word in S∗ or an element of G. If w is a word in S∗, we
let ei(w) denote the path in G whose ith element is the image under e of the prefix
of w of length i.

Definition 6.27. Let G be a group with finite symmetric generating set S. A
combing of G with respect to S is a regular language L ⊂ S∗ which satisfies the
following conditions:

(1) The evaluation map e : L→ G is a bijection
(2) L is prefix closed
(3) L is geodesic; i.e. elements of L represent geodesic paths in CS(G)

Warning 6.28. Definitions of combings differ in the literature. All three bullets
in Definition 6.27 (and sometimes even the condition that L is regular) are omitted
or modified by some authors!

Let L define a combing of G with respect to S, and let Γ be a digraph which
parameterizes L. Every path in Γ determines a path in CS(G) starting at the
identity. The conditions in Definition 6.27 imply that the union of these paths is
an isometrically embedded maximal spanning tree in CS(G).

One of the principal motivations for studying combings is the following theorem,
first proved by Cannon (though he used different terminology):

Theorem 6.29 (Cannon [51], [77]). Let G be a word-hyperbolic group, and S
a finite symmetric generating set. There is a combing of G with respect to S.

In fact, many natural, explicit combings exist. Choose a total ordering≺ on the
elements of S. This induces a lexicographic ordering (i.e. a dictionary ordering) on
the elements of S∗. The language L of lexicographically first geodesic words in S∗

satisfies the bullet conditions of Definition 6.27; the main content of Theorem 6.29
is that L is regular.

6.3. Combable functions

6.3.1. Left and right invariant Cayley metrics. Let G be a group with
finite symmetric generating set S. There are two natural metrics on G associated
to S — a left invariant metric dL which is just the metric induced by the usual path
metric in the Cayley graph CS(G), and a right invariant metric, where dR(a, b) =
dL(a−1, b−1). If | · | denotes the word length of an element in G, then

dL(a, b) = |a−1b|, dR(a, b) = |ab−1|
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Each metric dL, dR is induced from a path metric. The geometry of a met-
ric space X, dX may be probed effectively by studying the space of all Lipschitz
functions X → R. For G a group, it is natural to probe G by functions which are
Lipschitz with respect to either the dL or dR metric, or both simultaneously.

Note that a function f : G → Z is Lipschitz for the dL metric if and only if
there is a constant C so that for all a ∈ G and all s ∈ S,

|f(as)− f(a)| ≤ C
Similarly, f is Lipschitz for the dR metric if

|f(sa)− f(a)| ≤ C
The properties of being Lipschitz for dL or dR respectively do not depend on a
choice of generating set for S (but the constants will).

Remark 6.30. It is psychologically challenging to find a good way to perceive a group
G simultaneously in both its dL and dR metrics. An analogy is the relationship between
matrices and rooted trees. The elements of a matrix can be thought of as the leaves of
a depth 2 rooted tree in two distinct ways. The depth 1 nodes can either be thought of
as denoting rows or as columns. The two tree structures are obtained by thinking of the
index sets as affine spaces for the action of a group Z, and the two different tree structures
correspond to the actions of Z from the left and from the right.

Any homomorphismG→ Z is Lipschitz in both the dL and dR metrics. But hy-
perbolic groups do not always admit many (or even any) homomorphisms to Z (for
instance, fundamental groups of quaternionic hyperbolic manifolds have Kazhdan’s
property (T), and therefore no subgroup of finite index admits a homomorphism
to Z). However, quasimorphisms are also obviously Lipschitz in both the dL and
dR metrics, and therefore any hyperbolic group is guaranteed a rich family of such
functions.

6.3.2. Combable functions. We now introduce the class of combable func-
tions on a hyperbolic group G.

Definition 6.31. Let G be word-hyperbolic with finite symmetric generating
set S, and let L ⊂ S∗ be a combing of G with respect to S. A function φ : G→ Z

is weakly combable with respect to S, L (or weakly combable if S, L are understood)
if there is a digraph Γ parameterizing L and a function dφ from the vertices of Γ
to Z, such that for any word w ∈ L there is an equality

φ(e(w)) =
∑

i

dφ(γi(w))

(here e(w) on the left denotes an element of G and γi(w) on the right denotes
the vertices in Γ of the path corresponding to w ∈ L). If the maps e and γ are
understood, by abuse of notation we write this formula as

φ(w) =
∑

i

dφ(wi)

A function φ is combable if it is weakly combable and is Lipschitz as a map
from G, dL → Z. It is bicombable if it is weakly combable and is Lipschitz both as
a map from G, dL → Z and from G, dR → Z.

A weakly combable function is ergodic (resp. almost ergodic) if there is an
automaton Γ parameterizing L which has a unique maximal recurrent subgraph
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(resp. with maximal eigenvalue), and is regular if it is ergodic, and its recurrent
subgraph is aperiodic.

Warning 6.32. Remember that a combing L with respect to S can be param-
eterized by many different graphs Γ. If φ is weakly combable with respect to S,L
then there is some digraph Γ parameterizing L for which dφ is a function on Γ.
The particular parameterizing digraph Γ may definitely depend on φ.

Remark 6.33. There is no strict logical necessity to restrict attention to functions with
values in Z. One can vary the definition and for any finitely generated group H define
weakly combable H-functions, by defining dφ : Γ → H and replacing sum by group
multiplication in H . Since H is finitely generated, it makes sense to talk about left
Lipschitz and right Lipschitz functions from G to H and therefore to define combable and
bicombable H-functions. Notice with this definition that any homomorphism G→ H is a
bicombable H-function.

Example 6.34. Word length is bicombable.

Remark 6.35. Theorem 6.29 remains true, and with essentially the same proof, when
S is an asymmetric generating set which generates G as a semigroup. For semigroup
generators, one must slightly change the definition of a combing to say that words in L
represent shortest directed paths to their endpoints, rather than geodesics in CS(G). It
follows that Example 6.34 remains true in the more general context of word length with
respect to an asymmetric set of generators for G (as a semigroup).

The definition of weakly combable depends quite strongly on the choice of the
generating set S, as the following example shows.

Example 6.36. Let G = Z⊕ Z/2Z, and let the factors be generated by a and
b respectively. Define f : G→ Z by

f(w) =

{
n if w = an for some n ≥ 0

0 otherwise

Then f is weakly combable with respect to the generating set a, a−1, b; a digraph to
calculate f is depicted in Figure 6.5. On the other hand, f is not weakly combable

0

0 00

10
aa−1

b

aa−1

a

a

a−1

a−1

Figure 6.5. A digraph to calculate f

with respect to the generating set ab, a−1b, b. Note for this generating set that (ab)n

is the unique geodesic representing its value in G, and therefore (ab)n ∈ L for all
n. Suppose to the contrary that f is weakly combable with respect to ab, a−1b, b,
so there is a finite digraph Γ parameterizing L and a function df : Γ → Z as in
Definition 6.31. Since Γ is finite, there is a constant C such that |f(w)−f(ws)| ≤ C
whenever w and ws are words in L which differ by right multiplication by a single
generator. Yet f((ab)2n) = 2n for n ≥ 0, whereas f((ab)2n+1) = 0, so no such pair
L,Γ can exist.
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Example 6.36 shows that the property of weak combability is contingent, and
perhaps not so useful. By contrast, the Independence Theorem (Theorem 6.39, to
be proved shortly) shows that combability is independent of the choice of generating
set. For this reason, combable functions are much more useful and interesting than
weakly combable functions.

We introduce some definitions which will be useful in what follows.

Definition 6.37. Let G be hyperbolic with finite symmetric generating set S.
Let L be a combing with respect to S. Let B be the ball of radius N about id in G
with the metric inherited from CS(G), and let Σ be a finite set. A tile set is a map

T : B ×G→ Σ

such that for any pair of words w,ws ∈ L where s ∈ S, the map T (·, e(ws)) : B → Σ
depends only on T (·, e(w)) and s.

Definition 6.38. Let T be a tile set, and let Γ be a digraph parameterizing
L. The fiber product is the digraph ΓT parameterizing L defined as follows. The
vertices of ΓT are the functions of the form

(T (·, e(w)), γ(w)) : B → Σ× Γ

and (T (·, e(w)), γ(w)) is joined to (T (·, e(ws)), γ(ws)) by an edge labeled s whenever
w,ws ∈ L.

Geometrically, ΓT can be thought of as a bundle over Γ whose fiber at each
vertex v is the (finite) set of functions of the form T (·, e(w)) : B → Σ for all w
satisfying γ(w) = v.

Theorem 6.39 (Independence of combability). Let φ : G → Z be combable
with respect to some S′, L′. Then for any other generating set S and any combing
L with respect to S, the function φ is combable with respect to S, L.

Proof. If S, S′ are two generating sets, and L,L′ are two bijective geodesic
combings, then every word in L′ is quasigeodesic in CS(G) and by the Morse Lemma
(Theorem 3.30, bullet (1)), (asynchronously) fellow travels the word in L with the
same evaluation. That is, there are constants N and k such that the following is
true:

(1) For all words w′ in L′ and w in L with e(w′) = e(w), the path w′ (i.e.
the set of ei(w

′)) is contained in the N neighborhood of the path w (i.e.
the set of ei(w)) in CS(G). Furthermore, the path w′ intersects the N
neighborhood of every vertex on w (i.e. it comes uniformly close to every
vertex on w)

(2) If ei(w
′) ∈ BN (ej(w)) and el(w

′) ∈ BN (ej+1(w)), then |l − i| < k

Bullet (1) may be restated informally as saying that for every w′ ∈ L′ and w ∈ L
with e(w′) = e(w), the path corresponding to w′ is obtained by concatenating paths
xi of uniformly bounded length, whose endpoints are within a bounded distance of
successive vertices of w.

Now, suppose φ is combable with respect to L′. Let Γ′ be a digraph which
parameterizes words in L′ for which dφ : Γ′ → Z is defined. Let B denote the ball
of radius N around id in G with the metric inherited from CS(G).

We define a tile set T taking values in a certain finite set as follows. For each
g ∈ G and h ∈ B, let w ∈ L and w′ ∈ L′ evaluate to g and gh. That is, e(w) = g
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and e(w′) = gh. If some ei(w
′) is not contained in the N neighborhood of any

ej(w), or if the N neighborhood of some ej(w) does not intersect w′ (i.e. if the
conditions of bullet (1) above are violated), then T (h, g) = E, an “out of range”
symbol. Otherwise set

T (h, g) = (φ(gh)− φ(g), γ(w′))

in other words, the tuple consisting of the difference of φ on gh and g, and the
vertex of Γ′ corresponding to the endpoint of the path w′.

In words, for a fixed g ∈ G, the set of pairs h, g parameterizes the ball of radius
N about g. For every element gh of this ball, there is a unique path in L′ which
evaluates to gh. If this path does not stay in the N neighborhood of the path in L
evaluating to g, the value of T is out of range. Otherwise, T calculates the value of
φ on the element gh (normalized by subtracting the value of φ on g) and the vertex
of Γ′ associated to the word of L′ corresponding to gh.

Since φ is Lipschitz in the CS′(G) metric, it is also Lipschitz in the CS(G)
metric, so the normalized values of φ on BN (g) are uniformly bounded, independent
of g ∈ G. This shows that T takes values in a finite set. This is the only place
where combability (as distinct to weak combability) is used in the proof. We will
show that T is a tile set.

Remark 6.40. In fact, the second factor of T is by itself already a tile set; on a first
reading, it is worth verifying this fact alone, and then seeing how it can be used to deduce
the stronger claim about T .

To verify that T is a tile set, we just need to check that if w,ws ∈ L then
T (·, e(ws)) depends only on T (·, e(w)) and on s.

Let h ∈ B, and suppose w′ ∈ L′ is such that e(w′) = e(ws)h ∈ G. If the
path w′ is contained in the N neighborhood of the path ws, there is a factorization
w′ = v′x in L′ where e(v′) is within distance N of e(w), and where x is a path in Γ′

of length ≤ k. So for each f ∈ B with e(v′) = e(w)f we can enumerate the set of all
paths α in Γ′ of length ≤ k starting at γ(v′), and see whether fe(α) = e(s)h. If no
such f, α exists, then T (h, e(ws)) = E. Otherwise, the state γ(w′) can be deduced
from the state γ(v′) and from x (this shows that the second factor of T is a tile
set), and we can calculate

φ(e(ws)h) − φ(e(w)f) =
∑

i

dφ(αi)

If h = id then some such f, α is guaranteed to exist, by the discussion above. Hence
φ(e(ws))−φ(e(w)f) can be calculated, and therefore for any h ∈ B we can calculate
φ(e(ws)h) − φ(e(ws)) without using w, and therefore T (·, e(ws)) depends only on
T (·, e(w)) and on s, not on ws. This shows that T is a tile set.

If Γ is a digraph parameterizing L, we build the fiber product ΓT . Since
φ(e(ws)) − φ(e(w)f) and φ(e(w)f) − φ(e(w)) depend only on T (·, w) and s, the
value of φ(e(ws)) − φ(e(w)) depends only on s and the vertex γ(w) of ΓT . So we
can define dφ as a function on the resolution (ΓT )1 of ΓT , where the value of dφ
on the vertex of (ΓT )1 corresponding to the edge from γ(w) to γ(ws) is equal to
φ(e(ws)) − φ(e(w)).

By construction, dφ satisfies

φ(e(w)) =
∑

i

dφ(γi(w))
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and therefore φ is combable with respect to S,L. �

Notation 6.41. Denote the class of combable and bicombable functions on G
by C(G) and B(G) respectively.

Lemma 6.42. C(G) and B(G) are free Abelian groups.

Proof. If φ is (bi-)combable, then obviously so is −φ.
Let φ1, φ2 be combable. Then they are combable with respect to some fixed

combing S,L. Let Γ1,Γ2 be digraphs parameterizing L for which dφi : Γi → Z

is defined. Define a new digraph Γ with one vertex for each pair of vertices from
Γ1,Γ2 and with an edge labeled s from (v1, v2) to (v′1, v

′
2) if and only if there is an

edge of Γi from vi to v′i labeled s for i = 1, 2. The initial vertex of Γ is the pair
consisting of the initial vertices of Γ1,Γ2 respectively. Let Γ′ be the subgraph of Γ
consisting of the union of all directed paths starting at the initial vertex. Then Γ′

parameterizes L, and d(φ1 + φ2) is a function on Γ′ defined by

d(φ1 + φ2)(v1, v2) = dφ1(v1) + dφ2(v2)

and therefore φ1 + φ2 is weakly combable. A sum of two functions which are
Lipschitz in the dL (resp. dR) metric is Lipschitz in the dL (resp. dR) metric, so
φ1 + φ2 is (bi-)combable if both φi are.

This shows that C(G) and B(G) are Abelian groups. Since they take values in
Z, they are torsion-free, and not infinitely divisible. �

Example 6.43. Let G = F2 = 〈a, b〉 and let f : G→ Z be defined by

f(w) =

{
|w| if w starts with a

0 otherwise

Then f is weakly combable; a digraph to calculate f is illustrated in Figure 6.6.
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Figure 6.6. A digraph to calculate f

Moreover, f is Lipschitz in the dL metric and therefore combable. However,
f(an) = n whereas f(ban) = 0 so f is not Lipschitz in the dR metric, and is not
bicombable.
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6.3.3. Quasimorphisms. There are several natural operations which can be
defined on functions φ : G→ R, including the following:

(1) The adjoint of φ, denoted φ∗, defined by

φ∗(a) = φ(a−1)

(2) The antisymmetrization of φ, denoted φ′, defined by

φ′(a) =
1

2
(φ(a) − φ(a−1)) =

1

2
(φ − φ∗)(a)

In general, neither operation preserves weak combability, although if both φ
and φ∗ are weakly combable, so is 2φ′.

Lemma 6.44. Suppose φ is weakly combable, and Lipschitz in the dR metric.
Then there is a constant C so that if w ∈ L is expressed as a product of subwords
w = uv then |φ(w) − φ(u)− φ(v)| ≤ C.

Proof. Let Γ be a digraph which parameterizes L. Let u′ ∈ L be any word
such that γ(u) = γ(u′). Then φ(w) = φ(u) + φ(u′v) − φ(u′). Choose u′ so that
|u′| ≤ |Γ|. Since φ is Lipschitz in the dR metric, there is a constant C1 so that
|φ(u′v)−φ(v)| ≤ C1. Since |u′| is bounded, there is a constant C2 so that |φ(u′)| ≤
C2. Hence

|φ(w) − φ(u)− φ(v)| ≤ |φ(u′v)− φ(u′)− φ(v)| ≤ C1 + C2

proving the Lemma. �

In words, Lemma 6.44 says that φ is almost additive under decomposition.

Lemma 6.45. Suppose φ is bicombable. Then there is a constant C so that if
w ∈ L is expressed as a product of subwords w = uv then

|φ∗(w)− φ∗(u)− φ∗(v)| ≤ C
Proof. We have w−1 = v−1u−1 in G but not necessarily in L. Let z ∈ L

represent w−1, and express z as a product of subwords z = xy where dL(v−1, x) ≤ δ
and dR(u−1, y) ≤ δ. By Lemma 6.44, |φ(z)− φ(x) − φ(y)| ≤ C. But φ(z) = φ∗(w)
whereas |φ∗(v) − φ(x)| ≤ δC1 and |φ∗(u) − φ(y)| ≤ δC1 for some C1 because φ is
bicombable (and therefore Lipschitz in both dL and dR). The Lemma now follows
from the triangle inequality. �

Theorem 6.46. Let φ : G→ Z be bicombable. Then the antisymmetrization φ′

is a quasimorphism.

Proof. Let u, v ∈ L be arbitrary, and let w ∈ L satisfy e(w) = e(u)e(v). Then
we can write u = u′x, v = yv′ and w = w1w2 as words in L so that dL(y, x−1) ≤ δ,
dL(u,w1) ≤ δ and dR(v, w2) ≤ δ, by δ-thinness of triangles in CS(G).

Now apply Lemma 6.44, Lemma 6.45 and antisymmetry. �

Remark 6.47. Say that a function φ : G→ R is almost antisymmetric if there is a constant
C so that |φ(a)+φ∗(a)| ≤ C for all a ∈ G. The arguments above can be modified to show
that an almost antisymmetric bicombable function is a quasimorphism.

Theorem 6.46 can be used to give a surprisingly simple construction of non-
trivial quasimorphisms on any hyperbolic group.
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Example 6.48. Let G be hyperbolic, and let T be a finite asymmetric set
which generates G as a semigroup. Let wT : G → Z be word length with respect
to T . Then define

hT (a) = wT (a)− wT (a−1)

for all a ∈ G.
By Remark 6.35, wT is bicombable and therefore hT is a quasimorphism.
In fact, it is straightforward to give a direct proof that hT is a quasimorphism,.

Let S be the symmetrization of T , and construct the Cayley graph CS(G). First
of all, it is obvious that hT is Lipschitz in both the dR and the dL metrics.

Secondly, every word in T is a path in CS(G) (but not conversely). A shortest
path in CS(G) from id to a representing a word in T will be called a realizing path
for a. Since every element in S can be written as a word of bounded length in
T , there are uniform constants k, ǫ so that realizing paths are k, ǫ quasigeodesic in
CS(G). In particular, if la and la−1 are realizing paths for a and a−1 respectively,
then la and ala−1 are δ′ close for some δ′ not depending on a. So if u is arbitrary,
and u = vw where v is on a realizing path for u, then w−1 is within distance δ′ of
a realizing path for u−1. It follows that there is a constant C such that

|hT (u)− hT (v)− hT (w)| ≤ C
for any such factorization. In other words, hT is almost additive under decomposi-
tion.

Now, if a, b are arbitrary, and la, lb, lab are realizing paths for a, b, ab respec-
tively, then la, alb, lab are three sides of a δ′ thin quasigeodesic triangle. This tri-
angle can be decomposed into six segments which are δ′ close in pairs. Since hT
is antisymmetric, and Lipschitz in both dL and dR, the values of hT on paired
segments almost cancel. Since hT is almost additive under decomposition, hT (ab)
and hT (a) + hT (b) are almost equal, and we are done. This shows that hT is a
quasimorphism.

For typical asymmetric T , the function hT is unbounded. This is not completely
trivial, but follows from estimates on the length of anti-aligned translates of an axis
(compare with Remark 3.12). When G is nonelementary, by varying the choice of
generating sets T and taking infinite (L1) linear combinations, one can construct a
subspace of Q(G) with dimension 2ℵ0 , giving a new proof of the main theorem of
Epstein–Fujiwara ([78], Thm. 1.1).

6.4. Counting quasimorphisms

6.4.1. Greedy algorithm. In § 3.5 we discussed Fujiwara’s construction of
counting quasimorphisms associated to an action of a group G on a δ-hyperbolic
graph X . In the special case that G is a hyperbolic group, and X is the Cayley
graph of G with respect to a finite generating set S, such quasimorphisms were
constructed first by Epstein–Fujiwara [78], generalizing Brooks [27]. Our aim in
this section and the next is to show that counting quasimorphisms are bicombable.

For the sake of clarity, we spell out the definition of Epstein–Fujiwara counting
quasimorphisms.

Definition 6.49. Let G be a hyperbolic group with symmetric generating set
S. Let σ be an oriented simplicial path in the Cayley graph CS(G) and let σ−1

denote the same path with the opposite orientation. For γ an oriented simplicial
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path in CS(G), let |γ|σ denote the maximal number of disjoint copies of σ contained
in γ. For a ∈ G, define

cσ(a) = dist(id, a)− inf
γ

(length(γ)− |γ|σ)

where the infimum is taken over all directed paths γ in CS(G) from id to a.
Define a (small) counting quasimorphism to be a function of the form

hσ(a) := cσ(a)− cσ−1(a)

This is a special case of Fujiwara’s construction in § 3.5 and therefore when
|σ| ≥ 2, Lemma 3.46 applies, and realizing paths are (uniformly) quasigeodesic in
CS(G).

Let σ be a string. If w is a word, let |w|σ count the maximal number of disjoint
copies of σ in w. Similarly, let |w|′σ count disjoint copies of σ in w using the greedy
algorithm. In other words, define |w|′σ inductively on the length of w by the equality

|w|′σ = |v|′σ + 1

where v is the word obtained from w by deleting the prefix up to and including the
first occurrence of σ in w.

The advantage of | · |′σ over | · |σ is that it is evident from the definition that
d| · |′ can be calculated by a finite state automaton. On the other hand, we have
the following:

Lemma 6.50 (Greedy is good). The functions | · |σ and | · |′σ are equal.

Proof. Suppose not, and let w be a shortest word such that |w|σ and |w|′σ
are not equal. By definition, |w|′σ < |w|σ, and since w is the shortest word with
this property, by comparing the values of the two functions on prefixes of w, we
conclude |w|′σ = |w|σ−1. Since w is the shortest word with this property, the suffix
of w must be a copy of σ that is counted by | · |σ but not by | · |′σ. Hence the greedy
algorithm must count a copy of σ that overlaps this suffix. Deleting the terminal
copy of σ reduces the values of both | · |σ and | · |′σ by 1, contrary to the hypothesis
that w was shortest. �

6.4.2. Counting quasimorphisms are bicombable.

Theorem 6.51 (Calegari–Fujiwara [50]). Let G be hyperbolic, and let hσ be an
Epstein–Fujiwara counting quasimorphism. Then hσ is bicombable.

Proof. We give a somewhat informal proof, which can be made rigorous by
translating it into the language of tile sets, and following the model of Theorem 6.39.

Fix a hyperbolic groupG and a symmetric generating set S. Let L be a combing
for G. Remember that this means that L is a prefix-closed regular language of
geodesics in G (with respect to the fixed generating set S) for which the evaluation
map is a bijection L → G. If w ∈ L corresponds to w in G, let γw be the path in
CS(G) from id to w.

Let σ be a string. We will show that both cσ and cσ−1 are weakly combable with
respect to the generating set S and any combing L. By bullet (2) of Lemma 3.45,
these functions are Lipschitz in the dL metric, and therefore combable. Lemma 6.42
implies that their difference hσ is also combable; since it is a quasimorphism, it is
bicombable.

In the remainder of the proof, for the sake of clarity, we abbreviate cσ to c.
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Fix a word w ∈ L. By Lemma 3.46, a realizing path α for w is a K, ǫ quasi-
geodesic, and therefore by the Morse Lemma, there is a constant N depending only
on δ,K, ǫ (and not on w) so that α and γw are contained in N -neighborhoods of
each other. Hence every vertex of α is contained in the N -neighborhood of some
vertex of γw and conversely. For each i, let BN (γw(i)) denote the N -neighborhood
of γw(i). By uniform quasigeodesity of α, and geodesity of γ, if p ∈ BN (γw(i)) and
q ∈ BN (γw(i+ 1)) are both on α, then the segment of α from p to q has uniformly
bounded length. Let p ∈ BN (γw(i)) for some i. Say a path γ′ from id to p is admis-
sible if it is K, ǫ-quasigeodesic, and if for all j < i the path γ′ intersects BN (γw(j)).
Thus, an admissible path is obtained by concatenating paths of bounded length
whose endpoints are contained in N -neighborhoods of successive vertices of γw.

For each p ∈ BN (γw(i)) and each path γ′ from id to p, recall that |γ′| is the
maximal number of disjoint copies of σ in γ′. By Lemma 6.50, the greedy algorithm
picks out |γ′| specific disjoint copies which we refer to as the greedy copies of σ in
γ′; let σ(γ′) be the biggest prefix of σ which is a suffix of γ′ and which is disjoint
from the greedy copies of σ in γ′. Let X denote the set of possible values of σ(γ′).
Note that |X | = |σ|, since the values of X are in bijection with proper prefixes of
σ. One can think of the set X as the states of an automaton that reads a word,
and finds the greedy copies of σ in that word.

We define a function T as follows. The domain of T is BN (id) ×X × G. Fix
h ∈ BN (id) and γw(i) ∈ G. Let g = γw(i)h ∈ BN (γw(i)). For each x ∈ X , consider
the set of all admissible paths γ′ from id to g that satisfy σ(γ′) = x. If no such
path exists, define T (h, x, γw(i)) = E, an “out of range” symbol. Otherwise, define

c(g, x) = dist(id, g)− inf
γ′

(length(γ′)− |γ′|)

where the infimum is taken over γ′ as above. Notice that maxx c(g, x) = c(g) if
there is some admissible realizing path. In particular, maxx c(γw(i), x) = c(γw(i)).
If some γ′ exists as above, define

T (h, x, γw(i)) = c(γw(i))− c(g, x)

If there is any admissible path γ′ from id to g that ends in state x, there is such
a path obtained by composing a realizing path for γw(i) with a suffix of bounded
length. Together with bullet (2) of Lemma 3.45, this implies that T takes values in
a finite set.

Suppose we know the value of T on BN (id) × X × γw(i). Let h ∈ BN (id),
and define g′ = γw(i + 1)h. Any admissible path from id to g′ is obtained by
concatenating an admissible path from id to some g ∈ BN (γw(i)) with a path of
bounded length. So if we can compute d(id, g′)−d(id, g) we can compute c(g′, x)−
c(g, y) for any x, y ∈ X . Since G is hyperbolic, and γw is geodesic, we can keep
track of relative distances from id to points in the ball of radius N about points
on γw, and therefore we can compute d(id, g′)− d(id, g) by keeping track of only a
finite amount of information at each stage. We define a digraph parameterizing L
that keeps track at each stage of the following two pieces of information, thought
of as functions on the ball of radius N about the current vertex in CS(G):

(1) The relative distances from id
(2) The value of T
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By the discussion above, this is a finite digraph, and dc is well-defined as a function
on the vertices of its first refinement (cf. Theorem 6.39). Hence cσ and cσ−1 are
combable, and the proof follows. �

Remark 6.52. The pair consisting of T and relative distance to id is almost a tile set,
except that the domain is slightly larger (since T depends, in addition to BN (id) and G,
on the choice of an element in the finite set X). Otherwise, the proof is conceptually very
similar to that of Theorem 6.39.

6.5. Patterson–Sullivan measures

The crucial difficulty in extending Theorem 6.13 to general word-hyperbolic
groups is the fact that the digraphs associated to arbitrary word-hyperbolic groups
are (typically) not recurrent. This means that the stationary Markov chains ob-
tained by generalizing the construction of § 6.1.4 are not typically ergodic, and the
Perron–Frobenius Theorem (i.e. Theorem 6.6) does not directly apply.

The first important result we use in this section is Coornaert’s Theorem, which
says that in a non-elementary word-hyperbolic group G, if we fix a finite generating
set, there are constants λ > 1 and K ≥ 1 so that the number of words of length
n is bounded between K−1λn and Kλn for all n. This implies that one can find a
digraph parameterizing a combing of G which is almost semisimple — that is, the
eigenspace of largest absolute value is diagonalizable, and the system (measurably)
decomposes into a finite number of independent ergodic subsystems. Consequently,
most long geodesics in G can be partitioned into finitely many families, each (more-
or-less) parameterized by random walks on a recurrent digraph whose associated
stationary Markov chain is ergodic, and obeys a central limit theorem.

A priori, there is no apparent way to compare long geodesics in different fami-
lies. However, in place of recurrence of a single digraph, one can use the ergodicity of
the action ofG at infinity, on the boundary ∂G with its Patterson–Sullivan measure.
A typical infinite geodesic in one family can be translated by left-multiplication to
within bounded distance of a typical infinite geodesic in any other family. A bi-
combable function is almost invariant under both left and right multiplication by
elements of bounded size, so the distribution of values on a typical infinite geodesic
in one family is the same as the distribution on a typical infinite geodesic in the
other. In other words, the values of the function on typical paths in one family have
the same distribution as the values of typical paths in any other, and we obtain a
central limit theorem for the group as a whole. The next few sections flesh out the
details of this scheme.

6.5.1. Some linear algebra. Let Γ be a finite pointed digraph. Let V be the
real vector space spanned by the vertices of Γ, and let 〈·, ·〉 be the inner product on
V for which the vertices are an orthonormal basis.

The vertices of Γ are denoted vi for i ∈ {1, · · · , n}. We let v1 denote the initial
vertex. For a vector v ∈ V , let |v| denote the L1 norm of v. That is,

|v| =
∑

i

|〈v, vi〉|

For brevity, let 1 denote the vector with all co-ordinates equal to 1, so for a non-
negative vector v, there is equality |v| = 〈v,1〉.

The digraphs Γ that parameterize combings of hyperbolic groups are not com-
pletely general, but satisfy a number of special properties. We formalize these
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properties as follows. Let M denote the adjacency matrix of Γ, so that the number
of directed paths in Γ of length n from vi to vj is

(vi)
TMnvj = 〈vi,Mnvj〉 = (Mn)ij

Definition 6.53. A digraph Γ is almost semisimple if it satisfies the following
properties.

(1) There is an initial vertex v1
(2) For every i 6= 1 there is a directed path in Γ from v1 to vi
(3) There are constants λ > 1,K ≥ 1 so that

K−1λn ≤ |vT1 Mn| ≤ Kλn

for all positive integers n

In what follows we will assume that Γ is almost semisimple.

Lemma 6.54. Suppose Γ is almost semisimple. Then λ is the largest real eigen-
value of M . Moreover, for every eigenvalue ξ of M either |ξ| < λ or else the
geometric and the algebraic multiplicities of ξ are equal.

Proof. It is convenient to work withMT in place ofM . To prove the lemma, it
suffices to prove analogous facts about the matrixMT . Corresponding to the Jordan
decomposition of MT over C, let ξ1, . . . , ξm be the eigenvalues of the corresponding
Jordan blocks (listed with multiplicity).

Bullet (2) from Definition 6.53 implies that for any vi, there is an inequality
|(Mn)T vi| ≤ Ci|(Mn)T v1| for some constant Ci. Since the vi span V , and since
V is finite dimensional, there is a constant C such that for all w ∈ V there is an
inequality |(Mn)Tw| ≤ C|(Mn)T v1||w|.

For each i, there is some wi in the ξi-eigenspace for which

|(Mn)Twi| ≥ constant · nk−1|ξi|n

where k is the dimension of the Jordan block associated to ξi. Since |(Mn)Twi| ≤
C|(Mn)T v1||wi|, by bullet (3) from Definition 6.53, either |ξ| < λ or |ξ| = λ and
k = 1.

By the Perron–Frobenius theorem for non-negative matrices, MT has a largest
real eigenvalue λ′ such that |ξ| ≤ λ′ for all eigenvalues ξ. We must have λ′ = λ by
the estimates above. Note that M has the same spectrum as MT with the same
multiplicity, and that all the ξ eigenspaces of M are diagonalizable for |ξ| = λ. �

For any vector v ∈ V , decompose v =
∑

ξ v(ξ) into the components in the
generalized eigenspaces of the eigenvalues ξ. Since any two norms on V ⊗ C are
equivalent, there is a constant K > 1 such that

K−1 ≤ |Mnv|∑
ξ |Mnv(ξ)| ≤ K

and similarly for MT .

Lemma 6.55. For any vector v ∈ V , the following limit

ρ(v) := lim
n→∞

n−1
∑

i≤n

λ−iM iv

exists and is equal to v(λ).
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Proof. We suppress v in the notation that follows. For each eigenvector ξ
define

ρn(ξ) = n−1
∑

i≤n

λ−iM iv(ξ)

And set ρn =
∑
ξ ρn(ξ). With this notation, ρ = limn→∞ ρn, and we want to

show that this limit exists.
By Lemma 6.54, for each ξ, either |ξ| < λ or v(ξ) is a ξ-eigenvector. In the first

case, ρn(ξ) → 0. In the second case, either ξ = λ, or else the vectors λ−iM iv(ξ)
become equidistributed in the unit circle in the complex line of V ⊗ C spanned by
v(ξ). It follows that ρn(ξ)→ 0 unless ξ = λ.

So n−1
∑

i≤n λ
−iM iv(ξ) → 0 unless ξ = λ, in which case ρn(λ) = v(λ) is

constant. �

Since every eigenvalue of M with largest (absolute) value has geometric mul-
tiplicity equal to its algebraic multiplicity, the same is true of the transpose MT .
The same argument as Lemma 6.55 implies

Lemma 6.56. For any vector v ∈ V , the following limit

ℓ(v) := lim
n→∞

n−1
∑

i≤n

λ−i(MT )iv

exists, and (ℓ(v))T is the projection of vT onto the left λ eigenspace of M .

For any vi, the partial sums ρn(vi) are non-negative real vectors so if v is
non-negative, so is ρ(v). Similarly, if v is non-negative, so is ℓ(v).

Proposition 6.57. For any v, w ∈ V there is equality

〈ℓ(v), w〉 = 〈ℓ(v), ρ(w)〉 = 〈v, ρ(w)〉
Proof. By definition,

〈ℓ(v), ρ(w)〉 = lim
n→∞


n−1

∑

i≤n

λ−ivTM i




n−1

∑

j≤n

λ−jM jw




= lim
n→∞

n−2
∑

i,j≤n

λ−i−jvTM i+jw

= lim
n→∞

n−2
∑

k≤2n

(n+ 1− |n− k|)λ−kvTMkw

= lim
n→∞

n−2
∑

k≤2n

(n+ 1− |n− k|)λ−kℓ(v)TMkw

= lim
n→∞

n−2n(n+ 1)ℓ(v)Tw = 〈ℓ(v), w〉

where the third last equality follows from the “almost periodicity” of λ−1M so that
all terms except the (left and right) λ-eigenvalues cancel over any long consecutive
sequence of indices. We get 〈ℓ(v), ρ(w)〉 = 〈v, ρ(w)〉 by the same reason. �

Recall that a component of Γ is a maximal recurrent subgraph C; i.e. a subgraph
with the property that there is a directed path from any vertex to any other vertex.
Each component C has its own adjacency matrix, with biggest real eigenvalue ξ(C).
Since C is a subgraph of Γ, we must have ξ(C) ≤ ξ(Γ) = λ for any C.
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Lemma 6.58. Let Γ be almost semi-simple. If C,C′ are distinct components
with ξ(C) = ξ(C′) = λ then there is no directed path from C to C′.

Proof. Recall the Landau notation f(x) = Θ(g(x)) if the ratio f(x)/g(x) is
bounded away from zero and away from infinity.

Let u be a vertex in C and v a vertex in C′ such that there is a directed path
γ from u to v. Since C is recurrent, Proposition 6.7 implies that there are Θ(λn)
directed paths in C starting at u of length n, and similarly for paths in C′ starting
at v. There is a constant k so that each vertex in C can be joined by a path of
length at most k to some v. So for each pair of integers i, n− i consider the set of
paths of length between n and n+ k which consist of an initial segment of length
i in C starting at u, followed by a path of length ≤ k to v, followed by a terminal
segment of length n − i in C. The number of such paths for fixed i is Θ(λn), so
the number of paths for varying i is Θ(nλn). But if Γ is almost semi-simple, the
number of paths of length between n and n+k (of any kind) is Θ(λn), so we obtain
a contradiction. �

6.5.2. Coornaert’s Theorem and Patterson–Sullivan measures. Let G
be a non-elementary word-hyperbolic group with generating set S. For g ∈ G, let
|g| denote word length with respect to S.

Definition 6.59. The Poincaré series of G is the series

ζG(s) =
∑

g∈G

e−s|g|

This series diverges for all sufficiently small s, and converges for all sufficiently
large s. The critical exponent is the supremum of the values of s for which the series
diverges. Similar zeta functions appear in many contexts, for example in number
theory and dynamics. The best results can be expected when the series diverges at
the critical exponent.

Theorem 6.60 (Coornaert, [56] Thm. 7.2). Let G be a non-elementary word-
hyperbolic group with generating set S. Let Gn be the set of elements of word length
n. Then there are constants λ > 1,K ≥ 1 so that

K−1λn ≤ |Gn| ≤ Kλn

for all positive integers n.

It follows from Theorem 6.60 that the critical exponent of the Poincaré series
is equal to log(λ), and the series ζG(log(λ)) diverges.

For each n, let νn be the probability measure on G defined by

νn =

∑
|g|≤n λ

−|g|δg∑
|g|≤n λ

−|g|

where δg is the Dirac measure on the element g. The measure νn extends trivially
to a probability measure on the compact space G∪∂G, where ∂G denotes the ideal
(Gromov) boundary of G.

Definition 6.61. A weak limit ν := limn→∞ νn is a Patterson–Sullivan mea-
sure associated to S.
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Since the Poincaré series diverges at the critical exponent, the support of ν is
contained in ∂G.

It is convenient, for the sake of computations, to work with a slightly different
normalization of ν. For each n, let ν̂n be the measure on G defined by

ν̂n =
1

n

∑

|g|≤n

λ−|g|δg

and let ν̂ := limn→∞ ν̂n be a weak limit. Of course the measures ν̂n and νn are
proportional for each n. Moreover, by Theorem 6.60, the constant of proportionality
is bounded above and below.

Remark 6.62. In fact, the limit of the bνn exists and is well-defined. This is guaranteed
by an explicit formula for bν, which is given in § 6.5.3.

The group G acts on itself by left-multiplication. This action extends continu-
ously to a left action G× ∂G→ ∂G. Patterson–Sullivan measures enjoy a number
of useful properties, summarized in the following theorem.

Theorem 6.63 (Coornaert, [56] Thm. 7.7). Let ν be a Patterson–Sullivan
measure. The action of G on ∂G preserves the measure class of ν. Moreover, the
action of G on (∂G, ν) is ergodic.

The meaning of ergodicity for a group action which preserves a measure class
but not a measure is that for any A,B ⊂ ∂G with positive ν-measure, there is
g ∈ G with ν(gA ∩B) > 0. Since ν and ν̂ are proportional, the action of G on ∂G
is also ergodic for the ν̂ measure.

In fact, Coornaert proves the stronger fact that there is a constant K > 1 so
that for any s ∈ S there is an inequality

K−1 ≤ d(s∗ν)

dν
≤ K

and the same is true for the measure ν̂, though we do not use this stronger fact.

6.5.3. Construction of stationary measure. Throughout the sequel we fix
the following notation.

Let G be word-hyperbolic, and φ : G → Z a bicombable function. Fix a finite
generating set S, and let L ⊂ S∗ be a combing of G with respect to S. Since φ is
bicombable, dφ exists as a map from Γ→ Z for some digraph Γ parameterizing L,
by Theorem 6.39.

Let M denote the adjacency matrix of Γ, acting on V , the space of real-valued
functions on the vertices of Γ. Let v1 ∈ V be the function taking the value 1 on
the initial vertex, and 0 on all other vertices. Let 1 denote the constant function
taking the value 1 on every vertex of Γ.

For each n let Xn denote the set of walks of length n on Γ (starting at an
arbitrary vertex) and Yn the set of walks of length n starting at the initial vertex.
There are restriction maps Xn+1 → Xn and Yn+1 → Yn for each n, with inverse
limits X and Y . Evaluation of words gives rise to bijections Yn → Gn for all n;
taking limits, there is a map Y → ∂G, called the endpoint map, taking an infinite
word to the endpoint of the corresponding geodesic ray in G.

Lemma 6.64 (Coornaert–Papadopoulos). The endpoint map Y → ∂G is sur-
jective, and bounded-to-one.
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See [57] for a proof.

Remark 6.65. In fact, obtaining a bound on the size of the preimage of a point in ∂G
is straightforward. If γ, γ′ are infinite geodesics corresponding to paths in Y with the
same endpoint in ∂G, then their Hausdorff distance is bounded by δ, the constant of
hyperbolicity of G. For any point γi ∈ γ, let Bi denote the ball of radius δ about γi.
Then γ′ must intersect Bi, and the prefix of γ′ up to this point of intersection is uniquely
determined by the fact that γ′ corresponds to a path in Y . Hence γ′ may be thought of
as an element of the inverse limit of a partially defined system of maps Bi → Bi−1. Since
|Bi| ≤ C for all i for some constant C, the cardinality of this inverse limit is also bounded
by C.

Each g ∈ Gn corresponds to a unique word w ∈ L and a unique path y ∈ Yn.
For each m > n the projection p : Ym → Yn determines a subset p−1(y) ∈ Ym and
a corresponding subset of Gm. The set of h ∈ G corresponding to words z in some
Ym which restricts to a fixed y is called the cone of g, and denoted cone(g). Note
that cone(g) depends on L, but not on Γ. For each fixed n, we can define a measure
ν̂ on Gn by

ν̂(g) = lim
m→∞

ν̂m(cone(g))

(an explicit formula is given below). Identifying Gn with Yn, we obtain a measure
on Yn for each n which by abuse of notation we denote ν̂. Observe that these
measures for different n have the following compatibility property: for each y ∈ Yn
and each m > n, there is an equality ν̂(p−1(y)) = ν̂(y) where p : Ym → Yn is the
restriction map. This compatibility property means that we can define a measure
ν̂ on Y by the formula

ν̂(p−1(y)) = ν̂(y) = lim
n→∞

ν̂n(cone(g))

where p : Y → Yn is restriction. Since the cylinders p−1(y) generate the Borel
σ-algebra of Y , this defines a unique measure ν̂ on Y which by construction pushes
forward under Y → ∂G to the measure ν̂ of the same name on ∂G.

We can obtain an explicit formula for the value of ν̂ on an element g ∈ Gn or
the corresponding element y ∈ Yn or cylinder p−1(y) ⊂ Y . By definition, for any
g ∈ Gn and any m ≥ n we have

ν̂m(cone(g)) =
1

m

∑

h∈cone(g)
|h|≤m

λ−|h|

Let vg ∈ Γ be the last vertex of y. Then we can rewrite this formula as

ν̂m(cone(g)) =
1

m
λ−n

∑

i≤m−n

λ−i〈(M i)T vg,1〉

and therefore by taking limits m→∞ we obtain the formula

ν̂(cone(g)) = λ−n|ℓ(vg)| = λ−n〈ℓ(vg),1〉 = λ−n〈vg, ρ(1)〉
where overline denotes closure in G ∪ ∂G, and where we have used the property
that ℓ(·) of a non-negative vector is non-negative, and Proposition 6.57 for the last
equality.
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The measure ν̂ on Y is typically not invariant under the shift map S : X → X .
In fact, S(Y ) ∩ Y = ∅ if the initial vertex has no incoming edges. We define a
measure µ on X by

µ := lim
n→∞

n∑

i=1

1

n
Si∗ν̂

and observe that the result is manifestly invariant by S. Using the explicit formula
for ν̂ on Yn and Y we can derive an explicit formula for µ, showing that µ is
well-defined.

Let vj ∈ Γ = X0 be an arbitrary vertex. By abuse of notation, we let p : X →
X0 denote the restriction map of an infinite path to its initial vertex (this is similar
to, but should not be confused with, the restriction maps p : Ym → Yn discussed
earlier). We will calculate µ(p−1(vj)). For each n we can calculate

Sn∗ ν̂(p
−1(vj)) = λ−n

∑

y∈Yn

Sny=vj

〈vj , ρ(1)〉

On the other hand, the number of y ∈ Yn with Sny = vj is exactly equal to the
number of directed paths in Γ of length n which end at vj , which is 〈v1,Mnvj〉. It
follows that

µ(p−1(vj)) = lim
n→∞

〈vj , ρ(1)〉〈v1,
1

n

∑

i≤n

λ−nMnvj〉

= 〈vj , ρ(1)〉〈v1, ρ(vj)〉 = 〈vj , ρ(1)〉〈ℓ(v1), vj〉
If we define a measure µ on Γ by µi = ρ(1)iℓ(v1)i (where subscripts denote vector
components) then it follows that the map X → Γ taking each walk to its initial
vertex pushes forward the measure µ on X to the measure µ on Γ.

Define a matrix N with entries

Nij =
Mijρ(1)j
λρ(1)i

if ρ(1)i is nonzero, and set Nii = 1 and Nij = 0 otherwise. Recall that a non-
negative matrix N with the property that

∑
j Nij = 1 for any i is called a stochastic

matrix (compare with the matrix N in § 6.1.4).

Lemma 6.66. The matrix N is stochastic, and satisfies µN = µ.

Proof. For any i not in the support of ρ(1), we have
∑

j Nij = 1 by fiat.
Otherwise,

∑

j

Nij =
∑

j

Mijρ(1)j
λρ(1)i

=
(Mρ(1))i
λρ(1)i

= 1

This shows N is a stochastic matrix. To verify the second formula,

∑

i

µiNij =
∑

i

ρ(1)iℓ(v1)i
Mijρ(1)j
λρ(1)i

=
1

λ
ρ(1)j

∑

i

ℓ(v1)iMij

= ρ(1)jℓ(v1)j = µj

where the sum is over i with µi 6= 0 which implies ρ(1)i 6= 0. �
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By a further abuse of notation, we let p : X → Xn denote the restriction of an
infinite path to a suitable prefix. We can obtain a formula for the measure µ on
cylinders p−1(x) ⊂ X for x ∈ Xn in terms of the measure µ on Γ, and the matrix
N .

Lemma 6.67. For x ∈ Xn, there is equality

µ(p−1(x)) = µi0Ni0i1Ni1i2 · · ·Nin−1in

where x = (xi0 , xi1 , · · · , xin), and xij corresponds to the vertex vij of Γ.

Proof. Let g ∈ Gn. If γg is the corresponding walk in Γ, let vi be the last
vertex of γg. Then ν̂(g) = λ−nρ(1)i. Moreover, for each vertex vj , there are Mij

elements h ∈ cone(g) for which the corresponding walks γh have last vertex vj .
Each h has ν̂(h) = λ−n−1ρ(1)j so given g, the sum over h ∈ Gn+1 with h ∈ cone(g)
which have last vertex vj of ν̂(h) is Mijρ(1)j/λρ(1)i = Nij . In other words, given
any y ∈ Y whose nth vertex is vi, the probability in the ν̂ measure that its (n+1)st
vertex is vj is Nij . Since this formula does not depend on n but just vi and vj , the
lemma is proved. �

We call µ on Γ the stationary measure. It is not necessarily a probability
measure, but it determines a unique probability measure by scaling. By abuse of
notation, we refer to these two measures by the same name. Lemma 6.67 may be
interpreted as saying that a random walk on Γ with initial vertex chosen randomly
with respect to the stationary measure µ and with transition probabilities given by
the stochastic matrix N agrees with a random element of X with respect to the
measure µ.

The next Lemma describes the support of the stationary measure µ on Γ.

Lemma 6.68. The support of the stationary measure is equal to the disjoint
union of the maximal recurrent subgraphs Ci of Γ whose adjacency matrices have
biggest eigenvalue λ.

Proof. Since µi = ρ(1)iℓ(v1)i a vertex vi is in the support of µi if for some
large fixed k there are Θ(λn) paths of length between n and n + k from v1 to vi,
and Θ(λn) paths of length n from vi to some other vertex. It follows that some
path from v1 to vi intersects a maximal recurrent component C whose adjacency
matrix has biggest real eigenvalue ξ(C) = λ, and similarly there is some outgoing
path from vi which intersects a maximal recurrent component C′ with ξ(C′) = λ.
Lemma 6.58 implies that C = C′, and therefore vi ∈ C.

Conversely, let C be a recurrent subgraph of Γ whose adjacency matrix has
eigenvalue λ. Then ρ(1)i and ℓ(v1)i are positive for all vi in C, by counting only
paths which stay in C outside a prefix and suffix of bounded length. �

From the point of view of stationary measure, Γ decomposes into a finite union
of recurrent subgraphs Ci, each with Perron–Frobenius eigenvalue λ. Let N |Ci

denote the restriction of the stochastic matrix N to the subgraph Ci. Then N |Ci

is a stochastic matrix. Let µi denote the measure µ on Γ restricted to Ci, and
rescaled to be a probability measure. Then N |Ci preserves µi, and determines an
ergodic stationary Markov chain on the vertices of Ci.

Let φ be weakly combable. As in § 6.1.4 we can define S
i

n to be equal to the
sum of the values of dφ on a random walk on Ci of length n with respect to the
stationary measure µi and transition probabilities given by N |Ci .
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The Central Limit Theorem for ergodic stationary Markov chains implies

Lemma 6.69. Let φ be weakly combable. With terminology as above, there is
convergence in the sense of distribution

lim
n→∞

n−1/2(S
i

n − nEi)→ N(0, σi)

for some σi ≥ 0 where Ei denotes the average of dφ on Ci with respect to the
stationary measure µi, and N(0, σi) denotes the Gaussian normal distribution with
mean 0 and standard deviation σi.

This theorem is essentially due to Markov [146]. For a proof and more details,
as well as a precise formula for σ, see e.g. [179], Chapter 4, § 46 or [96], § 11.5,
especially Theorem 11.17. An excellent general reference is [127].

Remark 6.70. Note that σ = 0 is possible (for instance, φ could be identically zero), in
which case by convention, N(0, σ) denotes the Dirac distribution with mass 1 centered at
0.

6.5.4. Central Limit Theorem. In order to derive a central limit theorem
for the groupG as a whole, we must compare the means Ei and standard deviations
σi associated to distinct components Ci.

For each component Ci in the support of the stationary measure µ, let Y i ⊂ Y
denote the set of infinite paths in Γ which eventually enter Ci and stay there. Note
that the Y i are disjoint, and ν̂(Y −∪iY i) = 0. For each path γ ∈ Y we can consider
the following. Let γi ∈ G be the element corresponding to the evaluation of the
word which is equal to the prefix of γ of length i. We fix the following notation:
if r is a real number, let δ(r) denote the probability measure on R which consists
of an atom concentrated at r. For a given real number A, and for integers n,m we
can consider the following measure.

ω(n,m)(γ) =

m∑

i=1

1

m
δ
(
(φ(γi+n)− φ(γi)− nA)n−1/2

)

and then define ω(γ) = limn→∞ limm→∞ ω(n,m)(γ). Note that the existence of
this limit depends on the “correct” choice of A.

Definition 6.71. Let γ ∈ Y i. We say that γ is typical if ω(γ) exists for A = Ei,
and is equal to N(0, σi). More generally, if γ is an infinite geodesic ray in G, then
γ is E, σ-typical if ω(γ) exists for A = E and is equal to N(0, σ).

From Lemma 6.69 we obtain the following, which does not depend on φ being
bicombable, but only weakly combable:

Lemma 6.72. Almost every γ ∈ Y i with respect to the measure ν̂ is Ei, σi-
typical.

Proof. The following proof was suggested by Shigenori Matsumoto.
We fix the notation below for the course of the Lemma (the reader should be

warned that it is slightly incompatible with notation used elsewhere; this is done
to avoid a proliferation of subscripts). Let Ci be a component of Γ with Perron–
Frobenius root ξ(Ci) = λ. Let Yi be the set of infinite paths in Γ starting at v1
that eventually stay in Ci, and let Xi be the set of infinite paths in Ci. There is a
measure µ̂i on Xi obtained by restricting µ on X . The measure µ̂i is determined
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by a stationary measure µi on Ci and the transition matrix N(i), the restriction of
the measures µ and the matrix N defined in § 6.5.3. The measure µi is stationary
in the sense that µTi N(i) = µTi , so µ̂i is shift invariant. Since Ci is recurrent, µTi
is the only eigenvector of N(i) with eigenvalue 1, so µi is extremal in the space
of stationary measures. Therefore by the random ergodic theorem (see e.g. [168],
Ch. 10) the measure µ̂i on Xi is ergodic.

Now, there is a subset X∗i of Xi of full measure such that for all γ ∈ X∗i ,

1

m

m∑

0

δSkγ → µ̂i

in the weak∗ topology, where S denotes shift map, and δ is a Dirac mass. On
the other hand, on Yi there is a measure ν̂i which is the restriction of ν̂. Define
q : Yi → Xi by

q(γ) = Sn(γ)(γ)

where n : Yi → N satisfies the following condition. Let π : Xi → Ci take each
infinite walk to its initial vertex. Choose n so that π◦q : Yi → Ci sends the measure
ν̂i on Yi to a measure µq on Ci of full support. The measure q∗ν̂i on Xi is obtained
from an initial measure µq and the transition matrix N(i) as in § 6.5.3; it follows
that the measures q∗ν̂i and µi are equivalent (i.e. each is absolutely continuous with
respect to the other).

It follows that Y ∗i := q−1(X∗i ) has full measure with respect to ν̂i, and if γ ∈ Y ∗i ,
then

1

m

m∑

0

δSkγ → µ̂i

This shows that the geodesic ray in G associated to any γ ∈ Y ∗i is Ei, σi-typical,
and the lemma is proved. �

On the other hand, the following Lemma uses bicombability in an essential
way:

Lemma 6.73. Let γ be an E, σ-typical geodesic ray in G. If φ is combable and
if γ′ is a geodesic ray with the same endpoint at γ, then γ′ is also E, σ-typical. If
φ is bicombable then for any g ∈ G, the translate gγ is E, σ-typical.

Proof. Let γ and γ′ have the same endpoint. Then there is a constant C such
that dL(γi, γ

′
i) ≤ C and therefore |φ(γi)−φ(γ′i)| ≤ K for some K independent of i.

This shows that γ′ is E, σ-typical if γ is. Similarly, if g ∈ G then dR(gγi, γi) ≤ C
and therefore |φ(gγi)− φ(γi)| ≤ K for some K independent of i. �

We now come to the crucial point. For each i, let ∂iG denote the image of
the typical elements in Y i under the endpoint map Y → ∂G. Note that ν̂(∂iG)
is strictly positive for each i. By Theorem 6.63, for any i, j there is some g ∈ G
with ν̂(g∂iG ∩ ∂jG) > 0. It follows that there is a typical γ ∈ Y i and a typical
γ′ ∈ Y j such that (identifying elements of Y and geodesic rays in G starting at
id) the translate gγ and γ′ are asymptotic to the same endpoint in ∂G. Since φ is
bicombable, by Lemma 6.73, γ and γ′ are both Ei, σi-typical and Ej , σj-typical.
It follows that Ei = Ej and σi = σj . Together with Lemma 6.69, this proves the
Central Limit Theorem:
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Theorem 6.74 (Central Limit Theorem; Calegari–Fujiwara, [50]). Let φ be a
bicombable function on a word-hyperbolic group G. Let φn be the value of φ on a
random word of length n with respect to the ν̂ measure. Then there is convergence
in the sense of distribution

lim
n→∞

n−1/2(φn − nE)→ N(0, σ)

for some σ ≥ 0, where E denotes the average of dφ on Γ with respect to the sta-
tionary measure.

The following corollary does not make reference to the measure ν̂.

Corollary 6.75. Let φ be a bicombable function on a word-hyperbolic group
G. Then there is a constant E such that for any ǫ > 0 there is a K and an N so
that if Gn denotes the set of elements of length n ≥ N , there is a subset G′n with
|G′n|/|Gn| ≥ 1− ǫ, so that for all g ∈ G′n, there is an inequality

|φ(g)− nE| ≤ K · √n
As a special case, let S1, S2 be two finite symmetric generating sets for G. Word

length in the S2 metric is a bicombable function with respect to a combing L1 for
the S1 generating set. Hence:

Corollary 6.76. Let S1 and S2 be finite generating sets for G. There is a
constant λ1,2 such that for any ǫ > 0, there is a K and an N so that if Gn denotes
the set of elements of length n ≥ N in the S1 metric, there is a subset G′n with
|G′n|/|Gn| ≥ 1− ǫ, so that for all g ∈ G′n there is an equality

∣∣λ1,2|g|S1
− |g|S2

∣∣ =
∣∣λ1,2 · n− |g|S2

∣∣ ≤ K · √n
Remark 6.77. In Corollary 6.76 it is important to note that though a typical geodesic
word of length n in the S1 metric is represented by a geodesic word of length n · λ1,2 in
the S2 metric, with error of order

√
n, the resulting set of geodesic words in the S2 metric

are not themselves typical. Thus λ1,2λ2,1 > 1 in general. We give an example to illustrate
this phenomenon in § 6.5.5.

If φ is a quasimorphism, then |φ(g) + φ(g−1)| ≤ const. so if S is symmetric,
then necessarily E as above is equal to 0. Hence:

Corollary 6.78. Let φ be a bicombable quasimorphism on a word-hyperbolic
group G. Let φn be the value of φ on a random word of length n with respect to the
ν̂ measure. Then there is convergence in the sense of distribution

lim
n→∞

n−1/2φn → N(0, σ)

for some σ ≥ 0.

6.5.5. An example. Let F denote the free group on two generators a, b.
Let S1 denote the symmetric generating set S1 = 〈a, b, a−1, b−1〉 and S2 the sym-
metric generating set S2 = 〈a, b, c, a−1, b−1, c−1〉 where c = ab (and therefore
c−1 = b−1a−1). We compare word length in the S1 and the S2 metrics.

One can verify that a word in the S2 generating set is a geodesic if and only
if it is reduced, and contains no subwords of the form a−1c, cb−1, c−1a, c−1b, and
moreover that geodesic representatives are unique. The language of all geodesics in
the S2 generating set is therefore a combing.

One can build a digraph Γ which parameterizes the language of geodesics in S2

as follows. There are seven vertices, one initial vertex and six other vertices labeled
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by the elements of S2. There is an outgoing edge from the initial vertex to each
other vertex, and one directed edge from x to y for each other vertex if and only
if xy is not one of the four “excluded” words above. See Figure 6.7. The vertices
have been labeled a, b, c, A,B,C and labels have been left off the edges for clarity.

Let Γ′ be obtained from Γ by removing the initial vertex. The adjacency matrix
of Γ′ is

M =




1 0 1 0 1 1
1 1 1 1 0 0
1 1 1 1 0 0
0 1 0 1 1 1
1 0 1 0 1 1
0 1 0 1 1 1




which is Perron–Frobenius with biggest real eigenvalue 4, and 1T ,1 as left and right
eigenvectors. It follows that the stationary measure is just equal to the ordinary
uniform measure. Note that there are 6× 4n−1 words of length n in the S2 metric,
and 4× 3n−1 words of length n in the S1 metric.

Let φSi denote the bicombable function which computes word length in the
Si metric. There are discrete derivatives dφS1

, dφS2
from the vertices of Γ′ to 1.

Here dφS2
is just the constant function Γ′ → 1, whereas dφS1

takes the value 1 on
the vertices labeled a, b, A,B and 2 on the vertices labeled c, C. It follows that a
random word of length n in the S2 metric has length 4n/3 in the S1 metric, with
error of order

√
n.

a

b

A

B

c

C

Figure 6.7. A digraph parameterizing geodesics in the S2 metric

On the other hand, dφS1
and dφS2

exist as functions from the vertices of Γ′1 to
1 where Γ′1 is the digraph in Figure 6.4. In this case, dφS1

is the constant function
Γ′1 → 1 and dφS2

is the function which takes the value 0 on the vertices labeled ab
and b−1a−1, and 1 on all other vertices. It follows that a random word of length n
in the S1 metric has length 5n/6 in the S2 metric, with error of order

√
n. Hence

λ1,2λ2,1 = 5/6× 4/3 = 10/9. with notation as in Corollary 6.76.



196 6. COMBABLE FUNCTIONS AND ERGODIC THEORY

In general, if the growth rate in the Si metric is λni for i = 1, 2 then there is
an inequality λi,j ≥ logλi/ logλj , by counting. In this case, we get the two (easily
verified) inequalities

0.83333 · · · = 5

6
≥ log 3

log 4
= 0.79248 · · ·

and

1.33333 · · · = 4

3
≥ log 4

log 3
= 1.26186 · · ·

Remark 6.79. The numbers λ1,2 where S1 and S2 are a symmetric basis for a free group
Fk, are studied in [119], where it is shown that they are always rational, and satisfy
2kλ ∈ Z[1/(2k − 1)].
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