
CHAPTER 2

Stable commutator length

Many natural problems in topology and geometric group theory can be formu-
lated as a kind of genus problem. In the absolute version of this problem, one is
given a space X and tries to find a surface in X with prescribed properties, of least
genus. Examples of the kind of properties one wants for the surface are that it
represent a given class in H2(X), that it is a Heegaard surface (in a 3-manifold),
that π1(X) splits nontrivially over its image, that it is pseudoholomorphic, etc. In
the relative version one is given X and a loop γ in X and tries to find a surface
(again with prescribed properties) of least genus with boundary γ. In its purest
form, the analogue of this second problem in group theory asks to determine the
commutator length of an element in the commutator subgroup of a group, and it
is this problem (or rather its stabilization) with which we are preoccupied in this
chapter (we give precise definitions in § 2.1). We will use the algebraic and geomet-
ric language interchangeably in what follows; however our methods and arguments
are mostly geometric.

There is a dual formulation of these problems, in terms of (bounded) cohomol-
ogy and quasimorphisms — real-valued functions on a group which are additive,
up to bounded error. This duality is expressed in the fundamental Bavard Duality
theorem from [8], which gives a precise relationship between (stable) commutator
length and bounded cohomology, and reconciles the homotopy theoretic and the
(co)-homological points of view of surfaces and the genus problem. The main goal
of this chapter is to give a self-contained exposition of this fundamental result and
some generalizations, including all the necessary background and details. Our aim is
to keep the presentation elementary wherever possible, although certain arguments
are streamlined by using the language of abstract functional analysis.

In many places we follow Bavard’s original paper [8], though occasionally our
emphasis is different. We also enumerate and prove some useful properties of scl
and bounded cohomology which are used in subsequent chapters.

2.1. Commutator length and stable commutator length

Definition 2.1. Let G be a group, and a ∈ [G,G]. The commutator length of
a, denoted cl(a), is the least number of commutators in G whose product is equal
to a.

By convention we define cl(a) =∞ for a not in [G,G].

Definition 2.2. For a ∈ [G,G], the stable commutator length, denoted scl(a),
is the following limit:

scl(a) = lim
n→∞

cl(an)

n
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For each fixed a, the function n → cl(an) is non-negative and subadditive;
hence this limit exists. If a is not in [G,G] but has a power an which is, define
scl(a) = scl(an)/n, and by convention define scl(a) =∞ if and only if a represents
a nontrivial element in H1(G; Q).

Remark 2.3. Computing commutator length is almost always difficult, even in finite
groups. Ore [164] famously conjectured in 1951 that every element of a finite non-cyclic
simple group is a commutator, and proved his conjecture for alternating groups An where
n ≥ 5. After receiving considerable attention (see e.g. [72, 121]), Ore’s conjecture was
finally proved in 2008 by Liebeck–O’Brien–Shalev–Tiep [135].

Commutator length in free groups has been studied by many people, with effective
(though inefficient) procedures for calculating commutator length first obtained by Ed-
munds [68, 69]. The use of geometric methods to study genus was pioneered by Culler
[59]. Several authors ([98, 99, 178]) used minimal surface techniques to obtain estimates
of commutator length under geometric hypotheses.

Thurston [196], studied the absolute genus problem in the context of embedded sur-
faces in 3-manifolds, and showed how a stabilization of this problem gives rise to a norm
on homology with several remarkable properties. Gromov [99] also emphasized the impor-
tance of stabilization, and posed a number of very general problems about genus and stable
genus, especially their interaction with negative curvature. Gromov further stressed the
relationship between the stable genus problem and bounded cohomology, which he system-
atically introduced and studied in [97]. This connection was also studied by Matsumoto
and Morita; the paper [150] describes a fundamental relationship between homological
“filling” norms and the kernel of the natural map from bounded to ordinary cohomology.

The most important property of cl and scl is their monotonicity under homo-
morphisms:

Lemma 2.4 (monotonicity). Let ϕ : G → H be a homomorphism of groups.
Then sclH(ϕ(a)) ≤ sclG(a) for all a ∈ G and similarly for cl.

Proof. The image of a commutator under a homomorphism is a commutator.
It follows that both cl and scl are monotone decreasing. �

The following corollaries are immediate:

Corollary 2.5 (retraction). Let ϕ : G → H be a monomorphism with a left
inverse; i.e. there is ψ : H → G with ψ ◦ ϕ : G→ G the identity. Then

scl(ϕ(a)) = scl(a)

for all a ∈ G.

Corollary 2.6 (characteristic). The functions cl and scl are constant on orbits
of Aut(G).

Remark 2.7. Corollary 2.6 is especially interesting when Out(G) is large.

For most interesting phenomena concerning scl, it suffices to restrict attention
to countable groups, as the following Lemma shows.

Lemma 2.8 (countable). Let G be a group, and a ∈ G an element. Then there
is a countable subgroup H < G containing a, such that sclH(a) = sclG(a).

Proof. For each n, exhibit an as a product of cl(an) commutators in G, and
let Hn be the subgroup generated by the elements appearing in these commutators.
Then let H be the subgroup generated by ∪nHn. �
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The algebraic definitions of cl and scl are almost useless for the purposes of
computation. Products and powers of commutators satisfy many identities which
at first glance might appear quite mysterious.

Example 2.9 (Culler [59]). For any elements a, b in any group, there is an
identity

[a, b]3 = [aba−1, b−1aba−1][b−1ab, b2]

These properties are often more clear from a geometric perspective (for in-
stance, Example 2.9 is really just Remark 1.13 in disguise). Given a group G, one
can construct a space X (for example, a CW complex) with π1(X) = G. A conju-
gacy class a ∈ G corresponds to a free homotopy class of loop γ in X . From the
definitions and the discussion in § 1.1.5 it follows that the commutator length of a
is the least genus of a surface with one boundary component mapping to X in such
a way that the boundary represents the free homotopy class of γ, and the stable
commutator length of a may be obtained by estimating the genus of surfaces whose
boundary wraps multiple times around γ.

Once we have recast this problem in geometric terms, a number of facts become
immediately apparent:

(1) genus is not multiplicative under coverings whereas Euler characteristic is
(2) there is no good reason to restrict attention to surfaces with exactly one

boundary component

As in § 1.2.5, given a (not necessarily connected) compact oriented surface S,
let −χ−(S) denote the sum of max(−χ(·), 0) over the components of S. Given a
space X and a loop γ : S1 → X we say that a map f : S → X is admissible if there
is a commutative diagram:

S∂S

S1 X

................................................................................................................................................................... ............
i

.........................................................

......

......
......

∂f
.........................................................
......
......
......

f

................................................................................................................................................................... ............

γ

Since S is oriented, the boundary of S inherits an orientation, and it makes sense
to define the fundamental class [∂S] in H1(∂S). Similarly, one has a fundamental
class [S1] ∈ H1(S

1). Define n(S) by the formula

∂f∗[∂S] = n(S)[S1]

Note that by orienting S appropriately, we can ensure that n(S) ≥ 0. The number
n(S) is just the (total algebraic) degree of the map ∂S → S1 between oriented
closed manifolds.

With this notation, one can give an intrinsically geometric definition of scl,
which is contained in the following proposition.

Proposition 2.10. Let π1(X) = G, and let γ : S1 → X be a loop representing
the conjugacy class of a ∈ G. Then

scl(a) = inf
S

−χ−(S)

2n(S)

where the infimum is taken over all admissible maps as above.
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Proof. An inequality in one direction is obvious: cl(an) ≤ g if and only
if there is an admissible map f : S → X , where S has exactly one boundary
component and satisfies n(S) = n and 2g − 1 = −χ−(S). Hence limn cl(an)/n ≥
infS −χ−(S)/2n(S).

Conversely, suppose f : S → X is admissible. If S has multiple components,
at least one of them Si satisfies −χ−(Si)/2n(Si) ≤ −χ−(S)/2n(S), so without
loss of generality we can assume S is connected. Since −χ−(·) and 2n(·) are both
multiplicative under covers, we can replace S with any finite cover without changing
their ratio, so we may additionally assume that S has p ≥ 2 boundary components.

As in Lemma 1.12, we can find a finite cover S′ → S of degree N ≫ 1 such
that S′ also has p boundary components. Observe that −χ−(S′) = −Nχ−(S) and
n(S′) = Nn(S). We may modify S′ by attaching 1-handles to connect up the
different boundary components, and extend ∂f ′ over these 1-handles by a trivial
map to a basepoint of S1. Adding a 1-handle increases genus by 1 and reduces the
number of boundary components by 1, so it increases −χ− by 1. The result of this
is that we can find a new surface S′′ with exactly one boundary component and a
map f ′′ satisfying −χ−(S′′) = −χ−(S′) + p− 1 and n(S′′) = n(S′). We estimate

−χ−(S′′)

2n(S′′)
=
p− 1−Nχ−(S)

2Nn(S)

Since S is arbitrary, and given S the number p is fixed but N may be taken to
be as large as desired, the right hand side may be taken to be arbitrarily close to
infS −χ−(S)/2n(S). On the other hand, since the genus of S′′ may be chosen to
be as large as desired, and since S′′ has exactly one boundary component, we have
cl(an(S′′)) ≤ −2χ−(S′′) + 1. The proof follows. �

Notice that for any element a of infinite order, we have an inequality scl(a) ≤
cl(an)/n − 1/2n. It follows that no surface can realize the infimum of cl(an)/n.
On the other hand, it is entirely possible for a surface to realize the infimum of
−χ−(S)/2n(S). Such surfaces are sufficiently useful and important that they de-
serve to be given a name.

Definition 2.11. A surface f : S → X realizing the infimum of−χ−(S)/2n(S)
is said to be extremal.

We will return to extremal surfaces in § 4.1.10.
At this point it is convenient to state and prove another proposition about the

kinds of admissible surfaces we need to consider.

Definition 2.12. An admissible map f : S, ∂S → X, γ is monotone if for every
boundary component ∂i of ∂S, the degree of ∂f : ∂i → S1 has the same sign.

Proposition 2.13. Let S be connected with χ(S) < 0, and let f : S, ∂S → X, γ
be admissible. Then there is a monotone admissible map f ′ : S′, ∂S′ → X, γ with
−χ−(S′)/2n(S′) ≤ −χ−(S)/2n(S).

Proof. Each boundary component ∂i of ∂S maps to S1 with degree ni (which
may be positive, negative or zero), where

∑
i ni = n(S). If some ni is zero, the

image f(∂i) is homotopically trivial in X , so we may reduce −χ− by compressing
∂i. Hence we may assume every ni is nonzero.

If S is a planar surface, then since χ(S) < 0, there is a finite cover of S with
positive genus. If S is a surface with positive genus and negative Euler characteris-
tic, there is a degree 2 cover S′ → S such that each boundary component in S has
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exactly two preimages. Hence, after passing to a finite cover if necessary, we can
assume that the boundary components ∂i come in pairs with equal degrees ni.

Now let N be the least common multiple of the |ni|. Define φ as a function
on the set of boundary components with values in Z/NZ as follows. For each pair
of boundary components ∂i, ∂j with ni = nj , define φ(∂i) = ni and φ(∂j) = −ni.
Then

∑
i φ(∂i) = 0, so φ extends to a surjective homomorphism from π1(S) to

Z/NZ. If S′ is the cover associated to the kernel, then each component of ∂S′ has
degree ±N . Pairs of components for which the sign of the degree is opposite can
be glued up (which does not affect χ or n(·)) until all remaining components have
degrees with the same signs. �

Consequently it suffices to take the infimum of −χ−/2n over monotone surfaces
to determine scl.

Remark 2.14. Note that the surface constructed in Proposition 2.13 is not merely mono-
tone, but has the property that all boundary components map with the same degree.

2.2. Quasimorphisms

We now have two different definitions of stable commutator length: an algebraic
definition and a (closely related) topological definition. It turns out that one can
also give a functional analysis definition, couched not directly in terms of groups
and elements, but dually in terms of certain kinds of functions on groups, namely
quasimorphisms. This particular form of duality is known as Bavard duality; the
precise statement of this duality is Theorem 2.70.

2.2.1. Definition.

Definition 2.15. Let G be a group. A quasimorphism is a function

φ : G→ R

for which there is a least constant D(φ) ≥ 0 such that

|φ(ab)− φ(a)− φ(b)| ≤ D(φ)

for all a, b ∈ G. In words, a quasimorphism is a real-valued function which is
additive up to bounded error. The constant D(φ) is called the defect of φ.

Example 2.16. Any bounded function is a quasimorphism. A quasimorphism
has defect 0 if and only if it is a homomorphism.

Lemma 2.17. Let S be a (possibly infinite) generating set for G. Let w be a
word in the generators, representing an element of G. Let |w| denote the length of
w, and let wi denote the ith letter. Then

∣∣φ(w) −
|w|∑

i=1

φ(wi)
∣∣ ≤ (|w| − 1)D(φ)

Proof. This follows from the defining property of a quasimorphism, the tri-
angle inequality, and induction. �

The set of all quasimorphisms on a fixed group G is easily seen to be a (real)

vector space; we denote this vector space by Q̂(G). In anticipation of what is to
come, we denote the space of (real-valued) bounded functions on G by C1

b (G), and

observe that C1
b is a vector subspace of Q̂.
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2.2.2. Antisymmetric and homogeneous quasimorphisms. Some quasi-
morphisms are better behaved than others.

Definition 2.18. A quasimorphism φ is antisymmetric if

φ(a−1) = −φ(a)

for all a. Any quasimorphism φ can be antisymmetrized φ→ φ′ by the formula

φ′(a) =
1

2
(φ(a) − φ(a−1))

Lemma 2.19. For any quasimorphism φ, the antisymmetrization φ′ satisfies

D(φ′) ≤ D(φ)

Proof. We calculate

D(φ′) = sup
a,b
|φ′(ab)− φ′(a)− φ′(b)|

= sup
a,b

1

2
|φ(ab)− φ(a)− φ(b) − φ(b−1a−1) + φ(a−1) + φ(b−1)| ≤ D(φ)

�

Observe that for any antisymmetric quasimorphism φ there is an inequality

|φ([a, b])| = |φ(aba−1b−1)− φ(a)− φ(b)− φ(a−1)− φ(b−1)| ≤ 3D(φ)

and in general (by Lemma 2.17), |φ(
∏n
i=1[ai, bi])| ≤ (4n− 1)D(φ).

Definition 2.20. A quasimorphism is homogeneous if it satisfies the additional
property

φ(an) = nφ(a)

for all a ∈ G and n ∈ Z. Denote the vector space of homogeneous quasimorphisms
on G by Q(G).

Lemma 2.21. Let φ be a quasimorphism on G. For each a ∈ G, define

φ(a) := lim
n→∞

φ(an)

n

The limit exists, and defines a homogeneous quasimorphism. Moreover, for any
a ∈ G there is an estimate |φ(a)− φ(a)| ≤ D(φ)

Proof. For each positive integer i, there is an inequality

|φ(a2i

)− 2φ(a2i−1

)| ≤ D(φ)

dividing by 2i and applying the triangle inequality and induction, we see that for
any j < i,

|φ(a2i

)2j/2i − φ(a2j

)| ≤ D(φ)

so φ(a2i

)2−i is a Cauchy sequence. Define φ(a) to be the limit limi→∞ φ(a2i

)2−i

and observe that |φ(a)− φ(a)| ≤ D(φ) for all a.
Sine φ−φ is in C1

b , we conclude that φ is a quasimorphism. It remains to show

that φ is homogeneous. For any j, by the definition of φ we have

|φ(aj)− jφ(a)| = lim
i→∞

2−i|φ(aj2
i

)− jφ(a2i

)| ≤ lim
i→∞

(j − 1)D(φ) · 2−i = 0

where the last inequality follows from Lemma 2.17. �
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Remark 2.22. Since |φ(a)−φ(a)| ≤ D(φ) for any element a, the triangle inequality implies

that D(φ) ≤ 4 ·D(φ). In fact, a more involved argument (Lemma 2.58) will give a better
estimate of the defect.

Homogeneous quasimorphisms are often easier to work with than ordinary
quasimorphisms, but ordinary quasimorphisms are easier to construct. We use this
averaging procedure to move back and forth between the two concepts. Note that
a homogeneous quasimorphism is already antisymmetric, and that homogenization
commutes with antisymmetrization.

Remark 2.23. If φ takes values in some additive subgroup R ⊂ R then the antisym-
metrization may take values in 1

2
R, and the homogenization may take arbitrary values in

R.

2.2.3. Commutator estimates. If φ is homogeneous, then

|φ(aba−1)− φ(b)| = 1

n
|(φ(abna−1)− φ(bn))| ≤ 2D(φ)

n

Hence φ is constant on conjugacy classes; i.e. homogeneous quasimorphisms are
class functions. It follows that for any commutator [a, b] ∈ G and any homogeneous
quasimorphism φ we have an inequality

|φ([a, b])| ≤ D(φ)

In fact, this inequality is always sharp:

Lemma 2.24 (Bavard, Lemma 3.6. [8]). Let φ be a homogeneous quasimorphism
on G. Then there is an equality

sup
a,b
|φ([a, b])| = D(φ)

Proof. First we show that we can write a2nb2n(ab)−2n as a product of n
commutators. If n = 1 this is just the identity

a2ba−1b−1a−1 = a[a, b]a−1 = [a, aba−1]

Also,

a2nb2n(ab)−2n = a(a2n−1b2n−1(ba)−2n+1)a−1

so it suffices to show that a2n−1b2n−1(ba)−2n+1 can be written as a product of n
commutators.

We proceed by induction, and assume we have proved this for n ≤ m. Then

[a−2m+1b−2ma−2, ab−1a2m−1] = a−2m+1b−2ma−1b−1a2m+1b2m+1a−1

= a(a−2mb−2ma−1b−1a2m+1b2m+1)a−1

By induction, and after interchanging a and b for a−1 and b−1, the expression
a−2mb−2m can be written as a product of m commutators times (a−1b−1)2m. It
follows that (a−1b−1)2m+1a2m+1b2m+1 can be written as a product of m+ 1 com-
mutators, and the induction step is complete, proving the claim.

Now let a, b be chosen so that |φ(ab)− φ(a)− φ(b)| ≥ D(φ)− ǫ for some small
ǫ (to be chosen later). Since φ is homogeneous, for any n we have

|φ((ab)2n)− φ(a2n)− φ(b2n)| ≥ 2n(D(φ)− ǫ)
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On the other hand, we have shown that (ab)2n can be expressed as a product of n
commutators ci (which depend on a and b) times a2nb2n. Hence by Lemma 2.17,

|φ((ab)2n)− φ(a2n)− φ(b2n)−
n∑

i=1

φ(ci)| ≤ (n+ 1)D(φ)

By the triangle inequality,

|
n∑

i=1

φ(ci)| ≥ (n− 1)D(φ)− 2nǫ

Since φ(ci) ≤ D(φ) for every commutator, taking n to be big, and then ǫ small
compared to 1/n, we see that some commutator ci has φ(ci) as close to D(φ) as we
like. �

2.2.4. Graphical calculus. The argument that a2nb2n(ab)−2n can be written
as a product of n commutators can be expressed more simply in the form of a
graphical calculus.

A word w in F2 determines a path in the square
lattice Z2. Such a path corresponds to a reduced
word if and only if it has no backtracking. It rep-
resents a commutator in F2 if and only if it closes
up to a loop. If one disregards basepoints, loops
correspond to cyclic conjugacy classes of elements
in [F2, F2].

In this calculus, the word a2nb2n(ab)−2n is
represented by the loop indicated in the figure.
Note that this word is unreduced: there are two
spurious backtracks, each of length 1. After re-
moving these backtracks, one obtains a loop rep-
resenting the word a2n−1b2n−1(ba)−2n+1

Informally, the word a2n−1b2n−1(ba)−2n+1 is a “staircase” of height 2n − 1.
In this language, the induction step can be expressed as saying that a staircase
of height 2n − 1 can be written as the product of a commutator with a staircase
of height 2n − 3. Since a staircase of height 1 is just the commutator [a, b], this
completes the proof. This can be expressed graphically in the following way:

[ ], = =
1

1

2n− 3

2

2n− 2

2n− 3

◦

2.3. Examples

In this section we discuss some fundamental examples of quasimorphisms.
These examples can all be generalized considerably, as we shall see in later Chapters.
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2.3.1. de Rham quasimorphisms. The following construction is due to
Barge–Ghys [6].

Let M be a closed hyperbolic manifold, and let α be a 1-form. Define a quasi-
morphism qα : π1(M) → R as follows. Choose a basepoint p ∈ M . For each
γ ∈ π1(M), let Lγ be the unique oriented geodesic arc with both endpoints at p
which as a based loop represents γ in π1(M). Then define

qα(γ) =

∫

Lγ

α

If γ1, γ2 are two elements of π1(M), there is a geodesic triangle T whose oriented
boundary is the union of Lγ1 , Lγ2 , Lγ−1

2
γ−1

1

. By Stokes’ theorem we can calculate

qα(γ1) + qα(γ2)− qα(γ1γ2) =

∫

T

dα

A geodesic triangle in a hyperbolic manifold has area at most π. It follows that the
defect of qα is at most π · ‖dα‖.

Note that the homogenization qα satisfies

qα(γ) =

∫

lγ

α

where lγ is the free geodesic loop corresponding to the conjugacy class of γ in π1(M).
For, changing the basepoint p changes qα by a bounded amount, and therefore does
not change the homogenization. Then this formula is obviously true when p is
chosen (for each γ) so that Lγ = lγ .

A similar construction makes sense for closed manifolds M of variable negative
curvature.

2.3.2. Counting quasimorphisms.

Definition 2.25. Let F be a free group on a symmetric generating set S. Let
w be a reduced word in S. The big counting function Cw(g) is defined by

Cw(g) = number of copies of w in the reduced representative of g

and the little counting function cw(·) is defined by

cw(g) = max. number of disjoint copies of w in the reduced representative of g

A big counting quasimorphism is a function of the form

Hw(g) := Cw(g)− Cw−1(g)

and a little counting function is a function of the form

hw(g) = cw(g)− cw−1(g)

Big counting functions were introduced by Brooks in [27]. We sometimes refer
to Cw or Hw (and even cw or hw) as Brooks functions or Brooks quasimorphisms.
The little counting functions, and variations on them, were introduced by Epstein–
Fujiwara [78], who generalized them to arbitrary hyperbolic groups (although the
big counting functions also generalize easily to hyperbolic groups). These two func-
tions are related, but different, and have different advantages in different situations.
We shall see that the big counting quasimorphisms are computationally simpler,
and easier to deal with, whereas the little counting quasimorphisms (and their
generalizations) have uniformly small defects, and are therefore more “powerful”.
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Remark 2.26. Suppose no proper suffix of w is equal to a proper prefix. Then copies of
w in any reduced word are necessarily disjoint, and hw = Hw. Grigorchuk [95] uses the
terminology “no overlapping property” to describe such words.

Every Hw and hw is a quasimorphism. In fact, we will explicitly calculate their
defects in what follows. First we must prove some preliminary statements.

Lemma 2.27. Let u ∈ F be reduced. Copies of w in u are disjoint from copies
of w−1.

Proof. Suppose not, so that without loss of generality some suffix of w is
equal to some prefix of w−1. But in this case w = w1w2 where w2 = w−1

2 which is
impossible. �

Let u ∈ F be reduced, and let u = u1u2 as a reduced expression (i.e. there
is no cancellation of the suffix of u1 with the prefix of u2). Say that a copy of w
intersects the juncture of u if it overlaps both the suffix of u1 and the prefix of u2.
By Lemma 2.27, at most one of w,w−1 can intersect the juncture of u.

Definition 2.28. Given a reduced expression u = u1u2 and a reduced word
w, the sign of the expression, denoted s, is

s =





1 if w intersects the juncture

−1 if w−1 intersects the juncture

0 otherwise

Lemma 2.29. Let u = u1u2 be a reduced expression with sign s. Then

hw(u)− hw(u1)− hw(u2) = 0 or s

and

0 ≤ s(Hw(u)−Hw(u1)−Hw(u2)) ≤ |w| − 1

Proof. At most |w|−1 copies of w or w−1 can intersect the juncture, proving
the second inequality.

To prove the first equality, for i = 1, 2 let Ui be a maximal disjoint configuration
of copies of w in ui. Then U1∪U2 is contained in u1u2, so cw(u)−cw(u1)−cw(u2) ≥
0. Conversely, let U be a maximal disjoint configuration of copies of w in u1u2. Then
either U contains one copy of w which intersects the juncture, or else it is disjoint
from the juncture and decomposes as U = U1∪U2. Hence cw(u)−cw(u1)−cw(u2) ≤
1 if s = 1 and cw(u)− cw(u1)− cw(u2) ≤ 0 otherwise. �

It follows that D(Hw) ≤ 3(|w| − 1). One cannot do better than O(|w|) in
general, as an example like w = abababababa shows. However, for little counting
quasimorphisms, one obtains D(hw) ≤ 3, and with more work one can find an even
sharper estimate.

Proposition 2.30. Let w be a reduced word. Then

(1) D(hw) = 0 if and only if |w| = 1
(2) D(hw) = 2 if and only if w is of the form w = w1w2w

−1
1 , w = w1w2w

−1
1 w3

or w = w1w2w3w
−1
2 as reduced expressions

(3) D(hw) = 1 otherwise
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Proof. If |w| = 1, the subgroup 〈w〉 generated by w is a Z summand of F ,
and hw is just projection from F onto this summand; i.e. it is a homomorphism.
Otherwise, if w = w1w2 is a reduced expression, hw(w) = 1 whereas hw(w1) =
hw(w2) = 0. This proves the first statement.

Let u, v ∈ F be reduced. Then we can uniquely write u = u′x, v = x−1v′ where
u′v′ is the reduced representative of uv. Let s1, s2, s3 be the signs of the reduced
expressions u′x, x−1v′, u′v′ respectively. We calculate

hw(uv)− hw(u)− hw(v) = hw(uv)− hw(u)− hw(v)

− hw(u′) + hw(u′)− hw(v′) + hw(v′) + hw(x) − hw(x−1)

= (0 or s3)− (0 or s1)− (0 or s2)

After possibly replacing w with w−1 and reversing the order of the strings, there
are only nine possibilities for (s1, s2, s3):

|hw(uv)− hw(u)− hw(v)| ≤





0 for (0, 0, 0)

1 for (1, 0, 0), (0, 0, 1), (1,−1, 0), (1, 0, 1)

2 for (1, 1, 0), (1, 1, 1), (1, 0,−1)

3 for (1, 1,−1)

Case ((1, 0,−1)). If w overlaps u′x and w−1 overlaps u′v′ then either some
prefix of w is equal to a substring of w−1 or some prefix of w−1 is equal to a
substring of w. In either case w has the form asserted by bullet (2).

Case ((1, 1, s)). Since w overlaps both u′x and x−1v′ we can write w = w1w2w3

where either w2w3 is the prefix of x and w1w2 is the suffix of x−1 or w3 is the prefix
of x and w1 is the suffix of x−1. In the first case, w−1

2 w−1
1 is the prefix of x so

w2 = w−1
2 which is absurd. Hence we must be in the second case, and one of

w−1
1 , w3 is a prefix of the other.

In either case w has the form asserted by bullet (2), so we are done unless
s = −1.

Subcase ((1, 1,−1)). Without loss of generality, we can assume w is of the
form w = w1w2w3w

−1
2 where w1w2w3 is the terminal string of u′ and w3w

−1
2 is

the initial string of v′. By hypothesis, a copy of w−1 = w2w
−1
3 w−1

2 w−1
1 overlaps

y := w1w2w3w3w
−1
2 .

By Lemma 2.27, the subword w−1
3 w−1

2 w−1
1 cannot overlap w1w2w3 in y. Also,

the subword w2w
−1
3 of w−1 cannot overlap w3w

−1
2 in y. Hence the w−1

3 in w−1

cannot overlap w1w2w3w3w
−1
2 at all. So if there is any overlap, either the suffix

w−1
2 w−1

1 of w−1 intersects the prefix w1w2 of y or the prefix w2 of w−1 intersects

the suffix w−1
2 of y. But neither case can occur, again by Lemma 2.27. Hence this

subcase cannot occur.

One can check that if w has the form asserted by bullet (2) then D(hw) ≥ 2 by
example. This completes the proof. �

Example 2.31 (monotone words).

Definition 2.32. A word w is monotone if for each a ∈ S, at most one of a
and a−1 appears in w.
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By Proposition 2.30, for any reduced monotone word w, there is an inequality
D(hw) ≤ 1 where D(hw) = 1 whenever |w| > 1. Notice that any reduced word of
length 2 is monotone.

It is also interesting to study linear combinations of counting quasimorphisms.
If wi is a sequence of words, and ti is a sequence of real numbers with

∑
i |ti| <∞

then
∑

i tihwi is a quasimorphism with defect at most 2
∑
i |ti|. However, even if∑

i |ti| is infinite, the function
∑

i tihwi might still be a quasimorphism.

Definition 2.33. A family of reduced words W is compatible if there are words
u, v (possibly left- and right-infinite respectively) so that for each w ∈W there is a
factorization w = uv (not necessarily unique) for which each u is a suffix of u and
each v is a prefix of v.

Proposition 2.34. Let φ =
∑

w∈W t(w)hw for some real numbers t(w). Sup-
pose there is a finite T such that for every compatible family V ⊂ W there is an
inequality ∑

w∈V

|t(w)| ≤ T

Then φ is a quasimorphism with D(φ) ≤ 3T .

Proof. Given u = u′x and v = x−1v′, the size of φ(u) + φ(v) − φ(uv) can
be estimated by counting copies of words w ∈ W which overlap u′x, x−1v′ or u′v′.
The family of words which contribute at each overlap is a compatible family, so the
claim follows. �

Example 2.35. The function

H := Haba +Habba +Habbba + · · ·
satisfies D(H) = 1 (by monotonicity, and the fact that the big and small counting
quasimorphisms are equal for these particular words).

Example 2.36. Let W be the family of all words in a, b (but not their inverses).
There are 2n words of length n. Define φ =

∑
w∈W 2−|w||w|−1hw. In a compatible

family, there are at most n words of length n for each n, so D(φ) ≤ 3. On the other
hand,

∑
w 2−|w||w|−1 =

∑
n n
−1 =∞.

Remark 2.37. Similar examples and a discussion of limits of sums of quasimorphisms are
found in [95].

2.3.3. Rotation number. Poincaré [167] introduced rotation numbers in his
study of 1-dimensional dynamical systems. Let Homeo(S1) denote the group of
homeomorphisms of the circle, and Homeo+(S1) its orientation-preserving sub-

group. Let G be a subgroup of Homeo+(S1). Let Ĝ be the preimage of G in
Homeo+(R) under the covering projection R→ S1.

Note that Ĝ is a (possibly trivial) central extension of G, and is centralized (in
Homeo+(R)) by the subgroup generated by a translation Z : x→ x+ 1.

Definition 2.38 (Poincaré’s rotation number). Given g ∈ Ĝ, define the rota-
tion number to be

rot(g) = lim
n→∞

gn(0)

n

Remark 2.39. Many authors also use the terminology “translation number” or “transla-

tion quasimorphism” for rot on bG.
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Rotation number is a quasimorphism:

Lemma 2.40. rot is a quasimorphism on Ĝ.

Proof. Since Z is central, rot(Zna) = n + rot(a) for all a. Given arbitrary
a, b, write a = Zna′, b = Zmb′ where 0 ≤ a′(0) < 1 and 0 ≤ b′(0) < 1. Of course
this implies ab = Zm+na′b′. Then

0 ≤ rot(a′) + rot(b′) ≤ 2, 0 ≤ rot(a′b′) ≤ 2

and one obtains the estimate D(rot) ≤ 2. �

In fact, one can obtain more precise information.

Lemma 2.41. For all p ∈ R and a, b ∈ Ĝ there is an inequality

p− 2 < [a, b](p) < p+ 2

Proof. For any p, after multiplying a, b by elements of the center if necessary
(which does not change [a, b]) we can assume p ≤ a(p), b(p) < p+1. Then we obtain
two inequalities

p ≤ a(p) ≤ ab(p) < a(p+ 1) < p+ 2

p ≤ b(p) ≤ ba(p) < b(p+ 1) < p+ 2

Let q = ba(p). Then from the second inequality we obtain

p ≤ q < p+ 2

and therefore from the first inequality,

q − 2 < p ≤ ab(p) = aba−1b−1(q) < p+ 2 ≤ q + 2

Since p was arbitrary, so was q (up to multiplication by an element of the center).
But the center commutes with aba−1b−1, so we obtain an inequality

q − 2 < aba−1b−1(q) < q + 2

valid for any q ∈ R. This proves the Lemma. �

Remark 2.42. Lemma 2.41 is well-known; the proof given above is essentially the same
as that of Proposition 3.1 from [197].

It follows that there is an estimate scl(a) ≥ |rot(a)|/2 for any a ∈ Ĝ. It turns
out that this estimate is sharp.

Theorem 2.43. Let Homeo+(R)Z denote the full preimage of Homeo+(S1) in
Homeo+(R). Then scl(a) = |rot(a)|/2 in Homeo+(R)Z.

Proof. Let b be an element which translates some elements in the positive
direction and some elements in the negative direction. Then for any p ∈ R and any
small ǫ > 0, some conjugate of b takes p to p+ 1 − ǫ. Similarly, some conjugate of
b−1 takes b(p) to b(p) + 1 − ǫ. It follows that for any p ∈ R and any small ǫ > 0
there is a commutator which takes p to p+ 2− 2ǫ.

Given a with |rot(a)| = r, the power an moves every point a distance less than
nr + 1. It turns out that the estimate in Lemma 2.41 is sharp, in the sense that
for any p ∈ R and any |s| < 2 one can find a commutator g such that g(p)− p = s.
Therefore an can be written as a product of at most ⌊(nr+ 1)/2⌋+ 1 commutators
with an element a′ which fixes some point. The dynamics of a′ on every comple-
mentary interval to fix(a′) is topologically conjugate to a translation of R, which is
the commutator of two dilations. Therefore any element a′ of Homeo+(R)Z with a
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fixed point is a commutator. So cl(an) ≤ ⌊(nr + 1)/2⌋+ 2. Dividing both sides by
n, and taking the limit as n→∞ we get an inequality scl(a) ≤ |rot(a)|/2.

On the other hand, since an moves every point a distance at least nr + 1, and
by Lemma 2.41 every commutator moves every point a distance at most 2, we get
an inequality n|rot(a)| ≤ 2 ·cl(an)+1 and therefore |rot(a)|/2 ≤ scl(a). This proves
the Theorem. �

See e.g. [70] for more details and an extensive discussion.

Remark 2.44. Note that the group Homeo+(S1) is uniformly perfect — every element can
be written as a product of at most two commutators. For, every element can be written as
a product of two elements both of which have a fixed point, and (as observed in the proof
of Theorem 2.43) every element of Homeo+(S1) with a fixed point is a commutator. In
fact, a more detailed argument shows that every element of Homeo+(S1) is a commutator.

2.4. Bounded cohomology

2.4.1. Bar complex.

Definition 2.45. Let G be a group. The bar complex C∗(G) is the complex
generated in dimension n by n-tuples (g1, . . . , gn) with gi ∈ G and with boundary
map ∂ defined by the formula

∂(g1, . . . , gn) = (g2, . . . , gn)+

n−1∑

i=1

(−1)i(g1, . . . , gigi+1, . . . , gn)+(−1)n(g1, . . . , gn−1)

For a coefficient group R, we let C∗(G;R) denote the terms in the dual cochain
complex Hom(C∗(G), R), and let δ denote the adjoint of ∂. The homology groups
of C∗(G;R) are called the group cohomology of G with coefficients in R, and are
denoted H∗(G;R).

If R is a subgroup of R, a cochain α ∈ Cn(G) is bounded if

sup |α(g1, . . . , gn)| <∞

where the supremum is taken over all generators. This supremum is called the norm
of α, and is denoted ‖α‖∞. The set of all bounded cochains forms a subcomplex
C∗b (G) of C∗(G), and its homology is the so-called bounded cohomology H∗b (G).

The norm ‖ · ‖∞ makes Cnb (G) into a Banach space for each n. There is a
natural function on H∗b (G) defined as follows: if [α] ∈ H∗b (G) is a cohomology class,
set

‖[α]‖∞ = inf ‖σ‖∞
where the infimum is taken over all cocycles σ in the class of [α]. If the bounded
coboundaries Bnb (G) are a closed subspace of Cnb (G), this function defines a Banach
norm on Hn

b (G). However, it should be pointed out that Bnb (G) is not typically
closed in Cnb (G).

There is an obvious L1 norm on C∗(G; R) defined in the same way as the
Gromov norm for singular chains from Definition 1.11, so these chain groups may
be thought of as (typically incomplete) normed vector spaces.



2.4. BOUNDED COHOMOLOGY 27

2.4.2. Amenable groups. Let G be a group. Recall that a mean on G is a
linear functional on L∞(G) which maps the constant function f(g) = 1 to 1, and
maps non-negative functions to non-negative numbers.

Definition 2.46. A group G is amenable if there is a G-invariant mean π :
L∞(G)→ R where G acts on L∞(G) by

g · f(h) = f(g−1h)

for all g, h ∈ G and f ∈ L∞(G).

Examples of amenable groups are finite groups, solvable groups, and Grig-
orchuk’s groups of intermediate growth.

Bounded cohomology behaves well under amenable covers:

Theorem 2.47 (Johnson, Trauber, Gromov). Let

1→ H → G→ A→ 1

be exact, where A is amenable. Then the natural homomorphisms H∗b (G; R) →
H∗b (H ; R)A are isometric isomorphisms in each dimension.

Here H∗b (H ; R)A denotes the A-invariant part of H∗b (H ; R) under the action
of A on H by outer automorphisms. In particular, if H∗b (H ; R) vanishes, so does
H∗b (G; R). We give the sketch of a proof (also see Proposition 2.65):

Proof. Replace groups by spaces, so that X is a K(G, 1), and X̃ is a K(H, 1)
thought of as a covering space of X with deck group A. The complex of singular
bounded cochains C∗b (X) on X can be naturally identified with the complex of A-

invariant singular bounded cochains C∗b (X̃)A on X̃ . Since A is amenable, averaging

over orbits defines an A-invariant projection π : C∗b (X̃)→ C∗b (X). The projection π
commutes with the coboundary, and is a left inverse to the pullback homomorphism
defined by X̃ → X , and therefore the pullback homomorphism induces an isometric
embedding H∗b (X) → H∗b (X̃). The image is clearly contained in H∗b (X̃)A, and in
fact by averaging can be shown to coincide with it.

The proof is completed by showing that bounded group cohomology H∗b (G; R)
is isometrically isomorphic to bounded singular cohomologyH∗b (K(G, 1); R) for any
G. �

See [117] or [97] pp. 38–44 for more details.

Remark 2.48. Theorem 2.47 is only valid for R coefficients, since the maps depend on
averaging, which does not make sense over other coefficient groups. In particular, bounded
cohomology over other coefficient groups (e.g. Z) can be nontrivial, and even quite inter-
esting, for some amenable groups.

An important corollary is the case that G = A amenable. Since H∗b of the
trivial group is trivial, this implies that H∗b (A; R) vanishes identically when A is
amenable.

Fibrations with amenable fiber are not so well-behaved, since spectral sequences
for bounded cohomology are complicated. However, in dimension two, one has the
following useful theorem of Bouarich [19]:

Theorem 2.49 (Bouarich [19]). Let

K → G→ H → 1
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be exact. Then the induced sequence on second bounded cohomology is (left) exact:

0→ H2
b (H ; R)→ H2

b (G; R)→ H2
b (K; R)

In particular, if K is amenable, H2
b (H) → H2

b (G) is an isomorphism. We will
give a proof of this theorem in § 2.7.2.

For a more detailed introduction to bounded cohomology, see Gromov’s paper
[97] or either of the references [115], [157].

2.4.3. Exact sequences and filling norms. I am grateful to Shigenori Mat-
sumoto who provided elegant proofs of many results in this section. In the sequel,
we use some of the elements of abstract functional analysis; Rudin [180] is a general
reference.

Recall our notation Q̂(G) for the vector space of all quasimorphisms on G,
and Q(G) for the vector subspace of homogeneous quasimorphisms. Recall that

D(·) defines pseudo-norms on both Q̂(G) and Q(G) which vanish exactly on the
subspace spanned by homomorphisms G → R. This subspace may be naturally
identified with H1(G; R).

A real-valued function ϕ on G may be thought of as a 1-cochain, i.e. as an
element of C1(G; R). The coboundary δ of such a function is defined by the formula

δϕ(a, b) = ϕ(a) + ϕ(b)− ϕ(ab)

At the level of norms, there is an equality, ‖δϕ‖∞ = D(ϕ). It follows that the
coboundary of a quasimorphism is a bounded 2-cocycle.

Theorem 2.50 (Exact sequence). There is an exact sequence

0→ H1(G; R)→ Q(G)→ H2
b (G; R)→ H2(G; R)

Proof. There is an exact sequence of chain complexes

0→ C∗b → C∗ → C∗/C∗b → 0

and an associated long exact sequence of cohomology groups. A bounded homo-
morphism to R is trivial, hence H1

b (G; R) = 0 for any group G. A function ϕ on

G is in Q̂(G) if and only if δϕ is in C2
b . Moreover, any two quasimorphisms which

differ by a bounded amount have the same homogenization. Hence

H1(C∗/C∗b ) = Q̂/C1
b
∼= Q

�

Example 2.51. Recall from § 2.3.3 that rot is a homogeneous quasimorphism
on the group Homeo+(R)Z, which is our notation for the group of homeomorphisms
of R which are periodic with period 1. Further recall that this group is the uni-
versal central extension of Homeo+(S1). The function rot does not descend to
a well-defined real-valued function on Homeo+(S1), but it is well-defined mod Z.
However, the coboundary [δrot], as a class in H2

b (Homeo+(R)Z), can be pulled back

from a class in H2
b (Homeo+(S1)). By Theorem 2.50, the image of this class in

H2(Homeo+(S1)) is a nontrivial class, called the Euler class. The L∞ norm of this
class is 1/2 (compare with Theorem 2.43). This fact is otherwise known as the
Milnor–Wood inequality ([154],[204]), and is usually stated in the following way:
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Theorem 2.52 (Milnor–Wood inequality). Let S be a closed, oriented sur-
face of genus g, and let ρ : π1(S) → Homeo+(S1) be an action of π1(S) on a
circle by homeomorphisms. Let [e] ∈ H2(S) be the pullback of the generator of
H2(Homeo+(S1); Z). Then there is an inequality

|[e](S)| ≤ −χ−(S)

For ease of notation, we abbreviate C∗(G; R) in what follows by C∗. Similarly,
denote cycles and boundaries with real coefficients by Z∗ and B∗ respectively. Then

0→ Z2 → C2 → B1 → 0

is exact. Since C2 is normed, and Z2 is a normed subspace, B1 inherits a quotient
norm.

Observe that if a ∈ [G,G] then a ∈ B1 when thought of as a generator of C1.
For example, if a = [x, y] then

∂((xyx−1, x) + ([x, y], y)− (x, y)) = [x, y]

In general, a one-vertex triangulation of a surface of genus g with one boundary
component exhibits a product of g commutators as an element of B1.

Definition 2.53. Let a ∈ B1(G; R). The Gersten boundary norm (or just the
Gersten norm or the boundary norm) of a, denoted ‖a‖B, is defined by

‖a‖B = inf
∂A=a

‖A‖1

where the infimum is taken over all 2-chains A ∈ C2(G; R) with boundary a, and
‖A‖1 denotes the usual L1 norm.

Remark 2.54. Gersten calls his norm a filling norm in [90]. However, we reserve this
name for a suitable homogenization of ‖ · ‖B .

It is important to note that this quotient is really a norm and not just a pseudo-
norm, since ∂ is a bounded operator on C2 of norm 3, and therefore ‖a‖1 ≤ 3‖a‖B.
In particular, Z2 is closed in C2 in the L1 norm.

Remark 2.55. We can define Cl1∗ to be the completion of C∗ with respect to the L1 norm.
The boundary map ∂ extends continuously to Cl1∗ , and we let Zl1∗ and Bl1∗ denote the
kernel and image of ∂ respectively. The exact sequence

0→ Zl12 → Cl12 → Bl11 → 0

defines a quotient norm on Bl11 and thereby on B1 under inclusion B1 → Bl11 . However, in

general there is a strict inclusion Z2 ⊂ Zl12 , where Z∗ denotes the completion of Z∗ in the

L1 norm, and therefore the norm B1 inherits as a subspace of Cl12 /Z
l1
2 will be typically

smaller than ‖ · ‖B .
In fact there is an important special case in which the two norms on B1 are the same.

Matsumoto–Morita [150] say that the chain complex C∗ satisfies condition 1-UBC if there
is a positive constant K > 0 such that K‖a‖B ≤ ‖a‖1 for all a ∈ B1. Note that this is
equivalent to the condition that the norms ‖ · ‖1 and ‖ · ‖B induce the same topology on

B1. Under this circumstance, there is an equality Z2 = Zl12 . In fact, Theorem 2.8 from
[150] implies that condition 1-UBC is equivalent to injectivity of the map H2

b → H2.
By Theorem 2.50, this is equivalent to Q(G)/H1(G) = 0, a situation which is largely
orthogonal to the focus of this book.

We now identify the dual space of B1 with respect to the norm ‖ · ‖B.
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Lemma 2.56. The dual of B1 with respect to the ‖·‖B norm is Q̂(G)/H1(G; R),
and the operator norm on the dual is equal to D(·) = ‖δ · ‖∞.

Proof. In the sequel, if V is a normed vector space, we denote the space of
bounded linear functionals on V with the operator norm by V ′.

By definition of the quotient norm, an element f of B′1 determines F ∈ C′2 with
the same operator norm, vanishing on Z2, by the formula F (A) = f(∂A). Since F
vanishes on Z2, it is a coboundary; hence F = δφ where φ ∈ C1 is unique up to
an element of H1. Since F is bounded, φ is a quasimorphism, and we have defined

B′1 → Q̂/H1 (note that the restriction of φ to B1 is equal to f). This map is
evidently injective and surjective, and is therefore an isomorphism of vector spaces.

It remains to identify the norm. Let b ∈ B1 be an element with ‖b‖B = 1, so
there is A ∈ C2 with ∂A = b and ‖A‖1 − 1 < ǫ. Express A as A =

∑
j rj(gj, hj)

with rj ∈ R, and
∑
j |rj | − 1 < ǫ. By the triangle inequality,

|F (A)|/(1 + ǫ) ≤ sup
j
|F (gj , hj)| = sup

j
|δφ(gj , hj)| = sup

j
|φ(∂(gj , hj))|

= sup
j
|φ(gjhj)− φ(gj)− φ(hj)| ≤ D(φ)

so we deduce that the operator norm of F (and therefore that of f) is ≤ D(φ).
Conversely, let g1, g2 ∈ G be arbitrary. Then (except in degenerate cases)

∂(g1, g2) = g1 + g2 − g1g2 has L1 norm equal to 3, and therefore

1 ≥ ‖∂(g1, g2)‖B ≥
1

3
‖∂(g1, g2)‖1 = 1

But F (g1, g2) = φ(g1)+φ(g2)−φ(g1g2), so by the definition of the defect there are
g1, g2 ∈ G with ‖∂(g1, g2)‖B = 1 for which |F (g1, g2)| is arbitrarily close to D(φ).
This implies that the operator norm of F is at least equal to D(φ), and together
with the previous inequality, this shows that the operator norm of F is exactly
equal to the defect of φ, as claimed. �

We deduce the following corollary:

Corollary 2.57. The space Q̂/H1 with its defect norm is a Banach space,

and is isometric to the dual of Cl12 /Z2 with its L1 norm.

Proof. By Lemma 2.56, we know that Q̂/H1 with its defect norm is the dual
of B1 with its ‖ ·‖B norm, which by definition is equal to the dual of C2/Z2 with its
L1 norm. If X is a normed vector space, and Y is a closed normed vector subspace,
the dual (X/Y )′ is isometrically isomorphic to the dual (X/Y )′ where the overline

denotes completion with respect to the norm. In our case, Cl12 and Z2 are the
completions of C2 and Z2 in the L1 norm, so the second claim of the corollary
follows.

The dual space of a normed vector space is always a Banach space. Hence the
first claim follows already from Lemma 2.56. �

Since homogeneity is a closed condition, the quotient Q/H1 is a Banach sub-

space of Q̂/H1. We refer to the Banach topology on this space as the defect topol-
ogy. A priori, there is a natural pseudo-norm on H2

b . We will see shortly that
this pseudo-norm is actually a norm (this fact is due to Matsumoto–Morita [150]).
Theorem 2.50 shows that δ is an injection of Q/H1 into H2

b . The next lemma
describes how the norm behaves under δ :
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Lemma 2.58. Let φ ∈ Q(G). Then

D(φ) ≥ ‖[δφ]‖∞ ≥
1

2
D(φ)

Proof. By definition, ‖[δφ]‖ is the infimum of the L∞ norm of all bounded
2-cocycles A which are cohomologous to δφ. Now any such A is of the form δf for
some unique (not necessarily homogeneous) quasimorphism f for which f−φ ∈ C1

b .
In particular, φ is the homogenization of f , and we have an inequality

‖[δφ]‖∞ = inf
f−φ∈C1

b

D(f) ≤ D(φ)

Since any quasimorphism can be antisymmetrized without increasing its defect, it
suffices to take the infimum over antisymmetric f .

Let a, b ∈ G be such that |δφ(a, b)| is very close to D(φ). Recall from the
proof of Lemma 2.24 that a2nb2n(ab)−2n can be written as a product of at most
n commutators. Since f is antisymmetric, it follows that |f(a2nb2n(ab)−2n)| ≤
(4n − 1)D(f). Since f − φ ∈ C1

b , there is a constant C, independent of a, b and
n, so that |f(a2nb2n(ab)−2n)− φ(a2nb2n(ab)−2n)| ≤ C. Moreover, by homogeneity,
|φ(a2nb2n(ab)−2n)− 2nδφ(a, b)| ≤ 2D(φ) and therefore

lim
n→∞

|φ(a2nb2n(ab)−2n)|
2n

= |δφ(a, b)|

which is arbitrarily close to D(φ). Putting this together, we get an estimate

D(φ) ≤ 2D(f)

and the lemma is proved. �

It is convenient to explicitly record the following corollary:

Corollary 2.59. Let f ∈ Q̂(G) with homogenization φ ∈ Q(G). Then

D(f) = ‖δf‖∞ ≥ ‖[δφ]‖∞ ≥
1

2
D(φ)

Remark 2.60. Lemma 2.58 and its Corollary can be restated in homological language.
The following argument is due to Shigenori Matsumoto. Since C1

b ∩H1 = 0, we can think

of C1
b as a subspace of bQ/H1. We have already shown in Corollary 2.57 that bQ/H1 can

be identified with the dual (Cl12 /Z2)
′. What is the image δ(C1

b ) in this dual space? First
we make an observation.

Lemma 2.61. The boundary map ∂ : Cl12 → Cl11 has a (bounded) cross-section σ
defined by the formula

σ(g) =
1

2
(g, g) +

1

4
(g2, g2) + · · ·

Proof. The proof is immediate. �

From this it follows that Bl11 = Cl11 as abstract vector spaces. Moreover, Lemma 2.61

shows that ‖b‖B ≤ ‖b‖1 for b ∈ Cl11 . Since we also have ‖b‖B ≥ 1
3
‖b‖1, this shows that the

quotient norm and the L1 norm on Cl11 are equivalent (though not necessarily isometric).

The dual of Cl11 with its L1 norm is C1
b with its L∞ norm. Dualizing Zl12 → Cl12 → Cl11

shows that the image δ(C1
b ) is equal to (Cl12 /Z

l1
2 )′. Since bQ/H1 = (Cl12 /Z2)

′, if we give
bQ/(C1

b ⊕H1) = ( bQ/H1)/C1
b its quotient norm, we obtain an isometric isomorphism

bQ/(C1
b ⊕H1)

δ−→ (Zl12 /Z2)
′
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As vector spaces, Q/H1 and bQ/(C1
b ⊕ H1) are naturally isomorphic; in this language,

Lemma 2.58 says that their norms differ at most by a factor of 2.

Unfortunately, the Banach space Q(G)/H1(G; R) is typically very big, even if
G is finitely presented. We give some examples to illustrate this phenomenon for
the case that G is free.

Example 2.62 (Free group). Let F denote the free group on two generators
a, b. Let wn = abna for each positive integer n. For each f : N→ {0, 1} define

Hf =
∑

n

f(n)Hwn

where each Hwn is the big counting function (see Definition 2.25), and the overline
denotes homogenization. Since the words are not nested, D(Hf ) = 1 for each f

(compare with Example 2.35), and therefore D(Hf ) ≤ 2 by Corollary 2.59. If f 6= g
then if n is in the support of f but not g (say), we have

(Hf −Hg)(ab
na) = 1

so the difference is nontrivial. On the other hand, since Hf and Hg vanish on both

a and b, they are not in H1. It follows that D(Hf −Hg) is positive, and since they
are both integer valued, the defect is at least 1. In other words, we have constructed
a subset of Q(F )/H1(F ) of cardinality 2ℵ0 which is discrete in the defect topology.
In particular, Q/H1 is not separable.

Example 2.63 (Density). Jason Manning constructed an explicit example of
a vector in Q(F )/H1(F ) which is not in the closure (in the defect topology) of
the span of Brooks quasimorphisms. For each n let wn = [anbna−n, b−n]. Then
Hv(wn) = hv(wn) = 0 where Hv and hv denote the homogenizations of the big
and small counting functions, whenever v is a word of length ≤ n. Now, define

H =
∑

i

Hwi

Since the wi and their inverses do not overlap, one can estimate D(H) ≤ 6. Now

suppose H
′
is a finite linear combination of homogenized counting quasimorphisms

(of either sort). Then there is an n such that H
′
(wn) = 0 but H(wn) = 1. Since

each wn is a commutator, by Lemma 2.24 it follows that D(H
′ −H) ≥ 1.

Example 2.64 (Pullbacks). Let F3 = 〈a, b, c〉 and F2 = 〈a, b〉. Let p : F3 → F2

be the obvious retraction, obtained by killing c. Let h ∈ Q(F2) be the homogeniza-
tion of the Brooks function hab, and let p∗h ∈ Q(F3) denote the pullback. Then p∗h
is not in the closure of the span of Brooks quasimorphisms. To see why, consider the
elements wn := anca−nb−1anc−1a−nb and w′n := an−1ca−nb−1anc−1a1−nb. The el-
ement wn is in the kernel of p, but p(w′n) = a−1b−1ab so p∗hab(wn) = 0 whereas
p∗hab(w

′
n) = 1. Note further that each wn is a commutator, and each w′n is a

product of two commutators, and therefore satisfies scl(w′n) ≤ 3/2. Notice that for
any word v we must have hv(wn) = hv(w

′
n) for sufficiently large n (and similarly

for Hv). It follows that p∗h cannot be approximated in defect by the homogeniza-
tion of a finite linear combination of Brooks quasimorphisms (of either kind). This
example is obviously not sporadic; a similar argument shows that if p : F → G is
surjective with nontrivial kernel, and h ∈ Q(G) is not in H1(G), then p∗h is never
in the closure of the span of Brooks quasimorphisms.
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If G is amenable, Theorem 2.47 shows that H2
b (G; R) = 0 and therefore Q(G) =

H1(G; R); in other words, every homogeneous quasimorphism on an amenable group
is a homomorphism to R. For completeness, we give a self-contained proof of this
fact.

Proposition 2.65. Let G be amenable. Then every homogeneous quasimor-
phism on G is a homomorphism to R.

Proof. Let φ : G → R be a quasimorphism. We will construct a homomor-
phism which differs from φ by a bounded amount; this is enough to prove the
proposition. Let RG×G be the space of real valued functions on G × G, with the
topology of pointwise convergence. A function φ : G → R determines an element
Φ : G×G→ R by the formula

Φ(a, b) = φ(a) − φ(b)

The group G acts on G ×G diagonally: g(a, b) = (ga, gb) and thus on RG×G. For
any g ∈ G, we have gΦ(a, b) = φ(ga)− φ(gb) and therefore

|gΦ(a, b)− Φ(a, b)| ≤ 2D(φ)

Hence the convex hull of the orbit GΦ is a compact, convex, G-invariant subset
of RG×G. Note that Φ has the property that Φ(a, b) + Φ(b, c) = Φ(a, c) for any
a, b, c ∈ G. In particular, Φ vanishes on any (a, a) and is antisymmetric in its
arguments. This property is invariant under the action of G, and preserved under
linear combinations and limits, and therefore holds for any element of the closed
convex hull of GΦ. This part of the argument does not use the fact that G is
amenable.

If G is amenable, any linear action by G on a topological vector space which
leaves invariant a compact, convex subset must have a global fixed point in that
set; basically, the barycenter of any bounded orbit, weighted by the invariant mean,
is G-invariant. If Ψ is such a G-invariant function we can define ψ : G → R by
ψ(a) = Ψ(a, id). Since Ψ is G-invariant, ψ(ab) = Ψ(ab, id) = Ψ(b, a−1). But
Ψ(b, a−1) + Ψ(a−1, id) = Ψ(b, id) so ψ(ab) = ψ(b)− ψ(a−1). Since

ψ(a−1) = Ψ(a−1, id) = Ψ(id, a) = −Ψ(a, id) = −ψ(a)

we are done. �

2.4.4. Antisymmetrization and orientations. In singular homology, sim-
plices are marked by a total ordering of the vertices. Similarly, in group homology,
generators of the bar complex are ordered tuples of group elements. Given a simplex
∆n, the symmetric group Sn+1 acts on ∆n by permuting the vertices. There is a
chain map s : C∗ → C∗ ⊗Q defined on a generator σ of Cn by

s(σ) =
1

(n+ 1)!

∑

g∈Sn+1

sign(g)σ ◦ g

where sign(g) is ±1 depending on whether g : ∆n → ∆n is orientation preserving
or reversing. We can define a similar chain map from the bar complex C∗(G) ⊗ Q

to itself.
The chain map s is chain homotopic to id, and therefore induces an isomorphism

in homology over Q or R. Moreover, this chain map has operator norm 1 in each
dimension with respect to the L1 norm.
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In dimension 1, the map s replaces an element a ∈ G with the sum

s : a→ 1

2
(a− a−1)

It follows that if f ′ is the antisymmetrization of a 1-cochain f , there is an equality

f ′(a) = f(s(a))

that is, f ′ = s∗f where s∗ is the adjoint of s in dimension 1. The observation in
§ 2.2.2 that antisymmetrization of quasimorphisms does not increase defect is dual
to the the observation that s has operator norm 1.

This discussion is most relevant when one considers bounded cohomology over
other coefficient groups, for instance over Z. One can neither (anti)symmetrize
chains nor cochains over Z, and therefore some of the estimates we obtain in this
section are no longer valid in greater generality.

2.5. Bavard’s Duality Theorem

2.5.1. Banach duality and filling norms. In the last section, we defined
the Gersten boundary norm, and identified its dual space. By an application of
the Hahn–Banach Theorem, Lemma 2.56 lets us reinterpret the Gersten boundary
norm in terms of quasimorphisms.

Corollary 2.66. Let a ∈ [G,G] so that a ∈ B1 as a cycle. Then

‖a‖B = sup
φ∈ bQ(G)/H1(G;R)

|φ(a)|
D(φ)

To relate the Gersten norm to stable commutator length, we must homogenize.

Definition 2.67. Define the filling norm, denoted fill(a) to be the homoge-
nization of ‖a‖B. That is,

fill(a) = lim
n→∞

‖an‖B
n

Remark 2.68. Some authors refer to fill(·) as the stable filling norm, to distinguish it from
the Gersten filling norm.

It is not quite true that the function ‖an‖B is subadditive in n. However, for
any r, s there is an identity ∂(ar, as) = ar + as − ar+s and therefore ‖ar+s‖B ≤
‖ar‖B + ‖as‖B + 1. This is enough to show that the limit exists in Definition 2.67.

Using the estimates proved in Chapter 1, we can relate scl and fill(·) in a
straightforward manner:

Lemma 2.69 (Bavard, Prop. 3.2. [8]). There is an equality

scl(a) =
1

4
fill(a)

Proof. An expression of an as a product of commutators lets us construct
an orientable surface S with one boundary component, and a homomorphism ϕ :
π1(S) → G with ϕ∗∂S = an in π1. We can find a triangulation of S with 4 ·
genus(S)− 1 triangles, where one edge maps to the boundary, and therefore

‖an‖B ≤ 4 · cl(an)− 1

Dividing both sides by n, and taking the limit as n→∞ gives the inequality

fill(a) ≤ 4 · scl(a)
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Conversely, let A be a chain with ∂A = a with ‖A‖1 close to ‖a‖B. Let V
be the finite dimensional subspace of C2(G; R) consisting of 2-chains with support
contained in the support of A. Since V is a rational subspace, and a is a rational
chain, the subspace V ∩∂−1(a) contains rational points arbitrarily close to A (com-
pare with Remark 1.5). So we may assume A is rational, after changing its norm
an arbitrarily small amount. After scaling by some integer, we may assume A is an
integral chain with ∂A = na for which the ratio ‖A‖1/n‖a‖B is very close to 1.

As in Example 1.4, there is an orientable surface S and a chain AS representing
the fundamental class of S, and a map ϕ : π1(S)→ G sending boundary components
to powers of conjugates of a, and such that ϕ∗(AS) = A. Moreover, by construction,
‖AS‖1 = ‖A‖1.

By Theorem 1.14 and Lemma 2.10 we have an inequality

‖AS‖1
n

≥ −2χ(S)

n
≥ 4 · scl(a)

But ‖AS‖1/n may be taken to be arbitrarily close to ‖a‖B. Homogenizing the left
hand side (and using the fact that the right hand side is homogeneous by definition)
we obtain

fill(a) ≥ 4 · scl(a)
Putting this together with the earlier inequality, we are done. �

2.5.2. Bavard’s Duality Theorem. We are now in a position to relate quasi-
morphisms and stable commutator length by means of Bavard’s Duality Theorem:

Theorem 2.70 (Bavard’s Duality Theorem, [8]). Let G be a group. Then for
any a ∈ [G,G], we have an equality

scl(a) =
1

2
sup

φ∈Q(G)/H1(G;R)

|φ(a)|
D(φ)

Proof. For the sake of legibility, we suppressG in our notation in what follows.
By Corollary 2.66 there is a duality

‖a‖B = sup
φ∈ bQ/H1

|φ(a)|
D(φ)

Homogenizing and applying Lemma 2.69, we obtain an equality

scl(a) =
1

4
lim
n→∞

(
sup

φ∈ bQ/H1

|φ(an)|
nD(φ)

)

Recall that in Lemma 2.21 we obtained the estimate |φ(an)−φ(an)| ≤ D(φ) where

φ denotes the homogenization of φ. It follows that for each n and any φ ∈ Q̂ there
is an inequality

|φ(an)− φ(an)|
nD(φ)

≤ n−1

Parsing this, for each n let φni be a sequence of elements in Q̂(G) such that

φnm(an)/nD(φnm) is within m−1 of the supremum. Then φnm
(an)/nD(φnm) is

within m−1 + n−1 of the supremum. Using φ(an)/n = φ(a) and passing to a
diagonal subsequence, we obtain

scl(a) =
1

4
sup

φ∈ bQ/H1

|φ(a)|
D(φ)
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By Corollary 2.59, we get an inequality

scl(a) ≤ 1

2
sup

φ∈Q/H1

|φ(a)|
D(φ)

On the other hand, for any homogeneous quasimorphism φ, if an is a product of m
commutators then

|φ(an)| ≤ 2mD(φ)

so we get an inequality in the other direction, and the theorem is proved. �

2.6. Stable commutator length as a norm

In this section we show that scl can be extended in a natural way to a pseudo-
norm on (a suitable quotient of) B1. Moreover Bavard duality holds more generally
in this broader context, thus revealing it as a genuine duality theorem (in the usual
sense of functional analysis).

2.6.1. Definition.

Definition 2.71. Let G be a group, and ai ∈ G for 1 ≤ i ≤ m a finite collection
of elements. If the product of the ai is in [G,G], then define cl(a1 + a2 + · · ·+ am)
to be the smallest number of commutators whose product is equal to an expression
of the form

a1t1a2t
−1
1 · · · tm−1amt

−1
m−1

for some elements ti ∈ G. Then define

scl(
∑

i

ai) = lim
n→∞

cl(
∑

i a
n
i )

n

Geometrically, if π1(X) = G, and γi is a loop in X representing the conjugacy
class of ai, then cl(

∑
i ai) is the least genus of a surface with m boundary compo-

nents which maps to X in such a way that the ith boundary component wraps once
around γi.

Remark 2.72. If the product of the ai has order n in H1(G; Z), define scl(
P
ai) =

1
n
scl(

P
ani ), and otherwise define scl(

P
ai) =∞.

In fact, it it not immediately obvious that the limit in Definition 2.71 exists,
since the function cln(

∑
ai) := cl(

∑
ani ) is not subadditive as a function of n. We

address this issue in the next lemma.

Lemma 2.73. The limit in Definition 2.71 exists when it is defined (i.e. when
the product of the ai are in [G,G]).

Proof. If
∑
ai hasm terms, define cln,m = cl(

∑
ani )+(m−1). Then (for fixed

m) the function cln,m is subadditive as a function of n. For, if Sn1
, Sn2

are surfaces
with m boundary components, each of which wraps n1 and n2 times respectively
around each of m loops, then they can be tubed together by adding m rectan-
gles to produce a surface S′ with m boundary components, each of which wraps
n1 + n2 times around each of the m loops, and satisfies genus(S′) = genus(Sn1

) +
genus(Sn2

) + (m− 1). On the other hand, for fixed m, there is an equality

lim
n→∞

cl(
∑
ani )

n
= lim
n→∞

cl(
∑
ani ) + (m− 1)

n
the right hand limit exists by the subadditivity of cln,m, and therefore the left hand
side does too. �
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Given a space X and loops γi : S1 → X we say that a map f : S → X is
admissible if there is a commutative diagram:

S∂S

∐
i S

1 X

................................................................................................................................................................... ............
i

.........................................................

......

......
......

∂f
.........................................................
......
......
......

f

......................................................................................................................................................... ............∐
γi

for which there is an integer n(S) such that

∂f∗[∂S] = n(S)[
∐

i

S1]

(note that the existence of an integer n(S) is not automatic from the commutativity
of the diagram, when there is more than one γi).

One has the following analogue of Proposition 2.10.

Proposition 2.74. Let π1(X) = G, and for 1 ≤ i ≤ m, let γi : S1 → X be a
loop representing the conjugacy class of ai ∈ G. Then

scl(
∑

i

ai) = inf
S

−χ−(S)

2n(S)

where the infimum is taken over all admissible maps as above.

Proof. The proof is almost identical to that of Proposition 2.10. An inequality
in one direction follows from the definition, at least if one uses the “corrected”
function cln,m in place of cln (see Lemma 2.73). To obtain the inequality in the
other direction, let f : S → X be an admissible map of a surface. Without loss
of generality, one may restrict attention to the case that each component of Si
has at least one boundary component mapping with nontrivial degree to some γi.
Fix some big (even) integer N , and construct connected covers Ti of each Si of
degree 2N , each with at most twice as many boundary components as Si. The
Ti may be surgered to have exactly m boundary components, each mapping to
some γi with degree 2Nn(S) by gluing on only a constant number of rectangles,
and thereby raising −χ by an amount which is independent of N . The reverse
inequality follows. �

A surface realizing the infimum in Proposition 2.74 is called extremal (compare
with Definition 2.11).

From the geometric perspective it is clear that scl(
∑
ai) depends only on the

conjugacy class of each term ai, and is commutative in its arguments.

Lemma 2.75. scl satisfies the identity

scl(an +
∑

ai) = scl(a+ · · ·+ a︸ ︷︷ ︸
n

+
∑

ai)

for any non-negative integer n and any a, ai ∈ G.

Proof. We use Proposition 2.74. Let X be a space with π1(X) = G and let γ
be a loop representing the conjugacy class of a. Let S be a surface mapping to X ,
with n boundary components each wrapping around γ a total of m times, for some
large m, and the rest wrapping around loops γi corresponding to the conjugacy
classes of the ai. The distinct boundary components wrapping around γ can be



38 2. STABLE COMMUTATOR LENGTH

tubed together at the cost of raising −χ−(S) by n − 1, which can be taken to be
arbitrarily small compared to m. This establishes an inequality in one direction.

Conversely, if S is a surface mapping to X with one boundary component
wrapping some number of times around γn and the rest around the γi, take n
copies of S to obtain the inequality in the other direction. �

Similarly we have the following.

Lemma 2.76. scl satisfies the identity

scl(a+ a−1 +
∑

ai) = scl(
∑

ai)

for any a, ai ∈ G.

Proof. Let X, γ, γi be as before. Let S be a surface whose boundary wraps
around the various γi. Let A be an annulus from γ to γ−1 and let S′ be the disjoint
union of S with some number of parallel copies of A. Then −χ−(S) = −χ−(S′).

Conversely, suppose S is a surface with one boundary component ∂1 bounding
γm and one component ∂2 bounding γ−m. Glue ∂1 to ∂2 to obtain a surface S′

with −χ−(S) = −χ−(S′). �

By abuse of notation we define scl(
∑

i ai − a) := scl(
∑

i ai + a−1). It follows
from Lemma 2.75 and Lemma 2.76 that for any a, ai and for any equality n =

∑
i ni

over Z there is a corresponding equality

scl(an +
∑

j

aj) = scl(
∑

i

ani +
∑

j

aj)

Moreover, for any integer n, there is an equality

|n| scl(
∑

ai) = scl(
∑

nai) = scl(
∑

ani )

Consequently scl can be extended by linearity on rays to rational chains
∑
i riai

representing 0 in H1(G; Q). Since scl is subadditive on rational chains, it extends
continuously in a unique way to a pseudo-norm on the real vector space B1(G).

Recall from § 2.5.1 that we defined the Gersten norm ‖ · ‖B on B1 by the
equality

‖a‖B = inf
∂A=a

‖A‖1
where a ∈ B1 and A ∈ C2. Then for an element g ∈ [G,G] we defined the (stable)
filling norm by the formula

fill(g) = lim
n→∞

‖gn‖B
n

One can extend fill to all of B1. First extend fill to integral chains:

fill(
∑

i

gi) = lim
n→∞

‖∑i g
n
i ‖B

n

and then by linearity to rational chains, and by continuity to arbitrary chains
in B1. To see that a continuous extension exists, observe that for each n, there
is an inequality ‖∑i g

n
i +

∑
j f

n
j ‖B ≤ ‖

∑
i g
n
i ‖B + ‖∑j f

n
j ‖B and therefore fill

is subadditive. Since fill is homogeneous, it is evidently a class function in each
argument.

With this definition, one obtains the following analogue of Lemma 2.69:
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Lemma 2.77. For any finite linear chain
∑
i tiai ∈ B1 there is an equality

scl(
∑

i

tiai) =
1

4
fill(
∑

i

tiai)

Proof. It suffices to prove the result for integral chains; i.e. chains of the form∑
i ai for 1 ≤ i ≤ m.

The proof is very similar to that of Lemma 2.69; the only complication is the
issue of basepoints. A surface S realizing cl(

∑
i a
n
i ) can be efficiently triangulated,

as in Theorem 1.14, with 4cl(
∑

i a
n
i ) + 3m − 4 triangles, with exactly one vertex

on each boundary component. Let T be an embedded spanning tree in the 1-
skeleton, connecting up the boundary vertices (T has m − 1 edges). We obtain a
simplicial 2-complex with one vertex by collapsing T to a point, and then further
collapsing degenerate triangles. Denote this 2-complex by S/T . The triangulation
of S determines a triangulation of the complex S/T , with fewer triangles. Since
this complex has only one vertex, it determines a (group) 2-chain A with ‖A‖1 ≤
4cl(

∑
i a
n
i ) + 3m− 4, and satisfying ∂A =

∑
i b
n
i where each bi is conjugate to ai.

Since m is fixed, and fill is a class function in each argument, as n→∞ we obtain
an inequality in one direction.

Conversely, a 2-chain A with ∂A =
∑

i a
n
i and ‖A‖1 close to ‖∑i a

n
i ‖B can

be approximated by a rational chain. After multiplying through by a big integer
to clear denominators one obtains an (approximating) integral chain. Gluing up
triangles, one obtains a “collapsed surface” of the form S/T as above, with one
vertex on each boundary component. This collapsed surface can be thickened to a
genuine surface by adding a cylindrical collar to each boundary component, at the
cost of adding a further 2m triangles. Since m is fixed but n is arbitrarily large,
the desired inequality follows by applying Proposition 2.74, and Theorem 1.14. �

2.6.2. Generalized Bavard duality.

Definition 2.78. Let G be a group. Let H(G) (for “homogeneous”) be the
subspace of B1(G) spanned by elements of the form g − hgh−1 and gn − ng for
g, h ∈ G and n ∈ Z. Denote the quotient space as BH1 (G) := B1(G)/H(G) or BH1
for short, if G is understood.

By construction, scl vanishes on the subspace H(G), and therefore descends to
a pseudo-norm on BH1 . With this notation, we obtain the following statement of
generalized Bavard duality:

Theorem 2.79 (Generalized Bavard Duality). Let G be a group. Then for any∑
i tiai ∈ BH1 (G) there is an equality

scl(
∑

i

tiai) =
1

2
sup

φ∈Q/H1

∑
i tiφ(ai)

D(φ)

Proof. The proof is the same as that of Theorem 2.70 with Lemma 2.77 in
place of Lemma 2.69. �

This mixture of group theoretic and homological language is convenient for
deriving some interesting corollaries.

Proposition 2.80 (Finite index formula). Let G be a group, and H a subgroup
of finite index. Let g1, · · · , gm ∈ G. Suppose π1(X) = G, and let γ1, · · · , γm be
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loops in X representing the conjugacy classes of the gi. Let p : X̂ → X be a finite
cover corresponding to the subgroup H. Let β1, · · · , βl be the covers of the γi which

lift to X̂, and h1, · · · , hl the corresponding conjugacy classes in H. Then

sclG(
∑

i

gi) =
1

[G : H ]
· sclH(

∑

i

hi)

Proof. We use Proposition 2.74. Given a map of a surface f : (S, ∂S) →
(X,∪iγi) there is a finite covering map π : (Ŝ, ∂Ŝ) → (S, ∂S) such that fπ lifts to

f̂ : (Ŝ, ∂Ŝ)→ (X̂,∪iβi) in such a way that pf̂ = fπ. One way to construct such a

π is to let K < H be normal in G of finite index, and then take Ŝ to be the regular
cover of S corresponding to the kernel of the map π1(S)→ G/K. Conversely, given

g : (S, ∂S) → (X̂,∪iβi) the composition pg maps S to X , wrapping the boundary
around the various γi. The result follows. �

In the case that H is normal and g is a single element in H , the finite index
formula takes the following form:

Corollary 2.81. Let G be a group, and let H be a normal subgroup of finite
index, with (finite) quotient group A = G/H. Let h ∈ H. Then

sclG(h) =
1

|A| · sclH(
∑

a∈A

aha−1)

where for each a ∈ A, the expression aha−1 represents the corresponding (well-
defined) conjugacy class in H.

Remark 2.82. One can give a more algebraic proof of Corollary 2.81 as follows. By
Theorem 2.47, and the fact that finite groups are amenable, the map H2

b (G)→ H2
b (H) is

an isometric embedding with image equal to the A-invariant part of H2
b (H). If ψ ∈ Q(H)

then the projection ψA of ψ to Q(H)A is the sum 1/|A|Pa a
∗ψ. Here the group A acts

on H by outer automorphisms: if a = aH is a left coset of H , then aha−1 is a well-defined
element of H up to an inner automorphism. In other words, a∗ψ(h) = φ(aha−1).

It follows that

sclG(h) = sup
φ∈Q(G)

φ(h)

2D(φ)
= sup
ψ∈Q(H)

ψA(h)

2D(ψA)

Now for any ψ ∈ Q(H), one has

ψA(h) =
1

|A|
X

a

ψ(aha−1) =
1

|A|
X

a

ψA(aha−1)

Furthermore, D(ψA) ≤ D(ψ) by convexity. It follows that

1

|A| sclH(
X

a

aha−1) = sup
ψ∈Q(H)

1

|A|

P
a ψ(aha−1)

2D(ψ)
= sup
ψ∈Q(H)

1

|A|

P
a ψ

A(aha−1)

2D(ψA)

proving the formula.

Remark 2.83. Corollary 2.81 is useful even (especially?) when an element h ∈ H is in
[G,G] but not in [H,H ].

One advantage of working with the space BH1 over B1 is that while scl is, except
in trivial cases, never a genuine norm on B1, it is sometimes a genuine norm on
BH1 .

Proposition 2.84. Let F be a free group. Then scl is a genuine norm on the
vector space BH1 (F ).
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Proof. A chain c in BH1 (F ) has a representative of the form
∑
i tiwi where

each wi is a cyclically reduced primitive word in F , where all coefficients ti are
nonzero, and where no two w±1

i , w±1
j are conjugate for distinct i, j. After reordering,

assume that the length of w := w1 is at least as big as that of any wi. Let N be
a sufficiently big integer (to be determined), and let ϕ be the homogenization of
the big Brooks counting quasimorphism HwN associated to wN . We claim that for
sufficiently big N , there is equality ϕ(wi) = 0 for any i 6= 1. Since ϕ(w) = 1/N ,
this shows that scl(c) ≥ |t1|/2ND(ϕ) > 0.

To prove the claim, suppose to the contrary that for some i 6= 1 the infinite
product w∞i contains an arbitrarily big power wN as a subword, where without loss
of generality, we may assume N is positive. If N = lcm(|w|, |wi|)/|w| then wN is
conjugate to wMi for some M . But elements in free groups have unique primitive
roots, up to conjugacy, so this implies M = N and wi is conjugate to w, contrary
to hypothesis. This establishes the claim, and the proposition. �

Remark 2.85. A similar argument using de Rham quasimorphisms in place of Brooks
quasimorphisms works whenever G is equal to π1 of a closed hyperbolic manifold. In
fact, using generalized counting quasimorphisms § 3.5 one can show that scl is a norm on
BH1 (G) whenever G is a hyperbolic group.

Remark 2.86. It is not true that fill is equal to the quotient norm on BH1 under the exact
sequence

H → B1 → BH1

where B1 and H have the ‖ · ‖B norm. For instance, in a free group, a (nontrivial)
commutator ghg−1h−1 has scl norm 1/2, and therefore fill norm 2. On the other hand,
the chains ghg−1h−1 and ghg−1h−1 + hgh−1 − g differ by an element of H , and

∂(ghg−1h−1, hgh−1) = ghg−1h−1 + hgh−1 − g

so ‖ghg−1h−1 + hgh−1 − g‖B ≤ 1.

2.7. Further properties

In this section we enumerate some further properties of scl which will be used
in the sequel.

2.7.1. Extremal quasimorphisms. Theorem 2.70 provides a method of cal-
culating scl in some cases, especially when the dimension of Q(G) is small. Given
an element a ∈ [G,G], it is natural to ask whether the supremum of φ(a)/D(φ) is
realized by some φ ∈ Q(G).

Definition 2.87. Let a ∈ [G,G]. An element φ ∈ Q(G) is extremal for a if

scl(a) =
φ(a)

2D(φ)

The union of 0 with the set of homogeneous quasimorphisms on G which are ex-
tremal for a is denoted Qa(G).

The next Proposition shows that extremal quasimorphisms always exist.

Proposition 2.88. Let a ∈ [G,G]. Then Qa(G) is a nontrivial convex cone in
Q(G) which is closed both in the defect and the weak∗ topology.
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Proof. Recall from Remark 2.60 that there is an isomorphism of vector spaces
Q/H1 ∼= (Zl12 /Z2)

′. As a dual space, we can endow Q/H1 with the weak∗ topology.
A subset closed in the weak∗ topology is also closed in the defect topology.

The space

K := {ϕ ∈ Q/H1 such that D(φ) ≤ 1/2}
is convex, closed and bounded with respect to the defect norm and therefore also
with respect to the operator norm (since these two norms differ by a factor of at
most 2). Hence K is weak∗ compact.

Fix an element a ∈ [G,G] and for each n, define

Kn := {ϕ ∈ K such that ϕ(a) ≥ scl(a)− 1/n}
Let us show that Kn is weak∗ closed. Since [G,G] ⊂ B1, there is A ∈ C2 such that
dA = a. The element A−σ(a), where σ is the section defined in Lemma 2.61, satis-

fies A− σ(a) ∈ Zl12 and further satisfies δϕ(A− σ(a)) = ϕ(a) for any homogeneous
ϕ. This, together with the defining property of Kn, shows that Kn is weak∗ closed.

The Kn are closed and contained in K and are therefore weak∗ compact. By
Bavard duality (Theorem 2.70), each Kn is nonempty, and therefore their inter-
section is nonempty. Any element ϕ ∈ ∩nKn has ϕ(a) = scl(a) and D(ϕ) = 1/2.
Conversely any ϕ ∈ Qa(G) can be scaled to have D(ϕ) = 1/2, and therefore Qa(G)
is exactly equal to the cone on the weak∗ compact set ∩nKn. This completes the
proof. �

Remark 2.89. In a similar way we may define Qa(c) for any chain c ∈ B1. The proof of
Proposition 2.88 extends easily to this case.

2.7.2. Left exactness and Bouarich’s Theorem. For the convenience of
the reader, we provide a proof of Bouarich’s Theorem 2.49. Recall that Bouarich’s
Theorem says if

K
ι−→ G

ρ−→ H → 0

is an exact sequence of groups then the induced sequence

0→ H2
b (H ; R)

ρ∗−→ H2
b (G; R)

ι∗−→ H2
b (K; R)

is left exact. In fact, it is no more difficult to give a proof of Bouarich’s theorem
which is valid for any Abelian coefficient group; in particular, the proof we give
below applies to bounded cohomology with Z coefficients.

Proof. Without loss of generality, we can replace K by its image ι(K). So
we can assume K is a subgroup of G, and ι is the inclusion homomorphism. Since
ρι is the zero map, the composition H2

b (H)→ H2
b (G)→ H2

b (K) is zero. So we just
need to check that ρ∗ is injective, and that everything in ker(ι∗) is in the image of
the map ρ∗.

Claim. The map ρ∗ : H2
b (H)→ H2

b (G) is an injection.

Proof. Suppose ψ be a bounded 2-cocycle on H whose image in H2
b (H) is

nonzero, but for which ρ∗ψ = δφ on G, where φ is bounded. Observe that for all
a1, a2 ∈ G and k1, k2 ∈ K that

φ(a1) + φ(a2)− φ(a1a2) = φ(a1k1) + φ(a2k2)− φ(a1k1a2k2)

In particular, φ(kn+1)− φ(kn) = φ(akn+1)− φ(akn) for any a ∈ G, k ∈ K. Taking
a = k this implies φ(kn) = n(φ(k) − φ(id)) + φ(id). But φ is bounded, so φ(k) −
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φ(id) = 0 for all k ∈ K, and more generally, φ is constant on left cosets. This implies
that φ descends to a bounded function φH on H = G/K which by construction
satisfies δφH = ψ. �

Claim. Let [ψ] ∈ H2
b (G) be in the kernel of ι∗ : H2

b (G)→ H2
b (K). Then [ψ] is

in the image of H2
b (H).

Proof. By hypothesis, for any representative ψ of [ψ] there is a bounded
function φ on K such that δφ = ψ on K. If ψ(id, id) = c 6= 0 then we replace
ψ by ψ − δhc where hc is the constant bounded 1-cochain hc(g) = c. So without
loss of generality, we can assume that ψ(id, id) = 0. This leads to the convenient
normalization φ(id) = 0.

We want to extend φ in a suitable way to a function φG on all of G. For each
hi ∈ H , choose a left coset representative gi of hi in G. For each hi we define
φG(gi) = 0. Then for each k ∈ K we set φG(gik) = ψ(gi, k)− φ(k). Since φ and ψ
are bounded, φG is bounded. Now define ψ′ = ψ + δφG. Since φG is bounded, ψ′

and ψ represent the same cohomology class. Moreover, for any g in G and k ∈ K
we write g = giki and calculate

ψ′(g, k) = ψ(giki, k) + φG(giki) + φG(k)− φG(gikik)

= ψ(giki, k) + ψ(gi, ki)− φ(ki) + ψ(id, k)− φ(k)− ψ(gi, kik) + φ(kik)

Since φ(id) = 0, we have ψ(id, k) = δφ(id, k) = φ(id) + φ(k)− φ(k) = 0. Moreover,
−φ(ki)− φ(k) + φ(kik) = −δφ(ki, k) = −ψ(ki, k). Therefore we can write

ψ′(g, k) = ψ(giki, k) + ψ(gi, ki)− ψ(ki, k)− ψ(gi, kik) = −δψ(gi, ki, k) = 0

We claim that ψ′ can be obtained by pulling back a bounded 2-cocycle from
H . Let g1, g2 ∈ G and k ∈ K. Since δψ′(g1, g2, k) = 0, we calculate

ψ′(g1, g2k)− ψ′(g1, g2) = ψ′(g1g2, k)− ψ′(g2, k) = 0

and therefore ψ′(g1, g2k) = ψ′(g1, g2) for any g1, g2 ∈ G and any k ∈ K.
Similarly, since δψ′(g1, k, g2) = 0 we have

ψ′(g1, kg2)− ψ′(g1, k) = ψ′(g1k, g2)− ψ′(k, g2)
We have shown that ψ′(g1, k) = 0. Moreover, ψ′(g1, kg2) = ψ′(g1, g2(g

−1
2 kg2))

which is equal to ψ′(g1, g2) by our earlier calculation. Rearranging, we obtain

ψ′(g1k, g2)− ψ′(g1, g2) = ψ′(k, g2)

and therefore

ψ′(g1k
n, g2) = ψ′(g1, g2) + nψ′(k, g2)

for any integer n. Since n is arbitrary but ψ′ is bounded, we see that ψ′(k, g2) = 0
for any g2 ∈ G and k ∈ K and therefore also ψ′(g1k, g2) = ψ′(g1, g2). In particular,
ψ′ is constant on left cosets of K, and descends to a cocycle on H . �

This completes the proof of Bouarich’s Theorem. �

Remark 2.90. A similar but more straightforward argument proves the left exactness of
Q.

Remark 2.91. There is a more direct proof of Bouarich’s Theorem using spectral se-
quences. In fact, the astute reader will recognize that the proof given above is really a
spectral sequences argument in disguise, together with the observation that H1

b is always
zero. However one must be careful in general, since bounded cohomology is typically not
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separated in degree 3 and higher (see the end of § 2.4.1 and § 2.5.1). This is a point
which is sometimes overlooked in the literature on bounded cohomology. Nevertheless, in
sufficiently low dimensions, such an argument can be made to work. See e.g. Chapter 12
of [157], especially Example 12.4.3.

2.7.3. Rotation numbers. As an application of Theorem 2.70 we obtain a
precise estimate of the defect of rotation number.

Proposition 2.92. Let G be a subgroup of Homeo+(S1) and let Ĝ be the
preimage in Homeo+(R). Then D(rot) ≤ 1 as a homogeneous quasimorphism on

Ĝ.

Proof. For the sake of brevity, let T = Homeo+(S1) and let T̂ = Homeo+(R)Z.

By Remark 2.44 we see that Q(T ) = 0. The exact sequence Z → T̂ → T to-
gether with Bouarich’s Theorem 2.49 and the vanishing of H∗b for amenable groups

implies that H2
b (T ) → H2

b (T̂ ) is an isomorphism. On the other hand, the map

H2(T ) → H2(T̂ ) is not injective, and the kernel is generated by the class of the

(universal) central extension T̂ → T . It follows that Q(T̂ ) is 1-dimensional, and
generated exactly by rot. By Theorem 2.43 there is an equality scl(a) = |rot(a)|/2
for every a ∈ T̂ and therefore D(rot) = 1, by Bavard’s Theorem 2.70. It follows

that D(rot) ≤ 1 on any subgroup of T̂ . �

2.7.4. Free products. Bavard Prop. 3.7.2 [8] asserts that if G1 and G2 are
two groups, and G = G1 ∗G2 is their free product, then for all nontrivial elements
gi ∈ Gi, there is an equality scl(g1g2) = scl(g1)+scl(g2)+1/2. This assertion is not
quite true as stated. Nevertheless, it turns out that Bavard’s assertion is true when
g1 and g2 have infinite order, and can be suitably modified when one or both of
them are torsion. We give the correct statement and proof, and defer a discussion
of Bavard’s argument and what can be salvaged from it to the sequel.

Theorem 2.93 (Product formula). Let G1, G2 be groups, and for i = 1, 2 let
gi be a nontrivial element in Gi of order ni. Let G = G1 ∗ G2. Then there is an
equality

sclG(g1g2) = sclG1
(g1) + sclG2

(g2) +
1

2

(
1− 1

n1
− 1

n2

)

where 1/ni may be replaced by 0 when ni =∞.

Proof. Build a space X as follows. Let X1, X2 be spaces with π1(Xi) = Gi,
and let γi be a loop in Xi representing the conjugacy class of gi. Let P be a pair of
pants. Let X = X1 ∪X2 ∪ P be obtained by gluing two boundary components of
P to γ1 and γ2 respectively, and let γP denote the unglued boundary component
of P .

Let S be a surface with one boundary component, and f : S → X a map sending
∂S to γP with degree n. We have scl(g1g2) ≤ −χ(S)/2n. Make f transverse to
the γi. The surface is decomposed into pieces, which are the closures, in the path
topology, of S− f−1(γ1 ∪ γ2). We say that f is efficient if no piece has a boundary
component which maps with degree zero to a γi, and if no piece is an annulus with
both boundary components mapping to the same γi with opposite degree.

If S is not efficient, the Euler characteristic of S can be increased by surgering S
along a circle which maps to some γi with degree 0 (and is therefore null-homotopic),
or simplified by homotoping a trivial annulus. So without loss of generality, it
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suffices to consider the case that f is efficient. Let Si denote the union of the pieces
mapping to Xi, and SP the union of pieces mapping to P . Let f1, f2, fP be the
restrictions of f to these unions. These maps are all proper. Since f is efficient, no
piece mapping to P is a disk or annulus. In other words, SP admits a hyperbolic
metric. Moreover, the only disk pieces are components of Si mapping with degree
a multiple of ni to γi, in the case gi is torsion.

Since fP is proper, it has a well-defined degree. Since f−1
P (γP ) is equal to

∂S, the degree is n. By the definition of degree, the union of components of ∂SP
mapping to each γi maps with degree n, and therefore n(S1) = n(S2) = n in the
notation of Proposition 2.10. By replacing fP by a pleated map (with respect to a
choice of hyperbolic structures on SP and on P ) and Gauss–Bonnet, we obtain an
inequality −χ(SP )/2n ≥ −χ(P )/2 = 1/2.

If each g1, g2 has infinite order, no component of Si is a disk. In this case,
−χ−(S) = −χ−(S1)− χ−(S2)− χ−(SP ), and therefore

−χ−(S)

2n
=
−χ−(S1)

2n
+
−χ−(S2)

2n
+
−χ−(SP )

2n
≥ scl(g1) + scl(g2) +

1

2

Since S was arbitrary, we obtain an inequality

scl(g1g2) ≥ scl(g1) + scl(g2) +
1

2

Conversely, by the proof of Lemma 2.24 the elements (g1g2)
2n and g2n

1 g2n
2 differ

by at most n commutators, and therefore we obtain the first inequality

scl(g1g2) ≤ scl(g1) + scl(g2) +
1

2

This proves the theorem when the gi have infinite order.

If gi is torsion of order ni, then Si may have disk components whose boundaries
map to gi with degree a multiple of ni. In this case, Si might have as many as
n/ni disk components, and therefore χ(Si) might be as big as n/ni, so we obtain
an inequality

−χ−(S) ≥ −χ−(S1)− χ−(S2)− χ−(SP )− n

n1
− n

n2

which, after dividing by 2n, and taking the infimum over all S, gives

scl(g1g2) ≥ scl(g1) + scl(g2) +
1

2

(
1− 1

n1
− 1

n2

)

To obtain the reverse inequality, replace P by an orbifold with a cone point of
order ni in place of the γi boundary component(s) and take a finite cover which is
a smooth surface. This completes the proof. �

Remark 2.94. The use of geometric language is really for convenience of exposition rather
than mathematical necessity. A similar argument could be made by replacing maps to X
with equivariant maps to a suitable Bass–Serre tree.

One drawback of the method of proof is that it does not exhibit an extremal
homogeneous quasimorphism for the element g1g2. In the next section we show
how to construct such an extremal quasimorphism in the case that G1 and G2 are
left orderable.
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Remark 2.95. Bavard, in [8], exhibits a nontrivial quasimorphism for g1g2 arising from
the structure of G1 ∗ G2 as a free product and its action on a Bass–Serre tree, which is
a special case of a construction that will be discussed in more detail in § 3.5. One can
estimate the defect of the quasimorphism constructed in this way, but the estimate is not
good enough to establish Theorem 2.93.

2.7.5. Left-orderability.

Definition 2.96. Let G be a group. G is left orderable (LO for short) if there
is a total ordering < on G which is invariant under left multiplication. That is, for
all a, b, c ∈ G, the inequality a < b holds if and only if ca < cb.

Right orderability is defined similarly. A group is left orderable if and only if
it is right orderable. The difference is essentially psychological.

Example 2.97 (Locally indicable). A group is locally indicable if every non-
trivial finitely generated subgroup admits a surjective homomorphism to Z. For ex-
ample, free groups are locally indicable. A more nontrivial example, due to Boyer–
Rolfsen–Wiest [22] says that if M is an irreducible 3-manifold, and H1(M) 6= 0
then π1(M) is locally indicable.

A theorem of Burns–Hale [36] says that every locally indicable group is left
orderable.

Left orderability is intimately bound up with 1-dimensional dynamics. The
following “folklore” theorem is very well-known.

Theorem 2.98 (Action on R). A countable group G is left orderable if and
only if there is an injective homomorphism G→ Homeo+(R).

We give a sketch of a proof. For more details, see [40].

Proof. Suppose G acts faithfully on R by homeomorphisms. Suppose p ∈ R

has trivial stabilizer. Then define a > id if and only if a(p) > p. Conversely,
suppose G is left orderable. The order topology on G makes G order-isomorphic to
a countable subset of R. Include G →֒ R in an order-preserving way, compatibly
with the order topology. Then the action of G on itself extends to an action on the
closure of its image. The complement is a countable union of intervals; the action
of G extends uniquely to a permutation action on these intervals. �

The first part of the next proposition is a special case of Theorem 2.93; however,
the proof is different, and shows how to construct an explicit extremal quasimor-
phism for g1g2.

Proposition 2.99. Let G1, G2 be left orderable, and suppose gi ∈ Gi are non-
trivial. Then there is an equality

scl(g1g2) = scl(g1) + scl(g2) +
1

2

Moreover there is an explicit construction of an extremal quasimorphism for g1g2
in terms of extremal quasimorphisms for g1 and g2.

Proof. Assume first that G1, G2 are countable. Using Theorem 2.98, con-
struct an orientation-preserving action of G1 ∗ G2 on S1 where G1 fixes the point
−1 and G2 fixes the point 1 (here we think of S1 as the unit circle in C). Since g1, g2
are nontrivial, without loss of generality we can assume g1(i) = −i and g2(−i) = i.
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But then g1g2 has a fixed point, and therefore its rotation number is trivial (in
R/Z). We lift the action to an action on R, which can be done by lifting each Gi
individually to have a global fixed point. Then rot is a homogeneous quasimor-
phism on G1 ∗ G2, which vanishes on G1 and on G2, and satisfies rot(g1g2) = 1.
Proposition 2.92 shows that D(rot) ≤ 1. Adding to rot pullbacks of extremal quasi-
morphisms with defect 1 for g1 and g2 under the surjections G1 ∗ G2 → G1 and
G1 ∗G2 → G2, one obtains an explicit extremal quasimorphism for g1g2 which, by
Bavard duality, proves the proposition.

If G1, G2 are not countable, one substitutes actions on circularly ordered sets for
actions on circles. The distinction between these two contexts is more psychological
than substantial. See e.g. [40], especially Chapter 2, for a discussion. �

Example 2.100 (Bavard, p. 146 [8]). In F2 = 〈u, v〉 the element [u, v] satisfies
scl([u, v]) = 1/2, by Theorem 1.14 and Theorem 2.70. Let G = 〈u1, v1, · · · , uk, vk〉.
Then by Proposition 2.99 and induction,

scl(
∏

i

[ui, vi]
pi) =

1

2

∑
|pi|+

k − 1

2

since free groups are locally indicable and therefore left orderable (see Exam-
ple 2.97).

The interaction of left orderability and scl (especially in order to obtain sharp
estimates in free groups) will be discussed again in § 4.3.4.

2.7.6. Self-products. There is an analogue of Theorem 2.93 with (free) HNN
extensions in place of free products. For convenience, we state and prove the
theorem only in the case that the elements in question are torsion free.

Theorem 2.101 (Self-product formula). Let G be a group, and g1, g2 ∈ G two
elements of infinite order. Let G′ = G ∗ 〈t〉. Then there is an equality

sclG′(g1tg2t
−1) = sclG(g1 + g2) +

1

2

Proof. Let X be a space with π1(X) = G. Let γ1, γ2 be loops representing the
conjugacy classes of g1, g2 respectively. Let P be a pair of pants, and let Y = X∪P
be obtained by gluing two boundary components of P to γ1 and γ2 respectively,
and let γP denote the unglued boundary component of P .

Notice that π1(Y ) = G′ and γP represents the conjugacy class of g1tg2t
−1.

If f : S → Y sends ∂S to γP with degree n, then after making f efficient, S
decomposes into fX : SX → X and fP : SP → P . The degree of fP is n, so
−χ−(SP )/2n ≥ 1/2, and −χ−(SX)/2n is an upper bound for scl(g1 + g2). Since
the gi have infinite order, no component of SX is a disk, and therefore −χ−(S) =
−χ−(SP )−χ−(SX). The proof now follows, as in the proof of Theorem 2.93, from
Proposition 2.10 and Proposition 2.74. �

Remark 2.102. Note that the same proof shows

sclG′(g1tg2t
−1 +

X
tigi) = sclG(g1 + g2 +

X
tigi) +

1

2

for any
P
tigi ∈ BH1 where we sum over i ≥ 3.

Remark 2.103. By Remark 2.102 and by the linearity and continuity of scl on BH1 , the
calculation of scl on BH1 can be reduced to calculations of scl on “ordinary” elements of
G ∗ F for sufficiently large free groups F .
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2.7.7. LERF and injectivity. Recall Proposition 2.10, which says that if X
is a space with π1(X) = G, and γ is a loop in X representing the conjugacy class
of a, then

scl(a) = inf
S

−χ−(S)

2n(S)

where the infimum is taken over all maps of oriented surfaces f : S → X whose
boundary components all map to γ with sum of degrees equal to n(S). Recall
(Definition 2.11) that f, S is said to be extremal if it realizes the infimum. The
following proposition says that extremal surfaces must be π1-injective.

Proposition 2.104 (injectivity). Let X, γ be as above. Suppose f, S as above
is extremal. Then the map f : S → X induces a monomorphism π1(S)→ π1(X).

Before we prove the proposition, we must discuss the property LERF for surface
groups.

Definition 2.105. Let G be a group. Then G is locally extended residually
finite (or LERF for short) if all of its finitely generated subgroups are separable.
That is, for all finitely generated subgroups H and all elements a ∈ G−H there is
a subgroup H ′ of G of finite index which contains H but not a.

Example 2.106 (Malcev; polycyclic groups). A solvable group is polycyclic if
all its subgroups are finitely generated. Malcev [142] showed that polycyclic groups
are LERF.

Example 2.107 (Hall; free groups). Marshall Hall [102] showed that free
groups are LERF. In fact, he showed that free groups satisfy the stronger property
that finitely generated subgroups are virtual retracts. We sketch an illuminating
topological proof of this fact due to Stallings [191].

Let F be free, and let G be a finitely generated proper subgroup. Represent
F = π1(X) where X is a wedge of circles, and let X̃ be a cover of X corresponding
to the subgroup G. Since G is a finitely generated subgroup of a free group, it
is free of finite rank, so X̃ deformation retracts to a compact subgraph XG with
π1(XG) = G. Each directed edge of XG is labeled by a generator of F . Let
X ′G be another copy of XG with each directed edge labeled by the inverse of the
corresponding label in XG. For each vertex v of XG, let v′ be the corresponding
vertex of X ′G. Join v to v′ by a collection of edges, one for each generator of π1(X)
not represented by an edge in XG with a vertex at v. Let the result be X ′′G. Then
by construction, X ′′G is a finite covering of X , and therefore corresponds to a finite
index subgroup H of F . Moreover, by construction, G is a free summand of H .

Example 2.108 (Scott; surface groups). Peter Scott [185] showed that surface
groups are LERF. For surfaces with boundary, this is a special case of Exam-
ple 2.107, but even in this case, Scott’s proof is different and illuminating.

Let S be a surface with χ(S) < 0. Observe that S can be tiled by right-angled
hyperbolic pentagons, for some choice of hyperbolic structure on S. Let G be a
finitely generated subgroup of π1(S), and let S̃ be the covering corresponding to G.

The surface S̃ deformation retracts to a compact subsurface X with π1(X) = G.
This subsurface can be engulfed by a convex union Y of right-angled hyperbolic
pentagons. Since all the pentagons are right-angled, Y is a surface with right-angled
corners. There is a hyperbolic orbifold obtained from Y by adding mirrors to the
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non-boundary edges. This orbifold has a finite index subgroup, containing G, which
is also finite index in π1(S).

A geometric corollary of property LERF for free and surface groups is the fact
that for any hyperbolic surface S and any geodesic loop γ in S there is a finite
cover S̃ of S to which γ lifts as an embedded loop. Using this fact, we now prove
Proposition 2.104:

Proof. Suppose S minimizes −χ(S)/2n(S) but f : S → X is not injective
in π1. Let a ∈ π1(S) be in the kernel. Choose a hyperbolic structure on S, and
represent the conjugacy class of a by a geodesic loop γ in S. If γ is embedded,
compress S along γ to produce a surface S′ satisfying −χ(S′) < −χ(S). The
compression factors through f , and there is a map f ′ : S′ → X satisfying n(S′) =
n(S), contrary to the minimality of S.

If γ is not embedded, let S̃ be a finite cover of S to which γ lifts as an embedded
loop. Let π : S̃ → S be the covering map. Since both χ and n(·) are multiplicative

under covers, there is an equality −χ(S)/2n(S) = −χ(S̃)/2n(S̃). But S̃ can be

compressed along γ to produce a new surface S̃′. The compression factors through
fπ, contradicting the minimality of S, as before. This contradiction shows that f
is injective on π1(S), as claimed. �

This lets us give a short proof of the following corollary. Note that this corollary
is easy to prove in many other ways. For instance, it follows from the fact that
every subgroup of a free group is free, and from the theorem of Malcev [141] that
free groups are Hopfian (i.e. surjective self-maps are injective).

Corollary 2.109. Let ρ : F2 → F be a homomorphism from F2, the free group
on two elements, to F , a free group. If the image is not Abelian, φ is injective.

Proof. LetX be a wedge of circles with π1(X) = F . Let F2 = 〈a, b〉. The map
ρ defines a map from a punctured torus S into X , taking the boundary to ρ([a, b]).
By hypothesis, this element is nontrivial in F . If ρ is not injective, Proposition 2.104
implies scl(ρ([a, b])) < 1/2. But we will show in § 4.3.4 that every nontrivial element
in a free group satisfies scl ≥ 1/2. �
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