
CHAPTER 2

Introduction to Part 1 and Part 2.

Chapter 2 consists of two parts, Part 1 (\S 1-\S 17) and Part 2 (\S 18-\S 36). The subject
here is what we call $a$

”
$G_{\mathfrak{p}}$-field”, where $G_{\mathfrak{p}}=PSL_{2}(k_{\mathfrak{p}})$ . The definition is as follows. $A$

field $L$ is called a $G_{\mathfrak{p}}$-field over a subfield $k$ if $\dim_{k}L=1$ and if $G_{p}$ acts effectively on $L$

as a group of field automorphisms over $k$, fulfilling the following conditions $1_{:}$

(i) For each open compact subgroup $V\subset G_{\mathfrak{p}}$ , its fixed field $L_{V}$ is finitely generated
over $k$, and $L/L_{V}$ is nomlally and separably algebraic. Moreover, $V$ is topologically
isomorphic to the Krull’s Galois group of $L/L_{V}.$

(ii) Almost all prime divisors of $L_{V}$ over $k$ are unramified in $L.$

(iii) The fixed field of $G_{\mathfrak{p}}$ is $k$ ($k$ is called the $c$onstant field of $L.$)

The motivation for the study of such a field is this:
– If $\Gamma$ is a discrete subgroup of $G=G_{R}\times G_{p}$ with finite-volume-quotient such that the
projections $\Gamma_{R},$ $\Gamma_{\mathfrak{p}}$ are dense in $G_{R},$ $G_{\mathfrak{p}}$ respectively, then $\Gamma$ defines a $G_{\mathfrak{p}}$ -field $L$ over the
complex number field $C$ , and conversely (Theorem 1, \S 9). Thus $\Gamma$ and $L$ (over C) are
equivalent notions. Moreover, it seems that the study of $G_{\mathfrak{p}}$-fields over algebraic number
fields 2 is crucial for the solution of our problems. Thus we meet our first problem: ’

$Is$

every $G_{\mathfrak{p}}$ -field $L$ over $C$ a constantfield extension $ofaG_{\mathfrak{p}}$-field $L_{0}$ over an algebraic num-

berfield?” This problem is solved affirmatively in Part 2 (Theorem 4, \S 18). The readers
note, however, that this would not be remarkable enough without ”essential uniquenes$s$

$ofL_{0}$ , which is guaranteed by Theorems 5, 6, 7 (\S 18, \S 32, \S 33) under a certain condition
on $L$ . Namely, by Theorem 5, under a condition on $L$ which is always satisfied if $\Gamma$ is
maximal (see \S 10), there is a unique $3G_{\mathfrak{p}}$-field $L_{k_{\theta}}$ over an algebraic number field $k_{0}$ such
that

(i) $L$ is a constant field extension of $L_{b}$ , and
(ii) if $L$ is a constant field extension of another $G_{\mathfrak{p}}$-field $L_{k}$ over a field $k\subset C$ , then $k$

contains $k_{0}$ and $L_{k}=L_{h}\cdot k.$

Thus if $\Gamma$ is maximal, then $\Gamma$ defines a unique $G_{\mathfrak{p}}$-field $L_{k_{0}}$ over an algebraic number field
$k_{0}$ . Theorems 6, 7 are some variations ofTheorem 5.

lSee also \S 1. We do not assume that $G_{\mathfrak{p}}$ is the full automorphism group of $L$ over $k.$

$2By$ an algebraic number field, we always mean a finite extension of the field ofrationals $Q.$

$3L_{\hslash_{0}}$ is unique not only up to isomorphisms, but also as a $G_{\mathfrak{p}}$-invariant subfield of $L.$
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In the last two sections (\S 35, \S 36), we shall prove that under a certain condition on
$\Gamma$ (to which no counterexample is known), the field $h$ contains the field $F$ defined by
$F=Q((tr\gamma_{R})^{2}|h\in\Gamma_{R})$ (Theorem 8, \S 36). The idea offfie proof is

(i) to consider the $\Gamma_{R}$-fixed points (on $\mathfrak{H}$) and the rotation arguments ofthe stabilizers $in$

algebraic terms, and
(ii) to prove that $F$ is generated over $Q$ only by $(tr\gamma_{R})^{2}$ of elliptic elements $\gamma_{R}$ of $\Gamma_{R}.$

The proof of (ii) is given in Chapter 3 (\S 11). $A$ further study of the relations between
$k_{0},F$, and $Q((tr\gamma_{\mathfrak{p}})^{2}|\gamma_{\mathfrak{p}}\in\Gamma_{\mathfrak{p}})$ will be left to the next stage ofthis chapter.

Part 1 is rather a preliminary to Part 2. In Theorem 1 (\S 9), the one-to-one correspon-
dence $\Gamma\leftrightarrow L$ (over C) is established. In Theorem 2 (\S 10), some Galois theoly” between
$\Gamma$ and $L$ is proved.4 In particular, it is shown that $L$ is irreducible (see \S 10) if and only if
$\Gamma$ is maximal. In Theorem 3 (\S 11), it is proved that $G_{\mathfrak{p}}$ is of finite index in $Aut_{C}L$ , a fact
needed in Part 2.

A large part of Part 2 is devoted to the proof of Theorem 4 $(i.e., \S 21\sim\S 31)$ . Two

basic lemmas for this proof are :

(i) $G_{\mathfrak{p}}$ is a certain free product wrtb amalgamation (Lemma 7, \S 28), and
(ii) homomorphisms of $\Gamma_{R}$ into $G_{R}$ satisfying some conditions are induced by inner au-

tomorphisms $ofG_{R}’=PL_{2}(R)$ (Lemma 8, \S 29).

As an example of $G_{\mathfrak{p}}$-fields, we shall treat the $G_{p}$-field $L$ over $C$ that corresponds to
the group $\Gamma=PSL_{2}(Z^{(p)})$ (see \S 2). This field is treated in connection with Theorems 1, 3
and 5, in \S 2, \S 17 and \S 34, respectively.

Although the $G_{\mathfrak{p}}$-field” can be defined for any locally compact, non-compact, and
totally disconnected group $G_{\mathfrak{p}}$ , our main results after \S 11 are essentially based on the
particular structure of the group $G_{\mathfrak{p}}=PSL_{2}(k_{\mathfrak{p}})$ (see Lemmas 1, 4 and 6). Moreover, the
only examples of $G_{\mathfrak{p}}$-fields that we know at present are those for $G_{\mathfrak{p}}\supset PSL_{2}(k_{\mathfrak{p}})$ with
$(G_{p} : PSL_{2}(k_{\mathfrak{p}}))<\infty$ ; and for such $G_{\mathfrak{p}}$ , we can obtain results similar to ours immediately
from our results (e.g., by using Proposition 4 (\S 12) and Theorem 6 (\S 32)). Therefore, we
shall assume throughout the chapter that $G_{\mathfrak{p}}$ is the group $PSL_{2}(k_{\mathfrak{p}})$ .

4In Piatctski-Shapiro and Shafarevich [24] (in Russian), it seems that a certain transcendental Galois
theory is developed, which seems quite interesting. However, the results (resp. ideas) are different (resp.

independent).
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