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1. INTRODUCTION

Let g be a finite dimensional simple Lie algebra of rank n. Let Y (g) be the Yangian
associated to g. In 1990 Kirillov and Reshetikhin [KR1] conjectured the existence of a
family of finite dimensional Y (g)-modules w (r € {1,2,...,n},s € Z>;) whose tensor
product decomposes into g-modules by the following multiplicity formula.

(1.1) ®W(r,) W = Z H ( (a)+m())

{ (a)} l<a<n

Here V), is the irreducible highest weight g-module with highest weight A and the LHS is
the multiplicity of V3 in the g-module ®; Wa;"). In the RHS ( P ™

binomial coefficient. All other notations will be explained in section 5.2. This conjecture
is now proven for any simple Lie algebra g in the “weak” version (see the explanation after
Conjecture 5.6), by combining several results [HKOTY, KNT, N, H]. (See also [C, KNS].)

In 1999 we introduced a “fermionic formula” M as a suitable g-analog of the RHS of
(1.1) [HKOTY]. And we began to seek the LHS that equates it. In a subsequent paper
[HKOTT] we defined it as a 1D sum X and extend the equality to twisted affine Lie algebra
cases. The purpose of this note is to explain how to define X and to persuade you to believe

stands for the
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the so called “X = M conjecture.” We note here that the combinatorics of M and some
strategies for proof of the X = M conjecture is discussed in Schilling’s contribution of this
volume.

2. CRYSTALS

2.1. Definition. In this subsection we recall the definition of crystal bases. For more
details along with the definition of Uy(g), refer to [Kal].

Let g be a symmetrizable Kac-Moody Lie algebra and let M be a U,(g)-module. M is
said to be integrable if

o M = ®)epM),
e dim M), < oo for any A, and
e for any 4, M is a union of finite-dimensional U, (g;)-modules.

Here P is the weight lattice of g, M) is the weight space of M of weight A and Uy(g;) is
the subalgebra generated by Chevalley generators e; and f;. If M is integrable, we have

M= @ fi(")(Ker e N M,).
0<n<(hi,A)

Note that we use the following notations: [m}; = (¢"—q¢;™)/(¢i—g; "), [n)i! = [Tm—1[mli, fi(") =
f7/[n);! with ¢; = ¢{®+*), where ( , ) is an invariant bilinear form on P. We define the

endomorphisms é;, f; of M by
fi(fi(n)u) = f,-(nH)u and éz’(f,-(n)u) — fi(n.—l)u

for u € Ker ¢; " My, with 0 < n < (hi,A). These are called Kashiwara operators.
(Kashiwara called them modified Chevalley generators.)

Roughly speaking, a crystal basis of a Uj(g)-module M is a basis of M “at ¢ =0". Let
us look at the definition more precisely. Let A be the subring of Q(g) consisting of rational
functions without poles at ¢ = 0. Let M be an integrable Uy(g)-module.

Definition 2.1. A pair (L, B) is called a crystal basis of M if it satisfies the following 6
conditions:

(2.1) L is a free sub-A-module of M such that M ~ Q(q) ®4 L,
(2.2) B is a basis of the Q-vector space L/qL,

(2.3) &L C L and f;L C L for any i.

By (2.3) &; and f; act on L/qL.

(2.4) &B c BU {0} and f;B c BU{0}.

(2.5) L =@®yepLy and B = UyepB)

where Ly = LN M) and By, = BN (L)‘/qLA).

(2.6) For b,b' € B,b = f;b if and only if &b = b.

If (2.6) holds, we draw an arrow as
b b

By this B gets endowed with the structure of colored oriented graph, which we call the
crystal graph. Note that we often say B is a crystal basis rather than (L, B). Standard
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notations are in order. For b € B we set
(2.7) €i(b) = max{m € Z>¢ | €]"b # 0}, @i(b) = max{m € Zxo | fb # 0},
(28) &) =) &b, o(d) = > @i(b)As,

(2.9)  wtb= () — £(b).

Here {A;} stands for the set of fundamental weights of the Kac-Moody Lie algebra g. The
sequence of arrows penetrating a crystal element b is called the i-string through b. An i-
string is illustrated in Figure 1 together with the meaning of €;(b) and ¢;(b) in the crystal
graph.

FIGURE 1. i-string

E,;(b) /.

The crystal basis behaves nicely under the tensor product. Let (L;, B;) be the crystal
basis of an integrable U,(g)-module M; (j = 1,2). Set L = L; ®4 Lz and B = {b; ® b> |
bj € Bj(j = 1,2)}. Then (L, B) is a crystal basis of M; ® M>. Moreover, the action of
Kashiwara operators becomes very simple as

~ éiby ® by if (Pi(bl) 2> E‘i(b2)7
2.10 €i(b1 ®b _ .
( ) 1'( 1 2) {bl ® éiby if <Pi(b1) < Ei(bZ)a
3 fiby®by  if pi(by) > €i(b2),
2.11 (1 ®b2) = z .
211) b1 ®b2) {h®ﬁb i pi(01) < €i(b).

Here 0 ® b and b ® 0 are understood to be 0. We denote this B by B; ® By. This rule can
be depicted as in Figure 2. ¢;,p; and wt are given by

(2.12) €i(b1 ®b2) = max(e;i(b1),€:i(b1) + €i(b2) — pi(b1)),
(2.13) pi(by ®b2) = max(p;(b2),pi(b1) + vi(b2) — €i(b2)),
(2.14) wt (b1 (024 b2) = wtby + wtbs.

In order to compute the action of é;, f; on multiple tensor products, it is convenient to
use the rule called signature rule. Let b=b; ® b2 ® - - - ® by, be an element of the tensor
product of crystals B; ® By ® - - - ® Bp,. One wishes to find the indices j, j' such that

EbL1I® Qbn)=b1® - ®Eb;® -+ b,
fi(b1®"'®bm) =b1®"'®f~‘ibj’®"'®bm-
To do it, we introduce (i-)signature by

ei(b1)  @i(br) ei(b2)  wi(b2) €i(bm)  wi(bm)
S TR A =4 F.
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FIGURE 2. Tensor product rule

B,

L e Ty Sy JSSY Y )

We then reduce the signature by deleting the adjacent +— pair successively. Eventually
we obtain a reduced signature of the following form.

—— =444

Then the action of & (resp. f;) corresponds to changing the rightmost — to + (resp.
leftmost + to —). If there is no — (resp. +) in the signature, then the action of €; (resp.
f:) should be set to 0. The value of ;(b) (resp. ;(b)) is given by the number of — (resp.
+) in the reduced signature.

Example 2.2. Consider an element b; ® by ® b3 of the 3 fold tensor product B; ® B; ® Bs.
Suppose €;(b1) = 1,pi(b1) = 3,ei(b2) = 1,pi(b2) = 1,e:(b3) = 2,9i(bs) = 1. Then the
signature and reduced one read
sig -++ - -+ - —-—+
red sig — . . +.

Thus we have

€i(b1 ® b2 ® b3) = &;b1 ® by ® b3,

fi(b1 ® b ® b3) = b1 @ ba ® fibs.
2.2. Conjecture and known cases. It is known that for a symmetrizable Kac-Moody
algebra the integrable highest weight U,(g)-module V(\) with highest weight A (or even
the lower part U; (g) of Uy(g) generated by f;) has a crystal basis [Kal]. The crystal
basis (L(\), B(A)) of V()) is given as follows. L()\) is the sub-A-module generated by the
vectors f,-l e f.;,u)‘, where u) is the highest weight vector of V()\). B(]) is the subset of
L()\)/qL()) consisting of the nonzero vectors of the form f;, - - - fi,uy mod gL(\).

Let us restrict ourselves to the case when g is an affine Lie algebra. Let Uj(g) be the
subalgebra of U,(g) defined by dropping ¢¢ (d is the degree operator) from the generators.
Then Uy(g) has Py := P/Zagy 15 as the weight lattice (see the next subsection for details),
and one can consider a U;(g)-module which is finite dimensional. As shown in next remark,
a finite dimensional U;(g)-module does not always have a crystal basis.

Remark 2.3. Consider Ugy(gl,). (See e.g. [J] for the definition.) Irreducible finite dimen-
sional modules are parametrized by partitions with at most n parts. By using an algebra
homomorphism from U (sl,) to Uy(gly) [J], any Uy (gl,)-module admits the U, (sl )-module
structure. Such U (sl3)-module corresponding to the partition (2, 1) does not have a crystal
basis.
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So we have the following fundamental problem.
Problem: Find all irreducible finite dimensional modules having crystal bases.

As a first step toward solving this problem we propose

Conjecture 2.4. KR module Ws(r) has a crystal basis. (We denote it by B™*.)

We call this crystal KR crystal, although its existence is still conjectural in general.
However, there are some settled cases, which we summarize below.

i) g =AY

As a Uy(An)-module, Ws(r) is isomorphic to the irreducible module corresponding to the
partition (s"). The crystal B™* for any r,s is given in [KMN2]. B™* is identified with
the set of semistandard tableaux of shape (s") with letters from {1,2,...,n + 1}. The
action of €&;, f; for i # 0 agrees with the one in [KN] for type A,. For i = 0 it is given by
€y = pr‘1 0 €3 o pr, fo = pr’1 o fl o pr using the promotion operator pr that represents the
symmetry of B™*® corresponding to the rotation of the Dynkin diagram of type A&l) [Sh].
We will look at it again in section 3.2.

(ii) g: non exceptional, B!
In [KMN2] W{" is constructed by the fusion construction from Wl(l) for all non excep-

tional affine Lie algebra g except type C’,(ll). The module Ws(l) so constructed is shown to
have a crystal B by giving a “polarization.” In [KKM] B is identified with the set
of lattice points included in some convex polytope, and the action of é;, f; is also given

explicitly. This paper contains the C,(f) case, although their B, should be understood as
B2 in our notation. We call such a representation of crystal elements coordinate rep-
resentation. We call this crystal B1* KKM crystal and look at it again in section 3.3.

(iii) g: any type, B™!

In [Ka2] Kashiwara constructed a finite dimensional U;(g)-module W (w;) for any affine
Lie algebra g as a quotient of an extremal weight module, notion introduced by him as a
generalization of the integrable highest weight modules. He has also shown that W (w,)
has a crystal basis, which we denote by B™!. Naito and Sagaki [NS] realized it as the set of
Lakshmibai-Seshadri paths and the action of &;, f; is given by Littelmann’s root operator.

However, it is not still clear whether B! has the desired decomposition as a U, (a)-module
given by the fermionic formula except for simple cases.

(iv) Other cases
There are other works. [KMN2] also treated spin representation cases: (C’,(ll);B"*“),

(D,(ll);B"‘l’s,B"_lvs), (D,(f_al;B“""). [BFKL)] treated for any affine Lie algebra g the case
when the highest component of the corresponding finite dimensional U, (g)-module by the
decomposition as a U,(g)-module is the adjoint representation. See also

[Ko] for (BAY; Br1+5m) (O, B2(r o n)), (DX BY(r # n — 1,m)),

[IMO)] for (CV; B), (AD); B™Y), (AS1 15 B™),

[SSt] for (DSV; B2#),

[Ya] for (G5 BY),

[KMOY] for (D; BL#).
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2.3. Combinatorial R and energy function. Let us recall the classical weight lattice
P,. Let ag be the positive integer such that § — apag € ) ¢ I Z>00i. Namely, ag is the

0-th Kac label. ag = 1 except when g = Agi), in which case ap = 2. We take the weight
lattice

P =)"ZA; ®Za;'5,
i€l
and consider the projection
cl: P— Py= P/Zag"s.
We take a map af : P,; — P satisfying
cl o af = id,
(af ocl)(a;) = a; fori € Iy.
Then we have (af o cl)(ap) = ap — ag 1. Note that the above conditions do not determine
af uniquely. We fix it by imposing (af o cl)(A;) = A;. By this one can also consider
P, CP.
Let V be a finite dimensional Uj(g)-module. V is Py-weighted. Set
(2.15) V. = Q(g)[2, 27" ®q() V-

It should not be confused with a weight space. V, is endowed with the U,(g)-module
structure by

(2.16) ei=2%Qe, fi=z%ef,
(2.17) wt (2% ® v) = af(\) + dagy'é for a weight vector v of weight A € P,.
Thus V, becomes a P-weighted module.
Let V, V' be finite dimensional Uy (g)-modules. It is known that there exists a nonzero
U,(g)-linear map
(2.18) Ryy/(z,y): Va®V, —V,®V,
called the R-matrix. The existence follows from that of the universal R-matrix for U,(g).

Proposition 2.5. Suppose V ® V' is an irreducible Uj(g)-module. Then we have
(1) U/p to a multiple of Q(q)[z,z72,y,y7}], Rvv(z,y) is unique and depends only on
z/y.
Hereafter we write Ryy:(z/y) instead of Ryv(z,y).
(2) Rvv(y/z)Rvv(z/y) = f(z/y)id for some f(z/y) € Q(g)lx/y,y/x].
Suppose further that V@ V' ® V" is an irreducible Uy(g)-module.
(3) The Yang-Baxter equation holds on Endgg)(V ® V' @ V”).

(Rvivn(y/2) ®1)(1 ® Ryyn(x/2))(Rvvi (z/y) ® 1)
= (1® Ryv/(z/y))(Rvv»(z/2) ® 1)(1 ® Ryryn(y/2))

We wish to consider the ¢ — 0 limit of the R-matrix. For this purpose, we consider the
following conditions for a Uj(g)-module V.

e V has a crystal basis (L, B),
e there exists A € P, such that

(2.19) dimVj =1 and dimV, =0 for g€ (A +Q,) \ {A}.



X = M CONJECTURE
49

[+
Here Q, = Zze Io Z>p0y. Call a nonzero vector ug € V), dominant extremal vector.

Suppose Uy (g)-modules V, V' satisfy the above conditions and let (L, B), (L', B') be their
crystal bases We assume

B ® B’ is connected.

Note that it implies that both B and B’ are connected. For a positive integer m, let [m)]
denote the set {0,1,...,m — 1}. For a finite set S, let §S denote its cardinality. Take a
basis {u;} (j € [§B]) of L (resp. {u;} (j € [1B']) of L') in such a way that u; mod gL € B
(resp. u; mod gL’ € B') and ug (resp. up) is a dominant extremal vector. Let us normalize
the R-matrix by

(2.20) Ryv(z/y)(uo ® ug) = g(/y)(up ® uo)

for some g(z/y) € Alz/y,y/z] such that go(z/y) = g(z/y)|,=o # 0. With the above setup,
we have the following proposition.

Proposition 2.6 ([KMN1]). Let r] " (z/y) be the entry of the R-matriz defined by
(2.21) Ryv/(z/y)(u; ® up) ZT, (/) (4 ® tm).

Then there exists a bijection
v+ [tB] x [tB'] — [4B] x [{B]
and an integer valued function H such that

‘H(’Uj®u;c) . = .
@2 )| ={ (z/2) w(e/s) i (bm) = ik)

Proof. Set R = Ryv/(z/y) and
L=(L®4sLl)x/y,y/z), L=(L'®aL)z/y,y/z]
First we prove ‘
(2.23) RLc L.
Note that R commutes with &;, f;. Since B® B’ is connected, we see the map
RYI)NL/RYL)Nngl — L/qk
is surjective. Hence L C R’l(i) + gL and we have
RL c L+qRL.

By (2.20) RL C L holds on the weight space of weight wtug + wtug. By applying é;, f; we
obtain RL c L.

Once we know (2.23), we can take the ¢ — 0 limit of (2.21). (2.22) follows from (2.20)
and the commutativity of R with &;, f;. A recursion relation for H, which shows H is
integer valued, will be given shortly. a

Rewriting Proposition 2.6 as

)___ d+H I ®$d H

go(z/y) "' Rvv+(z/y) | =0 (z%u; ® y‘i'u;c e

where (j', k') = «(j,k) and H = H(u; ® u}), we are led to introduce a new notion for the
R-matrix at ¢ = 0. For a crystal B as above, define

Aff(B) = {bld] | b€ B,d € Z}
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and call it the affinization of B. In view of (2.16), the action of &;, f; on Aff(B) is defined
by
& - bld] = (&d)[d+ dio], fi - bld] = (fid)[d — dg)-
Then the combinatorial R for B ® B’ is a map
R: Aff(B) ® Aff(B') — Aff(B') ® Aff(B)

sending b|d] ® ¥'[d'] to ¥[d’ + H] ® b[d — H], where b® b/ and ¥’ ® b are related under the
bijection + and H = H(b® ). We call the bijection ¢ (crystal) isomorphism and the
function H (local) energy function. Proposition 2.6 assures that such a map R exists.
Let us examine how R is determined combinatorially. First, recall R commutes with

&, fi. By the isomorphism, ug ® ug should be sent to ug ® ug, since there is no other
crystal element with the same weight by (2.19). For the other elements, the images are
determined inductively using t o & = &; 0 ¢, to f; = fi o, since B® B’ is connected. Next
we consider the energy function H. Suppose é; (b® V) # 0. Applying é; on both sides of
L(b®b') =Y ®b forces us to consider the following 4 cases:

(LL) (Eb®b) =¢&b @b,

(LR) t(&b®V) =¥ ®é&pd,

(RL) :(b® éib,) = éiy ® I;,

(RR) (b®&bd') =¥ ®é&pb.
Suppose (LL) occurs with z = 0. We have

Réo(b[d] ® b'[d"]) = R((éob)[d + 1) ® ¥'[d'])) = (éob)[d’ + H'| @ bld + 1 — H'],
&R(b[d) ® ¥'[d)) = &(¥'[d + H] ® bld — H]) = (&b)[d' + H + 1] ® b[d — H],

where H = H(b® V), H' = H(é(b® b')). Since Ré; = é R, we obtain H(&(bQV)) =
H(b®VY)+ 1. Similar calculations show that for any i and b ® ¥ € B ® B’ such that
e(b®b) #0,

Hb®V)+1 ifi=0and case (LL) holds,
(2.24) HEDL®Y)=<Hb®Y) -1 ifi=0and case (RR) holds,

HbeV) otherwise.
This relation determines the value of H up to additive constant. Similarly, for any : and
b® Y € B® B’ such that f;(b® V) #0,

Hb®VY)—1 ifi=0 and case (LL) holds,
(2.25) H(f;(b®V)={ Hb®¥)+1 ifi=0and case (RR) holds,

HbV) otherwise.

Of course, (LL) or (RR) in this case should be decided according to the application of fo.

We finish this subsection with the following proposition, which follows from Proposition
2.5. _

Proposition 2.7. (1) Rp'gRpp = id.
(2) The Yang-Baxter equation holds on Aff(B) ® Aff(B') ® Aff(B").

(Rp'gr ®1)(1 ® Rpp»)(Rpp ®1)
= (1® Rpp')(Rep” ®1)(1® Rp'p»)
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Note that by (2) we have Hpp/ (b® V) = Hpp(b @ b) if (b @ V) =¥ ®b.

The above proposition implies the following. Let &,, be the m-th symmetric group.
Let s; be the simple reflection which interchanges 7 and 7 + 1, and let I(w) be the length
of w € &p,. Suppose the combinatorial R R : Aff(B;) ® Aff(B;) — Aff(B;) ® Aff(B;) is
known for any (4, 7) such that 1 <i,j <m,i # j. Then for any w € & we can construct a
map R, : Aff(B;)® - ® Af(Bp) — Aff(Bw(l)) ® ] Aff(Bw(m)) by

Ry =1,
Rsi=1®...®1®R®1®...®1,
e, e’ e, e’

i—1 m—i~1

Rys, = R, o Ry, for w such that l[(ws;) = l(w) + 1.

3. EXAMPLES OF CRYSTALS

3.1. Type A B'*. In this subsection we will look at the crystal B:* for type Agll_)l in
detail.

As a set the crystal B¢ is identified with the set of semistandard tableaux of shape (s)
with letters from {1,2,...,n} (tableau representation). Letting x; be the number of letter
i in the tableau, we have an alternative description of B!* (coordinate representation).

BY = {z = (€1,%2,...,%n) | Ti € L0,Z1 + T2+ -+ + Tn = 5},

The action of &, f; (:¢=0,1,...,n— 1) reads

érx = (z1,...,2i+1,zi11—1,...,2,) for i #0,
éox = (z1—-1,22,...,Zn-1,Zn+1),
fiz = (z1,-. 2 — L, zip1 +1,...,zp,) for i #£ 0,
for = (z1+1,22,...,Zn-1,Zn — 1).

If a negative entry appears upon application, we should understand it is 0. €;(z), pi(x)
(¢=0,1,...,n— 1) are given by

(3.1) &i(z) = ziv1, wi(z) = Ti.

Here g should be understood as z,,.
Here follows some examples of crystal graphs.

Example 3.1. (1) n: arbitrary

BLl .
/”—__O\
1 1 2 2 3 3 ... n-2,_12=1,
(2) n=2
B3
111 < é 112 ; 122 # 222

3) n=3
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B12 .
1 — 12 — 22
NN L
13 — 23
N4
33

Here the colors of the arrows —, |, "\ are 1,2, 0, respectively.

Explicit rules to calculate the crystal isomorphism B!# ® B — BY* ® B* and the
corresponding energy function are obtained in [NY]. We assume s > &'. Let b® ¥ be an
element in B1* ® B in tableau representation such as b = v;---v, and b/ = v ---1},.
Let z; (resp. y;) be the number of 4 in b (resp. b'). We represent b ® b’ by the two column
diagram. Each column has n rows, enumerated as 1 to n from the top to the bottom. We
put z; (resp. y;) letters i in the i-th row of the left (resp. right) column. The rule to

obtain the isomorphism and the energy function H is as follows.

(1) Pick any letter, say 4, in the right column and connect it with a letter j in the
left column by a line. The partner j is chosen so that j = max{vx | vk < i}. If
there is no such j, we return to the bottom and the partner j is chosen so that
j = max{v;}. In the latter case, we call such a pair or line “winding”.

T L

3
3 —

=

—
unwinding winding

(2) Repeat the procedure (1) for the remaining unconnected letters (s’ — 1)-times.

(3) The isomorphism is obtained by sliding the remaining (s — s’) unpaired letters in
the left column to the right.

(4) The value of the energy function is the number of the “winding” pairs.

Note that we normalized H so that we have min H = 0. When s’ = 1, the rule simplifies
to the following:
If there exists k such that v < v/, then

(3.2) ul---1/3®1/'r->uj®u1---1i'~~1/s,
H( - vs®V) =0,

where j = max{k | v, < v'}. Otherwise,

(3.3) NV @V v, @V v,
H@p - vs®V)=1.

Example 3.2. s=4,s' =2

1123 ® 23 ~ 12 ® 1233 H=0
1123 ® 12 ~ 13 ® 1122 H=1
2344 ® 12 ~ 44 ® 1223 H=2

Here b® ¥/ ~ & ® b means that they corresponds to each other under the isomorphism
.: BL® ® Bl,a’ - Bl,s’ ®Bl,s.
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There is also a piecewise linear formula for the isomorphism and energy function in this
case. Let z = (21,...,%n) (resp. ¥ = (¥1,..-,yn)) be a coordinate representation for

be B (resp. b € BY*') and suppose ¢(b® V') = ¥ ® b. Then the coordinate z’ (resp. ')
of b (resp. b') is given by

(3.4) o, =z + Qi(z,y) — Qi-1(x,¥), ¥ =i+ Qi—1(zy) — Qi(z,y)
for 1 <i<n with

k-1 n

Qi(z,y) =min{ > zir;+ Y visj|1<k<n}

j=1 j=k+1
Here the indices of z,y are to be understood in Z/nZ. The energy function is given by
H(b®V) = —Qo(z,y). This H is so normalized that we have min H = —min(s,s’). We
note that this formula can be used irrespective of whether s is greater than s’ or not.
Intriguingly, this formula is first obtained in [HHIKTT] through studies of the box-ball
system, a kind of cellular automaton with solitons.

3.2. Type A B™. In this subsection, we investigate the crystal structure of B™® for
arbitrary r, s and the combinatorial R for B ® B™ . Our reference is [Sh]. We also use
fundamental operations in tableau combinatorics, such as “jeu de taquin” or “bumping
algorithm.” See e.g. [F] for the details.

Our Ué(ASl 1)-crystal B™ (1 < r < n—1,s € Zo) is, as a set, identified with the
set of semistandard tableaux of rectangular shape (s”) with letters from {1,2,...,n}. For
an element t of B™®, let t;; denote the letter in the i-th row and j-th column of t. We

first describe the action of &, f; for i = 1,2,...,n — 1. For this purpose, let us define the
Japanese reading word of ¢ by

J(t) = w(s)w(s'l) cen w(l), w(j) = tyto; -+ trj (] =1,2,... ,s).

We then regard J(t) as an element of (B1!)®("%). Namely, each letter is considered to be
an element of B1'!. The action of &;, f; is given by applying the signature rule in section
2.1 to J(t). Note that for the i-signature, letter i (resp. i+ 1) corresponds to + (resp. —).

Example 3.3. Let n = 7. Take an element

11234
t= 23355
34567

of B35. We are to apply &;, f1. J(t) and its 1-signature is given by
Jt) =4573562351341 23
1-sig - + + -

Since the reduced signature is —+, the action of &; (resp. fl) corresponds to changing the
1st 2 (resp. 1st 1) to 1 (resp. 2) in J(t). Therefore, we have

11134 _ 12234
éit= 23355, fit= 23355.
34567 34567
Similarly,
11234

Gt = 22355, fot=0.
34567
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Next we consider the action of &, fo. Instead of giving the rule directly, we introduce
the promotion operator pr satisfying

(3.5) gg=prlogopr, fo=prlofiopr

For a tableau t, pr(t) is given by perforrhing the jeu de taquin. We illustrate it by
example.

Example 3.4. Set n = 7. t is the same as in the previous example. We delete the letter
7(=n) from t and perform jeu de taquin as follows.

11234 11234 11234 112-4
23355 — 23355 — 233-5 — 23335
3456 - 3456 34556 34556

11-24 1-124 -1124
— 23335 — 23335 — 23335
34556 34556 34556

We then replace - with 0 and add 1 to all the letters. That’s the tableau pr(¢), which is

12235
34446
45667

for the present example. If there are more than two 7’s, we do it from the leftmost one.
From (3.5) we have

12334 . 11124
ét= 23555, fot= 23335.
34677 34556

In order to describe the combinatorial R explicitly, we need to explain Schensted’s
bumping algorithm. The bumping algorithm is defined for a pair of tableau ¢ and
single word u and depicted as t «— u. First, let us consider the case where t is a one-row
tableau. If ¢ is empty, ¢t «— u is defined to be the tableau u with one node. Otherwise, let
t = t11t12 - - - tim and look at

tuntiz: - tim — u.
If t1m < u, then define
t —u=1tntiz - -timu

and the algorithm stops (case (a)). Otherwise, set i1 = min{s | t;; > u} and define
te—u=tn "t -1Uli 41 tim

and we have the single word t;;, bumped out from ¢t (case (b)). Now suppose we have a
tableau t of [ rows and let t; be the i-th row of ¢. The bumping algorithm ¢ « u proceeds
as follows. Set t] = t; « u. If case (a) occurs in this case, the algorithm stops. Otherwise,
let u; be the letter bumped out and set t;, = t; — u;. We again divide into the two cases.
The algorithm proceeds until it stops. If case (b) still occurs in the deepest row, we append
the empty row below it.

Example 3.5. Let
112344
t= 23345
34
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and u = 2. The bumping algorithm proceeds as follows.
112344 «~ 2 112244 112244
23345 ’ 23345 ~ 3 23335
34 34 34 — 4
And we have the answer.
112244
23335
344

For a tableau t € B™* we define the row word row(t) by
row(t) = tptp_y---t1 t; = tigtin -+ tis (i=1,2,...,7).

Let ¢ be a tableau and w = ujug - - - u; a word of length I. Let t «— w be a tableau obtained
by applying the bumping algorithm for a single word u; successively as

(o () —u) =)
Then we have the following proposition to obtain the combinatorial R for B™* @ B™.
Proposition 3.6 ([Sh]). t ® t’ is mapped to t ® t by the crystal isomorphism
B™ ® Br’,s’ N Br’,s’ ® B™*
if and only if
t' — row(t) =t « row(t).

Moreover, the energy function H(t ® t') is given by the number of nodes in the shape of
t' « row(t) that are strictly east of the max(s,s')-th column.

Note that the decomposition of B™* @ B"¢ into U, q(An—1)-crystals is multiplicity free.
From this fact, it follows that for a given pair ¢ ® t' we can determine ',f uniquely. To
explain the algorithm of computing #,f, we prepare terminology. Let 6 be a skew tableau,
that is, set-theoretical difference of a Young diagram from a larger one with letters in each
node. Let 7 be the shape of . 6 is called a vertical m-strip if |7| = m and 7; < 1 for any
i > 1. The algorithm to obtain ¥, is given as follows. Let p be the tableau obtained by
the bumping algorithm ¢’ «— row(t). We attach an integer from 1 to r's’ to each node of
the skew tableau p — p’, where p’ is the NW part of p whose shape is (s”). The integers
should be labeled in the following manner. Let 6; be the rightmost vertical 7/-strip in p—p’
as upper as possible. We attach integers 1 through 7’ from lower nodes. Remove 8; from
p — p' and define the vertical /-strip 6, in a similar manner. Continue it until we finish
attaching all integers up to r’'s’. Next we apply the reverse bumping algorithm according
to the order of the labeling. Namely, we find a word u; and a tableau p; whose shape is
(shape of p)-(node of label 1), such that p; «— u; = p. (Note that such a pair (p;,u;) is
unique.) We repeat this procedure to obtain us and p, by replacing p and the node of label
1 with p; and the node of label 2 and continue until we arrive at a tableau of shape (s").
Then we have

f’::((---(q&(—u,./s;)«—-n-)«-—u2)<—u1 and f:p,,.;sr.

_ 112 , 12
Example 3.7. (1) Let t = 233t = 4’4.Thenwe have
1112432
p=t —row(t)= 223 and H = 2.

434,
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Here the subscripts in p are the labels. Since py = ;‘11‘21 and uqugugu; = 3132, we get

112 12 12 112

233 ® 44 = 33 ® 244"
22
(2) Let t = ;iég,t’: 34 . Then we have
46
12224443
Y, 24456, _
p=t —row(t) = 356, and H = 3.
44
. 2223
Since pg = and ugusuqususu; = 421654, we get
4446
22 14
1244 2223
® 34 ~ 25 ® .
2456 46 46 4446

3.3. KKM crystals. In this subsection, we recall KKM crystals for all non exceptional
affine algebras except type A. (Type A has been dealt with already.) In our notation, it is
denoted by BY*. Our basic reference is [KKM].

Affine Lie algebras we consider here are

(3.6) s = BN, CV, DO, A7), AL) |, D),
Looking at their Dynkin diagrams near the 0-node, we divide these algebras into 3 types:
(i) TypeB: BY, DY, A7),
(ii) Type m: C,
(iii) Type o: A%, DI,.
Let g be the finite dimensional simple Lie algebra whose Dynkin diagram is obtained by
removing the 0-node from that of g. According to the order in (3.6), we have
8 = Bn,Cn,Dp,Cn,Cn, B.
As a Uq(a)-crystal, the KKM crystal B!* decomposes as follows.

B(sh;) for type B,
BY ~ { B(sA;) ® B((s —2)A1) @ - - - & (B(A1) or B(0)) for type m,
B(sA))® B((s—1)A1) ®--- @& B(0) for type o.

Here A; stands for the first fundamental weight of g. The irreducible g-module with this
highest weight is the vector representation.

Remark 3.8. The division into the cases (i)-(iii) corresponds to the decomposition of KR
crystals into Uq(s)-crystals. Take B™* from typeB. Assume s # n (and s # n—1 for D,(,l)).
B™# corresponds to the r x s rectangular diagram. Irreducible components as Uq(ﬁ)-crystal

are obtained by removing B from the r x s rectangle. The rule is similar to the other 2
cases. See Appendix A of [HKOTY)] and of [HKOTT] for details.
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We list the coordinate representation of the KKM crystal Bl and its crystal structure
for all non exceptional affine algebras except type A. The crystal structure with respect

to the color 0 (resp. n (and n — 1 for D,(,l))) is determined by the types B,m,o (resp. 3) It
is common to all cases for the other colors. If &b # B (resp. fib # B'*) for b € B'?,
we understand €;b =0 (resp. f;b =0). We define (a)+ = max(a,0).
(i) Type B

° B,(zl)

Bl’s = {b:: ($1,...,$n,120,51-3n,...,§31) I To =0 or 1’

n
T, T; € ZZ()’Z(xi +5:,') +xp = s}.

i=1
(1:1,:1:2— 1,...,%2,% + 1) if 23 > Zo,
(xl —171"2"",52'{'1,@1) if zo < Zo,

(Z1,...,zi+ Lzipr — 1,...,Z1) if Ziq1 > Tiga,
(x1,.., Zis1 + 1,Z = 1,...,Z1) if 2441 < Tiga,

b= (z1, ey Ty o+ 1,%,—1,...,%) if 2o =0,

" (@1, T+ 10— 1,Zp,. .., Z1) ifzg =1,
($1,x2+1,.--,i2,3—31—1) ifm22521
(r1+1,z2,...,Z2 — 1,Z) if 22 < Z2,

(T1,. .0, @ — Lzigr +1,...,Z1) if Tiy1 > Tiga,
(x1,. . Bia — L, Zi + 1,...,%1) if 21 < Ziqg,

:. | (#1,...,zn — 1,20+ 1,Zp,...,Z1) if zop =0,
(z],...,xn,mo_l,in"'l,..-,fil) if.’l?o = 1,
eo(b) = z1 + (z2 — Z2)+, wo(b) = T1 + (T2 — z2)+,
€i(b) = Zi + (Tit1 — Tit1)+,  @i(b) = Ti + (Bit1 — Tiv1)+,
5n(b) = 2%, + o, ‘Pn(b) = zxn + xp
fori=1,...,n—1.
. DS)

BY = {b=(21,...,Zn, Tn,-..,%1) | Ti,Ti € Lo,

n
Tp Or Ty =0, Z:(xt + Z;) = s}.

i=1

Gob = (1,22 —1,...,%2,Z1 + 1) if z3 > Zo,

0 (x1 — 1,2z2,...,Z2+ 1,Z1) if z2 < Zg,

é:b= (m13'~')z‘i+ 1, zit1 — lv"'vfl) if$i+1 > Ziva,

' (1,3 Zip1 + 1, % — 1, Z1) 3 @i < Tiga,
é 1b= ($1,...,$n_1+1,$n—1,:3,-1,...,1_71) if$n>0,in=0,
e (xly'-'aznain'i'l’jn—l - l)jn,"-,jl) lf.’L‘n =0,Zn >0,

éb: (xl,-..,xn‘}‘l,in,jn_l_1,.-.,51) if$n20,5n=0,

" ($1,...,$n_1 +1,mn,jn"1,.-.,ﬁl) ifxn=0,a_:n >O,
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fb__: ($1,$2+1,...,f§2,51—1) if$22i2,
0 (z1+ 1,z2,...,%2 — 1,%1) if z2 < Za,
fb= (@1, @i — L, zip1 + 1, F1) if Tiga 2 Tiga,
' (zl,...,fi.{.l—1,@;’-"1,...,51) if$i+1<fi,'+1,
f 1b= (xl""’xﬂ-l—1’$ﬂ+1)in,---)jl) ifmnzo,jn=0,
" (Ziy-. s TnyEn — 1,Zn-1+1,Zn,...,%1) if T = 0,Z, > 0,
f b (1?1,...,(12"—— l,in,jn_l + 1,...,&1) ifzn > O,in =0,
n (wl,..-,xn—l - l,xn,in"‘ 1,-..,%1) ifxn =0,jn 2 0,

eo(b) = z1 + (w2 — Z2)+, wo(b) = Z1 + (T2 — T2)+,

£i(b) = Zi + (Tiv1 — Tit1)+,  wi(D) = Ti + (Tiv1 — Tit1)+,
en—l(b) =ZTn-1+ Tn, ‘Pn—l(b) = Tp-1+ Zn,

en(b) = Zn-1+Zn, Pa(d) =2Tn-1+2n

fori=1,...,n—2.

2
o Agn)—l

n
B = {b= (.’1:1,.. 3Ty Ty .- ,.’1_51) | Ti, T; € ZZO,Z(x,- +:fi) = s}.

=1

é’ob= (x1,$2—1,...,52,5:1+1) ifl‘2>§,‘2,
(xl - 1,$2,...,5}2+1,:§1) lf.'Eg < Zq,

bib = (Z1,..,Zi + L, zip1 — 1,..., %) if Ty > Tiga,
t (xl"",a-:i+1+1aa_:i—1,"-»il) 1fmi+1S9—«'i+1,

énb= (ml,...,xn'*'l,in - 1,-..,51),

fb= (z1,22+1,...,%2,Z1 — 1) if 2 > Z9,
0 (z1+ 1,z2,...,Z2 — 1,%) if 22 < Zg,

f.b= (1., @i — L, i1 + 1,...,%) if z341 2 ZTiy1,
: (xl""’a_:i+1_l’i‘i+l$"'$jl)1fx|',+1<.’i)i+1,

fnb= (xl,---axn - l’in+ 1’°°-)il)’
go(b) = z1 + (z2 — Z2)+, @o(b) = Z1 + (T2 — z2)+,
€i(b) = i + (Tir1 — Ziv1)+,  ©i(0) = Ti + (Zit1 — Tit1)+,
€n(b) = Zn, ©n(b) =zn
fori=1,...,n—1.
(ii) Type m
° C,(E)

B8 = {b = (:El,. Y S - ,:2‘1) | xi,T; € ZZO,

i(mi +%) < S,i(xi + ;) = s (mod 2)}.
i=1 i=1
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((L'l —2,1’2,...,52,511) lfxl 2T +2a
éob = (x1 —1,z9,..., T2+ 1,%1) if 21 =% +1,
(z1,22,...,%2,%1 +2) if 21 < 73,
s @ T+ Lz — 1, 8) i 2 > T,
: (@1, Zi1 + 1,5 — 1,...,21) if Ty < Tia,s
énb= (ml,...,wn‘}‘l,in—l,--.,jl),

. (z1 + 2,x2,...,%2,%1) if 21 > %1,
fob= (.’1:1+1,:L‘2,...,:'i2,3_31—1) ifx; =21 -1,
(.’1:1,332,...,.’1-:2,571 —2) if 1 =21 — 2,
Fib= (1., — Lizip1 +1,...,21) if 2iga 2 Tiga,
¢ (1,0, Zipr — L, Zi + 1,...,Z1) if Tig1 < Tiga,

fnb= (wl,...,xn_l,in"'l,...,il),

go(b) = 5= 22;12(% * i) + (%1 — Z1)+,

wo(db) = 5 E.:;lz(mi + 3) + (Z1 — z1)+,

&i(0) = Zi + (Tit1 — Tiv1)+,  @i(b) = zi + (Tiv1 — Tiv1)+,

En(D) = Tn, @n(b) =xn

fori=1,...,n—1
(iii) Type o

. A5

n
BY ={b=(z1,...,%n,&n,..,B1) | 20, Zi € L0, I_(%i + &) < s}

i=1

&ob = (:t:l-l,:l:z,...,f:z,fiu) if z7 > %4,
(331,1:2,.. ., T2, %1 + 1) if z1 < %4,

E:b = (x1,.- i + Loy — 1,..., Z1) i Zig1 > Tiya,
: (1, y Zig1 +1,Z — 1,...,Z1) if i1 < Tia,

énbz (ml’---,xn‘*‘l,in—1,---,j1)’

fob — (a:l +1,z,,... ,5}2,5}1) if 1 > 4,
(z1,22,...,%2,%1 — 1) if 1 < Z1,

Fb= (1, i — Lz +1,...,%1) if Zig1 2 Tia,
1 - - — — . —_
(®1y+ 0, T — L, Zi + 1,..., %) if i1 < Ziga,

fnb= (wl,---,.’L‘n— l,ﬂ_in-f-l,...,f:l),



MASATO OKADO
60

n

Eo(b) =8 - Z(m, + fi‘i) + 2(x1 - 2-:1).'.,

=1

n
po(b) = s — Y (zi+Zi) +2(21 — 21)+,
=1
€i(b) = i + (Tit1 — Ti+1)+>  @i(0) = Ti + (Tiv1 — Tiv1)+»
en(b) = Zn, @n(b) =zn

fori=1,...,n-1.

2
.DSH)—I
Bl,s = {b = (x1,~--,xns$0a3_7na--- ,jl) I To = 0or 1’
n
T;,T; € Zzo,Z(a}i + ;) + zo < 8}
=1
Gob = (:1:1—1,.’1,‘2,...,3_:2,51) if z; > 71,
0¥ = (:1:1,:1:2,...,:?2,5:1+1)ifw1S:El,
b= (1, o,z + L,z — 1,..., 1) i @iy > Tiga,
v (a:l,...,:i,q.l+1,5;,-—1,...,:E1) if 2341 < ZTit1,
5 b= (1, yZn,To+ 1,Zn —1,...,%1) if Zo =0,
ne (:1:1,...,:1:,,+1,:ro-—1,:73,1,...,:1':1) ifzg=1,
b= (:L‘] +1,z,,. .’1—32,.'1_:1) if 21 > 7,
f 2, 51) i 21 > 2
(z1,22,...,%2,%1 — 1) if ;1 < 2y,
b (Z1,..hTi — L, iy + 1,...,%1) if Ti41 2 Ziga,
¢ (:E JTiv1 — 1L, T+ 1,...,%) if 21 < Zig1,
fb“' (9:1, ,a:n—l,xo+1,:i:n,...,:tl) if g =0,
n (xl, . ,mn,zo—'l,jn""l,.--,il) if.’l:o=1,
n
eo(b) =8 — Z(w, + ;) — xo + 2(x1 — 1)+
i=1
n
(po(b) =§— Z(IB, + :_I:‘,;) —z0+2(Z; — T1)+s
i=1
&i(b) = Zi + (Tit1 — Tit1)+r  Pi(d) = i + (Fit1 — Tit1)+,
en(b) = 2%, + 20, n(b) =2zn + 0
fori=1,...,n—1.

We finish this subsection by mentioning the known results on the combinatorial R for
the tensor product of KKM crystals B¢ @ B ' For the homogeneous case (s
the isomorphism is the identity. For the energy function a piecewise linear formula is
known in [KKM]. For the inhomogeneous case, a combinatorial method, as in the previous
subsection, is given in [HKOT1, HKOT?2] for computing the combinatorial R. For type

Ds.l), there is also an approach from “geometric crystal” that gives a piecewise linear

formula for the combinatorial R as (3.4). See [KOTY].
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4. PATHS AND 1D sums

In this section, we introduce a set of paths built upon KR crystals. We see that it is
isomorphic to the crystal basis of an integrable highest weight U,(g)-module or a tensor
product of them. We then define 1D sums as a generating function of the set of paths with
“energy” statistic.

4.1. Perfect crystal. Let B be a KR crystal. We define the level of B by
lev B = min{{(c,e(b)) | b € B} € Zxo.
Note that (c,e(b)) = (c, p(b)) for any b € B. We set
Buin = {b € B | {c,e(b)) = levB}

and call an element of B, minimal.

The notion of perfect crystal was introduced in [KMN1]. Instead of rewriting the original
definition (see Definition 4.6.1 of [KMN1]), we only give the most important postulate, since
we expect any KR crystal satisfies the other conditions. Let us define the following two
subsets of P,.

P} ={\€ Py | (hi,A\) > 0 for any i},
(P ={ e P} |{c,\) =1}

B is said to be perfect of level [, if lev B = [ and both € and ¢ are bijections from Byin
to (P3);. In this case, we can define a map o = eop™! from (PJ); to itself. We call it the
associated automorphism of B.

Let us examine the perfectness of the crystals listed previously. For the crystal B® in

section 3.1 for AS_)_I, we see by (3.1) that every element is minimal and ¢, ¢ are bijections to

(PI)s. So B is perfect of level s. The associated automorphism is given by o(3"; miAi) =
> ;mili—1 (A—; = Ap_1). Similarly, B™ in section 3.2 is also perfect of level s for any r
(1 £r < n—1). To describe the minimal elements of B™*, let z;;(b) denote the number
of letter j in the i-th row of an r x s tableau b in B™® and set ' = n — r. Note that
1<i<ri<j<i+r. Then bis minimal, if and only if z;;(b) = z;_; j—1(b) for any i,
such that i+ 1 < 7 < i+ 1" — 1. For such b, ¢; and ¢; are given by

Zrr (b) (i=0),
€i(b) = Pisr(b) = { 1 i+1(b) 1<igr),
Ti—pt1i41(0) — ZTimp i(b) (P +1<i<n—-1),

and the associated automorphism is o (3", miAs) = >, miA;—r. Here the suffix of p;,(b)
or A;_, should be considered as in Z/nZ.

Next let us examine the KKM crystals in section 3.3. Stating our conclusion first, the
KKM crystal B is perfect of level s except the Ci) case. For V| Bl is of level 5/2
and perfect if s is even, and of level (s + 1)/2 and not perfect if s is odd. We list below
minimal elements of B1* and the associated automorphism when it is perfect.

(i) Type 8 In all cases, BY* is perfect of level s.
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e B
(Bl’s)min = {(mh' « ey My Y,y My e o . ,Th]) | mg, My 2 01m0 =0or 1)
n
m1+m+2) mi+m =3},
1=2
n n
o( kihi) = kAo + koAr + )Y kil
i=0 i=2
° D«E.l)
(Bl’a)min = {(mla ceeyMp-1, mn)mﬂ’mn—l" . ,ﬁl]) I mi,mlvmn 2 0’
n-1
Mn =0 0r M =0,m1 + 1 +2)_ m; +mp + iy = s},
1=2
n n—-2
o (D kihi) = k1o + koAr + Y Kilki + knAn—1 + kn—1An.
i=0 i=2
2
o Agn)—l
(B¥)min = {(m1,...,Mn, My, ...,7) | mi,m1 >0,mp=0o0r 1,
n
my + ™M +2Zm¢ = s},
i=2
n n
o(D_kili) = kAo + koAs + Y kil
i=0 =2
(i) Type m

e CV  levBY® = 5/2 (s: even), (s +1)/2 (s : odd).

{(m1,...,mp,Mp,...,m1) | mi > 0,3 1, m; = s/2} if s is even,
(BI,S) in = {(m1’°"1mk+11"'7mﬂ1mn1"'1m1)7
i (mla--'7mﬂ,mn"'~amk+l’A"'aml)|

m; 20,1<k<n,>,mi=(s—1)/2}if sis odd.

B8 is perfect if s is even, and not perfect if s is odd. When it is perfect, the associated
automorphism is the identity.

(iii) Typeo In all cases, B!* is perfect of level s.
o A2
n
(B")min = {(m1, ..., Mn, Mn,...,m1) | m; >0, ms = 5/2},

=1
o =id.
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2
b D£H)-1

(Bl"s)min = {(m1,...,mn,mo, Mp,...,m1) | m; > 0,mg=0o0r1,

n
2 Z m; + mp = s},
i=1
o =id.
We have a conjecture on the level and perfectness of the KR crystal B™®. For i € I set

i|o

(4.1) b = af if g is non twisted,
. (=11

if g is twisted.

Here (- | -) is the invariant bilinear form on P so normalized that the square length of the
long root is 2.

Conjecture 4.1. (1) levB™® is given by [s/t.], where [m] stands for the smallest
integer such that m < [m].
(2) B™* is perfect if and only if s/t, is an integer.

In particular, if g is of ADE type or twisted, we conjecture any B™® is perfect.

4.2. Set of paths. Let B be a KR crystal. Consider the semi-infinite tensor product of
B

---®B®---® B®B.
Anelement p=---®b; ® - -- ® by ® b; of this tensor product is called a reference path
if ¢(bj+1) = e(b;) holds for any j > 1. Set

P(p,B) = {p=--®b;® - @by ®b; | b; = b; for sufficiently large 5}

o0
wtp = @(b1)+ Y _ af(wtb; — wtb;) — E(p)ag’s,
j=1

[ o]
> 5(H(bj1 ® bj) — H(bjsy ® by)).
j=1
An element of P(p, B) is called a path and E(p) its energy. P(p, B) has the structure
of P-weighted crystal. In fact, it can be shown ([HKKOT] Theorem 3.7) that P(p, B) is
isomorphic to a direct sum of crystals of integrable highest weight U,(g)-modules. It may
have infinitely many components.

Now let us assume that B is perfect of level [ and take A € (P});. Then there exists a
unique reference path

II

E(p)

p()\)=---®bj®'-'®b2®b1
such that ¢(b1) = A. In fact, b; is determined by ¢(b;) = ¢7~1\. Recall that B(]) is the
crystal basis of the integrable highest weight U,(g)-modules with highest weight .
Theorem 4.2 ([KMN1]). We have the following isomorphism of crystals.
P(e™, B) ~ B())

Under the isomorphism, p®) corresponds to the highest weight vector of B()).
In [KMN1] p® is called the ground state path, since its energy E(p™) is equal to 0
(minimum). y

The action of &;, f; on P(p(’\), B) can be computed by using the signature rule explained
in section 2.1. See the following example.
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Example 4.3. Let B be the perfect crystal of level 2 for g = Agl) in Example 3.1 (2) and
let A = Ag + A;. Then the reference path is given by

plhoth) = ... ®23913®12023®13.

Consider a path :
p=---023®23®113121® 23.

We wish to calculate é;p and fip. Take the minimal L such that b; = b; for any j > L,
where b; (resp. bj) is the j-th tensor component of p (resp. p(A°+A1)) (In effect, the
minimality of L is not necessary.) In general, the i-signature for p is given by

+9i(br) . _eibr-1) peibra) ... —€i(b1) yeilbr) |
In our case, setting i = 1, L = 5 we have the 1-signature for p as
" ®+®++®—+® —.
We then reduce the signature and obtain
®+®+® ®-.
By the rule, we have

Qb ®EILIR® 3R ® by
- ®23 13 ®11®12Q 23.

Similarly, fip =0.

Figure 3 shows the path realization P(plhe), BL:) of the crystal graph B(Ag) for Agl).

FIGURE 3. Path realization of B(Ag) for A(ll)

o 1212

/ N
\ -1221
AN

-1121 o +-+1222

N/

-+2121 o o ---1122

PZN

-12121 4% 7+ -+ 1112 o +--2122

There is a generalization of Theorem 4.2.
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Theorem 4.4 ([0SS1]). Let B; (i = 1,2,...,m) be a perfect crystal of level l; satisfying
some technical conditions. Supposely >1ls > --- > l,, and set 41 = 0. For any sequence
of dominant integral weights (A1, ..., Am) such that A; € (P; Jli—l;41, there ezists a reference
path p(’\l""”\m) and we have the following isomorphism of crystals.

P(pWr?m) B ® - ® Bp) ~ B(A1) ® - -+ @ B(Am)
Under the isomorphism, p*1--*m) corresponds to uy, ® - - - ® uy,,, where uy, is the highest
weight vector of B(\;).

For the “technical conditions” and construction of the reference path pAtAm) see [OSs1).
One may wonder what happens if some B;’s are not perfect. Even in such a situation,
we still have a conjecture. To state it, we prepare notations. Set tmex = maxrej, tr. Note
that tmax > 1 if and only if there exists a KR crystal which is not perfect. (See Conjecture
4.1.) Later in this subsection we only consider an affine Lie algebra g such that tmax > 1.
For such g we define g (1 <4 < tmax) by
() 8= B = s® = D,
(ii) 5= CN) = oM = A7) |,
(iii) g = F{) = g@ = E{Y,
(iv) g = G = g® = B{N 4@ = p{M.

Notice that there are embeddings of affine Lie algebras related to the foldings of their
Dynkin diagrams as shown in Figure 4. '

FIGURE 4. Embeddings of affine Lie algebras

S
o e =1 D
(iii) : - 5 S, 4‘R

N

(iv) L¢H>‘7H><>

Now consider the integrable g (not U,(g")!)-module V) ()) with highest weight .
Through the embedding one can decompose V#(}) into irreducible integrable g-modules

as
vOO) = PV ().
M
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where p runs through the weight lattice of g and n, denotes the multiplicity. We then
define the U, (g)-crystal B%)()) by

BOM) = P Bw)®™.
N

Recall that B(u) stands for the crystal basis of the integrable U;(g)-module with highest
weight u. Then our conjecture is stated as follows.

Conjecture 4.5. Let B; (j = 1,2,...,m) be KR crystals. Associated to it one can de-
termine integers m; (0 < @ < tpax) and iy > l2 > --+ > Uy > lpgy1 = 0. Let A bea
datum

A= {2 AP 1< <mo, 1 Sk Smy for 1 <6 < tmax)
such. that

Aj is a level l; — l;11 dominant integral weight of g,

/\g‘) is a level 1 dominant integral weight of g®*).

Then for any such datum ), there ezists a reference path p(:\) and we have the following
isomorphism of crystals.

PEY,Bi& - ®Bn) = @ Bye @ BOOY)

1<j<myo 1<i<tmax
1<k;<m;

See Conjecture 3.6 of [HKOTT] for more details. We give typical examples below.

Example 4.6. (1) Let g = cV,B = B'* (s:0dd). Then g(¥) = Agt)_l. Set | = (s +1)/2.
Let ) (resp. u) be a level [—1 (resp. 1) dominant integral weight of g (resp. g()). Then the
statement of Conjecture 4.5 in this case is as follows. For any A, u there exists a reference
path p*#) such that

P(p*H), B1?) ~ B(A) ® B! (u).
This has been proven in [HKKOT].

(2) Let g = Ggl),B = B%% (3/3 ¢ Z). Then g(V) = B:gl). Let ! be an integer such that
8/3 <1< s/3+1. Then we have a similar statement to (1). If we replace B%* (s/3 ¢ Z)
with B = B>* ® B%* ((s+1)/3 = (' +2)/3 =: | € Z), we have again a similar statement
by replacing g(1) = Bél) with g = D‘(ll). These are still open problems.

4.3. 1D sum as a truncated character. In this subsection we define a one dimensional
(1D) sum. It was introduced along the studies of solvable lattice models by Baxter’s corner
transfer matrix method [B]. There are three kinds of 1D sums: unrestricted, classically
restricted and level restricted ones. Here we only consider classically restricted 1D sum,
since it is exactly the one which is related to “fermionic formula.”

Let B be a tensor product of KR crystals and consider a set of paths P(p, B) with a
suitable reference path p. We introduce a filtration

’POH’PIH"'HPL‘—’"'

by setting

Po=Pi(p,B)={p=--®b;® - @b € P(p,B) | bj =b; if j > L+1}.
Here we have set p = --- ® b; ® - -- ® b;. We also define the set of classically restricted
paths by

pe res(p, B) = {P € P(p,B) | é&p = 0 for any i # 0}
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Its elements consist of highest weight vectors as Uq(s)-crystals. Set

Pil res _ Plc,l reS(p, B) — Pd 'I’GS(p, B) N PL(P, B)
Let A be a dominant integral weight of g. We define a (classically restricted) 1D sum
by

Xu(pB, )= Y, "%

peopzl res
wtp=A mod 4,Ag

Recall that E(p) is the energy of p. Apparently, it is a polynomial in ¢ with nonnegative
coefficients. As we have mentioned in the previous subsection, the set of paths P(p, B)
for an appropriate reference path p is isomorphic to a tensor product of crystal bases
of integrable U,(g)-modules (Theorem 4.4 and Conjecture 4.5). Let us consider such a
situation and let V denote the g-module corresponding to its RHS. Namely, we set

V=V(A\)®: - ®V(\y) for Theorem 4.4,
= ® V(X)) ® ® v (/\2)) for Conjecture 4.5.

1<j<mo 1<i<tmax
15";‘5"‘:’

Then the following theorem is immediate.

Theorem 4.7.

Jim Xp(p,B,A) = > (dim Hrino-as)g™
d>0

Here | is the level of V and H,, is defined by
Hyo={veV|ev=0 for any i # 0, wtv = pu}.

The RHS is called a branching function for the coset g/g.

5. X =M

In this final section we introduce a special 1D sum X and a fermionic formula M. We
then state the so called “X = M conjecture” and summarize known results.

5.1. Definition of X. Let B; (1 < i < m) be crystals as treated in section 2.3. Namely,
we assume for any i, j (1 < 4,5 < m) there exists a combinatorial R Rp;p, and they satisfy
Proposition 2.7. Set B=B; ® --- Q@ Bm. Let b1 ® - ® bm be a.n.element of B. For i,j
such that 1 < 4,7 < m, we define bg.’) € B; as follows. First, set bg-’ ) = bj. If i < j, define
it by
Bi® - ®Bj.1®B; 5 B;® --®Bj®Bj.1 o
bi® - ®bj_1®b; bi®"‘®b;‘7_1)®b3~_1 —
S BJ:®Bi®"'®Bj_1
- M ebe- o,
If i > j, define it by
B;®Bj;1®:---®B; =5 Bj+1®3j®"'®Bi 5
bj®bj41 @ ®b; b;.’_H ®b§.’+1)®...®bi —
' = Bj1®--®B;®B;j
- L@@ @b,
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Nowlet b=b0® - ®bm,b=b; ®---® by, be elements of B. We introduce a function
Dy : B — Z by

m
(5.1) Dp(®) = He,s,(B™ @)+ S Hpp,(b: ®6*).

=1 1<i<j<m

Remark 5.1. If B; is connected as a Uy (8)-crystal for any 1, the first term of (5.1) becomes
independent of an element of B. To see this, recall the following property of crystals. Let
B, Bs be crystals and let b; € By,b2 € By. Then

éi(bl ® b2) = 0 implies €;b; = 0.
Thus for b = by ® - ® by, € B,&b = 0 for i € Io implies &b}’ = 0 for ¢ € Ip and

j =1,...,m. Since there is only one element b such that é;b = 0 for i € Ij in each B;, the
claim is correct.

We prepare two lemmas.
Lemma 5.2. Set B¢y, = B1 ® -+ ® Bp—1, then we have

HpenBn((1® - ®bnt) ®bm) = 3 Hp,, (b ®5GHY).
1<j<m-1 .

Proof. The formula follows from the fact that the combinatorial R R : Aff(Bcm) ®
Aff(B,,) — Aff(Bp) ® Aff(B<p,) is given by the composition of fundamental ones as

R=RjoRz0---0Rp_,

where R; is the combinatorial R that interchanges Aff(B;) and Aff(By,) acting on the j-th
and (j + 1)-th components of

AfF(B)) ® - ® Aff(B;) ® Af(Bp) ® Aff(Bj41) ® - - ® AfF(Bm_1).

Lemma 5.3. Set B = B; ® By, then we have
Hpp((b1 ®by) ® (5} ®b3)) = Hp,p,(b1 ®b2) + Hp, g, (01 ® b))
+Hp, B, (b2 ® by) + Hap, B, (b] ® b).
Here 51,55 are defined as

Bi®By = B;® B
bi®b2 — b®b
f®by — bh®@bl.

Proof. By identifying b ® by with b ® b; under B ® By ~ By ® By, we see the LHS is
equal to

Hp,e8, B08:((b: ® b1) ® (5] ® 8))).
Noting that the combinatorial R for interchanging Aff(B; ® B;) and Aff(B; ® B;) are
given by Ry 0 R3o Rj o R; on
Aff(B2) ® Aff(B1) ® Aff(B;) ® Aff(B3),
one obtains the RHS. a

Proposition 5.4. Set B=B1®---®By,. Let b=b1®--- Q@ bp,b=06Q:--®b,, € B.
Then Hpp(b ® b) — D} (b) is independent of b.
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Proof. We prove by induction on m. When m = 1, the difference is 0 and the statement is
ok. Next,set Bcyy = B1® - ® Bp—1,bem =b1 ® - - @ by—1,bcrn =01 ® - - - @ bp—1. By
Lemma 5.3 we have

HB-B(b ® b) = HB<mBm(b<m ® b’m) + HB<mB<m (E ® b<m)
(5'2) +HBmBm (bm ® b‘gi)) + HB<mBm (b<m ® bm)’
where b is the 2nd component of the image of b<m ® by, under the crystal isomorphism
B<m ® By, — By ® Bem. By induction hypothesis we know that Hp_,,.B.,.(b ® be<m) —
Dl-)(b<m) is independent of b<,,. Write b= b; ® -+ ® bm—1 € B<m. Note that bg.m) =
B§m_1) for 1 < j < m—1 by the Yang-Baxter equation. Using Lemma 5.2 for the last term
of the RHS of (5.2) one obtains the desired result. a

We now consider a special case of the 1D sum defined in section 4.3. Let B be a tensor
product of KR crystals, i.e., B= B1®---®Bp, and each B; is a KR crystal. Set l; = lev B;
and lyax = maxi<j<m lj. We take a reference path p = - - - ® by ® b satisfying the following
conditions.

(1) ¢(b2) = lmaxAo.

(i) cp(c(m)) ljAg for1 < j<m.
Here we have set b, = ¢ ®- - -®cm (¢j € B;j). We do not go into details on the existence of
such a reference path. In all known cases it does exist. Moreover, for a known KR crystal
B, an element b € B such that ¢(b) = (lev B)Aq is unique. From (i) one can show that for
p € Pi(p, B), &p =0 (i # 0) implies &b =0 (i # 0), where b € B is the 1st component of
p. Therefore, in this case, using Proposition 5.4 one can rewrite X;(p, B, A) up to a power
of ¢ as follows.

(5-3) X(B,)) = 3 7°®)
beB
&:b=0 (i7£0), wtb=X
where m
D(b) = Dp, (b) = ZHB,Bj e b§~”) + > Hpp(b® b§i+1))-
j=1 1<i<j<m
Here we have set b =0, ® - -- @ b, (b; € B;) and bh is the unique element of B; such that
(p(bh) = (lev B;)Ag. Suppose Bj = B"»%i. Then it is easy to see that

(5.4) Nlgm1 = [® Wi

~ Here the RHS means the multiplicity of the irreducible highest weight Uq(a)-module Vi

with highest weight \ in ® i (r’ ). Thus one can consider (5.3) as a g-analog of the
multiplicity of the RHS of (5 4).

5.2. Fermionic formula M. We first review the g-binomial coefficient. For m € Z>o and

p € Z, we set
[p+m ] _ @ 9m
m q (@ @m
where (z;9)m Hy—O (1 — z¢?). It is-a polynomial in ¢ with nonnegative coefficients

for p € Z>p, vanishes for —m < p < —1 and is equal to (—gP+(m+1)/Z)m [ —pm— 1 ] for
q
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p < —m —1. In the ¢ — 1 limit it becomes the usual binomial coefficient ( p ;m ) =
(P+1)(p+2)---(p+m)/m.

We prepare some more notations. We set

P=Y"7ZK, P =) ZyA
i€l ielp
Here A; = A; — (A;, ¢)A is the classical part of A; [Kac]. We regard P as the weight lattice
of E(C g). Let gV be the affine Lie algebra whose Cartan matrix is the transpose of that of

g. Recall the definition of t; (4.1). We define ¢\ for g to be t; for g¥. tY =1 for i € I for
any non twisted affine Lie algebra.

Let v be a datum {ui(“) € Zxo | a € Ip,i > 1} such that > 1 < oo. Let A be

a,i”1
an element of P. Assume g # Ag,) for notational simplicity. We define the fermionic
formula M (v, \) by

pga) +m£a) ]
qda

(5.5) M@w,)) = > ™ ] (a)
m a€lp,i>1 m;
1 . c oo (a) (b
(5.6) o(m) = 3 > (calos)min(tsi, tag)m;" ' m;
a,b€lo,i,j21
— Z tY E min(i, j)ui(a)mga),
a€lp 1,521
NPT | PPN ()
(5.7) P = Y vPminGi,i) - Y. (calos)minti,taj)m;”,
j21 @ belp,j>1
where g, is given by y
o =g
The sum ), is taken over all (m§“) € Zxo | a € Ip,i > 1) satisfying
(5.8) p® >0 for any a € Ip,i > 1,
(5.9) 2aelo i1 im:('a)aa = 2ael,iz1 i”i(a)xa -
Fundamental properties of M are given in next proposition.
Proposition 5.5. (1) For a datum v and X\ € P, there exists a positive integer N
such that for any m = (m{®) satisfying (5.8) and (5.9) we have m® =0 for
a€ ly,i>N.

(2) M(v,A) € Zsolg™].
(8) M(w,\) =0 unless \ € (Zaezo,¢21 P W Io Zzoaa) nP".
Proof. (1) The constraint (5.9) fixes Y, im,(a) for any a.

(2) From (1) one sees that M is a Laurent polynomial in g with nonnegative coefficients.
To see that it is a polynomial in g~?, it suffices to note the following equality.

-1 ce(m) 2 +m{®
M (V, )\; q ) = Z q H t (a) t ,
g a€loi>1 m; %

1 . . 3 '
ce(m) = 3 Z (aa|ab)rmn(tbz,taJ)mE")m;b)_.
a$b€IOai’j21
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)R E-DIAP z'vi(a)Ka — 3, Z>00g is clear from (5.9). To show A € P", it suffices to check
that (hg, A) > 0 for any a. From (5.9) we have

(ha, A) Zw( @) ng() (ha,ap)-

Now from (5.7)
lim p® =S @ -Y ke tv 22 (aalop)jmi”.

1—00
b,j

Since h, = f;&aa (see [Kac]), we have the desired result by (5.8). O

We introduce another fermionic formula M. It is defined by the formula (5.5-5.7). The
only difference from M is that we do not take the constraint (5.8) into account. Namely,
we allow pga) to be negative. Proposition 5.5 (1) is valid also for M. It is easy to see that

M is a Laurent polynomial in gq.
5.3. Conjecture and known results. We state the X = M conjecture.

. . (a) —_
Conjecture 5.6. For a datum v, set B = ®ae10,i>1(Ba»’)®V¢ . Let A€ PT. Then there
exists an integer n(v) and we have

(1) X(B,X) ="M (v, ),
(2) X(B,)) ="M M(v,\).

(2) is called the “weak” version. (1) and (2) imply the following. Let us call m “unwanted”
if p(a) (m) < 0 for some (a,i). Then the contribution in M from unwanted m cancel out.
Note also that if A € P\ P", then both sides of (1) are 0. However, M can be non zero

even when A\ € P\ P'. See Conjecture 4.3 of [HKOTT)] for details.
We finish this note by mentioning known results related to the conjecture (1). Firstly,

let g be of type A. Assume that v* = 0 for a > 1,4 > 1 for the datum v = (). 1t is
exactly the case when both X and M agree with the Kostka polynomial K),(g). For
the Kostka polynomial A\ and u stands for the partitions of the same number of nodes.
The correspondence of the partition A in M (v, ) is given in the well known manner.
Namely, to the partition A = (A1, Ag,...,N) (A1 = A2 > --- > N = Ny = 0) we associate
Zj'=1()‘j — Aj+1)A; € P*. The correspondence of u and v is given by ui(l) =the number
of times i occurs in pu. The equality M(v,\) = K, (up to a power of q) was proven
in [KKR, KR2] by constructing an explicit bijection between the combinatorial objects
on both sides, tableaux and “rigged configuration.” The equality X (B,\) = K), was
proven in [NY] by showing that D in (5.1) (see also Remark 5.1) is related to Lascoux-
Schiitzenberger’s “charge.” For type A, the result is extended to the most general case by
[KSS]. See Schilling’s contribution of this volume. Apart from type A, not so much is
known. If B is a tensor product of the simplest KKM crystal B!, X = M is proven in
[OSS2]. The result is extended to general KKM crystals in [SS] by using “virtual crystal”
technique [OSS3]. See also [Sch).
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