
CHAPTER VII

Around log-terminal singularities

In this chapter, we discuss singularities arising from the consideration on the
minimal model theory of higher-dimensional algebraic varieties. The notion of ter-
minal singularities and that of canonical singularities are introduced by Reid in the
study of singularities on minimal models ([113], [114]). In the minimal model pro-
gram, we consider not only normal varieties themselves but also the pairs consisting
of normal varieties and effective Q-divisors. Notions of singularities can be defined
similarly for such pairs. In the middle of 1980’s, there appeared a summary [61]
of minimal model program for higher dimensional varieties, where the notions of
log-terminal, log-canonical, and weakly log-terminal are explained. The definition
of log-terminal in [61] is different from the one used in the classification theory of
open surfaces, in the sense that the latter allows a Q-divisor with multiplicity one.
Shokurov [132] introduced his original definition of log-terminal (it was written log

terminal) in order to prove the log-flip conjectures, which coincides in dimension
two with the one used in the classification theory of open surfaces. The notion of
log-terminal in [61] is given a different name and called Kawamata log terminal or
klt in [132] and [74]. However, Shokurov’s notion of log terminal seems to have no
good meaning for application. The notion of divisorial log terminal (dlt) in [132]
and [74] is useful for the log minimal model program. In [134], the notion of dlt
is shown to be equivalent to the notion of weakly log-terminal if we consider only
simple normal crossing divisors in the definition given in [61]. Unfortunately, how-
ever, the notion of dlt is not a property well-defined for analytic germs. Fujita’s
definition of log terminal in [27] dealt with the analytic local situation. In the
early 1990’s, the author introduced another notion of log-terminal, named strongly
log-canonical, which is closer to the notion of log-canonical. It is a property well-
defined for analytic germs and has many useful properties for the minimal model
program.

In this chapter, we introduce the notions of admissible, quasi log-terminal, and
strongly log-canonical, for pairs (X,∆) consisting of normal varieties and effective
R-divisors. These notions are analytically local in nature. These are defined and
discussed in §1. In the definition of admissible pairs, the R-divisor KX +∆ need not
to be R-Cartier. A new proof of rationality of canonical singularities is also given
in §1. The minimal model program for strongly log-canonical pairs is mentioned in
§2 and a relation between admissible singularities and ω-sheaves is explained in §3.
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258 VII. AROUND LOG-TERMINAL SINGULARITIES

§1. Admissible and strongly log-canonical singularities

§1.a. Admissible singularities. We now prepare a sufficient condition for a
singularity to be rational, by using which we can prove the rationality of canonical
singularities.

1.1. Theorem Let f : Y → X be a locally projective surjective morphism from

a non-singular variety onto a normal variety. Suppose that there is an effective

divisor R such that Ri f∗OY (R) = 0 for i > 0 and that the natural homomorphism

f∗OY → f∗OY (R) is an isomorphism. Then X has only rational singularities.

Proof. Let Y → V → X be the Stein factorization. If V has only rational
singularities, then so doesX. Therefore we may assume that V ' X or equivalently,
OX ' f∗OY . In the derived category D+(OX), the composite OX → R f∗OY →
R f∗OY (R) is a quasi-isomorphism. Thus

R f∗OY ∼qis OX ⊕ L•

for a bounded complex L•. By duality (cf. [37], [117]), we have

R f∗ωY [dimY ] ∼qis RHom(R f∗OY , ω
•
X).

Thus R f∗ωY [dimY ] ∼qis ω
•
X ⊕ G• for a complex G•. By V.3.7-(1), H−i(ω•

X) is
torsion-free. Thus it is zero except for i = dimX. Hence X is Cohen-Macaulay. Let
Y ′ → Y and µ : X ′ → X be bimeromorphic morphisms from non-singular varieties
such that

(1) the morphism g : Y ′ → X ′ is induced,
(2) g is a smooth morphism outside a normal crossing divisor of X ′.

Then Ri g∗ωY ′ is a locally free sheaf and Rp µ∗(R
i g∗ωY ′) = 0 for i ≥ 0 and p > 0

by V.3.7. In particular, Rd g∗ωY ′ ' ωX′ , where d := dimY − dimX. Thus

Rd f∗ωY ' µ∗ωX′ ' H− dim X(ω•
X ⊕G•).

Therefore µ∗ωX′ ' ωX . Hence X has only rational singularities. ¤

1.2. Definition Let (X,∆) be a pair of a normal variety X and an effective
R-divisor ∆ with x∆y = 0. It is called strictly admissible if there exist a bimero-
morphic morphism f : Y → X from a non-singular variety and a Q-divisor E on Y
satisfying the following conditions:

(1) Supp〈E〉 is a normal crossing divisor;
(2) pEq is an f -exceptional effective divisor;
(3) −f∗E ≥ ∆;
(4) E −KY is f -ample.

If there is an open covering {Uλ} of X such that (Uλ,∆|Uλ
) is strictly admissible for

any λ, then (X,∆) is called admissible or having only admissible singularities. A
normal variety X is said to have only admissible singularities if (X, 0) is admissible.

If (X,∆) is admissible, thenX has only admissible singularities. The admissible
singularity is rational by 1.1. Moreover, we have:
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1.3. Lemma Let (X,∆) be a pair of normal variety and effective R-divisor.

Then (X,∆) is admissible if and only if, for any point x ∈ X, there exist an open

neighborhood U of x and an effective Q-divisor ∆′ of U such that ∆′ ≥ ∆|U and

(U,∆′) is log-terminal.

Proof. Let f : Y → X and E be the bimeromorphic morphism and the Q-
divisor, respectively, in 1.2. Then there are an open neighborhood U of x, an
integer m > 1, and a non-singular effective divisor A of f−1(U) such that m(E −
KY )|f−1(U) ∼ A and Supp(〈E〉|f−1(U) +A) is a normal crossing divisor. If we set

∆′ := f∗((1/m)A−E|f−1(U)),

then (U,∆′) is log-terminal, since

f∗(KU + ∆′) = Kf−1(U) + (1/m)A− E|f−1(U).

Conversely suppose that (X,∆′) is log-terminal for a Q-divisor ∆′ with ∆′ ≥ ∆.
Let f : Y → X be a bimeromorphic morphism from a non-singular variety and
set R′ := KY − f∗(KX + ∆′). We may assume that there is an effective divisor
B such that −B is f -ample and SuppB ∪ Supp〈R′〉 is a normal crossing divisor.
Note that pR′q is f -exceptional and effective. Then R′ − δB −KY is f -ample and
pR′ − δBq = pR′q for 0 < δ ¿ 1 over an open neighborhood of any point in X.
Thus the Q-divisor E := R′ − δB satisfies the required condition for (X,∆) to be
admissible. ¤

1.4. Lemma Let (X,∆) be a strictly admissible pair and let f : Y → X be a

bimeromorphic morphism from a non-singular variety with a Q-divisor E satisfying

the condition of 1.2. Let µ : Z → Y be a projective bimeromorphic morphism from

a non-singular variety and let g := f ◦ µ. Suppose that the union of µ-exceptional

locus and µ−1(Supp〈E〉) is a normal crossing divisor. Then, for any relatively

compact open subset U ⊂ X, there is a Q-divisor E ′ of g−1(U) such that

(1) Supp〈E′〉 is a normal crossing divisor,

(2) pE′q is a g-exceptional effective divisor,

(3) −g∗E′ = (−f∗E)|U ,

(4) E′ −Kg−1(U) is a g-ample Q-divisor.

Proof. There is a µ-exceptional effective divisor B such that −B is µ-ample.
Hence µ∗(E −KY )− δB is g-ample over U for 0 < δ ¿ 1. Since KZ − µ∗KY is an
effective µ-exceptional divisor, the Q-divisor

E′ := KZ − µ∗(KY − E)− δB
satisfies the conditions by II.4.3-(2). ¤

1.5. Lemma Let (X,∆) be a pair of normal variety and effective Q-divisor.

Then (X,∆) is admissible if and only if, for any relatively compact open subset

U ⊂ X, there exist a positive integer m, a bimeromorphic morphism g : Z → U
from a non-singular variety, and a divisor F of Z such that

(1) m∆|U is a Z-divisor,
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(2) Supp〈(1/m)F 〉 is a normal crossing divisor,

(3) p(1/m)Fq is a g-exceptional effective divisor,

(4) g∗OU (−mKX −m∆)/(tor) ' OZ(F −mKZ).

Proof. First suppose that (X,∆) is admissible. Let U ⊂ X be a relatively
compact open subset and let Ui ⊂ X (1 ≤ i ≤ l) be a finite number of open subsets

such that (Ui,∆|Ui
) is strictly admissible and U ⊂ ⋃l

i=1 Ui. Then, for every i, there
exist bimeromorphic morphisms fi : Yi → Ui and Q-divisor Ei of Yi satisfying the
same condition as 1.2 for (Ui,∆|Ui

). By replacing Ui with a relatively compact
open subset of Ui, we may assume that there is a positive integer m such that m∆
is a Z-divisor, m(Ei −KYi

) are Cartier, and the evaluation homomorphism

f∗i fi∗OYi
(m(Ei −KYi

))→ OYi
(m(Ei −KYi

))

is surjective for any i. Let g : Z → U be a bimeromorphic morphism from a non-
singular variety such that the union of the g-exceptional locus and g−1(Supp ∆)
is a normal crossing divisor and that g∗OX(−mKX −m∆))/(tor) is an invertible
sheaf. Then there is a Z-divisor F of Z such that SuppF is a normal crossing
divisor and the invertible sheaf above is isomorphic to OZ(F − mKZ). For each
i, let ϕi : Mi → f−1

i (U ∩ Ui) be a bimeromorphic morphism from a non-singular
variety such that ψi : Mi ···→ g−1(Ui) is holomorphic. Since fi∗OYi

(mEi−mKYi
) ⊂

OUi
(−m(∆+KX)), we have ψ∗

i (F−mKZ) ≥ ϕ∗
i (mEi−mKYi

). By the logarithmic
ramification formula II.4.3, we have:

KMi
+ ∆i − ψ∗

i ( p(1/m)Fq ) = ψ∗
i (KZ − (1/m)F ) +Ri,

KMi
+ ∆′

i − ϕ∗
i ( pEi

q ) = ϕ∗
i (KYi

− Ei) +R′
i,

for effective Q-divisors ∆i, ∆′
i with x∆iy = x∆

′
iy = 0, for ψi-exceptional effective

divisors Ri, and for ϕi-exceptional effective divisors R′
i. Hence

ψ∗
i ( p(1/m)Fq ) + ∆′

i +Ri ≥ ϕ∗
i ( pEi

q ) + ∆i +R′
i.

We have p(1/m)Fq ≥ 0, since pEi
q ≥ 0, x∆

′
iy = 0, and Ri is ψi-exceptional. Thus g

and F satisfy the required conditions. Next suppose the existence of such g and F .
By II.4.3, we may replace Z by a blowing-up, and hence we may assume that there
is an effective Z-divisor B such that −B is g-ample and Supp(B + F ) is normal
crossing. Thus, over any relatively compact open subset of X, (1/m)F − δB −KZ

is g-ample and p(1/m)F − δBq = p(1/m)Fq for a rational number 0 < δ ¿ 1.
Therefore, (X,∆) is admissible by g∗((1/m)F − δB) ≤ −∆. ¤

1.6. Proposition Let (X,∆) be an admissible pair. Then (U,∆|U ) is strictly

admissible for any relatively compact open subset U ⊂ X.

Proof. For a relative compact open subset U ′ ⊃ U , there is a positive in-
teger m such that (U ′, (1/m) pm∆q |U ′) is admissible. Thus, by the proof of 1.5,
(U, (1/m) pm∆q |U ) is strictly admissible. Therefore (U,∆|U ) is strictly admissi-
ble. ¤
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1.7. Lemma Let (X,∆) be a pair of normal variety and effective R-divisor such

that KX + ∆ is R-Cartier. Then it is log-terminal if and only if it is admissible.

Proof. We may replace X by an open subset freely. Suppose first that (X,∆)
is log-terminal. Let f : Y → X be a bimeromorphic morphism from a non-singular
variety. We may assume there is an f -exceptional divisor B such that −B is f -
ample and that the union of SuppB, f−1(Supp ∆), and the f -exceptional locus is
a normal crossing divisor. We set R := KY −f∗(KX +∆). Then R−δB−KY is f -
ample for δ > 0. We can choose δ so that pR− δBq = pRq . Since f∗(R−δB) ≤ −∆,
(X,∆) is admissible.

Next, suppose that (X,∆) is admissible. Then (X, (1/m1) pm1∆q ) is admissi-
ble for some positive integer m1. By 1.5, there exist a bimeromorphic morphism
g : Z → X from a non-singular variety, a divisor F of Z, and a positive inte-
ger m which satisfy the condition of 1.5 for (X, (1/m1) pm1∆q ). Then we have
R ≥ (1/m)F for the R-divisor R = KZ − g∗(KX + ∆), by III.5.1. Thus pRq is a
g-exceptional effective divisor. Hence (X,∆) is log-terminal. ¤

§1.b. Quasi log-terminal and strongly log-canonical singularities. Fu-
jita introduced the following ‘log terminal’ in [27]:

1.8. Definition Let (X,∆) be a log-canonical pair. It is called log terminal in
Fujita’s sense if, for any bimeromorphic morphism f : Y → X from a non-singular
variety, for the R-divisor R := KY − f∗(KX + ∆), and for any prime f -exceptional
divisor Γ with multΓR = −1, X is non-singular and ∆ is a reduced normal crossing
divisor at a general point of f(Γ).

Remark If (X,∆) is weakly log-terminal, then it is log terminal in Fujita’s
sense. Let D ⊂ C3 be a hypersurface defined by the equation: z2 = xy2, which
is called a Whitney umbrella. Then (C3, D) is not weakly log-terminal but log
terminal in Fujita’s sense.

1.9. Definition Let (X,∆) be a pair of normal complex analytic variety and
effective R-divisor. The pair (X,∆) is said to be strongly log-canonical if, locally on
X, there exist a bimeromorphic morphism f : Y → X from a non-singular variety
and R-divisors R and G on Y satisfying the following conditions:

(1) SuppR ∪ SuppG is a normal crossing divisor;
(2) R−KY is f -numerically trivial;
(3) f∗R = −∆;
(4) G is f -ample;
(5) multΓR ≥ −1 for a prime component Γ of R;
(6) If a prime component Γ of R satisfies multΓR = −1, then multΓG > 0;
(7) A prime component Γ of G with multΓG > 0 is either a component of R

or an f -exceptional divisor.

1.10. Lemma Let (X,∆) be a strongly log-canonical pair and let ∆′ be an

effective R-divisor with ∆′ ≤ ∆ and multΓ ∆′ < multΓ ∆ for any prime component

Γ of ∆. Then (X,∆′) is admissible.
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Proof. Let f : Y → X, R, and G be as in 1.9. We can take a small positive
number α such that pR+ αGq is an f -exceptional effective divisor. Since R+αG−
KY is f -ample, (X,∆α) is admissible for ∆α := −f∗(R + αG). If α is sufficiently
small, then ∆α ≥ ∆′. Hence (X,∆′) is admissible. ¤

1.11. Lemma The pair (X,∆) is strongly log-canonical if and only if (X,∆)
is log-canonical and X is admissible.

Proof. Suppose that (X,∆) is strongly log-canonical. By 1.10, X has only
rational singularities. Therefore, KX + ∆ is R-Cartier and we can write KY =
f∗(KX + ∆) +R. Hence (X,∆) is log-canonical. Next suppose that (X,∆) is log-
canonical and X is admissible. There exist a bimeromorphic morphism f : Y → X
from a non-singular variety and a Q-divisor E ′ of Y such that

(1) the union of the f -exceptional locus, f−1(Supp ∆), and SuppE′ is a nor-
mal crossing divisor,

(2) E′ −KY is f -ample,
(3) pE′q is an f -exceptional effective divisor.

For the R-divisor R = KY − f∗(KX + ∆), we have multΓR ≥ −1 for any prime
component Γ. Let G be the f -ample R-divisor E ′ − R. Then multΓG > 0, if
multΓR = −1. Therefore (X,∆) is strongly log-canonical. ¤

1.12. Definition A pair (X,∆) of normal variety and effective R-divisor is
called quasi log-terminal if (X,∆) is log-canonical and (X,∆′) is admissible for any
effective R-divisor ∆′ ≤ ∆ with x∆

′
y = 0.

If (X,∆) is log terminal in Fujita’s sense, then it is quasi log-terminal by [27,
(1.8)]. If (X,∆) is quasi log-terminal, then (X, 〈∆〉) is admissible. In particular,
(U,∆|U ) is log-terminal for U := X r Supp x∆y .

1.13. Lemma Let (X,∆) be a log-canonical pair such that (U,∆|U ) is log-

terminal for U := X r Supp( x∆y ). Suppose that there is an effective R-Cartier

divisor D such that Supp( x∆y ) ⊂ SuppD ⊂ Supp∆. Then (X,∆) is quasi log-

terminal.

Proof. We have a bimeromorphic morphism f : Y → X from a non-singular
variety such that the union of f -exceptional locus and f−1(Supp ∆) is a normal
crossing divisor. Let R be the R-divisor KY − f∗(KX + ∆). If Γ is a prime divisor
with multΓR = −1, then f(Γ) ⊂ Supp( x∆y ). Let ∆′ ≤ ∆ be an effective R-divisor
with x∆

′
y = 0 and 〈∆′〉 ≥ 〈∆〉. Then, locally on X, there is a positive number α

such that, for the R-divisor G := R+αf ∗D, pGq is an effective f -exceptional divisor
and −f∗G ≥ ∆′. We may assume that there is an f -exceptional effective divisor B
such that −B is f -ample. Then G− δB −KY is f -ample and pG− δBq = pGq for
0 < δ ¿ 1. Thus (X,∆′) is admissible. ¤

1.14. Lemma Let (X,∆) be a log-canonical pair. Suppose that there is an

effective R-Cartier divisor D such that SuppD = Supp∆. Then the following two

conditions are mutually equivalent :
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(1) (X r Supp(∆), 0) is log-terminal ;
(2) (X,∆) is strongly log-canonical.

Proof. (1) ⇒ (2): Let f : Y → X be a bimeromorphic morphism from a non-
singular variety and let R = KY −f∗(KX +∆). Then, locally over X, pR+ δf∗Dq

is an f -exceptional effective divisor and R+ δf ∗D−KY is f -numerically trivial for
a sufficiently small positive number δ. Therefore X is admissible.

(2) ⇒ (1) follows from 1.7. ¤

1.15. Corollary Let (X,∆) be a log-canonical pair such that every prime

component of ∆ is Q-Cartier.

(1) (X,∆) is quasi log-terminal if and only if (U,∆|U ) is log-terminal for

U = X r Supp( x∆y ).
(2) (X,∆) is strongly log-canonical if and only if (X r Supp∆, 0) is log-

terminal.

In particular, if X is Q-factorial and if (X r Supp ∆, 0) is log-terminal for a
log-canonical pair (X,∆), then X has only admissible singularities.

1.16. Example We shall give three examples of pairs related to the properties:
log terminal in Fujita’s sense, quasi log-terminal, and strongly log-canonical. (1) is
an example of strongly log-canonical singularities which is not quasi log-terminal.
(2) and (3) are examples of quasi log-terminal singularities which are not log ter-
minal in Fujita’s sense.

(1) Let X be a non-singular surface and let Li (i = 1, 2, 3) be smooth prime
divisors intersecting transversely each other only at a point x. Then
(X, (2/3)(L1 + L2 + L3)) is strongly log-canonical.

(2) Let X be a non-singular surface and let L1 and L2 be smooth prime
divisors intersecting only at a point x. Suppose that the local intersection
number is 2. Then (X,L1 + (1/2)L2) is quasi log-terminal.

(3) Let Y be a non-singular threefold and let S =
∑4

i=1 Si be a simple normal
crossing divisor satisfying the following conditions:
(a) C := S1 ∩ S2 is a non-singular rational curve;
(b) S3 ∩ S4 = ∅;
(c) S1 · C = S2 · C = −1 and S3 · C = S4 · C = 1.

Let f : Y → X be the contraction of the curve C. Then (X, f∗S) is quasi
log-terminal.

§2. Minimal model program

We shall consider a kind of minimal model program for (X,∆), where X is
a projective variety. But, by using the same technique as in [98] (cf. Chapter II,
§5.d), we can generalize to the relative case of complex analytic varieties.

2.1. Lemma Let (X,∆) be a pair of a normal projective variety and an effec-

tive R-divisor. It is admissible if and only if there is an effective Q-divisor ∆′ ≥ ∆
such that (X,∆′) is log-terminal.
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Proof. By the argument of 1.3, we have only to show the existence of ∆′

assuming that (X,∆) is admissible. Since X is compact, (X,∆) is strictly ad-
missible by 1.6. Thus there are a bimeromorphic morphism f : Y → X and
a Q-divisor E satisfying the conditions of 1.2. Let H be an ample divisor of
X. Then mE − mKY + mlf∗H is very ample for some positive integers m, l.
Let D be a general non-singular member of |mE − mKY + mlf∗H| such that
Supp〈E〉 ∪ SuppD is a normal crossing divisor. Then E − (1/m)D − KY is f -
numerically trivial and pE − (1/m)Dq = pEq . Therefore (X,∆′) is log-terminal
for ∆′ = f∗((1/m)D − E). ¤

Let us fix a normal projective variety X and an effective R-divisor ∆ such that
(X,∆) has only strongly log-canonical singularities.

2.2. Lemma Let D be a Q-Cartier divisor such that D− (KX + ∆) is ample.

Then there is an effective Q-divisor ∆0 such that (X,∆0) is log-terminal and D ∼Q

KX + ∆0.

Proof. Since X has only admissible singularities, there is an effective Q-
divisor ∆1 such that (X,∆1) is log-terminal by 2.1. Let f : Y → X be a birational
morphism from a non-singular projective variety such that there is an effective Q-
divisor B with −B being f -ample and that the union of the f -exceptional locus,
f−1(Supp ∆), f−1(Supp ∆1), and SuppB is a normal crossing divisor. Then

KY = f∗(KX + ∆) +R = f∗(KX + ∆1) +R1

for an R-divisor R and a Q-divisor R1. Let ∆α := (1− α)∆ + α∆1 for 0 < α < 1.
Then

KY = f∗(KX + ∆α) + (1− α)R+ αR1.

Hence (X,∆α) is log-terminal for 0 < α ¿ 1. Thus there are rational numbers
0 < α¿ 1 and 0 < δ ¿ 1 such that p(1− α)R+ αR1 − δBq ≥ 0, D − (KX + ∆α)
is ample, and

f∗(D − (KX + ∆α))− δB = f∗D + (1− α)R+ αR1 − δB −KY

is ample. We can take a sufficiently large positive integer m such that

f∗D + (1/m) xm(1− α)Ry + αR1 − δB −KY ∼Q (1/m)C

for a non-singular divisor C ⊂ Y . Let us define a Q-divisor

∆0 := f∗(δB + (1/m)C − (1/m) xm(1− α)Ry − αR1).

Then ∆0 is effective and (X,∆0) is log-terminal for suitable choices of m and C.
Here D ∼Q KX + ∆0. ¤

2.3. Lemma There is a sequence of effective Q-divisors {∆n}∞n=1 such that

every (X,∆n) is log-terminal and limn→∞ c1(KX + ∆n) = c1(KX + ∆).
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Proof. Since KX + ∆ is R-Cartier, there is a sequence of Q-Cartier divisors
{Lm}∞m=1 such that limm→∞ c1(Lm) = c1(KX + ∆). Let A be an ample divisor.
Then, for any positive integer n, there is a positive integer mn such that Lm +
(1/n)A − (KX + ∆) is ample for m ≥ mn. By 2.2, there is an effective Q-divisor
∆n such that (X,∆n) is log-terminal and that Lmn

+ (1/n)A ∼Q KX + ∆n. Thus
limn→∞ c1(KX + ∆n) = c1(KX + ∆). ¤

2.4. Corollary Let D be an R-Cartier divisor such that D − (KX + ∆) is

ample. Then there is an effective Q-divisor ∆0 such that (X,∆0) is log-terminal

and D − (KX + ∆0) is ample.

The following is the base-point free theorem in the strongly log-canonical case:

2.5. Proposition If D is a nef Cartier divisor of X such that aD− (KX +∆)
is ample for a positive integer a, then Bs |mD| = ∅ for mÀ 0.

Proof. By 2.4, we may assume that ∆ is a Q-divisor and (X,∆) is log-
terminal. The result is known in this case (cf. [61]). ¤

The following theorem is considered to be a generalization of usual base-point
free theorem in the minimal model theory (cf. [25, (A5)], [57, Theorem 1]):

2.6. Theorem Let D be a Q-Cartier divisor of X. Suppose that D−(KX +∆)
is ample and D admits a Zariski-decomposition µ∗D = Pσ(µ∗D) + Nσ(µ∗D) for

a birational morphism µ : Y → X from a non-singular projective variety, where

P := Pσ(µ∗D) is nef. Then P is a semi-ample Q-divisor. Moreover, if P ′ is a

Z-divisor numerically equivalent to qP for some q > 0, then Bs |mP ′| = ∅ for

mÀ 0.

Proof. By 2.4, we may assume that ∆ is a Q-divisor and (X,∆) is log-
terminal. By replacing Y by X, we may assume the following conditions are also
satisfied for P := Pσ(D) and A := Nσ(D)−∆:

(1) P is nef;
(2) P +A−KX is ample;
(3) Supp〈A〉 is a normal crossing divisor;
(4) pAq is an effective divisor;
(5) Pσ(tP + pAq ) = tP for any t ≥ 1.

Then, by [57, Theorem 3], we infer that h0(X, xmPy ) = h0(X, xmDy ) 6= 0 for some
positive integer m > 0. Furthermore, Bs | xmPy | ⊂ Bs |mD| for m > 0 with mD
being Cartier. Thus, by the argument in the proof of [57, Theorem 1], we infer that
P is a semi-ample Q-divisor. The remaining things are derived from [25, (A5)]. ¤

We have the following rationality theorem also by 2.4:

2.7. Theorem Let F be a face of the cone NE(X) such that (KX + ∆) · z < 0
for any z ∈ F r {0}. Then there is a nef Cartier divisor D such that

F = D⊥ ∩NE(X) = {z ∈ NE(X) | D · z = 0}.



266 VII. AROUND LOG-TERMINAL SINGULARITIES

Therefore we also have the following cone theorem:

2.8. Theorem

NE(X) = NE(X)(KX+∆) +
∑

Rj ,

where NE(X)(KX+∆) = {z ∈ NE(X) | (KX + ∆) · z ≥ 0}, Rj is an extremal ray,

and
∑

Rj is locally polyhedral.

Each extremal ray R ⊂ NE(X) defines a fiber space ϕR : X → Z into a normal
projective variety such that

(1) ρ(X) = ρ(Z) + 1,
(2) −(KX + ∆) is ϕR-ample,
(3) for an irreducible curve C of X, its numerical class cl(C) is contained in

R if and only if ϕR(C) is a point.

The morphism ϕR is called the contraction morphism of R.
Suppose that ϕR : X → Z is not a birational morphism. Then dimZ < dimX

and Z has only rational singularities by 2.4 and 1.1. Furthermore, by 3.3 below,
Z has only admissible singularities.

2.9. Lemma Let ϕ : X → Z be a birational morphism of normal projective

varieties and let ∆ be an effective R-divisor of X.

(1) Suppose that (X,∆′) is admissible for an R-divisor ∆′ ≤ ∆, (X,∆) is log-

canonical, and that −(KX +∆) is ϕ-ample. Then (Z,ϕ∗∆
′) is admissible.

(2) Suppose that ϕ is an isomorphism in codimension one and (Z,ϕ∗∆) is

admissible. Then (X,∆) is admissible.

Proof. (1) Let f : Y → X be a birational morphism from a non-singular
projective variety such that a Q-divisor E of Y satisfies the condition of 1.2 for
(X,∆′). Let R be the R-divisor KY − f∗(KX +∆). We may assume that SuppR∪
SuppE is a normal crossing divisor. Then (1− ε)R+ εE −KY is relatively ample
over Z for 0 < ε¿ 1. Thus (Z,ϕ∗∆

′) is admissible, since (1− ε)∆ + ε∆′ ≥ ∆′.
(2) is trivial. ¤

Suppose that the contraction morphism ϕR : X → Z of the extremal ray R

is birational and there is an exceptional divisor. If X is Q-factorial, then the
exceptional locus is a prime divisor and (Z,ϕR∗∆) has only strongly log-canonical
singularities by 2.9-(1). Similarly, if (X,∆) is quasi log-terminal and if X is Q-
factorial, then so is (Z,ϕR∗∆).

Next suppose that ϕR : X → Z is isomorphic in codimension one. Then
(Z,ϕR∗∆

′) is admissible for any 0 ≤ ∆′ ≤ ∆ with (X,∆′) being admissible, by
2.9-(1). The existence of the flip for ϕR is unknown. However, the existence for any
log-terminal pair (X,∆) with ∆ being Q-divisor implies that for any strongly log-
canonical pair. Suppose that X+ → Z is the flip and ∆+ is the proper transform
of ∆. Then, by 2.9-(2), (X+,∆+) has only strongly log-canonical singularities.
Similarly, if (X,∆) is quasi log-terminal, then so is (X+,∆+).
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Thus we expect to consider the minimal model program/problem starting from
(X,∆) with only strongly log-canonical singularities where X is Q-factorial.

§3. ω-sheaves and log-terminal singularities

Here, we shall treat general normal complex analytic varieties. The following
lemma is proved by the same argument as in 1.1. But this result is weaker than
3.2 below.

3.1. Lemma If there is a non-zero locally free ω-sheaf on a normal variety Y ,

then Y has only rational singularities.

Proof. Let f : X → Y be a proper surjective morphism from a Kähler mani-
fold such that a direct summand F of Rj f∗ωX is locally free for some j. We may
assume that there is a factorization f : X → Z → Y such that

(1) Z is a non-singular variety,
(2) π : X → Z is smooth outside a normal crossing divisor of Z,
(3) µ : Z → Y is a bimeromorphic morphism.

Then we have an injection µ∗F ↪→ Rj π∗ωX . By taking the direct images by µ∗,
we have the following morphism in the derived category D+

c (OY ) by V.3.7:

Rµ∗(µ
∗F)→ Rµ∗(R

jπ∗ωX) ∼qis Rj f∗ωX → F .
Hence there is a complex G• such that

Rµ∗(µ
∗F) ∼qis F ⊕ G•.

By duality (cf. [37], [117]), we have

RHom(Rµ∗(µ
∗F), ω•

Y ) ∼qis Rµ∗ RHom(µ∗F , ω•
Z) ∼qis F∨ ⊗ µ∗ωZ [dimY ],

where ω•
Y is the dualizing complex. Hence

RHom(F , ω•
Y ) ∼qis F∨ ⊗ ωY [dimY ]

and there is a surjective homomorphism

F∨ ⊗ µ∗ωZ ³ F∨ ⊗ ωY .

Therefore Y has only rational singularities. ¤

Let X be a normal variety with only admissible singularities. Then, for any
relatively compact open subset X ′ ⊂ X, there are a bimeromorphic morphism
f : Y → X ′ from a non-singular variety and a Q-divisor E of Y such that

(1) Supp〈E〉 is a normal crossing divisor,
(2) pEq is an f -exceptional effective divisor, and
(3) E −KY is f -ample.

Then OY ( pEq ) is an ω-sheaf by V.3.10. Thus OX′ is an ω-sheaf. Conversely, the
same argument as V.3.32 proves following:
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3.2. Proposition Let Z be a normal variety such that OZ is an ω-sheaf. Then

there exist a bimeromorphic morphism ϕ : M → Z from a non-singular variety M
and a ϕ-nef Q-divisor D of M such that Supp〈D〉 is a normal crossing divisor and

OZ ' ϕ∗ωM ( pDq ).

In particular, Z has only admissible singularities.

Therefore, a normal variety X has only admissible singularities if and only if
OX is an ω-sheaf locally on X.

3.3. Corollary Let f : X → Y be a projective surjective morphism of normal

varieties. Suppose that (X,∆) is log-terminal and there is an effective Q-Cartier

Z-divisor E satisfying the following conditions:

(1) E − (KX + ∆) is f -nef and f -abundant.

(2) the canonical homomorphism f∗OX → f∗OX(E) is an isomorphism.

Then Y has only admissible singularities.

Proof. We may assume that Y is Stein and we may replace Y by a relatively
compact open subset. By V.3.12, we infer that OX(E) is an ω-sheaf. Since OY is
a direct summand of f∗OX , the conclusion is derived from 3.2. ¤


