CHAPTER VII

Around log-terminal singularities

In this chapter, we discuss singularities arising from the consideration on the minimal model theory of higher-dimensional algebraic varieties. The notion of terminal singularities and that of canonical singularities are introduced by Reid in the study of singularities on minimal models ([113], [114]). In the minimal model program, we consider not only normal varieties themselves but also the pairs consisting of normal varieties and effective Q-divisors. Notions of singularities can be defined similarly for such pairs. In the middle of 1980's, there appeared a summary [61] of minimal model program for higher dimensional varieties, where the notions of log-terminal, log-canonical, and weakly log-terminal are explained. The definition of log-terminal in [61] is different from the one used in the classification theory of open surfaces, in the sense that the latter allows a Q-divisor with multiplicity one. Shokurov [132] introduced his original definition of log-terminal (it was written log *terminal*) in order to prove the log-flip conjectures, which coincides in dimension two with the one used in the classification theory of open surfaces. The notion of log-terminal in [61] is given a different name and called *Kawamata log terminal* or klt in [132] and [74]. However, Shokurov's notion of log terminal seems to have no good meaning for application. The notion of divisorial log terminal (dlt) in [132] and [74] is useful for the log minimal model program. In [134], the notion of dlt is shown to be equivalent to the notion of weakly log-terminal if we consider only simple normal crossing divisors in the definition given in [61]. Unfortunately, however, the notion of dlt is not a property well-defined for analytic germs. Fujita's definition of log terminal in [27] dealt with the analytic local situation. In the early 1990's, the author introduced another notion of log-terminal, named strongly log-canonical, which is closer to the notion of log-canonical. It is a property welldefined for analytic germs and has many useful properties for the minimal model program.

In this chapter, we introduce the notions of *admissible*, quasi log-terminal, and strongly log-canonical, for pairs (X, Δ) consisting of normal varieties and effective \mathbb{R} -divisors. These notions are analytically local in nature. These are defined and discussed in §1. In the definition of admissible pairs, the \mathbb{R} -divisor $K_X + \Delta$ need not to be \mathbb{R} -Cartier. A new proof of rationality of canonical singularities is also given in §1. The minimal model program for strongly log-canonical pairs is mentioned in §2 and a relation between admissible singularities and ω -sheaves is explained in §3.

§1. Admissible and strongly log-canonical singularities

§1.a. Admissible singularities. We now prepare a sufficient condition for a singularity to be rational, by using which we can prove the rationality of canonical singularities.

1.1. Theorem Let $f: Y \to X$ be a locally projective surjective morphism from a non-singular variety onto a normal variety. Suppose that there is an effective divisor R such that $\mathbb{R}^i f_* \mathcal{O}_Y(R) = 0$ for i > 0 and that the natural homomorphism $f_* \mathcal{O}_Y \to f_* \mathcal{O}_Y(R)$ is an isomorphism. Then X has only rational singularities.

PROOF. Let $Y \to V \to X$ be the Stein factorization. If V has only rational singularities, then so does X. Therefore we may assume that $V \simeq X$ or equivalently, $\mathcal{O}_X \simeq f_*\mathcal{O}_Y$. In the derived category $D^+(\mathcal{O}_X)$, the composite $\mathcal{O}_X \to \operatorname{R} f_*\mathcal{O}_Y \to \operatorname{R} f_*\mathcal{O}_Y(R)$ is a quasi-isomorphism. Thus

$$\mathrm{R} f_* \mathcal{O}_Y \sim_{\mathrm{qis}} \mathcal{O}_X \oplus L^{\bullet}$$

for a bounded complex L^{\bullet} . By duality (cf. [37], [117]), we have

 $\operatorname{R} f_* \omega_Y[\operatorname{dim} Y] \sim_{\operatorname{qis}} \operatorname{R} \mathcal{H}om(\operatorname{R} f_* \mathcal{O}_Y, \omega_X^{\bullet}).$

Thus $\operatorname{R} f_*\omega_Y[\operatorname{dim} Y] \sim_{\operatorname{qis}} \omega_X^{\bullet} \oplus G^{\bullet}$ for a complex G^{\bullet} . By **V.3.7**-(1), $\mathcal{H}^{-i}(\omega_X^{\bullet})$ is torsion-free. Thus it is zero except for $i = \dim X$. Hence X is Cohen-Macaulay. Let $Y' \to Y$ and $\mu: X' \to X$ be bimeromorphic morphisms from non-singular varieties such that

(1) the morphism $g: Y' \to X'$ is induced,

(2) g is a smooth morphism outside a normal crossing divisor of X'.

Then $\mathbf{R}^i g_* \omega_{Y'}$ is a locally free sheaf and $\mathbf{R}^p \mu_*(\mathbf{R}^i g_* \omega_{Y'}) = 0$ for $i \ge 0$ and p > 0 by **V.3.7**. In particular, $\mathbf{R}^d g_* \omega_{Y'} \simeq \omega_{X'}$, where $d := \dim Y - \dim X$. Thus

$$\mathbf{R}^{d} f_{*} \omega_{Y} \simeq \mu_{*} \omega_{X'} \simeq \mathcal{H}^{-\dim X} (\omega_{X}^{\bullet} \oplus G^{\bullet}).$$

Therefore $\mu_*\omega_{X'}\simeq\omega_X$. Hence X has only rational singularities.

1.2. Definition Let (X, Δ) be a pair of a normal variety X and an effective \mathbb{R} -divisor Δ with $\Delta_{\Box} = 0$. It is called *strictly admissible* if there exist a bimeromorphic morphism $f: Y \to X$ from a non-singular variety and a \mathbb{Q} -divisor E on Y satisfying the following conditions:

- (1) $\operatorname{Supp}\langle E \rangle$ is a normal crossing divisor;
- (2) $\lceil E \rceil$ is an *f*-exceptional effective divisor;
- (3) $-f_*E \ge \Delta;$
- (4) $E K_Y$ is *f*-ample.

If there is an open covering $\{U_{\lambda}\}$ of X such that $(U_{\lambda}, \Delta|_{U_{\lambda}})$ is strictly admissible for any λ , then (X, Δ) is called *admissible* or having only *admissible singularities*. A normal variety X is said to have only *admissible singularities* if (X, 0) is admissible.

If (X, Δ) is admissible, then X has only admissible singularities. The admissible singularity is rational by **1.1**. Moreover, we have:

1.3. Lemma Let (X, Δ) be a pair of normal variety and effective \mathbb{R} -divisor. Then (X, Δ) is admissible if and only if, for any point $x \in X$, there exist an open neighborhood U of x and an effective \mathbb{Q} -divisor Δ' of U such that $\Delta' \geq \Delta|_U$ and (U, Δ') is log-terminal.

PROOF. Let $f: Y \to X$ and E be the bimeromorphic morphism and the \mathbb{Q} divisor, respectively, in **1.2**. Then there are an open neighborhood U of x, an integer m > 1, and a non-singular effective divisor A of $f^{-1}(U)$ such that $m(E - K_Y)|_{f^{-1}(U)} \sim A$ and $\operatorname{Supp}(\langle E \rangle|_{f^{-1}(U)} + A)$ is a normal crossing divisor. If we set

$$\Delta' := f_*((1/m)A - E|_{f^{-1}(U)}),$$

then (U, Δ') is log-terminal, since

$$f^*(K_U + \Delta') = K_{f^{-1}(U)} + (1/m)A - E|_{f^{-1}(U)}.$$

Conversely suppose that (X, Δ') is log-terminal for a \mathbb{Q} -divisor Δ' with $\Delta' \geq \Delta$. Let $f: Y \to X$ be a bimeromorphic morphism from a non-singular variety and set $R' := K_Y - f^*(K_X + \Delta')$. We may assume that there is an effective divisor B such that -B is f-ample and $\operatorname{Supp} B \cup \operatorname{Supp} \langle R' \rangle$ is a normal crossing divisor. Note that $\lceil R \rceil$ is f-exceptional and effective. Then $R' - \delta B - K_Y$ is f-ample and $\lceil R' - \delta B \rceil = \lceil R \rceil$ for $0 < \delta \ll 1$ over an open neighborhood of any point in X. Thus the \mathbb{Q} -divisor $E := R' - \delta B$ satisfies the required condition for (X, Δ) to be admissible. \Box

1.4. Lemma Let (X, Δ) be a strictly admissible pair and let $f: Y \to X$ be a bimeromorphic morphism from a non-singular variety with a \mathbb{Q} -divisor E satisfying the condition of **1.2**. Let $\mu: Z \to Y$ be a projective bimeromorphic morphism from a non-singular variety and let $g := f \circ \mu$. Suppose that the union of μ -exceptional locus and $\mu^{-1}(\operatorname{Supp}\langle E \rangle)$ is a normal crossing divisor. Then, for any relatively compact open subset $U \subset X$, there is a \mathbb{Q} -divisor E' of $g^{-1}(U)$ such that

- (1) Supp $\langle E' \rangle$ is a normal crossing divisor,
- (2) $\lceil E' \rceil$ is a g-exceptional effective divisor,
- (3) $-g_*E' = (-f_*E)|_U$,
- (4) $E' K_{q^{-1}(U)}$ is a g-ample \mathbb{Q} -divisor.

PROOF. There is a μ -exceptional effective divisor B such that -B is μ -ample. Hence $\mu^*(E - K_Y) - \delta B$ is g-ample over U for $0 < \delta \ll 1$. Since $K_Z - \mu^* K_Y$ is an effective μ -exceptional divisor, the \mathbb{Q} -divisor

$$E' := K_Z - \mu^* (K_Y - E) - \delta B$$

satisfies the conditions by **II.4.3**-(2).

1.5. Lemma Let (X, Δ) be a pair of normal variety and effective \mathbb{Q} -divisor. Then (X, Δ) is admissible if and only if, for any relatively compact open subset $U \subset X$, there exist a positive integer m, a bimeromorphic morphism $g: Z \to U$ from a non-singular variety, and a divisor F of Z such that

(1) $m\Delta|_U$ is a \mathbb{Z} -divisor,

- (2) $\operatorname{Supp}\langle (1/m)F \rangle$ is a normal crossing divisor,
- (3) $\lceil (1/m)F \rceil$ is a g-exceptional effective divisor,
- (4) $q^* \mathcal{O}_U(-mK_X m\Delta)/(\text{tor}) \simeq \mathcal{O}_Z(F mK_Z).$

PROOF. First suppose that (X, Δ) is admissible. Let $U \subset X$ be a relatively compact open subset and let $\mathcal{U}_i \subset X$ $(1 \leq i \leq l)$ be a finite number of open subsets such that $(\mathcal{U}_i, \Delta|_{\mathcal{U}_i})$ is strictly admissible and $U \subset \bigcup_{i=1}^l \mathcal{U}_i$. Then, for every *i*, there exist bimeromorphic morphisms $f_i: Y_i \to \mathcal{U}_i$ and \mathbb{Q} -divisor E_i of Y_i satisfying the same condition as **1.2** for $(\mathcal{U}_i, \Delta|_{\mathcal{U}_i})$. By replacing \mathcal{U}_i with a relatively compact open subset of \mathcal{U}_i , we may assume that there is a positive integer *m* such that $m\Delta$ is a \mathbb{Z} -divisor, $m(E_i - K_{Y_i})$ are Cartier, and the evaluation homomorphism

$$f_i^* f_{i*} \mathcal{O}_{Y_i}(m(E_i - K_{Y_i})) \to \mathcal{O}_{Y_i}(m(E_i - K_{Y_i}))$$

is surjective for any *i*. Let $g: Z \to U$ be a bimeromorphic morphism from a nonsingular variety such that the union of the *g*-exceptional locus and $g^{-1}(\operatorname{Supp} \Delta)$ is a normal crossing divisor and that $g^*\mathcal{O}_X(-mK_X - m\Delta))/(\operatorname{tor})$ is an invertible sheaf. Then there is a \mathbb{Z} -divisor *F* of *Z* such that $\operatorname{Supp} F$ is a normal crossing divisor and the invertible sheaf above is isomorphic to $\mathcal{O}_Z(F - mK_Z)$. For each *i*, let $\varphi_i: M_i \to f_i^{-1}(U \cap \mathcal{U}_i)$ be a bimeromorphic morphism from a non-singular variety such that $\psi_i: M_i \to g^{-1}(\mathcal{U}_i)$ is holomorphic. Since $f_{i*}\mathcal{O}_{Y_i}(mE_i - mK_{Y_i}) \subset$ $\mathcal{O}_{\mathcal{U}_i}(-m(\Delta + K_X))$, we have $\psi_i^*(F - mK_Z) \ge \varphi_i^*(mE_i - mK_{Y_i})$. By the logarithmic ramification formula **II.4.3**, we have:

$$K_{M_{i}} + \Delta_{i} - \psi_{i}^{*}((1/m)F) = \psi_{i}^{*}(K_{Z} - (1/m)F) + R_{i},$$

$$K_{M_{i}} + \Delta_{i}' - \varphi_{i}^{*}(E_{i}) = \varphi_{i}^{*}(K_{Y_{i}} - E_{i}) + R_{i}',$$

for effective \mathbb{Q} -divisors Δ_i , Δ'_i with $\Delta_i = \Delta'_i = 0$, for ψ_i -exceptional effective divisors R_i , and for φ_i -exceptional effective divisors R'_i . Hence

$$\psi_i^*(\lceil (1/m)F\rceil) + \Delta_i' + R_i \ge \varphi_i^*(\lceil E_i\rceil) + \Delta_i + R_i'$$

We have $\lceil (1/m)F \rceil \ge 0$, since $\lceil E_i \rceil \ge 0$, $\lfloor \Delta'_i \rfloor = 0$, and R_i is ψ_i -exceptional. Thus g and F satisfy the required conditions. Next suppose the existence of such g and F. By **II.4.3**, we may replace Z by a blowing-up, and hence we may assume that there is an effective \mathbb{Z} -divisor B such that -B is g-ample and $\operatorname{Supp}(B+F)$ is normal crossing. Thus, over any relatively compact open subset of X, $(1/m)F - \delta B - K_Z$ is g-ample and $\lceil (1/m)F - \delta B \rceil = \lceil (1/m)F \rceil$ for a rational number $0 < \delta \ll 1$. Therefore, (X, Δ) is admissible by $g_*((1/m)F - \delta B) \le -\Delta$.

1.6. Proposition Let (X, Δ) be an admissible pair. Then $(U, \Delta|_U)$ is strictly admissible for any relatively compact open subset $U \subset X$.

PROOF. For a relative compact open subset $U' \supset \overline{U}$, there is a positive integer m such that $(U', (1/m) \lceil m \Delta^{\neg} |_{U'})$ is admissible. Thus, by the proof of **1.5**, $(U, (1/m) \lceil m \Delta^{\neg} |_U)$ is strictly admissible. Therefore $(U, \Delta|_U)$ is strictly admissible.

1.7. Lemma Let (X, Δ) be a pair of normal variety and effective \mathbb{R} -divisor such that $K_X + \Delta$ is \mathbb{R} -Cartier. Then it is log-terminal if and only if it is admissible.

PROOF. We may replace X by an open subset freely. Suppose first that (X, Δ) is log-terminal. Let $f: Y \to X$ be a bimeromorphic morphism from a non-singular variety. We may assume there is an f-exceptional divisor B such that -B is f-ample and that the union of Supp B, $f^{-1}(\text{Supp }\Delta)$, and the f-exceptional locus is a normal crossing divisor. We set $R := K_Y - f^*(K_X + \Delta)$. Then $R - \delta B - K_Y$ is f-ample for $\delta > 0$. We can choose δ so that $\lceil R - \delta B \rceil = \lceil R \rceil$. Since $f_*(R - \delta B) \leq -\Delta$, (X, Δ) is admissible.

Next, suppose that (X, Δ) is admissible. Then $(X, (1/m_1) \lceil m_1 \Delta \rceil)$ is admissible for some positive integer m_1 . By **1.5**, there exist a bimeromorphic morphism $g: Z \to X$ from a non-singular variety, a divisor F of Z, and a positive integer m which satisfy the condition of **1.5** for $(X, (1/m_1) \lceil m_1 \Delta \rceil)$. Then we have $R \ge (1/m)F$ for the \mathbb{R} -divisor $R = K_Z - g^*(K_X + \Delta)$, by **III.5.1**. Thus $\lceil R \rceil$ is a g-exceptional effective divisor. Hence (X, Δ) is log-terminal.

§1.b. Quasi log-terminal and strongly log-canonical singularities. Fujita introduced the following 'log terminal' in [27]:

1.8. Definition Let (X, Δ) be a log-canonical pair. It is called *log terminal* in Fujita's sense if, for any bimeromorphic morphism $f: Y \to X$ from a non-singular variety, for the \mathbb{R} -divisor $R := K_Y - f^*(K_X + \Delta)$, and for any prime f-exceptional divisor Γ with $\operatorname{mult}_{\Gamma} R = -1$, X is non-singular and Δ is a reduced normal crossing divisor at a general point of $f(\Gamma)$.

Remark If (X, Δ) is weakly log-terminal, then it is log terminal in Fujita's sense. Let $D \subset \mathbb{C}^3$ be a hypersurface defined by the equation: $z^2 = xy^2$, which is called a Whitney umbrella. Then (\mathbb{C}^3, D) is not weakly log-terminal but log terminal in Fujita's sense.

1.9. Definition Let (X, Δ) be a pair of normal complex analytic variety and effective \mathbb{R} -divisor. The pair (X, Δ) is said to be *strongly log-canonical* if, locally on X, there exist a bimeromorphic morphism $f: Y \to X$ from a non-singular variety and \mathbb{R} -divisors R and G on Y satisfying the following conditions:

- (1) $\operatorname{Supp} R \cup \operatorname{Supp} G$ is a normal crossing divisor;
- (2) $R K_Y$ is *f*-numerically trivial;
- (3) $f_*R = -\Delta;$
- (4) G is f-ample;
- (5) $\operatorname{mult}_{\Gamma} R \geq -1$ for a prime component Γ of R;
- (6) If a prime component Γ of R satisfies mult_{Γ} R = -1, then mult_{Γ} G > 0;
- (7) A prime component Γ of G with $\operatorname{mult}_{\Gamma} G > 0$ is either a component of R or an f-exceptional divisor.

1.10. Lemma Let (X, Δ) be a strongly log-canonical pair and let Δ' be an effective \mathbb{R} -divisor with $\Delta' \leq \Delta$ and $\operatorname{mult}_{\Gamma} \Delta' < \operatorname{mult}_{\Gamma} \Delta$ for any prime component Γ of Δ . Then (X, Δ') is admissible.

PROOF. Let $f: Y \to X$, R, and G be as in **1.9**. We can take a small positive number α such that $\lceil R + \alpha G \rceil$ is an f-exceptional effective divisor. Since $R + \alpha G - K_Y$ is f-ample, (X, Δ_{α}) is admissible for $\Delta_{\alpha} := -f_*(R + \alpha G)$. If α is sufficiently small, then $\Delta_{\alpha} \ge \Delta'$. Hence (X, Δ') is admissible.

1.11. Lemma The pair (X, Δ) is strongly log-canonical if and only if (X, Δ) is log-canonical and X is admissible.

PROOF. Suppose that (X, Δ) is strongly log-canonical. By **1.10**, X has only rational singularities. Therefore, $K_X + \Delta$ is \mathbb{R} -Cartier and we can write $K_Y = f^*(K_X + \Delta) + R$. Hence (X, Δ) is log-canonical. Next suppose that (X, Δ) is logcanonical and X is admissible. There exist a bimeromorphic morphism $f: Y \to X$ from a non-singular variety and a \mathbb{Q} -divisor E' of Y such that

- (1) the union of the f-exceptional locus, $f^{-1}(\operatorname{Supp} \Delta)$, and $\operatorname{Supp} E'$ is a normal crossing divisor,
- (2) $E' K_Y$ is *f*-ample,
- (3) $[E^{n}]$ is an *f*-exceptional effective divisor.

For the \mathbb{R} -divisor $R = K_Y - f^*(K_X + \Delta)$, we have $\operatorname{mult}_{\Gamma} R \ge -1$ for any prime component Γ . Let G be the f-ample \mathbb{R} -divisor E' - R. Then $\operatorname{mult}_{\Gamma} G > 0$, if $\operatorname{mult}_{\Gamma} R = -1$. Therefore (X, Δ) is strongly log-canonical. \Box

1.12. Definition A pair (X, Δ) of normal variety and effective \mathbb{R} -divisor is called *quasi log-terminal* if (X, Δ) is log-canonical and (X, Δ') is admissible for any effective \mathbb{R} -divisor $\Delta' \leq \Delta$ with $\lfloor \Delta' \rfloor = 0$.

If (X, Δ) is log terminal in Fujita's sense, then it is quasi log-terminal by [27, (1.8)]. If (X, Δ) is quasi log-terminal, then $(X, \langle \Delta \rangle)$ is admissible. In particular, $(U, \Delta|_U)$ is log-terminal for $U := X \setminus \text{Supp } [\Delta]$.

1.13. Lemma Let (X, Δ) be a log-canonical pair such that $(U, \Delta|_U)$ is logterminal for $U := X \setminus \text{Supp}(\lfloor \Delta \rfloor)$. Suppose that there is an effective \mathbb{R} -Cartier divisor D such that $\text{Supp}(\lfloor \Delta \rfloor) \subset \text{Supp } D \subset \text{Supp } \Delta$. Then (X, Δ) is quasi logterminal.

PROOF. We have a bimeromorphic morphism $f: Y \to X$ from a non-singular variety such that the union of f-exceptional locus and $f^{-1}(\operatorname{Supp} \Delta)$ is a normal crossing divisor. Let R be the \mathbb{R} -divisor $K_Y - f^*(K_X + \Delta)$. If Γ is a prime divisor with $\operatorname{mult}_{\Gamma} R = -1$, then $f(\Gamma) \subset \operatorname{Supp}(\lfloor \Delta \rfloor)$. Let $\Delta' \leq \Delta$ be an effective \mathbb{R} -divisor with $\lfloor \Delta' \rfloor = 0$ and $\langle \Delta' \rangle \geq \langle \Delta \rangle$. Then, locally on X, there is a positive number α such that, for the \mathbb{R} -divisor $G := R + \alpha f^* D$, $\lceil G \rceil$ is an effective f-exceptional divisor and $-f_*G \geq \Delta'$. We may assume that there is an f-exceptional effective divisor Bsuch that -B is f-ample. Then $G - \delta B - K_Y$ is f-ample and $\lceil G - \delta B \rceil = \lceil G \rceil$ for $0 < \delta \ll 1$. Thus (X, Δ') is admissible. \Box

1.14. Lemma Let (X, Δ) be a log-canonical pair. Suppose that there is an effective \mathbb{R} -Cartier divisor D such that $\operatorname{Supp} D = \operatorname{Supp} \Delta$. Then the following two conditions are mutually equivalent:

- (1) $(X \setminus \text{Supp}(\Delta), 0)$ is log-terminal;
- (2) (X, Δ) is strongly log-canonical.

PROOF. (1) \Rightarrow (2): Let $f: Y \to X$ be a bimeromorphic morphism from a nonsingular variety and let $R = K_Y - f^*(K_X + \Delta)$. Then, locally over X, $\lceil R + \delta f^* D \rceil$ is an f-exceptional effective divisor and $R + \delta f^* D - K_Y$ is f-numerically trivial for a sufficiently small positive number δ . Therefore X is admissible.

 $(2) \Rightarrow (1)$ follows from **1.7**.

1.15. Corollary Let (X, Δ) be a log-canonical pair such that every prime component of Δ is \mathbb{Q} -Cartier.

- (1) (X, Δ) is quasi log-terminal if and only if $(U, \Delta|_U)$ is log-terminal for $U = X \setminus \text{Supp}(\Delta_{\perp}).$
- (2) (X, Δ) is strongly log-canonical if and only if $(X \setminus \text{Supp } \Delta, 0)$ is logterminal.

In particular, if X is Q-factorial and if $(X \setminus \text{Supp } \Delta, 0)$ is log-terminal for a log-canonical pair (X, Δ) , then X has only admissible singularities.

1.16. Example We shall give three examples of pairs related to the properties: log terminal in Fujita's sense, quasi log-terminal, and strongly log-canonical. (1) is an example of strongly log-canonical singularities which is not quasi log-terminal. (2) and (3) are examples of quasi log-terminal singularities which are not log terminal in Fujita's sense.

- (1) Let X be a non-singular surface and let L_i (i = 1, 2, 3) be smooth prime divisors intersecting transversely each other only at a point x. Then $(X, (2/3)(L_1 + L_2 + L_3))$ is strongly log-canonical.
- (2) Let X be a non-singular surface and let L_1 and L_2 be smooth prime divisors intersecting only at a point x. Suppose that the local intersection number is 2. Then $(X, L_1 + (1/2)L_2)$ is quasi log-terminal. (3) Let Y be a non-singular threefold and let $S = \sum_{i=1}^{4} S_i$ be a simple normal
- crossing divisor satisfying the following conditions:

(a) $C := S_1 \cap S_2$ is a non-singular rational curve;

- (b) $S_3 \cap S_4 = \emptyset;$
- (c) $S_1 \cdot C = S_2 \cdot C = -1$ and $S_3 \cdot C = S_4 \cdot C = 1$.

Let $f: Y \to X$ be the contraction of the curve C. Then (X, f_*S) is quasi log-terminal.

§2. Minimal model program

We shall consider a kind of minimal model program for (X, Δ) , where X is a projective variety. But, by using the same technique as in [98] (cf. Chapter II, $\S 5.d$), we can generalize to the relative case of complex analytic varieties.

2.1. Lemma Let (X, Δ) be a pair of a normal projective variety and an effective \mathbb{R} -divisor. It is admissible if and only if there is an effective \mathbb{Q} -divisor $\Delta' \geq \Delta$ such that (X, Δ') is log-terminal.

PROOF. By the argument of **1.3**, we have only to show the existence of Δ' assuming that (X, Δ) is admissible. Since X is compact, (X, Δ) is strictly admissible by **1.6**. Thus there are a bimeromorphic morphism $f: Y \to X$ and a \mathbb{Q} -divisor E satisfying the conditions of **1.2**. Let H be an ample divisor of X. Then $mE - mK_Y + mlf^*H$ is very ample for some positive integers m, l. Let D be a general non-singular member of $|mE - mK_Y + mlf^*H|$ such that $\operatorname{Supp}\langle E \rangle \cup \operatorname{Supp} D$ is a normal crossing divisor. Then $E - (1/m)D - K_Y$ is f-numerically trivial and $\lceil E - (1/m)D \rceil = \lceil E \rceil$. Therefore (X, Δ') is log-terminal for $\Delta' = f_*((1/m)D - E)$.

Let us fix a normal projective variety X and an effective \mathbb{R} -divisor Δ such that (X, Δ) has only strongly log-canonical singularities.

2.2. Lemma Let D be a \mathbb{Q} -Cartier divisor such that $D - (K_X + \Delta)$ is ample. Then there is an effective \mathbb{Q} -divisor Δ_0 such that (X, Δ_0) is log-terminal and $D \sim_{\mathbb{Q}} K_X + \Delta_0$.

PROOF. Since X has only admissible singularities, there is an effective \mathbb{Q} divisor Δ_1 such that (X, Δ_1) is log-terminal by **2.1**. Let $f: Y \to X$ be a birational morphism from a non-singular projective variety such that there is an effective \mathbb{Q} divisor B with -B being f-ample and that the union of the f-exceptional locus, $f^{-1}(\operatorname{Supp} \Delta), f^{-1}(\operatorname{Supp} \Delta_1)$, and $\operatorname{Supp} B$ is a normal crossing divisor. Then

$$K_Y = f^*(K_X + \Delta) + R = f^*(K_X + \Delta_1) + R_2$$

for an \mathbb{R} -divisor R and a \mathbb{Q} -divisor R_1 . Let $\Delta_{\alpha} := (1 - \alpha)\Delta + \alpha\Delta_1$ for $0 < \alpha < 1$. Then

$$K_Y = f^*(K_X + \Delta_\alpha) + (1 - \alpha)R + \alpha R_1.$$

Hence (X, Δ_{α}) is log-terminal for $0 < \alpha \ll 1$. Thus there are rational numbers $0 < \alpha \ll 1$ and $0 < \delta \ll 1$ such that $\lceil (1 - \alpha)R + \alpha R_1 - \delta B \rceil \ge 0$, $D - (K_X + \Delta_{\alpha})$ is ample, and

$$f^*(D - (K_X + \Delta_\alpha)) - \delta B = f^*D + (1 - \alpha)R + \alpha R_1 - \delta B - K_Y$$

is ample. We can take a sufficiently large positive integer m such that

$$f^*D + (1/m) \lfloor m(1-\alpha)R \rfloor + \alpha R_1 - \delta B - K_Y \sim_{\mathbb{Q}} (1/m)C$$

for a non-singular divisor $C \subset Y$. Let us define a \mathbb{Q} -divisor

$$\Delta_0 := f_*(\delta B + (1/m)C - (1/m)_+ m(1-\alpha)R_+ - \alpha R_1).$$

Then Δ_0 is effective and (X, Δ_0) is log-terminal for suitable choices of m and C. Here $D \sim_{\mathbb{Q}} K_X + \Delta_0$.

2.3. Lemma There is a sequence of effective \mathbb{Q} -divisors $\{\Delta_n\}_{n=1}^{\infty}$ such that every (X, Δ_n) is log-terminal and $\lim_{n\to\infty} c_1(K_X + \Delta_n) = c_1(K_X + \Delta)$.

PROOF. Since $K_X + \Delta$ is \mathbb{R} -Cartier, there is a sequence of \mathbb{Q} -Cartier divisors $\{L_m\}_{m=1}^{\infty}$ such that $\lim_{m\to\infty} c_1(L_m) = c_1(K_X + \Delta)$. Let A be an ample divisor. Then, for any positive integer n, there is a positive integer m_n such that $L_m + (1/n)A - (K_X + \Delta)$ is ample for $m \geq m_n$. By **2.2**, there is an effective \mathbb{Q} -divisor Δ_n such that (X, Δ_n) is log-terminal and that $L_{m_n} + (1/n)A \sim_{\mathbb{Q}} K_X + \Delta_n$. Thus $\lim_{n\to\infty} c_1(K_X + \Delta_n) = c_1(K_X + \Delta)$.

2.4. Corollary Let D be an \mathbb{R} -Cartier divisor such that $D - (K_X + \Delta)$ is ample. Then there is an effective \mathbb{Q} -divisor Δ_0 such that (X, Δ_0) is log-terminal and $D - (K_X + \Delta_0)$ is ample.

The following is the base-point free theorem in the strongly log-canonical case:

2.5. Proposition If D is a nef Cartier divisor of X such that $aD - (K_X + \Delta)$ is ample for a positive integer a, then Bs $|mD| = \emptyset$ for $m \gg 0$.

PROOF. By **2.4**, we may assume that Δ is a \mathbb{Q} -divisor and (X, Δ) is log-terminal. The result is known in this case (cf. [61]).

The following theorem is considered to be a generalization of usual base-point free theorem in the minimal model theory (cf. [25, (A5)], [57, Theorem 1]):

2.6. Theorem Let D be a \mathbb{Q} -Cartier divisor of X. Suppose that $D - (K_X + \Delta)$ is ample and D admits a Zariski-decomposition $\mu^*D = P_{\sigma}(\mu^*D) + N_{\sigma}(\mu^*D)$ for a birational morphism $\mu: Y \to X$ from a non-singular projective variety, where $P := P_{\sigma}(\mu^*D)$ is nef. Then P is a semi-ample \mathbb{Q} -divisor. Moreover, if P' is a \mathbb{Z} -divisor numerically equivalent to qP for some q > 0, then $\operatorname{Bs} |mP'| = \emptyset$ for $m \gg 0$.

PROOF. By 2.4, we may assume that Δ is a \mathbb{Q} -divisor and (X, Δ) is logterminal. By replacing Y by X, we may assume the following conditions are also satisfied for $P := P_{\sigma}(D)$ and $A := N_{\sigma}(D) - \Delta$:

- (1) P is nef;
- (2) $P + A K_X$ is ample;
- (3) Supp $\langle A \rangle$ is a normal crossing divisor;
- (4) $\lceil A \rceil$ is an effective divisor;
- (5) $P_{\sigma}(tP + \lceil A \rceil) = tP$ for any $t \ge 1$.

Then, by [57, Theorem 3], we infer that $h^0(X, \lfloor mP \rfloor) = h^0(X, \lfloor mD \rfloor) \neq 0$ for some positive integer m > 0. Furthermore, $Bs \lfloor \mu P \rfloor \subset Bs \vert mD \vert$ for m > 0 with mDbeing Cartier. Thus, by the argument in the proof of [57, Theorem 1], we infer that P is a semi-ample Q-divisor. The remaining things are derived from [25, (A5)]. \Box

We have the following rationality theorem also by 2.4:

2.7. Theorem Let F be a face of the cone $\overline{NE}(X)$ such that $(K_X + \Delta) \cdot z < 0$ for any $z \in F \setminus \{0\}$. Then there is a nef Cartier divisor D such that

$$F = D^{\perp} \cap \operatorname{NE}(X) = \{ z \in \operatorname{NE}(X) \mid D \cdot z = 0 \}.$$

Therefore we also have the following cone theorem:

2.8. Theorem

$$\overline{\mathrm{NE}}(X) = \overline{\mathrm{NE}}(X)_{(K_X + \Delta)} + \sum \mathbf{R}_j,$$

where $\overline{\operatorname{NE}}(X)_{(K_X+\Delta)} = \{z \in \overline{\operatorname{NE}}(X) \mid (K_X + \Delta) \cdot z \ge 0\}$, \mathbf{R}_j is an extremal ray, and $\sum \mathbf{R}_j$ is locally polyhedral.

Each extremal ray $\mathbf{R} \subset NE(X)$ defines a fiber space $\varphi_{\mathbf{R}} \colon X \to Z$ into a normal projective variety such that

- (1) $\rho(X) = \rho(Z) + 1$,
- (2) $-(K_X + \Delta)$ is $\varphi_{\mathbf{R}}$ -ample,
- (3) for an irreducible curve C of X, its numerical class cl(C) is contained in **R** if and only if $\varphi_{\mathbf{R}}(C)$ is a point.

The morphism $\varphi_{\mathbf{R}}$ is called the *contraction* morphism of \mathbf{R} .

Suppose that $\varphi_{\mathbf{R}} \colon X \to Z$ is not a birational morphism. Then dim $Z < \dim X$ and Z has only rational singularities by **2.4** and **1.1**. Furthermore, by **3.3** below, Z has only admissible singularities.

2.9. Lemma Let $\varphi \colon X \to Z$ be a birational morphism of normal projective varieties and let Δ be an effective \mathbb{R} -divisor of X.

- (1) Suppose that (X, Δ') is admissible for an \mathbb{R} -divisor $\Delta' \leq \Delta$, (X, Δ) is logcanonical, and that $-(K_X + \Delta)$ is φ -ample. Then $(Z, \varphi_* \Delta')$ is admissible.
- (2) Suppose that φ is an isomorphism in codimension one and $(Z, \varphi_* \Delta)$ is admissible. Then (X, Δ) is admissible.

PROOF. (1) Let $f: Y \to X$ be a birational morphism from a non-singular projective variety such that a \mathbb{Q} -divisor E of Y satisfies the condition of **1.2** for (X, Δ') . Let R be the \mathbb{R} -divisor $K_Y - f^*(K_X + \Delta)$. We may assume that $\operatorname{Supp} R \cup$ Supp E is a normal crossing divisor. Then $(1 - \varepsilon)R + \varepsilon E - K_Y$ is relatively ample over Z for $0 < \varepsilon \ll 1$. Thus $(Z, \varphi_* \Delta')$ is admissible, since $(1 - \varepsilon)\Delta + \varepsilon \Delta' \ge \Delta'$. (2) is trivial. \Box

Suppose that the contraction morphism $\varphi_{\mathbf{R}} \colon X \to Z$ of the extremal ray \mathbf{R} is birational and there is an exceptional divisor. If X is Q-factorial, then the exceptional locus is a prime divisor and $(Z, \varphi_{\mathbf{R}*}\Delta)$ has only strongly log-canonical singularities by **2.9**-(1). Similarly, if (X, Δ) is quasi log-terminal and if X is Q-factorial, then so is $(Z, \varphi_{\mathbf{R}*}\Delta)$.

Next suppose that $\varphi_{\mathbf{R}} \colon X \to Z$ is isomorphic in codimension one. Then $(Z, \varphi_{\mathbf{R}*}\Delta')$ is admissible for any $0 \leq \Delta' \leq \Delta$ with (X, Δ') being admissible, by **2.9**-(1). The existence of the flip for $\varphi_{\mathbf{R}}$ is unknown. However, the existence for any log-terminal pair (X, Δ) with Δ being \mathbb{Q} -divisor implies that for any strongly log-canonical pair. Suppose that $X^+ \to Z$ is the flip and Δ^+ is the proper transform of Δ . Then, by **2.9**-(2), (X^+, Δ^+) has only strongly log-canonical singularities. Similarly, if (X, Δ) is quasi log-terminal, then so is (X^+, Δ^+) .

Thus we expect to consider the minimal model program/problem starting from (X, Δ) with only strongly log-canonical singularities where X is Q-factorial.

§3. ω -sheaves and log-terminal singularities

Here, we shall treat general normal complex analytic varieties. The following lemma is proved by the same argument as in **1.1**. But this result is weaker than **3.2** below.

3.1. Lemma If there is a non-zero locally free ω -sheaf on a normal variety Y, then Y has only rational singularities.

PROOF. Let $f: X \to Y$ be a proper surjective morphism from a Kähler manifold such that a direct summand \mathcal{F} of $\mathbb{R}^j f_* \omega_X$ is locally free for some j. We may assume that there is a factorization $f: X \to Z \to Y$ such that

- (1) Z is a non-singular variety,
- (2) $\pi: X \to Z$ is smooth outside a normal crossing divisor of Z,
- (3) $\mu: Z \to Y$ is a bimeromorphic morphism.

Then we have an injection $\mu^* \mathcal{F} \hookrightarrow \mathbb{R}^j \pi_* \omega_X$. By taking the direct images by μ_* , we have the following morphism in the derived category $D_c^+(\mathcal{O}_Y)$ by **V.3.7**:

$$\mathrm{R}\,\mu_*(\mu^*\mathcal{F})\to\mathrm{R}\,\mu_*(R^j\pi_*\omega_X)\sim_{\mathrm{qis}}\mathrm{R}^j\,f_*\omega_X\to\mathcal{F}.$$

Hence there is a complex \mathcal{G}^{\bullet} such that

$$\mathbb{R}\,\mu_*(\mu^*\mathcal{F})\sim_{\mathrm{qis}}\mathcal{F}\oplus\mathcal{G}^{ullet}.$$

By duality (cf. [37], [117]), we have

$$\operatorname{R}\mathcal{H}om(\operatorname{R}\mu_*(\mu^*\mathcal{F}),\omega_Y^{\bullet})\sim_{\operatorname{qis}}\operatorname{R}\mu_*\operatorname{R}\mathcal{H}om(\mu^*\mathcal{F},\omega_Z^{\bullet})\sim_{\operatorname{qis}}\mathcal{F}^{\vee}\otimes\mu_*\omega_Z[\operatorname{dim} Y],$$

where ω_Y^{\bullet} is the dualizing complex. Hence

$$\operatorname{R}\mathcal{H}om(\mathcal{F},\omega_Y^{\bullet})\sim_{\operatorname{qis}}\mathcal{F}^{\vee}\otimes\omega_Y[\operatorname{dim} Y]$$

and there is a surjective homomorphism

$$\mathcal{F}^{\vee} \otimes \mu_* \omega_Z \twoheadrightarrow \mathcal{F}^{\vee} \otimes \omega_Y.$$

Therefore Y has only rational singularities.

Let X be a normal variety with only admissible singularities. Then, for any relatively compact open subset $X' \subset X$, there are a bimeromorphic morphism $f: Y \to X'$ from a non-singular variety and a \mathbb{Q} -divisor E of Y such that

- (1) Supp $\langle E \rangle$ is a normal crossing divisor,
- (2) $\begin{bmatrix} E \end{bmatrix}$ is an *f*-exceptional effective divisor, and
- (3) $E K_Y$ is *f*-ample.

Then $\mathcal{O}_Y(\lceil E \rceil)$ is an ω -sheaf by **V.3.10**. Thus $\mathcal{O}_{X'}$ is an ω -sheaf. Conversely, the same argument as **V.3.32** proves following:

3.2. Proposition Let Z be a normal variety such that \mathcal{O}_Z is an ω -sheaf. Then there exist a bimeromorphic morphism $\varphi \colon M \to Z$ from a non-singular variety M and a φ -nef \mathbb{Q} -divisor D of M such that $\operatorname{Supp}(D)$ is a normal crossing divisor and

$$\mathcal{O}_Z \simeq \varphi_* \omega_M({}^{\mathsf{T}}D^{\mathsf{T}}).$$

In particular, Z has only admissible singularities.

Therefore, a normal variety X has only admissible singularities if and only if \mathcal{O}_X is an ω -sheaf locally on X.

3.3. Corollary Let $f: X \to Y$ be a projective surjective morphism of normal varieties. Suppose that (X, Δ) is log-terminal and there is an effective \mathbb{Q} -Cartier \mathbb{Z} -divisor E satisfying the following conditions:

(1) $E - (K_X + \Delta)$ is f-nef and f-abundant.

(2) the canonical homomorphism $f_*\mathcal{O}_X \to f_*\mathcal{O}_X(E)$ is an isomorphism.

Then Y has only admissible singularities.

PROOF. We may assume that Y is Stein and we may replace Y by a relatively compact open subset. By **V.3.12**, we infer that $\mathcal{O}_X(E)$ is an ω -sheaf. Since \mathcal{O}_Y is a direct summand of $f_*\mathcal{O}_X$, the conclusion is derived from **3.2**.