CHAPTER 1II

Preliminaries

This chapter recalls some fundamental facts for the study of complex analytic
and algebraic varieties. Some of them are well-known and we include no proofs.
Some new notions and terminologies are introduced for the clarification of argu-
ments in the subsequent chapters. We review some basic properties of complex
analytic varieties in The notion of divisor and some variants are explained
in §2. The theory of linear systems is fundamental in the subject of algebraic
geometry. litaka’s theory of D-dimension has its base on the study of linear sys-
tems. We generalize the theories to those applicable to R-divisors in §3, by using
a result in Chapter [IIIl Information most essential to a variety, such as Kodaira
dimension, is usually derived from the information on the canonical divisor. The
singularities appearing in the minimal model program for the birational classifica-
tion of algebraic varieties are all related to some properties of the canonical divisor.
They are the subjects of study in §4l Numerical properties of ample, nef, big, and
pseudo-effective for R-divisors are discussed in §5] Vanishing theorems related to
the Kodaira vanishing are also mentioned. In §6, we recall such basics as Chern
classes and semi-stability, indispensable for the study of vector bundles.

81. Complex analytic varieties

81.a. General theory. A complex analytic space X is a locally ringed space
(X,Ox) that is locally isomorphic to the closed subspace of an open subset U of
some complex affine space C" defined as X = Supp Oy /Z C U and Ox = Oy /Z|x
for a coherent Oy-ideal sheaf Z. Here Op is the sheaf of germs of holomorphic
functions on U and a sheaf F of Ox-modules is called coherent if it satisfies the
following conditions:

(1) Tt is finitely generated locally on X: For any point of X, there exist an
open neighborhood U and a surjective homomorphism nghj — Fly for
some k € N;
(2) For any homomorphism O?@l\y — Fl|y over an open subset U C X, its
kernel is finitely generated locally on U.
For a fixed complex analytic space X, a sheaf of Ox-modules is called an Ox-
module, and a coherent O x-module is called simply a coherent sheaf. In this article,
we always assume that complex analytic spaces are all Hausdorff and paracompact.
We drop the words ‘complex’ and ‘analytic’ sometimes.
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An analytic subspace Z of X is defined by a coherent Ox-ideal sheaf J as
Z = SuppOx/J and Oz := Ox/JT|z. An analytic subset is the support of an
analytic subspace. It is also called a Zariski-closed subset. A Zariski-open subset
is the complement of an analytic subset. Note that even if V is a Zariski-open
subset of U and U is a Zariski-open subset of X, the subset V' is not necessarily
Zariski-open in X.

Notation Let X be a complex analytic space. The assertion that a property
P holds for a general point z € X means that P holds for any point x contained
in a Zariski-open dense subset of X. The assertion that P holds for a ‘general’
point means that P holds for any point x contained in a countable intersection of
Zariski-open dense subsets.

If X is a union of two mutually distinct proper analytic subsets, then X is
called reducible. If X is not reducible, it is called irreducible. If every local ring
Ox 4 is reduced, then X is called reduced. An irreducible and reduced complex
analytic space is called a complex analytic variety.

An locally free sheaf & of rank r on a complex analytic space X is a coherent
Ox-module such that & ~ O?@T locally on X. The number r is called the rank of
& and denoted by rank £. An invertible sheaf is a locally free sheaf of rank one. If
L is an invertible sheaf, then £ ®o, LY ~ Ox for the dual LY = Homo, (L, Ox).
We define £L&(=™) for m € N by (£LY)®™. The set of invertible sheaves on X forms
an abelian group whose product is given by the tensor-product. The group is called
the Picard group and denoted by Pic(X). This is isomorphic to H (X, O%) for the
sheaf O% of germs of invertible (or unit) holomorphic functions on X. A locally
free sheaf is called also a vector bundle, since it corresponds to a geometric vector
bundle V(€) (cf. §1.b). A subsheaf G C & is called a subbundle if G and £/G are
both vector bundles.

A coherent sheaf F on a complex analytic variety X is called torsion-free if
there is no non-zero coherent subsheaf G C F with SuppG # X. This is the case
where the local cohomology sheaf H% (F) = 0 for any proper analytic subset Z C X.
If F is an arbitrary coherent sheaf, then there is the maximum coherent subsheaf
G C F with Supp G # X, which is called the torsion part of F and is denoted by
Fior- The quotient F/Fio, is torsion-free, which is denoted by F/(tor) for short.

A morphism f: X — Y of complex analytic spaces is a morphism as locally
ringed spaces. It is called proper if f ~' K is compact for any compact subset K of Y.
The Grauert direct image theorem (cf. [28], [63], [14]) states that the higher direct
image sheaves R’ f,F for a coherent sheaf F are coherent for a proper morphism
f. If f is proper and f~!(y) is a finite set for all y € Y, then f is called a finite
morphism. For any proper morphism f: X — Y, the direct image sheaf f.Ox
is a coherent Oy-module. It defines a finite morphism 7: V' — Y satisfying the
following conditions:

(1) there is a proper surjective morphism g: X — V with f =7 o g;
(2) OV =~ g*OX.
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Here V is realized as Specany f.Ox (cf. §1.b). By the formal function theorem,
any fiber of g is connected. The factorization f = 7 o g satisfying the conditions
above is unique up to isomorphisms and is called the Stein factorization of f.
The local ring Ox , at a point x of a complex analytic space X is Noetherian

and is a finite extension of the ring C{z1, 22, ..., 2n5} of convergent power series for
some N. If Ox, is a normal ring (an integrally closed domain), then X is called
normal at . The set Xy, of points z € X with Ox , being normal is a Zariski-
open subset. If X = X, then X is called normal. A normal complex analytic
space is a disjoint union of countably many normal varieties. Suppose that X is
reduced. Then X, is dense and there is the normalization v: XX satisfying
the following properties:

(1) X is normal;

(2) v is finite and surjective;

(3) 1 X,0r is a dense Zariski-open subset of X;

(4) v Xyor — Xnor is an isomorphism.
Let X be a complex analytic variety and let f: Y — X be a finite surjective mor-
phism from a normal variety Y. Zariski’s Main Theorem states that if f~!(z)
consists of one point for a general point x € X, then f is isomorphic to the nor-
malization of X. We can show the following property by applying Zariski’s Main
Theorem to the Stein factorization: Let f: Y — X be a proper surjective morphism
of normal varieties. If a general fiber of f is connected, then Ox ~ f.Oy. A
proper surjective morphism f: Y — X is called a fiber space or a fibration if X and
Y are normal and f has only connected fibers.

§1.b. Spec and Proj. Let A be a finitely generated C-algebra and let C[z] —
A be a surjective C-algebra homomorphism from the polynomial ring Clx] =
Clx1,22,...,xq4] of d-variables. Then the associated analytic space Specan A to
Spec A is realized as a closed analytic subspace of C? = Specan C[z] ~ (Spec C[x])®".
There is also a canonical morphism Specan A — Spec A as locally ringed spaces.
By the canonical homomorphism A — HO(Specan A, O), we have the following
universal property: let Y be a complex analytic space. Then giving a morphism
Y — Specan A is equivalent to giving a C-algebra homomorphism A — H°(Y, Oy).

Example Let V be an n-dimensional C-vector space and let A be the sym-
metric algebra

SymV = Sym*V = @ZO_O Sym? V.

Then A is isomorphic to the polynomial ring of n-variables and Specan A is isomor-
phic to the dual vector space V¥V = Hom(V,C) as a complex analytic space. Note
that Sym V < H°(Specan A, ©) = H*(VV, Oyv) is not surjective.

Let X be a separated scheme locally of finite type over Spec C. Then X is covered
by open affine schemes Spec A; in which A; are finitely generated over C. We can
define naturally the associated analytic space X = X®" by gluing Specan A;. There
is a canonical morphism e: X — X as locally ringed spaces. For an Ox-module F of
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the scheme X, we can associate an O x-module by F** := e 'F® Ox. The following
properties are known as GAGA [128]:
(1) X is proper over SpecC if and only if X = X" is compact;
(2) If X = X2 is compact and if F is a coherent Ox-module, then F = F?
for a coherent Ox-module F and the natural homomorphism
is isomorphic for any 1.
Let A =@, Aq be a graded C-algebra. For k > 0, we define A% to be the
subalgebra
& — (N~
A @d=0 Akd CcA

and define its grading by Agk) = Ajq. For a homogeneous non-zero element a € Ay,
let A, = A[a™!] be the localization of A by the multiplicatively closed subset
{a* | k > 0} and define

b
Aa =< — | bGAld,ZEN CAa:A[ail]'
(a) al

Then the homogeneous spectrum X = Proj A is the union of open affine subschemes
Spec A(q). Note that (A(k))(ak) = A(,) and (A(k))(b) = Ay for k € N and for any
homogeneous non-zero element b € A%*). Thus we have an isomorphism Proj A =
Proj A®) which is the gluing of Spec Ay — SpecAglg)) for k | degb. Let M =
Dacz, Ma be a graded A-module. The twist M () by an integer [ € Z is defined
to be the module M(I) = @ e, M(I)a with M(l)q = Mj;q. This is also a graded
A-module. For a non-zero element a € Ay, we set

Mq) ::{g | mEMld,leN}cMa:M@nAa.
Then we can associate naturally an Ox-module M~ such that
H°(Spec Aa), M™) =~ M(g).
The functor M — M™ is exact. Note that if we set M*) .= Dacz, Mra, then M~
on Proj A is isomorphic to (M%)~ on Proj A®). The sheaf A(I)™ is denoted by

O4(1). In particular, O 4 (1) is isomorphic to O 4 (kl). If A is specified, then O 4 (1)
is denoted by Ox(l). There is a natural graded A-linear homomorphism

M — — 0 ~
a: M = @lez M, — T, (M) := @IGZH (X, M(1)™).
The graded algebra A is called 1-generated (over Ag) if the multiplication mapping
A‘?d — Ay is surjective for any d > 0.

1.1. Lemma (cf. [127], [33, §2], [34] §2]) Suppose that A is finitely generated as
an Ag-algebra and that M is finitely generated as an A-module. Then the following
properties hold:
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(1) There exist a positive integer d and an integer k such that Aq@M; — Mgy
is surjective for any |l > k;

(2) There is a positive integer d such that A is 1-generated and A is a
finitely generated A -module;

(3) M~ =0 if and only if there is a positive number k such that My, =0 for
>0

(4) The natural homomorphism M; @ Ox — M(1)™ is surjective for 1 >> 0;

(5) If A is 1-generated, then O4(d) is invertible and M~ ®o, Oa(d) =~
M(d)~;

(6) There exists an isomorphism 3: T'w(M)~ = M"~ such that 3o o™ = id
fora™~: M~ =T (M)~

(7) If Ag is Noetherian, then oy : My — HO(X, M (1)™) is isomorphic for 1> 0.

ProoF. (1) Let ay, asg, ..., a, be homogeneous elements of A generating A
as an Ag-algebra and let mq, ms, ..., my be homogeneous elements of M gener-
ating M as an A-module. We set d; := dega; > 0, y; := degm;, d := lem{d;}.
Furthermore, we define

F= {(rlar%"'arn)|0§Ti<d/di,ri€Z}, and
c::max{uj—kzr_ilridi ‘ (rl,rg,...,rn)EF,lgjgN}.

Note that deg a?/di =d. If p; + 3 pid; > ¢ for some p; € Z>, then

(p1 — q1(d/dv), p2 — q2(d/d2), ..., pn — qn(d/dy)) € F

for some ¢; € Z>(. Therefore, if [ > ¢ — d, then Mgy, = AgM;.

(2) is derived from (1).

(3) Let {a;} be the homogeneous generator of A in the proof of (1) and set
d = lem{dega;}. Then M~ = 0 if and only if M(,,) = 0 for any 7. Suppose that
there is a positive integer k such that My, = 0 for [ > 0. Then M,,) = 0, since
we may assume d|k. Conversely, suppose that M~ = 0. If m is a homogeneous
element of M(? then there is a positive integer k such that afm = 0 for any 1.
Thus Mg =0 for I > 0 by (1).

(4) For I € N, let C = @, be the cokernel of the natural homomorphism
M; ®4, A — M(I) of graded A-modules. Then C is finitely generated. By (1),
there exist positive numbers d and k such that if { > k, then Cy,, = 0 for any n > 0.
Hence C™~ = 0 by (3) and we have the expected surjection.

(5) X = Proj A is covered by Spec A, for a € A4. We have an isomorphism

b b b
A(a) > a—]l—)LLa—] = F GA(d)(a)

for b € Ag;. Hence Ox(d) is invertible. The tensor product M ® 4 A(j) has a natural
structure of graded A-modules and is isomorphic to M (j) for any j € Z. We want
to show the natural homomorphism

M~ ®@oy A(d)™ — (M ®4 A(d)™ ~ M(d)~
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is isomorphic. The homomorphism on the open subset Spec A, is derived from
the isomorphism

m m
My @4, Ald)q) 2 o ®ar— T € M(d)(q),

where m € Mg;. Hence, M~ ® Ox(d) ~ M(d)~.

(6) For a € Ay, let U, be the affine open subset Spec A(,y. If € T'w(M)(q),
then 2 = m/a’ for some m € H°(X, M (di)™). The restriction m|y, is regarded as an
element of M (di) ). We can define 8,: T'y(M)q) — Mgy by  — m|y, /a’. If d’ €
Aa, then 3, and B, commute with the restriction maps I'v(M)q) — ['v(M)(qar)
and M) — M(qq). Hence the homomorphism 3: I',(M)~ — M~ is defined. By
construction, § o a™ = id.

Suppose that A is 1-generated. In order to show 3 is isomorphic, it is enough
to show that G, is injective for any a € A4. Note that a(a) is a global section of the
invertible sheaf O 4(d) and U, is the locus of points where «(a) is invertible. If the
restriction m/|y, is zero for m € HY(X, M™), then a¥m = 0 in H*(X, M~ @ O 4 (kd))
for some k > 0, since X is quasi-compact. This property implies that g, is injective.

(7) We shall prove by applying Serre’s vanishing theorem (cf. [127]) for ample
line bundles, whose analytic analogue is explained in §1.c below.

Step 1. Suppose that A@ is 1-generated for some d > 1 and the assertion
holds for finitely generated graded A(¥-modules M (%) for 0 < i < d defined by
MY = Mypsi for m € Z. Then a: Mgyy; — HO(X, M(dl +4)™) is isomorphic for
1> 0. Therefore, by replacing A with A9 we may assume that A is I-generated.

Step 2. A reduction to the case M = A. We have an exact sequence

P Alw) —» P Alp;) > M —0

of finitely generated graded A-modules for some finitely many integers p;, g;, since
A is Noetherian. By Serre’s vanishing, this induces another exact sequence

PH (X, 04(q: +1)) = PH (X, 0a(p; +1)) = HO (X, M()™) = 0

for [ > 0. Hence, we can reduce to the case M = A.

Step 8. The case: A is a polynomial ring over Agy. Let Clz] = Clzo, 1, ..., Zx)
be the polynomial ring of (n+ 1)-variables over C. Suppose that A is isomorphic to
Ap[z] = Ag ®c Clx] as a graded Ap-algebra. Then X is an n-dimensional projective
space over Spec Ag and a for M = A is isomorphic. This is shown by a direct
calculation of H (X, Ox(1)).

Step 4. General case. There is a surjective homomorphism Ag[z] — A of graded
Ap-algebras for some x = (zg,...,x,). Thus A is regarded as a finitely generated
graded Ag[z]-module. Here, H°(X, 0 4(1)) ~ H°(Proj Ag[z], A(1)™) for | € Z. Thus
by Step 2 and Step 3, we infer that oy is isomorphic for [ > 0. O

Let A be a graded C-algebra generated by homogeneous elements a; in which
A(q,) is finitely generated as C-algebra. Then X = Proj A is locally of finite type
over SpecC and we can define X = Projan A as (Proj A)®". A graded A-module
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M defines an Ox-module M~ and an Ox-module (M™~)2". We denote the sheaf
(Ox(1))™ on X by Ox (1),

Example For the symmetric algebra SymV = @, Sym?V of a finite-
dimensional C-vector space V', we write P(V) = ProjSymV and P(V) = P(V)?".
These are called the projective spaces associated with V' in Grothendieck’s sense.
There is an isomorphism

P(V)~ VY~ {0}/C*
of complex analytic spaces for the dual V' = Homc(V,C). The sheaf Op/y(1) =
Ogym v (1) is invertible and Op(yy(1) ~ Opy)(1)®* for | € Z. The sheaf Opy(1) is
called the tautological invertible sheaf or the tautological line bundle. There is an
isomorphism

SymV =~ @lez HO(P(V), Opy (1))

If n+1 = dimV, then P(V) is n-dimensional and is called the n-dimensional
complex projective space. It is also denoted by P™. A complex analytic space Y
is called a projective analytic space if there is a closed immersion Y — P" for
some n. We must be careful for the use of the word ‘projective’ when we discuss
about a projective analytic space that is not a projective space P™. An analytic
space is called projective if it is a projective analytic space. The name ‘projective
space’ is used only for P"*. If A is a finitely generated graded C-algebra, then
Projan A is compact, since it is a closed analytic subset of the projective space
P(A4) = Projan Sym A, for some d.

1.2. Lemma Let A= @, Aq be a graded C-algebra and let Y be a complex
analytic space. Suppose that there exist

e a set {a;}icr of non-zero homogeneous elements of A with A(,,) being
finitely generated as C-algebra,

e a graded Oy -algebra R = @77 Ra,

e q graded C-algebra homomorphism

A= A~ @, H R,

e an open covering Y =J;c; Vi
satisfying the following conditions: let d; = dega;.

(1) the homomorphism Oy — Rg, induced by a; is isomorphic over Yy,
(2) Ri® Ry, — Rita, is isomorphic overY; for anyl € Z.

Then there exist a morphism f:Y — X = Projan A and natural homomorphisms
f*Ox (k) — Ry such that the composite Ay @ Oy — [*Ox (k) — Ry is the given
homomorphism.

PRrOOF. Let us consider the homomorphism

A(k) (0, — H°(Yi, Ry)
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for k£ > 0 that sends b/aé with b € Agy14, to the image of b under
Apqaa; — HO(Yi, Ryqua,) < HY(Yi, Ry).

Since Rg ~ Oy, we have a ring homomorphism A, — HO(Y;, Oy) and thus a
morphism f;: Y; — Specan A,,). Here the homomorphism f;Ox (k) — Rily, is
derived for k > 0. This is isomorphic if d;|k. By patching f;, we have f: YV — X =
Projan A and f*Ox (k) — Ry. O

1.3. Corollary Let A = @;‘;0 Ay be a 1-generated graded C-algebra and let Y
be a complex analytic space over Specan Ag. Then giving a morphismY — Projan A
over Specan Ay is equivalent to giving a surjective homomorphism A1 @Oy — L into
an invertible sheaf L such that Sym* Ay ® Oy — L®* factors through A @ Oy —
LOF,

PrROOF. The tautological line bundle Ox (1) on Projan A is invertible, Ox (1) ~
Ox(1)® for | € Z, and A; ® Ox — Ox(1) is surjective by [1.1. For a morphism
f:Y — Projan A, the pullback of A; ® Ox — Ox (1) satisfies the required condi-
tion. Conversely, let A1 ® Oy — L be the surjection satisfying the condition. It
induces a surjective homomorphism

(B (6920:0 Ad) ® Oy — Sym L

of graded Oy-algebras. By [1.2, we have a morphism f:Y — Projan A where
A; ® Oy — L is induced from A; @ Ox — Ox(1). O

Let X be a complex analytic space and let Clz] = Clzy,22,...,2;] be the
polynomial ring of I-variables © = (z1,22,...,2;). An Ox-algebra A is called of
finite presentation if there is a surjective O x-algebra homomorphism

Ox|z] = Ox[x1,22,...,21] = Ox ®@c Clz] » A

for some [ whose kernel is generated by a finite number of polynomials belonging
to H'(X, Ox)[x]. If A|x, is of finite presentation for an open covering X = |J Xy,
then A is called locally of finite presentation.

1.4. Lemma Suppose that A is locally of finite presentation. Then there exist
an analytic space f:Y = Specany A — X over X and an Ox-algebra homomor-
phism ¢: A — f.Oy satisfying the following universal property: If g: Z — X is
an analytic space over X and if ¢: A — g.Oz is an Ox-algebra homomorphism,
then there is a unique morphism h: Z — Y such that o = h* o ¢.

PROOF. By the universal property, we may assume that A is of finite presen-
tation. Then there is an exact sequence

Ox[z]™N — Ox[z] = A—0

as Ox[z]-modules, where the left homomorphism is given by N polynomials con-
tained in HY(X, Ox)[z]. Let B € H°(X,Ox) be the subalgebra generated by the
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coeflicients of the polynomials. This is finitely generated over C and there is a mor-
phism X — Specan B. We can define an algebra A by the similar exact sequence

B[z]"™ — Blz] - A —0

of Bz]-modules. Then X Xgpecan B Specan A — X satisfies the universal property
for Specan y A. O

Next, we consider a graded Ox-algebra A = @, A,. For d € N, let AlD
denote the graded algebra @, -, Ana. If AP — A, is surjective for any n, then A
is called 1-generated. If A is of finite presentation, then we have an exact sequence

Ox[z]N — Ox[2] = A —0

for = (x1,22,...,2;), in which z; is mapped to a homogeneous element of
H°(X, A) and the left homomorphism is given by N-weighted homogeneous poly-
nomials with respect to z;. Let B C HO(X7 Ox) be the subalgebra generated by
all the coefficients of the polynomials. Then we have a graded algebra A as the
cokernel of the homomorphism B[z]Y — B[z] defined by the polynomials in which
A®p Ox ~ A as Ox-algebras. Here, Proj A is a scheme over Spec B and we have
a morphism X — Specan B.

If A~ A'®p Ox for a finitely generated C-algebra B’ contained in H*(X, Ox)
and a finitely generated B’-graded algebra A’, then we can show Projan A Xspecan B
X =~ Projan A’ Xgpecan B’ X as follows: We can find an open covering X = |J X
and finitely generated C-subalgebras By C H°(X\,Ox) such that the images of
B and B’ in HO(XA,(’)X) are contained in B) and that there is an isomorphism
A®p B) ~ A’ ®p' By inducing the isomorphism A ®pg Ox ~ A’ @5 Ox over X,.
Let Y be the fiber product Projan A Xgpecan 8 X and let a} € A’ be homogeneous
elements generating A’ over B’. Under the isomorphism A’ ®p Ox ~ A®p Ox, a
defines a homogeneous element a; € H*(Y,pt04(d;)), where d; = degal. Let Y; C
Y be the maximum open subset where a;: Oy — p;Oa(d;) is isomorphic. Then
Y =UY; and piOa()) @p;Oa(d;) — p5Oa(l+d;) is isomorphic for any I > 0, since
Y and Projan A’ Xgpecan B X are isomorphic over X. Thus we have a morphism
Y — Projan A’ by[1.2] which induces the isomorphism Y =~ Projan A’ Xgpecan 57 X .

We define Projany A to be the fiber product Projan A Xgpecan B X. We have
Projany A4 ~ Projany A as Proj A(Y ~ Proj A for d € N.

If A is locally of finite presentation, then the local Projany A above can be
patched and hence we can define an analytic space Projan y A proper over X. For
a morphism f: Y — X from an analytic space, we have an isomorphism

Projany f*A ~ Projany A xx Y
by the argument above. Let M = @ ., Mg be a graded A-module which is locally
of finite presentation, i.e., locally on X, there is an exact sequence

P

Almg) — D' Al;) = M =0

i=1 j=1



22 II. PRELIMINARIES

of graded A-modules for some m;, l; € Z, where A(l) stands for the twist of A
by I. Then we can attach a coherent sheaf M™ on Projany A as before. We also
define O 4(1) as A(l)~. If A is 1-generated, then O (1) is invertible and is called
the tautological invertible sheaf (line bundle) associated with A. If A is specified,
0O .4(1) is also denoted by Op(l) for P = Projany A.

1.5. Lemma Let F be an Ox|[z] = Ox|[z1, 29, ..., 2z;]-module and let
¢: Ox[2]®" — F
be a surjective homomorphism of Ox[x]-modules. Suppose either

(1) F is a coherent Ox-module, or
(2) Oxlz] is a graded Ox-algebra for some weight of x;, ¢ is regarded as a
homomorphism

P oxlzl(p;) — F = @mezfm

of graded Ox[z]-modules for some p; € Z, and F,, are all coherent Ox -
modules.

Then the kernel Ker ¢ is locally finitely generated as an O x[x]-module.

PROOF. We consider over open neighborhoods of a fixed point P € X. First,
we treat the case: F is coherent. Then there exist finitely many polynomials
®,(z) € H(U, Oy )[x] over an open neighborhood U such that ®; - F|;y = 0 and the
Oy-algebra A = Oy[z]/Z for the ideal T of Oy [x] generated by ®, is a coherent
Op-module. Thus ¢ descends to ¢ 4: A®" — F|y. Since Ker ¢ 4 is locally finitely
generated as an Op-module, Ker ¢|y is also locally finitely generated.

Next, we treat the homogeneous case. Let Uy be a relatively compact Stein
open neighborhood of P. Then there exists a Stein compact subset K D Uy such
that Ox(K) = H%(K,Ox) = lim,_ H’(U,Ox) is Noetherian, by [16], [129].
Thus we have a Stein open subset U D K and a homomorphism

v P oull(e) — P Ovlzl(p;)

of graded Oy |z]-modules such that the image of ¥(K) is just (Ker¢)(K). Let
(Coker ©),, be the part of degree m of the graded module Cokert. Then we
have the surjection (Coker),, — F,.|u of coherent Op-modules which induces
an isomorphism between the sections over K. In particular, (Coker),, — F,, is
isomorphic over Uy. Therefore, the image of ¥ coincides with Ker ¢ over Uy. (]

1.6. Corollary Let A = @7, Aq be a locally finitely generated graded Ox -
algebra such that Ay are all coherent Ox-modules. Then A is locally of finite
presentation. If M = @ o, Ma is a locally finitely generated graded A-module
for a graded Ox -algebra A locally of finite presentation and if My are all coherent
Ox-modules, then M is an A-module locally of finite presentation.

1.7. Example
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(1) Let A be an Ox-algebra that is a coherent O x-module. Then A is locally
of finite presentation by [1.5l and f:Y = Specany A — X is a finite
morphism with an isomorphism A ~ f,Oy. Conversely, if f: Y — X is a
finite morphism, then Y is isomorphic to Specan y f.Oy.

(2) Let F be a coherent Ox-module. The symmetric algebra

Sym F = @m>0 Sym™ F

is an Ox-algebra locally of finite presentation by [1.5. The associated
Specan y is denoted by L(F). The morphism f: Y = L(F) — X is locally
Stein and there is a natural homomorphism Sym F — f,.Oy, which is not
isomorphic if F # 0.

(3) Let € be a vector bundle. Then V(&) :=L(EY) for £Y = Homo, (€,0x)
is the corresponding geometric vector bundle. The sheaf of germs of sec-
tions of the vector bundle is isomorphic to &.

(4) Let F be a coherent sheaf on X. The Projany Sym F is denoted by
P(F) = Px(F) and its tautological line bundle by Oz(1). We consider
Py = Px(Ox @& F) and the closed embedding P, = Px(F) C Py corre-
sponding to Ox & F — F. Then L(F) is isomorphic to the complement
PO N Pl-

Remark For a vector bundle £ on X, p: P(§) — X is a P"~!-bundle for
r = rank . This is geometrically constructed as follows: let V(€V) — X be the
vector bundle associated with £V defined as before and let Z C V(EY) be the
zero section. Then P(€) is isomorphic to the quotient space of V(EY) N\ Z by the
scalar action of C* on fibers. For the tautological line bundle Og(1), we have
p«O¢s(l) ~ Sym' & for 1 > 0.

The following lemma is similar to

1.8. Lemma Suppose that A is a 1-generated Ox-graded algebra locally of
finite presentation. Let f: Y — X be a morphism from an analytic space Y. Then
gwing a morphism Y — Projany A over X is equivalent to giving a surjective
homomorphism f*Ay — L into an invertible sheaf L on'Y that induces f*Aq —
L% for d > 0.

ProoOF. The homomorphism to £ is obtained as the pullback of p*A; — O (1)
by f, where p: Projany A — X is the structure morphism. From a homomorphism
to L, we have a surjective homomorphism f*A — Sym £ of graded Oy-algebras.
Thus we have a closed immersion

Y ~ Py (L) = Projany Sym £ — Projany (f*A) ~ Projany A xx Y
and the morphism Y — Projany A over X. O

81.c. Ample line bundles. Let X be a compact complex analytic space. An
invertible sheaf £ of X is called very ample if there is a closed immersion i: X — PV
into an N-dimensional complex projective space such that :*Opn~ (1) ~ L. An ample
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invertible sheaf is an invertible sheaf whose multiple by some positive integer is very
ample. In particular, if X admits an ample invertible sheaf, then X is projective.

Remark (cf. [68]) Suppose that an invertible sheaf of a compact complex
manifold X admits a positive Hermitian metric. Then X is a projective variety
and the invertible sheaf is ample. The Kodaira vanishing theorem [67] is used for
the proof.

1.9. Definition

(1) Let F be a coherent sheaf on a compact complex analytic variety X. It
is called generated by global sections if the natural homomorphism

H'(X,F)® Ox — F

is surjective.

(2) Let £ be an invertible sheaf on a compact complex analytic variety X. It
is called free if it is generated by global sections. It is called semi-ample
if L&™ is free for some m € N.

(3) Let f: Y — X be a proper surjective morphism of complex analytic
spaces. A coherent sheaf F of Y is called f-generated or relatively (glob-
ally) generated over X if the homomorphism

[ I(F) = F

is surjective.

(4) Let f: Y — X be a proper surjective morphism of complex analytic
spaces. An invertible sheaf £ of Y is called f-free if it is f-generated.
If there exist an open covering X = [J U, and positive integers m, such
that L] ,—1y;, is relatively generated over Uy, then L is called f-semi-
ample or relatively semi-ample over X.

Remark (1) Let f: Y — X be a proper morphism and let £ be an f-
generated line bundle of Y. Then there is a natural morphism h: Y —
Px (f.L) over X such that h*Of, (1) ~ L.

(2) Let X be a compact complex analytic variety and let £ be an invertible
sheaf. If there exist a morphism g: X — P into a projective analytic
space P, an ample invertible sheaf H of P, and an integer m € N with
LE™ ~ g*H, then L is semi-ample.

1.10. Definition Let f: Y — X be a proper morphism between complex
analytic spaces. A line bundle £ of Y is called f-very ample or relatively very
ample over X if £ is f-free and the morphism Y — Px(f.L) is a closed immersion.
A line bundle L is called f-ample or relatively ample over X if, for any point x € X,
there exist an open neighborhood U and an integer n € N such that £®”|f_1U is
relatively very ample over U. If there is an f-ample line bundle, then f is called
projective.

Remark Let A be a graded Ox-algebra locally of finite presentation such that
O 4(1) is invertible for some [ > 0. Then O 4(1) is relatively ample over X.
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Let f: Y — X be a proper morphism of complex analytic spaces and let £ be
a line bundle of Y. The following conditions are known to be equivalent to each
other:

(1) Lis f-ample;
(2) There exist an open covering X = [J X and closed immersions
ox: [T XN = P x X,
over X for some n) € N such that
LEMN ~ o3 ptOpniy (1)

for some my € N, where p; is the projection to P™*;

(3) (Theorem A [29], [4, Chapter IV]) For a compact subset K C X and for a
coherent sheaf F defined on a neighborhood of f~'K, there is an integer
d € N such that

Fl(Fo L) - FoLom

is surjective for m > d along f~'K;

(4) (Theorem B [29], [4, Chapter IV]) For a compact subset K C X and for a
coherent sheaf F defined on a neighborhood of f~1K, there is an integer
d € N such that

R f, (F® L") =0
for m > d over K;

(5) (|98, 1.4]) Any fiber of f is a projective analytic space and the restriction
of £ to any fiber is ample.

Theorem B above is called also the Serre vanishing theorem in the algebraic case.

1.11. Lemma Let f: Y — X be a projective morphism. ThenY ~ Projany A
for a graded Ox-algebra A locally of finite presentation. If F is a coherent sheaf
on Y, then it is isomorphic to M~ for a graded A-module M locally of finite
presentation.

PRrROOF. Let £ be an f-ample invertible sheaf on Y. We shall show
e the graded Ox-algebra

A= @mzo A, = @mzo fLem

is locally of finite presentation,
e Y ~ Projany A over X,
e the graded A-module
o — ®m
M= M =D f(FoLm)

meZ

is locally of finite presentation, and

o F~M"~.
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We begin with the proof in the case Y ~ P(V) x X for a finite-dimensional C-vector
space V and £ = p;Oy (1) for the projection p;: Y — P(V). Then A ~ Sym VeOx
and Y ~ Projany A. Let U C X be a relatively compact Stein open subset. Then
Mp|v =0 for m < 0 and f*M,, — F @ LE™ is surjective on f~1U for m > 0 by
Theorem A. We may assume that there is an exact sequence

Oj?flU ® LB O?LU ® LY — Fliay — 0
for some positive integers r, s, 0 < a < b. Then, for m > 0, the sequence
Sym™ 'V ® O — Sym™ V@ 0" — M, — 0
is exact by Theorem B. The left homomorphism of the exact sequence is derived
from
0P — 08" @ Sym=9) V.
Hence, for the cokernel M’ of
A(=0)* v — A(=a)*" v,

we have M., |y ~ M/, for m > 0. Therefore, M|y is of finite presentation and
MY =2 M~ F.

Next, we consider the general case. Let U be the same as above. There exist
a positive integer m, a finite-dimensional vector space V, and a closed immersion
i: f7U — Z =P(V) x U such that LZ*| ;-1 ~ Oz(1)|;-117, where Oz(1) is the
pullback of Oy (1) by the first projection. Then, for 0 < j5 < k — 1 and for the
second projection py: Z — U,

A(k’j) _ @ . f*£®(7nk+j)|U ~ @ Esz*(i*[:@j & OZ(m))
m m

is a graded Sym V' ® Op-module of finite presentation by the previous argument,
if we replace U with a relatively compact open subset. Hence A is locally of finite
presentation,
Projany; Aly ~ Projan,; AR |y ~ f71U ¢ Z,
and A(1)~ ~ L. For F, we also have an exact sequence
0%, @ LD = 07, @ L2 — Fliay — 0

some positive integers r, s, 0 < a < b. Thus by the same argument as before, M is
locally of finite presentation and F ~ M™. O

Example Let T be a coherent Ox-ideal sheaf of X and let A = @2, Z¢
be the graded Ox-algebra naturally defined by the powers Z¢ C Ox. We set
V(Z) = SuppOx/Z. If V(I) = X, then Z¢ = 0 for d > 0 locally on X. Thus
Projany A = () in this case. Suppose that V(Z) is nowhere-dense in X. Then
f:Y = Projany A — X is called the blowing-up (or the blowup) of X along the
ideal Z or along V(7). It is an isomorphism over X \V(Z). The locus V(Z) is called
the center of the blowing-up. The image £ of f*7 — f*Ox = Oy is invertible. In
fact, A(1) — A given by Z9+! C 79 is injective and A(1)~ ~ L. If X is a variety,
then so is Y and f: Y — X is a bimeromorphic morphism (cf. §1.d). Conversely,
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let g: Z — X be a morphism such that the image of ¢*7Z — ¢*Ox = Oy is an
invertible sheaf £’. Then there is a morphism h: Z — Y over X such that £ ~ h*L.
Let £ C Y be the analytic subspace defined by 0 — £L — Oy — O — 0. Then
LI is an effective Cartier divisor of Y. This is isomorphic to Projan, B, where
V = Specany Ox /T and B is the graded Oy-algebra @~ ,Z¢/Z9+1.

Remark If X is reduced and J is a torsion free sheaf of rank one of X,
then we can define the power J™ as the quotient J®™/(tor) of J®™ by the tor-
sion part (J®™)or for m € N, and J° as Ox. Then the blowing-up g: V(J) =
Projany @, J? — X along J is defined, where ¢g*7/(tor) is a g-ample invert-
ible sheaf. Locally on X, the blowing-up ¢ is considered as a usual blowing-up
along some ideal. In fact, we have an injection i: J — Ox locally on X, where
W(J)™ >~ J™ for any m > 0 and V(J) ~ V(i(J)).

§1.d. Bimeromorphic geometry. A meromorphic mapping f:Y -— X of
complex analytic varieties is defined by the graph I'y C Y x X such that

(1) T'y is a subvariety of ¥ x X,
(2) the first projection I'y — Y is proper and is an isomorphism over a Zariski-
open dense subset of Y.

The image f(Y") is defined as the image of the graph I' ; under the second projection
Y x X — X. If f(Y) is dense in X, then we say that f is dominant or that YV
dominates X. If the second projection I'y — X is proper, then f is called proper.
If f is proper, X and Y are normal, and if a general fiber of the morphism r F—X
induced from the normalization T ¢ of I'y is connected, then f is called a meromor-
phic fiber space. The composite of two meromorphic mappings f: Y -— X and
g: X -— Z is well-defined when the first projection I'y — X is an isomorphism
over some points of f(Y). A meromorphic mapping f: Y -— X is called bimero-
morphic if the inverse f~!: X --— Y exists as a meromorphic mapping. This is the
case the second projection I'y — X is proper and is an isomorphism over a Zariski-
open dense subset of X. In particular, a bimeromorphic mapping is proper. A
bimeromorphic morphism is a morphism that is a bimeromorphic mapping. Hence
the first projection I'y — Y of the meromorphic mapping f is a bimeromorphic
morphism. Thus a meromorphic mapping Y --— X is the composite of a morphism
Z — X and the inverse of a bimeromorphic morphism Z — Y. If Z/ — X and
7' — Y are another morphism and another bimeromorphic morphism, respectively,
and if the images of induced morphisms Z — Y x X and Z' — Y x X are the same,
then we consider Z and Z’ define the same meromorphic mapping Y --— X. By
using h: Z — X and pu: Z — Y above, we can define the fiber f~!(z) for x € X by
f~1(z) := u(h~1(x)). Suppose that there are morphisms ¥ — S and X — S into
another complex analytic space S. If there is a bimeromorphic mapping Y — X
over S, then Y is said to be bimeromorphically equivalent or bimeromorphic to X
over S.

1.12. Lemma (1) Let f: Y -+— X be a meromorphic fiber space such
that dimY = dim X. Then f is bimeromorphic.
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(2) Let f:Y = X be a meromorphic fiber space and let h: Y «— Z be a
meromorphic map such that h(f~*(z)) is a point for general x € X. Then
there exist a meromorphic map g: X -+— Z such that h =go f.

PrOOF. (1) We may assume that f is holomorphic. Since the function = —
dim f~!(z) is upper semi-continuous, there is a normal dense Zariski-open subset
U C X such that f~'U — U is a homeomorphism. Thus f~'U ~ U by Zariski’s
Main Theorem and hence f is bimeromorphic.

(2) Let ¢ = (f,h): Y = X X Z be the induced meromorphic map and let Y’
be the normalization of the image ¢(Y). Then Y’ — X is proper and its general
fiber consists of one point. Hence Y’ — X is a bimeromorphic morphism. O

Let f: Y — X be a bimeromorphic morphism between normal varieties and
let U C X be the maximum open subset over which f is an isomorphism. Then
Y ~ f~U is called the exceptional locus for f.

If Ox , is not a regular local ring, then x € X is called a singular point. The
set Sing X of singular points is called the singular locus and is a proper closed
analytic subset if X is reduced. If Sing X = (), then X is called non-singular.
A non-singular complex analytic variety is called a complex analytic manifold. A
non-singular complex analytic space is a disjoint union of countably many complex
analytic manifolds. Hironaka’s desingularization theorem [40] states that for a
complex analytic variety X, there is a bimeromorphic morphism p: Y — X from
a non-singular variety such that, over a relatively compact open subset of X, pu is
the succession of blowups along non-singular centers contained in the singular loci.

Let f: X — Y be a morphism of complex analytic spaces and let F be a
coherent sheaf of X. For a point z € X, the sheaf F is called f-flat at = or flat
over Y at z if 7, is a flat Oy, ;(,)-module. If Ox is flat over Y, then f is called a
flat morphism. A flat morphism is an open mapping and the dimensions of fibers
are locally constant. The set of points x € X at which F is f-flat is Zariski-open
by [16]|. Suppose that f is proper and Y is a variety. Then, for a coherent sheaf
F, there is a dense Zariski-open subset U C Y such that F|;-1y is flat over U.
Moreover, Hironaka’s flattening theorem [41] says that there is a proper morphism
v:Y'" =Y satisfying the following conditions:

(1) Over a relatively compact open subset of Y, v is a succession of blowups
along centers away from U

(2) Let pu: X' = X xy Y’ — X be the induced morphism and let F’ be the
quotient sheaf of p*F by the maximum coherent subsheaf G such that
Supp G does not dominate Y’. Then F’ is flat over Y.

We say that the morphism v flattens F or that v is a flattening of F. Combining
with resolution of singularities, we may assume that Y’ above is non-singular. A
flattening of f means a flattening of Ox.

Suppose that v is a flattening of f or F = Ox. Then F’ above is the structure
sheaf Oy of a closed subspace V of X xy Y’, where V — Y’ is flat. We call V
the main component of X Xy Y’. If X — V is a bimeromorphic morphism from a
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variety, then the induced morphism X — Y is called a bimeromorphic transform
of f by v.

Suppose that f: X — Y is a bimeromorphic morphism and let v: Y’ — Y
be a flattening of f. Then Y’ — Y is a projective bimeromorphic morphism over
a relatively compact open subset of X. This corresponds to a relative version of
Chow’s lemma: for a complete algebraic variety X, there exists a bimeromorphic
morphism X’ — X from a non-singular projective variety.

Let f: X — Y be a surjective morphism from a non-singular space. Then the
fiber f~1(y) is also non-singular for a general point y € Y. This is a theorem of
Sard. Similarly, for a surjective morphism f: X — Y from a normal space, the
general fiber f~!(y) is also normal.

§2. Divisors

§2.a. Weil and Cartier divisors. Let X be an n-dimensional normal com-
plex analytic variety. A prime divisor is an irreducible and reduced subvariety of
codimension one. Let Div'(X) be the free abelian group generated by prime divisors
of X. By attaching an open subset U C X the group Div'(U), we have a presheaf
of abelian groups on X. Note that the restriction I'|;; might be reducible for a
prime divisor I" of X. Let Divx be the sheafification. The divisor group Div(X) is
defined to be H°(X, Divx) and an element of Div(X) is called a divisor or a Weil
divisor. A divisor D of X is written as a formal sum

(II-1) D= Zar I,

where I' is a prime divisor of X, ar € Z, and the support
D = T
Supp Uar#o

is an analytic subset of X. In other words, the sum > arT is locally finite. The
coefficient ar is denoted by multr D and is called the multiplicity along I". A
prime divisor contained in the support of D is called a prime component or an
irreducible component. The presentation (IT-1)) is called the prime decomposition
or the irreducible decomposition of D. We set
D, = Zwoap I, and D_:= Zar<0(—ap) r.

Then D = Dy — D_. The divisors D4 and D_ are called the positive and the
negative parts of the prime decomposition of D, respectively. A divisor D is called
an effective divisor if D_ = 0. For two divisors D1, Ds, if D1 — D is effective, then
we write D1 2 D2 or DQ S Dl.

A holomorphic function f on X is called a unit function if 1/ f is also holomor-
phic. This is also called a nowhere-vanishing function or an invertible holomorphic
function. A meromorphic function f is called an invertible meromorphic function
if 1/f is also meromorphic. Since X is a variety, a meromorphic f is invertible
unless f is identically zero. The sheaf of germs of invertible holomorphic functions
is denoted by O%. The sheaf of germs of meromorphic functions (resp. invertible
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meromorphic functions) is denoted by M x (resp. M% ). For a meromorphic func-
tion ¢ # 0 and a prime divisor I' of X, the order ordr(y) of ¢ along I is defined to
be the order of zeros or the minus of the order of poles of ¢ along I'. The divisor

div(ep) := Z ordr ()T

is called a principal divisor. The div gives rise to a homomorphism 9% — Divyx
of sheaves. The image CDivy is called the sheaf of germs of Cartier divisors. The
Cartier divisor group CDiv(X) is defined to be H(X,CDivx). An element of
CDiv(X) is called a Cartier divisor. The condition div(¢) = 0 implies that ¢ is a
holomorphic unit function. Thus there is an exact sequence:

(I1-2) 0={1} - O%x — My — CDiwvx — 0.

The principal divisor group Princ(X) is defined to be the image of div: H°(X, M)
— CDiv(X). For a point z € X, Divx,, = CDivx, if and only if Ox , is UFD.
If Ox,, is UFD for any x € X, then X is called locally factorial. If Div(X) =
CDiv(X), then X is called (globally) factorial.

Let j: X = X \ Sing X — X be the open immersion from the non-singular
part. Then the injection CDiwx < Divx is an isomorphism over X,.,. This
induces an isomorphism j,.CDivx,,, =~ Divy by the following:

2.1. Lemma Let Z C X be a Zariski-closed subset with codim Z > 2. Then
any prime divisor of X \ Z extends to a prime divisor of X.

PRrROOF. The extension property is local on X. Thus, we may assume that
there is a finite surjective morphism p: X — U into an open subset of C™. Then,
for a prime divisor I' € X \ Z, p(I") \ p(Z) is a prime divisor of U \ p(Z). Then
p(T) ~p(Z) =T\ p(Z) for a prime divisor IV of U by a theorem of Thullen [136]
(cf. [118]). Therefore, p~ I \. Z contains ' as a prime component, and a prime
component of p~'TI" is the extension of T. O

Therefore, we have a long exact sequence:

(11-3) 0 — Ok — My — Divy — R' 0%, — R ML, —

§2.b. Reflexive sheaves of rank one. We define a subsheaf Ox (D) C Mx
for a divisor D as follows: For an open subset U,

H"(U,0x (D)) = {» € H(U, M%) | div(¢) + Dlv = 0} U {0}.
If T is a prime divisor, then Ox(—T") is considered as the defining ideal sheaf of
I'. The sheaf Ox (D) is an invertible sheaf (locally free O x-module of rank one) if
and only if D is a Cartier divisor. If D, Dy, Do are Cartier divisors, then Ox (D; +
DQ) ~ Ox(Dl) ® Ox(DQ) and Ox(fD) ~ Ox(D)V = ’Homox (Ox(D),Ox)
Hence, the homomorphism D +— Ox (D) essentially coincides with the connecting
homomorphism

CDiv(X) = HY(X,CDivx) — H (X, 0%) = Pic(X)
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of the exact sequence (II-2). The natural isomorphism Ox (D) ~ 5,0x
exists by definition.

A reflerive sheaf is a coherent reflexive Ox-module; a coherent sheaf F is
reflexive if and only if its double-dual F" := (FV)V is canonically isomorphic to F.
In particular, a reflexive sheaf is a torsion-free Ox-module (a torsion-free sheaf).

(D

reg Xreg)

2.2. Lemma Let F be a coherent sheaf of a normal variety X.

(1) If F ~ GV for a coherent sheaf G, then F is reflexive.

(2) Assume that F is a subsheaf of a reflexive sheaf G. Then F is reflexive
if and only if codim Supp S < 1 for any non-zero coherent subsheaf S C
G/F.

(3) For an analytic subset Z of codim Z > 2, assume that F|x z is reflexive.
Then, for the open immersion j: X \ Z — X, the direct image sheaf
J«(Flx<z) is a reflexive sheaf.

(4) If F is reflexive, then HY(F) = 0 for an analytic subset Z of codim Z > 2
and for p =0, 1.

In particular, the sheaf Ox (D) for a divisor D is a reflexive sheaf of rank one.

PROOF. (1) There are natural homomorphisms G — G” and GV — (GV)". The
dual of the first one is the inverse to the second.

(2) For a non-zero coherent subsheaf S of G/F, there is an intermediate coherent
sheaf F C F' C G with F'/F ~ 8. We have an exact sequence

0 — Homoy (S,0x) = F' — F¥ — Eath (S,0x).

If codim Supp 8 > 2, then E2t*(S,Ox) = 0 for i < 1, by a property of depth. Hence,
if F is reflexive, then codim SuppS < 1. If F is not reflexive, then F ¢ F" C G
and S = F"/F is a non-zero subsheaf of G/F with codim Supp S > 2.

(3) We may consider locally on X. Thus we may assume that F is torsion-free
and that there is a surjective homomorphism (’)E’?k — FVY. Then F — O?@k. Let
S C OF"/F be the subsheaf defined as the union

UJHw (0% /7)

for all the analytic subsets W C X of codimW > 2. Then S is a coherent sheaf.
Let FC F' C Og’?k be the intermediate sheaf satisfying F'/F ~ S. Then

j*(f|X\Z) C ]:/ - OEBk :]*Og?k\z

and f/|X\Z ~ f|X\Z~ Thus _7:/ = j*(f|X\Z)'
(4) follows from the isomorphism F ~ j.(F|x<z) given in (3). ]

Remark The second condition of (2) is equivalent to that, for any z € X, the
height of an associated prime of the Ox ,-module (G/F), is 0 or 1.

An effective divisor D is considered as an analytic subspace defined by the ideal
sheaf Ox(—D) C Ox. For an effective divisor D, its reduced part D,eq is defined
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to be the reduced structure of the analytic subspace D. In other words, it is defined

by
Dred = Z F7
I': prime component of D

which is identified with Supp D. An effective divisor D is called reduced if D = D,qq.

Let ¢ # 0 be a meromorphic section of a reflexive sheaf £ of rank one on X.
Then, as in the case of meromorphic functions, the order ordr(¢) for any prime
divisor T" is defined. The divisor div(¢) := > ordr(¢)T is also defined and there is
an isomorphism Ox (div(¢)) ~ L. Therefore, a reflexive sheaf of rank one admitting
non-zero meromorphic sections is derived from a divisor. Every reflexive sheaf of
rank one is derived from a divisor if X is a projective variety or a Stein space.
The set Ref;(X) of isomorphism classes of all the reflexive sheaves of rank one
of X has a structure of abelian group; the product is given by the double-dual
of the tensor product and the inverse is given by the dual. The Picard group
Pic(X) = H'(X,0%) is a subgroup. We have a group homomorphism Div(X) >
D — Ox (D) € Refy(X).

Example For an analytic subset Z C X of codim Z > 2, the restriction ho-
momorphism Div(X) — Div(X \ Z) is bijective by 2.1 On the other hand,
Refy(X) — Ref; (X \ Z) is not necessarily surjective as in the following example:
Let X be the two-dimensional unit polydisc

{(@.y) e C? | o] < 1,ly| < 1}

and let Z = {(0,0)}. Then Ref;(X \ Z) = Pic(X \ Z) ~ H'(X \ Z, Ox), which is
an infinite-dimensional vector space. In fact, the isomorphism is derived from the
exponential sequence and the vanishing H?(X \ Z,Z) = 0 for p < 2. On the other
hand, Ref;(X) = Pic(X) = {1}.
2.3. Lemma Let Ref% be the complex:
[--—=0—->9M% > Divy - 0—---]

of sheaves of abelian groups on X, where MM, lies in the degree 0 and the homo-
morphism appears in (II-3). Then the hyper-cohomology group H*(X, Ref%) is
isomorphic to Refq(X).

PROOF. Let Z be the image of R' j*O;(reg — R j*zm;(reg. Then there is a
distinguished triangle )

- I[-2] — Refy — m<1(Rj.O%,. ) > I[-1] — -
in the derived category of sheaves of abelian groups of X. Thus H!(X,Ref%) is
isomorphic to the kernel of
H' (Xreq, 0%,.,) — H(X, ).

Since every reflexive sheaf of rank one is locally derived from divisors, we have the
isomorphism. O
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Two divisors Dy and Dy are said to be linearly equivalent if D1 — Dy is a
principal divisor, equivalently, Ox(D1) ~ Ox(D3). We write D; ~ Dy for the
linear equivalence relation. Let C¢(X) and CCl(X) be the divisor class group
Div(X)/ Princ(X) and the Cartier divisor class group CDiv(X)/ Princ(X), respec-
tively. We have canonical injections Cl¢(X) — Ref;(X) and CCl(X) — Pic(X)
by D — Ox (D). The sheafification C{x of the presheaf U — C{(U) is canonically
isomorphic to the cohomology sheaf

H' (Ref%) ~ Divx [CDivx ~ Hjpg x (CDivx).

The injections C4(X) — Ref;(X) and CCl(X) — Pic(X) are not necessarily
isomorphic, in general.

§2.c. Intersection numbers. Let X be a complex analytic space. For the
connecting homomorphism Pic(X) — H?(X,Z) derived from the exponential se-
quence of X, we denote by ¢;(L£) the image of an invertible sheaf £ and call it the
first Chern class of L. Let Z be a compact analytic subvariety of X of dimension d.
Then it is also regarded as a generator of Hoy(Z,7Z) and defines a homology class
cl(Z) € Hoy(X,Z). Let L4, La, ..., L4 be invertible sheaves on X. By the natural
pairing ( , ): H?>4(X,Z) x Hoq(X,Z) — Z, we can define the intersection number

(ﬁl,ﬁz,...,ﬁd;Z) = L:l,CQ"qu'Z
= <01(£1) U Cl(ﬁz) Uu---u cl(ﬁd),cl(Z)>,

where U stands for the cup-product. If X itself is a compact variety of dimension
n, then we denote L1Lo - L, = (L1,La,...,Lyn; X).

Let Z be a reduced complex analytic space purely of dimension d, U a dense
Zariski-open subset contained in the non-singular locus Z,eg, and let W := Z \ U.
Note that U is a disjoint union of complex analytic manifolds of dimension d. Let
wtzol” be the topological dualizing complex defined by Verdier [144] as the twisted
inverse image €'Z for the structure morphism e: Z — SpecanC in the derived
category of sheaves of abelian groups of Z. Then, for the open immersion j: U C Z,
we have a distinguished triangle

o EL tere L tore L R Zp[2d) 5 WiP 1] — -

Then the cohomology sheaf H~2¢(w' P®) is isomorphic to j,Zy and H (w'P®) =0
for ¢ < —2d.

2.4. Lemma Let X be a normal complex analytic variety of dimension n and
let Z be a reduced divisor. Then the group Divy(X) = HY (X, Divx) of divisors of
X supported in Z is isomorphic to H2Z_2"(X7 wggp'). Moreover, the isomorphism
extends to

. . 2—92n tope
Div(X) ~lim _ Hy (X, wyP*).

PROOF. Since HY (X, w'P®) ~ H'(Z,wP*) for any i, we have

HE 2" (X, i) = HO(U, 2)
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for any Zariski-open dense subset U of Z contained in Z,e,. Thus we have an
isomorphism Divz(X) =~ H"(Zyeg,Z) ~ H°(U,Z). For another reduced divisor
Z' O Z, the homomorphism H7 (X, w'P*) — H, *"(X,w¢P*) is described as
follows: Let U be the intersection Z},, N Zyeq and U’ be the complement Z7,, \ Z.
Then

H°(Z.,,,7) ~H°(U,Z) @ H°(U', Z) =~ H°(Z,e, Z) © H* (U, Z).

reg’
The natural homomorphism H"(Zeq, Z) — HO(ZT’eg, Z) as the extension by zero is
isomorphic to the homomorphism above. Therefore, it corresponds to the natural

inclusion Divz(X) C Divg (X). Since Div(X) = |JDivz(X), we are done. O

Let X be a normal complex analytic variety of dimension n and let Div.(X) =
HS(X ,Divx) be the group of divisors with compact support. Then there is a
natural homomorphism Div.(X) — HZ?"(X,wP*) = Hy, »(X,Z). This is just
the homomorphism giving the homology class cl(D) for a divisor D with compact
support. Let CDiv.(X) be the intersection CDiv(X) N Div.(X) = HY(X,CDiv).
Then CDiv.(X) — H2(X,Z) is induced from (II-2) and the exponential sequence
of X. We have another homomorphism

H2(X,Z) — H27*" (X, wyP*) = Hap—o(X, Z)
since Z ~ H~2"(w'¢"*). This is nothing but the Poincaré isomorphism.

2.5. Lemma The diagram
CDiv.(X) ——  Div.(X)

l l

H?*(X,Z) —— Ha,_2(X,Z)

18 commutative.

PRrROOF. Let Z C X be a reduced divisor. Then there is a Zariski-open dense
subset V' C X such that V and V N Z are non-singular and V N Z is dense in Z.
Let

¥: Hy(CDivx) — Hz(0%) — Hy(Zx)
be a homomorphism induced from (TI-2) and the exponential sequence of X. For
a point z € V N Z, there is an open neighborhood Y C V isomorphic to an n-
dimensional unit polydisc with a coordinate system z1, 2o, ...z, such that U N Z =
div(z1). Then HY(CDivx), ~ Zdiv(z1) and H(Zx), ~ (R'j.Zxz)z ~ Z for
the open immersion j: X \ Z — X. Here 9(div(z1)) corresponds to giving the
integral

1 le

2my/—1 L s
for v € Hi(U ~ Z,Z). Thus ¢ is an isomorphism. Hence the homomorphism
CDivynz(V) — H%,(V,Z), which is induced from (II-2) and the exponential se-

quence of V', is an isomorphism and is isomorphic to Divynz (V) — H%,*OQZ" (v, w%ﬁ"")
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described in the proof of 2.4l Here the restrictions Divz(X) — Divynz(V) and
HY (X, w'®®) — Hy 2 (V,wi?P*) are both isomorphic. Hence

CDle(X) — DiVsz(V) p— DIVZ(X)

H%(X,2) —— H}q(V,2) —— H(X,wiP*)
is commutative. By considering the inductive limit for compact reduced divisors
Z, we have the commutativity of the diagram in question. O

2.6. Corollary If D is a principal divisor with compact support, then cl(D) =
0. In particular, the intersection number

LiLy-Ly1-D=0
for any L; € Pic(X).

2.7. Corollary Suppose that X is a compact normal variety of dimension n
and let D be a Cartier divisor. Then

(£17£27"'7£n71;D) = (£17‘C27"'7£n7170X(D);X)
for invertible sheaves L1, Lo, ..., Ln_1 of X.

PrOOF. The homology class cl(D) comes from the first Chern class ¢1 (Ox (D))
in H*(X,Z) = H%(X,Z) and the intersection is induced from

H2n_2(X, Z) x Hg(X, 7) — HQ”_Z(X, Z) x Hap—o(X,Z) — Z. ([l

§2.d. Q-divisors and R-divisors. Let Q be the field of rational numbers and
R be that of real numbers. Let 8 be Q or R. A R-divisor and a K-Cartier divisor
are defined to be elements of

Div(X,8) := H(X,Divxy ® &) and CDiv(X, &) := H(X,CDivx @ ),
respectively. Note that Div(X, R) is not necessarily isomorphic to Div(X)® K. But
HY(X, Divx) @ R ~ HY(X, Divx ® R)

holds. Hence, if X is compact, then Div(X) ® 8 ~ Div(X, R). Under the natural
inclusions Div(X) C Div(X,Q) C Div(X,R), a divisor is considered as a K-divisor.
A divisor D is Q-Cartier if and only if some multiple of D is a Cartier divisor,
locally on X. A divisor D is R-Cartier if and only if it is Q-Cartier by [2.9 below.
In order to distinguish “fK-Cartier Weil divisor” from “RK-Cartier K-divisor”, we
sometimes call a usual (Weil) divisor by a Z-divisor. If X is locally factorial, then
CDivx ® Q = Divy ® Q and hence CDiv(X,Q) = Div(X,Q). If CDivx @ Q =
Divx ® Q, then X is called locally Q-factorial. If CDiv(X,Q) = Div(X,Q), then
X is called (globally) Q-factorial. A principal R-divisor is an element of the image
Princ(X, R) of
div: HY(X, 0% @ R) — Div(X, R).
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Let I" be a prime divisor of X. For an R-divisor D, the multiplicity multr D € R
is similarly defined. An R-divisor is called effective if multyr D > 0 for any prime
divisor of X. For two R-divisors Dy and Dy, we also write D1 > Dy or Dy < D1,
if D1 — D5 is effective. The prime decomposition and the support of D are defined
similarly. For the prime decomposition D = Y a;I"; of an R-divisor, the round-down
(or the integral part) is defined to be the divisor

D, = Z i I,
where a; is the maximal integer not greater than a;. The round-up and the
fractional part are defined to be 'D' := — —D, and (D) := D — D, respectively.
For an effective R-divisor D, its reduced part D,cq is defined by

Dred = Z Fa

T': prime component of D

which is identified with Supp D.

Two R-divisors Dy and Dy are said to be linearly equivalent if D1 — Dy €
Princ(X) C Div(X,R). We denote the linear equivalence also by Dy ~ Ds. If
D1 ~ DQ, then
Dy, ~ Dy, 'Di'~'Dy', and (Di)= (D).

Two R-divisors D; and D5 are said to be RK-linearly equivalent if D — Dy €
Princ(X, 8). We denote the &-linear equivalence by D1 ~g Ds.

2.8. Lemma Let D be a Q-divisor and let A be an effective R-divisor on a
normal variety. Suppose that

for some finitely many meromorphic functions f; and for some real numbers ;.
Then, for any e > 0, there is an effective Q-divisor A’ such that
(1) Supp A = Supp A/,
(2) |multp A — multr A'| < e for any prime divisor T,
(3) D ~g A.
Proor. Let I'1, 'y, ..., 'y be all the prime components of the reduced divisor
S := Supp D U Supp A U U Supp div(f;).

Let Vg be the k-dimensional Q-vector space generated by I'y, ..., T'y: Vo = @ QT;.
A vector in Vg corresponds to a Q-divisor supported on S. We set V = Vg ® R.
The first quadrant cone V=9 of V with respect to the base (I'y,...,T'x) is identified
with the set of effective R-divisors supported on S. Let Wy C Vg be the Q-vector
subspace generated by prime components of A and set W = Wg ® R. We have

WAV A=D+) ridiv(f).

Let Ly C Vg be the Q-vector subspace generated by div(f;) and set L = Lg ® R.
If LW =0, then {A} = ({D}+ L)NW and hence A € ({D} + Lg) N Wg. In
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other words, A ~g D. Suppose that LW # 0. Let C be the interior of the cone
W N V20 Then

Ae({D}+L)NnC={A}+(LNnW))NnC.

There is an open neighbourhood U of 0 in LN W with {A} +U C C, since C' is
open in W. Hence,

0+ ({AY+U)N Wy C ({D}+ Lg) N C.
Thus the expected Q-divisor A’ exists for any € > 0. ]

2.9. Corollary Let Dy and Dy be two Q-divisors with D1 ~g Ds. Then
Dy ~g Dy holds on any relatively compact open subset.

ProOF. Apply[2.8 to D = D; — Dy and A = 0. a

The first Chern classes ¢;(D) € H?(X, &) for &Cartier divisors D and the
homology classes cl(E) € Ha,_o(X,R) for R-divisors E with compact support
are naturally defined, where n = dim X. In particular, we can consider inter-
section numbers for R-divisors with compact support with a cohomology class in
H>"%(X,R).

We define the following K-versions of the divisor class group, the Cartier divisor
class group, the Picard group, and the group of reflexive sheaves of rank one:

C{(X, R) := Div(X, R)/ Princ(X, R), CCl(X, R) := CDiv(X, R)/ Princ(X, R),
Pic(X, §) = H(X, 0% @ R), Ref; (X, §) := H'(X, Ref% & ).
Then the following commutative diagram exists:

CCUX,R) —— CUX,R)

I l

Pic(X,R) —— Ref1(X, R).

Let Ref 3( « be the following complex of sheaves of abelian groups on X:
[ =09 2 Divy®R—0— -],
where 9% lies in the degree 0. An element of the hyper-cohomology group
Ref1(X)g = H' (X, Ref% ¢)
is called a reflexive K-sheaf of rank one. Similarly for the complex
Pickg:=[—0—=My - CDivx @R —0— -]

of sheaves of abelian groups on X, an element of the hyper-cohomology group

Pic(X)gq := H'(X, Pick «)
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is called an invertible R-sheaf. There is a canonical injection Pic(X) g < Ref1(X)s.
For a reflexive R-sheaf £ of rank one, the round-down £, € Ref;(X), the round-
up L' € Ref;(X), and the fractional part (£) € Div(X, &) are naturally defined
by the homomorphism

H' (X, Ref% ¢) — H(X, Divy ® &/Z).
2.10. Lemma There is a short exact sequence
0 — Div(X) — Ref;1(X) @ Div(X, R) — Ref1(X)g — 0.
PROOF. By definition, there exists a distinguished triangle
- — Divx[~1] — Ref% @ (Divx © R[~1]) — Ref.q — Divy — -
It is enough to show that
HY (X, Divy) — H' (X, Divx @ R)

is injective. Let {U;};cr be an open covering of X and let A; be a K-divisor of
U; such that D;; = (A¢)|v.nu; — (A))|v.nu, are Z-divisors for i,j € I. Then
D; ;= (A vinv; = ((Aj,)|vinu;- Thus we have the injectivity. O

For a reflexive sheaf £ of rank one and for a &-divisor D, we write by £(D) the
reflexive R-sheaf of rank one corresponding to the image of (£, D) under Ref;(X)®
Div(X, ) — Ref;(X)g. Here L(D), = £(.D,), 'L(D)' = £("D"), and (L(D)) =
(D). Note that L(D) is not a usual sheaf in general, but if D is a Z-divisor, then it is
regarded as a reflexive sheaf of rank one isomorphic to the double-dual of L&O x (D).
If £(D) = £'(D’) in Ref1 (X) g« for another reflexive sheaf £’ of rank one and another
R-divisor D', then D — D’ € Div(X) and Ox (D — D') ~ Homo, (L, L"). Thus
L(D) and L'(D’) are considered to be linearly equivalent: £(D) ~ L'(D’). Note
that

0 — Pic(X)g — Ref1(X)g — H(X,Clx ® R)
is exact. Thus a reflexive f-sheaf £ of rank one is contained in Pic(X)z if and only
if it is linearly equivalent to a K-Cartier divisor locally on X.

§2.e. Pullback and push-forward. Let f: Y — X be a morphism of normal
complex analytic varieties. The pullback f*L£ of an invertible sheaf £ € Pic(X) is
defined by the natural pullback homomorphism f*: Pic(X) — Pic(Y) induced from
the sheaf homomorphism O% — f.O%. It also induces f*: Pic(X, R) — Pic(Y, R)
for R=Qor R. If C C X is a compact irreducible curve and if f: ¥ — C C X is
the normalization of C, then we have L-C = deg f*L € R for L € Pic(X,R).

Suppose that the image f(Y) has the following property: if U C X is an open
subset with f(Y)NU # 0, then f(Y)NU is not contained in any proper analytic
subset of U. This condition is satisfied, for example, if f is surjective. Then there is
a natural homomorphism M5 — f. 93, which induces CDivx — f.CDivy. Hence,
the pullback homomorphisms

f*: CDiv(X) — CDiv(Y), f*: CDiv(X, ) — CDiv(Y, R)
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are derived. These are compatible with f* for Pic(X) and Pic(X, &).

Suppose that f: Y — X is proper surjective. A prime divisor I' of YV is called
f-horizontal if f(T') = X, and is called f-vertical, otherwise. An f-vertical prime
divisor T is called f-exceptional if codimx f(T') > 2. Let I be the set of f-vertical
but not f-exceptional prime divisors. Let D be a f-divisor of X. Then it is &
Cartier on the non-singular locus X;es. Thus we can consider the multiplicity of
[*(D|x,.,) along T' € I. We define

FHID = (D) = 37 e (£ (D], T

which is called the proper inverse image or the proper pullback of D by f (cf. [45]).

2.11. Lemma Let D be an R-Cartier divisor of X. If f is surjective, then
there is a canonical homomorphism

Ox(D,) — f.Oy (,_f*D_,> .
If f is a fiber space, then the homomorphism is isomorphic.

PROOF. Let ¢ be a meromorphic function defined on an open subset U of
X such that div(¢) + D]y > 0. Then div(f*p) + f*D|s-1y > 0. This defines
the canonical homomorphism. Next, suppose that f is a fiber space. Let ¢ be a
meromorphic function defined on f~'U such that A := div(y) + f*D|p-1y > 0.
Then, for a general fiber F = f~1(x), Al is an effective R-divisor R-linearly
equivalent to zero. Hence any component of A is f-vertical. In particular, ¢|p is
a constant function. Since F' is connected, v descends to a meromorphic function
on U. Thus the homomorphism is isomorphic. O

Let f: Y — X be a morphism of normal complex analytic varieties. Suppose
that f is a proper surjective and generically finite morphism. The norm mapping
Nmy,x: f«Oy — Ox is defined as follows: a holomorphic function a € HO(Y, Oy)
induces an O x-linear homomorphism

Oy 3 pr— ap e f.Oy
and an Ox-linear homomorphism between the double-duals of determinants:
det(f*Oy)/\ - det(f*Oy)/\.

The latter corresponds to the multiplication by Nmy, x (a) € H°(X,Ox). The norm
mapping extends to Nmy, x : fuly — Mx. Let A be an effective divisor of Y and
let Oy — Oy (A) be a natural injective homomorphism. Then f,Oy — f.Oy(A)
induces an effective divisor f,A such that

Ox (fol) = (det(f.0y (A)) ® det(£.0y)")".

Let T’ be a prime divisor of Y. If T is f-exceptional, then f,I' = 0. If f(T') is a
divisor, then f.I' = af(T) for the mapping degree a of I' — f(T"). For two effective
divisors Ay, Ag, we have f.(A1 + Ag) = fuA1 + f.Ay. Thus f,. gives rise to a
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homomorphism f,: f,Divy — Divx. In particular, f.div(a) = div(Nmy,x(a))
for 0 # o € HY(Y, Oy). Hence we have a commutative diagram of exact sequences

ley/x ley/x lf*

0O —— 0y —— My —— Divy.

Note that if D1 ~ Dy, then f,D1 ~ f.Ds. But f.D for a Cartier divisor D is not
necessarily a Cartier divisor. If F is a Cartier divisor of X, then f.f*E = (deg f)E.
Let Z be a reduced divisor of X. Then f, induces Div;-1,(Y) — Divz(X). By
it is isomorphic to the natural homomorphism

=2 (Y, w3 — H 2" (X, wi™)
induced from the property of w®P®, where n = dim X. In particular,
LiLy+Lnv- fuD = f"L1f Lo f*Ly1-D

for a divisor D of Y with compact support and invertible sheaves £; of X. The
push-forward f, is also defined for R-divisors by the linearity of f.. Here the linear
equivalence ~ and the R-linear equivalence ~ g are also preserved. The push-forward
extends to reflexive sheaves of rank one by

Ref (V) 3 £ (det(f.L) ® det(f.O0y)")" € Ref;(X).

Note that the push-forward is different from the direct image f. as a sheaf.

Next, we consider the pullback and push-forward in the case of meromorphic
mappings. Let f: Y -— X be a meromorphic mapping of normal varieties. Let
W: Z — Y be a bimeromorphic morphism from a normal variety such that f o u
is a morphism ¢g: Z — X. If g is surjective, then, for a R-Cartier divisor D, we
have the pullback ¢*D and its push-forward p.(g* D). We define the pullback f*D
as the R-divisor p.(g*D), which does not depend on the choice of u: Z — Y. If
f is bimeromorphic, then f*D is called the total transform of D. Similarly, if g is
proper and surjective, then we define the proper pullback fI*!D for a &-divisor D
of X as p.(gl*1D). If f is bimeromorphic, then D is called the proper transform
or the strict transform of D. Suppose that g is a generically finite proper surjective
morphism. Let E be a &-divisor of Y. We define the push-forward f, E as g.(ul* E).
Note that f.FE # g.u*FE for some R-Cartier divisor E. If f is bimeromorphic, then
YD = (f~1).D for any R-divisor D of X.

As a final remark on the pullback of divisors, we consider some divisors which
are not Cartier but admit reasonable pullbacks. Let f: ¥ — X be a bimeromorphic
morphism from a non-singular variety onto a normal variety. Then f.Divy — Divx
is surjective and CDivx — f«Divy is injective. Let us consider the composition

(11-4) f.Divy — R! f,0% — (R? f.Zy) ® Q ~ R? £.Qy.

Let K be the kernel of and let NDivy C Divx be the image of K under
f+«Divy — Divyx. Then the following properties hold:
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(1) NDivx does not depend on the choice of Y;

(2) K is isomorphic to N Diwv x;

(3) CDivxy C NDivy C Divy.
(2) is proved by an argument in Chapter TII, §5.al A divisor D contained in the
group NDiv(X) := H*(X, N'Divy) is called a numerically Q-Cartier Z-divisor. In
this case, there is a Q-divisor F of Y such that f,E = D and F -~ = 0 for any
irreducible curve  contained in fibers of f.

2.12. Lemma (cf. [99]) Let f: Y — X be a bimeromorphic morphism from a
non-singular variety.
(1) For a point x € X, (R' f.Oy), = 0 if and only if the stalk Clx . is a
finitely generated abelian group.
(2) IfR' £,0y =0, then NDivx C CDivx ® Q.

In particular, every numerically Q-Cartier Z-divisor is Q-Cartier if R! f+Oy = 0.
PrOOF. (1) We have a surjection
Im(f.Divy — R' f,0%) - Divx /CDivx ~ Clx.

If (R' £.0y), = 0, then (R' £,0%), C (R? f.Zy), ~ H*(f~'(2),Z) is a finitely
generated abelian group and so is Clx .. The kernel of (f.Divy), — (Divx)s
is generated by the f-exceptional prime divisors over an open neighborhood of .
Hence if Clx . is finitely generated, then so is Im(f,Divy — R' f.0%),. However
the image contains (R' f,Oy)./(R' f.Zy),. Therefore (R f,Oy), = 0.

(2) For the kernel K of (II-4), the stalk at a point x of the image of K —
R' f.0% is a torsion group. Since N'Divy is the image of K, NDivx ,/CDivx ., is
a finite group. Therefore N'Divy C CDivx @ Q. O

Let NDiv(X, &) denote the group H*(X, NDivy @ ). For a surjective mor-
phism ¢g: Z — X of normal varieties, the pullback ¢g*: CDiv(X, &) — CDiv(Z, R)
extends to g*: NDiv(X, R) — NDiv(Z, R). The pullback ¢*D is called the numer-
ical pullback for D € NDiv(X, &) (cf. Chapter [ITI, §5.b).

Suppose that n = dim X = 2. Then, for a numerically Q-Cartier Z-divisor D
and for an irreducible compact curve -y, the intersection number is well-defined by

D-y:=f"D-+,
where f: Y — X is a desingularization and +' is the proper transform of v. However
if n > 2, then the intersection number is not well-defined in general:

Example Let E be an elliptic curve and £ be a very ample invertible sheaf of
E. We consider the surface S = E'x E and the P1-bundle 7: P = P5(Ogs®piL) — S,
where p;: S — F is the first projection. Let ¥ C P be the section of 7 corresponding
to the projection Og @ p;L — Og. For the tautological invertible sheaf Op(1), we
have an isomorphism Op(1)|s ~ Oy. Further Ox(—X) is isomorphic to piL by =.
Let H be a divisor of P such that Op(H) is isomorphic to Op(1) ® 7*p5L, where
p2 is the second projection. Then the linear system |H| is base-point free (cf.
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and defines a birational morphism f: P — X onto a three-dimensional normal
projective variety such that

(1) C = f(¥) is isomorphic to E,

(2) fflo=%,

(3) f|s is isomorphic to pa: S — E,

(4) f induces an isomorphism P\ 3 ~ X \ C.
Let A C S = E x E be the diagonal and let F' C S be a fiber of p;. Let D be a
divisor of P such that Op(D) is isomorphic to Op(1) @ 7*Og(A — F). Then, for a
fiber v of f, we have D -~y = 0. Thus f,D is numerically Q-Cartier. Let Cy and C1,
respectively, be the inverse images of A and F under the isomorphism 7: ¥ = S.
Then f(A)=f(F)=C,D-Co=(A-F)-A=—-l,and D-C1 =(A—-F)-F=1.
Therefore, it is not possible to define f,D - C in a natural way.

83. D-dimension

83.a. Linear systems of R-divisors. Let X be a normal complex analytic
variety and let £ be a reflexive R-sheaf of rank one (cf. §2.d). We denote by |L|
the set of effective R-divisors linearly equivalent to £. Note that if an R-divisor
A is linearly equivalent to £, then A, ~ L, and (A) = (£). Hence we have
the identification [L£| = | L,| + (L£). An effective Z-divisor A defines an ideal
Ox(—A) C Ox and equivalently an injective homomorphism Ox — Ox(A) up to
unit holomorphic functions. Thus any member of |L| is derived from a non-zero
global section of L,. Hence |L| is set-theoretically identified with the quotient
space

H(X, £,)~ {0}/ H°(X,0%)

by the scalar action.
A linear system A = A(L, L) is defined to be the projective space

A=P(LY) =L~ {0}/C

associated with a finite-dimensional vector subspace L ¢ HY(X, .£,). Usually, we
assume that A # () and hence L # 0. A point A € A defines an effective R-divisor A
linearly equivalent to £. If HY(X,Ox) ~ C and if L = H(X, L,), then A is set-
theoretically identified with |£| and is called a complete linear system. We denote
the linear system A(L, £,) by (A, and the R-divisor (L) by (A). Then we can write
A = A +(A). The base locus Bs A of the linear system A is defined set-theoretically
as the intersection of Supp Ay for all A € A. Thus BsA = Bs A, U Supp(A). If
Bs A = 0, then A is called base-point free. In this case, L is regarded as an invertible
sheaf which is generated by finitely many global sections.
The evaluation mapping

(I1-5) LocOx — H'(X, L)) ®c Ox — L,

is not zero. Let G be the image. Then G — L, is isomorphic over a dense Zariski-
open subset of X. Thus Px(G) — X admits a meromorphic section X -— Px(G).
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Therefore, we have a meromorphic mapping
into the dual projective space of A. By taking the dual of (ITI-5), we have an
injection
(\_EJ)V — LV ®c Ox.
It defines an effective R-divisor D = Dy of X x A such that (D) = pi(A),
Oxxa(( D)) ~pi( L) ®p304(1), and Dlxxpy =AxCX

for the projections p1, po and for A € A. The base locus Bs A is the set of points
x € X with p;*(z) = D, = A. If z ¢ Bs A, then the fiber p;'(z) =D, C A is a
hyperplane and it specifies a point of the dual space AY. The point coincides with
the image ®5(z). Let

L®c (L, )v - HO(Xa L) ®c (I_L_n)v — Ox

be the homomorphism induced from (II-5) and let Z be the image. Then the base
locus Bs (A, is regarded as a closed subspace defined by the ideal Z. The fized
part or the fized (R-)divisor is defined to be the maximum effective R-divisor Agx
satisfying Ay > Agy for any A € A. In other words, (Agx) = (A) and

Ox(~ Ae,) =T

In particular, £(—Agy) is a usual reflexive sheaf of rank one. The linear system
A(L, L(—Agx)) is denoted by Apeq. Then A = Areq + Anx. We can identify @y
with ®,. Here, Bs Ajeq is the locus of indeterminacy of ®. If Agx = 0, then A is
called reduced or fized-part free. If A(L, L)gx = 0 for some linear subspace L, then
L is called fized-part free.

Let f: Y — X be a proper surjective morphism from a normal variety. Let A =
A(L, L) be a linear system in which £ is R-Cartier: £ € Pic(X)r. Then we can de-
fine its pullback f*A as follows: For the pullback f*L, there is a canonical injective
homomorphism £, — f. (I_f*[,J) by [2.11] For the image L' c H° (v, I_f*[,J) of
L under the homomorphism above, we define f*A = A(L’, f*L£). Here, A and f*A
are isomorphic to each other as a projective space and ® -y = ®p o f.

We can generalize the notion of linear systems to the following relative situation:
Let m: X — S be a proper surjective morphism into another complex analytic
variety. Let F C m.(_L,) be a non-zero coherent subsheaf. Then Pg(F") should
be the relative linear system A = A(F, L£/S). The evaluation homomorphism

™ F = rm (L) — L,
corresponds to (II-5). We have the associated meromorphic map ®5: X - Pg(F)

over S and we can define the relative base locus Bs A/S and the relative fixed part
Afix/s in a natural way.

3.1. Proposition Let 7: X — S be a proper surjective morphism from a
normal variety and let L be a reflexive R-sheaf of rank one of X. For k € Z, let
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L¥ denote the k-th power as a reflexive R-sheaf of rank one. Suppose that there
exist coherent subsheaves Fr, C o ( L¥)) for k >0 such that

R(Fe,L/S) := @H Fr CR(L/S) = @H T (L)
is an Og-subalgebra. Then the following three conditions are mutually equivalent:
(1) R(Fe,L/S) is a locally finitely presented graded Og-algebra;
(2) Locally on S, there is a positive integer k such that R(Fe, £/S)*) =
R(Fre, £¥1/8) is 1-generated;
(3) Locally on S, there exist a positive integer k, a bimeromorphic morphism

w:'Y — X from a normal variety, and an effective R-divisor E of Y such
that M = M*E[k](—E) is an invertible sheaf and the image of

Wt Fk — W*(ﬁ[mk])_l
is M™ for any m € N.

Proor. (1) = (2) is shown by [1.1-(2).

(2) = (3): Assume that R(F,,£/S)*) is l1-generated. Let G be the image
of p*m*F — LM, and let V be the blowing-up Projany P, G’, where G' =
G®/(tor). Let Y — V be the normalization and let u: Y — X be the composite.
Then p*G/(tor) = M is an invertible sheaf which is the image of p*7*F, —
wLF  Let E be the effective R-divisor of Y with M(E) = p*£". Then the
image of pu*m* Foup — L/f‘ﬁ[mk]J is M®™ for any m € N, since Sym™ Fj, — Fpm is
surjective.

(3) = (1): We consider locally on Y. If s is a section of F; for some ¢ € N, then

s¥ is a section of Fr;. Thus the corresponding effective R-divisor div(s) ~ "Ll

satisfies
kdiv(s) 4 k(u* L) > iE.
Therefore, for any 0 <7 < k and m > 0,
Fateri C mapie( " £ (—mE))) = moppe(M™ @ yr £1).

Let f: Y — Pg(Fk) be the morphism over S associated with the relative linear
system A(Fy, M/S) which is relatively base point free. Then M ~ f*O(1) for the
tautological invertible sheaf O(1) associated with Fy. Let p: Pg(Fi) — S be the
structure morphism. Since O(1) is p-ample,

SRR CORIESY
is a locally finitely presented graded Sym®(Fj)-module. Thus the submodule
R*D = @mzo T Fmkti

is also locally of finitely presented by the argument in [1.5. Hence R(F,, £/S) is
locally finitely presented. O
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The criterion above is well-known in algebraic case which is related to the Iitaka
fibration and the sectional decomposition.

Suppose that X is compact. For a divisor D, we have the associated reflexive
sheaf Ox (D) of rank one. We denote by |D| the complete linear system |Ox (D)],
which is not empty when D is linearly equivalent to an effective divisor. A Cartier
divisor A of X is called very ample if so is Ox(A). This is the case Bs|A| = 0
and ®4: X — |A|Y is a closed immersion. An ample divisor is a divisor whose
multiple by some positive integer is very ample. A base-point free (or free) divisor
D is a Cartier divisor with |D| is base-point free. A fized-part free divisor D is a
divisor with |Dlgx = 0. A divisor D is called semi-ample if Ox (D) is so.

Notation We denote the cohomology group H(X,0x (D)) for a divisor D of
X simply by H*(X, D) and the dimension dim H*(X, D) by h*(X, D).

§3.b. D-dimensions of R-divisors. We shall generalize litaka’s theory of D-
dimension to R-divisors on normal varieties in §§3.b and [3.c/ by using a property
proved in Chapter IIIl We follow Iitaka’s argument in the book [44].

Let D be an R-divisor of a compact complex normal variety X of dimension n.
Assume that |D| # (). Then we have a meromorphic mapping

Op = pj: X - DY = P(H'(X, . D,))
associated with the complete linear system |D|. We set W to be the image of ®p.
3.2. Definition We set
N(D) i= {m € N; [mD] # 0}.
The D-dimension k(D) = (D, X) of X is defined as follows:
Hun{mi%hﬂ%m|m€NUDL §§83¢
In case k(D) > 0, we set mo(D) = gcd N(D).

Here, N(D) is a semi-group and kmg(D) € N(D) for k > 0. We infer that (D) €
{=00,0,1,...,a(X)} for the algebraic dimension a(X) of X and that the equality
k(D) = max{k(mD,) | m € N} holds. If D" ~q D, then (D) = x(D’).

3.3. Lemma Let D be an R-divisor with k(D) = 0. Then mo(D) € N(D). In
particular,

0;
0

h(X, mD,) =
(X, mD,) {O, otherwise.
PROOF. By definition, h®(X, mD,) < 1. If A; and A, are effective R-divisors
with Ay ~m1D and As ~ moD for some mq, mo € N, then
mo B my

- A1 =—""
gcd(ml,mg) ! gcd(ml,mg)
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Hence there is an effective R-divisor Ag with

mi ma
A Ny = ——2
o 2 ged(my, ms)

~ ged(my, ma)
Therefore, Ay ~ ged(my, ma)D. Thus mo(D) € N(D). O

Aq Ap.

Let A be an effective R-divisor of X. For the open immersion j: X N A — X,
Ox(*¥A) := j.Oxa NMx C jMx A

is the sheaf of germs of meromorphic functions of X holomorphic outside A. We
consider the integral domain

O(X,*A) := H (X, Ox(xA)) C M(X) := H°(X, M)

and its quotient field M(X, xA) := QO(X, xA). Note that a(X) = tr. dege TM(X).
We can show that the extension O (X,*A) C M(X) is algebraically closed as
follows: Let ¢ be a meromorphic function integral over O(X, *A). Then

N-1

eV +ap" T - fanaptan =0

for some aq, ag, ..., ay € O(X,*A). Hence ¢ has no poles outside A, which means
v € O(X,*A). If a meromorphic function ¢ is integral over M(X, *A), then v is
integral over O(X, *A) for some 0 # ¢ € O(X,*A), and hence ¢ € M(X, *xA).

Suppose that A’ ~ A for another effective R-divisor A’. Then A’ — A =
div(y) for a meromorphic function ¢ € O(X, *A). If ¢’ € O(X,*A’), then ¢'¢* €
O(X, *A) for some k > 0. Hence M(X,*A’) = M(X, *xA) C M(X).

3.4. Definition For an R-divisor D with x(D) > 0, we define the subfield
M(X, D) C M(X) as M(X, *xA) for A € |mD| for some m € N(D).

3.5. Lemma (cf. [44, Proposition 10.1]) Let D be an R-divisor with k(D) > 0.
Then k(D) = tr.dege M(X, D) and the set

I(D) := {m € N(D) | M(X, «D) = M(Wyp)}
is a semi-group with gcd (D) = mo(D).

PROOF. Let A be an effective R-divisor with A ~ kD for some k € N(D).
Then we have a natural injection Ox (| A,) C Mx and equalities

Ox (xA) = UmeN Ox(mA,), and O(X,*A) = U

The subfield of 9M(X) generated by H°(X, A)) is identified with 90%(Wyp) by
O M(Wip) — M(X). Therefore,

MX,«D) =] _ MWaip) = J

This implies (D) = tr.dege M(X, *D). Furthermore, mk € I(D) for m > 0.
Since k! € I(D) for I > 0, any element k of N(D) is divisible by ged (D). Hence
gedI(D) = ged N(D) = mo(D). O

H(X, mA,) € M(X).
meN

meN(D) m(WmD) < S)ﬁ(X)
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In particular, if D1 and D5 are effective R-divisors with Supp D7 C Supp Do, then
K(Dl) S I{(Dg).

3.6. Remark Suppose that D is R-Cartier. Then, for a bimeromorphic mor-
phism p: Y — X from a normal variety, we have an isomorphism Ox (,mD,) ~

1Oy ((mp*D,) for any m by [2.111 Hence p*|mD| = |mp*D| and (D, X) =
k(p*D,Y). Even if D is not R-Cartier, for a bimeromorphic morphism p: Y — X
from a non-singular variety, there is a p-exceptional effective divisor F such that
Ox(mD,) ~ Oy ( Lm(ﬂ[*]D +E),)
for any m > 0. This follows from [IT1/5.10-(3), or 5.11] In particular,
k(D) = max{k(u'D + E) | E is a p-exceptional effective divisor}.

3.7. Theorem (Estimate) Let D be an R-divisor with k(D) > 0. Then there
exist positive rational numbers o < 8 such that

am™P) < %X, mmo(D)D,) < gm~P)
form > 0.

PrROOF. We may assume that X is non-singular by 3.6 and that (D) > 0
by B.3. For m € I(D), the meromorphic mapping ®,,p: X — W,,p induces
an algebraically closed extension M(W,,p) = M(X,+*D) C MM(X). Thus, the
meromorphic mappings ®,,p are mutually bimeromorphically equivalent for all
m € I(D), in the sense that there is a bimeromorphic mapping i: W,p ~— Wyp
such that ®,,,p =i0®,,p for m, m' € (D). Let W be a non-singular projective
variety birational to W,,,p above and let p: ¥ — X be a bimeromorphic morphism
from a non-singular variety such that ®,,p o p induces a holomorphic mapping
f:Y — W. Then f has only connected fibers. Suppose first that the birational
mapping v: W «— Wyp is holomorphic for a fixed k € I(D). Then |kp*D|req is
base-point free and

(11-6) kp*D — |kp* Dlgx ~ f*v*Hy,

for an ample and free divisor Hy of Wy p. In particular, for m € N, we have
hO(Wip, mHy) <h°(Y, mku*D,) = h’(X, mkD,).

Since the left hand side is a polynomial of degree dim W for m > 0, there is a

positive rational number aj such that

(I1-7) apm3™W < h(X, mkD))

for m > 0. For a member A € |ku*D|, let A = A" + AV be the decomposition

into the f-vertical part A and the f-horizontal part A"; components of A are f-

horizontal and components of A? are f-vertical. Then we infer that A" < |ku* Dy

by the linear equivalence . Thus A" coincides with the f-horizontal part of
|ku* D)gx. There is an ample effective divisor A of W such that A¥ < f*A. Hence

hO(Xa omkD,) = hO(Y> mkp*D,) < hO(VVa mkA),
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for m € N. Since the right hand side is a polynomial of degree dim W for m > 0,
there is a positive rational number by such that

(11-8) ho(X, mkD,) < bymd™W
for m > 0.

Let £(m) be h°(X, ;mmo(D)D,). Then £(m) > 0 for m > 0 and £(m +r) >
£(m) for m € N and for r € N with ¢(r) > 0. Let 71, r2, ..., rp—1 be natural

numbers such that r; = ¢ mod k and £(r;) > 0. We set 7o = 0 and r := max{r;}.
If m > k+ry, then m = g1k + r; for some ¢ and ¢; € N. Hence ¢(m) > ¢(q1k) and
¢1 > (m—r4)/k. Any m € N is written as m = ¢2k — r; for some j and ¢» € N.
Hence ¢(m) < £(g2k) and g2 < (m + ry)/k. Therefore, from (II-7), (II-8), we have

m—r dim W m+r dim W
(2™ sz (257

for m > k 4 ry. Thus we can find the required numbers a and 3. O

3.8. Corollary If k(D) > 0, then
#(D) = max{k € Z>o | lim m *h°(X, mD,) > 0}
=min{k € Z>o | lim m *h°(X, mD,) < +o0}

g o8 h(X, gmmo(D)D,)

m—oo 1og m

In particular, the equality

0
H(D): m 1Ogh (X7 LmD_I)

m—o0 logm

holds for any case including k(D) = —oo, under the notation: log0 = —oo.

3.9. Corollary If k(D) > 0, then there exist positive numbers o and 3 such
that

am™P) <X, "mmy(D)D") < fm~P)
form > 0.

PrOOF. It is enough to show the existence of 3. Let k be a positive integer
such that kmg(D)D ~ A for an effective R-divisor A. Then (kmo(D)D) = (A).

There is a positive integer b such that '(A)' < bA. Then "(A)' < bA,. Therefore,
‘mkmo(D)D' — mkmo(D)D, = "mkmo(D)D)’ < (A} < bA,
for any m > 0. Hence
h’(X, "mkmo(D)D") < h°(X, imkmo(D)D, + bkmo(D)D,)
< h%(X, (m+b)kmo(D)D,).
Thus 3 exists by the same argument as in the proof of O
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Example There is an example of R-divisor D such that (D) = —oo and
hO(X, rmD—l) >0form>0. Let X =P andlet D =rP, —rPyfor 0 <r e R~\Q
and for two points P; and P,. Then mD, = mr, P, — "'mr' P, ~ —P,. Hence

k(D) = —oco. But 'mD' ~ P;. Thus h’(X, ‘mD") > 0 for m > 0.

3.10. Lemma (Fibration) Let D be an R-Cartier divisor with k(D) > 0.
Suppose that there exist a morphism f: X — W into a normal variety and a
bimeromorphic mapping i: W «— W,p with io f = ®,,p for m € I(D). Then
every fiber f~1(w) is connected and, for any m € N(D), there exists a dense Zariski-
open subset U, C W such that f is flat over U,, and

fOx(imD,) @ C(w) = H*(f 7 (w), Ox (1mD,) ® Op-1(u) = Clw)

for w € U,,. In particular,

K(Dlf-1(w)) =0, for we ﬂmeN(D) Un,.
PROOF. The connectedness of f~!(w) follows from that M (W) = M(X, D) C
IM(X) is algebraically closed. We have only to show that rank f,Ox( mD,) =1
for 0 < m € N(D). Let A be a member of |mD| and set

M =H (W, f,Ox (xA) @ My ).

Since My ® fiMWMx =~ f.IMx, we have an inclusion M(W) C M C M(X). A
meromorphic function 0 # ¢ € M(X) belongs to M if and only if the f-horizontal
part div(¢)" of the negative part div(¢)_ of the prime decomposition of div(y)
is supported in Supp A. Hence M is generated by 9(W) and MM(X,*A). Since
m € I(D), we have M(W) = M(X,*A) = M. It implies that rank f,Ox (tA) =1
for any ¢t € N. Thus we are done. O

3.11. Lemma (Covering lemma) Let f: Y — X be a proper surjective mor-
phism of normal varieties and let D be an R-Cartier divisor of X. Then

R(f*D + E) = k(D)
for an f-exceptional effective R-divisor E.

PrOOF. Let Y — V — X be the Stein factorization of f and set g: ¥ — V
and 7: V — X. If div(e) +m(f*D+E) > 0 for a non-zero meromorphic function ¢
of Y and for a positive integer m, then div(¢)|s-1(,) = 0 for a general point v € V,
thus ¢ is constant along g~1(v). Hence ¢ € M(V) by[1.12}(2). Therefore, div(p)+
m7*D > 0, since F is g-exceptional. This observation implies that D(Y, «(f*D +
E)) = M(V,*7*D) and hence (f*D + E) = k(7*D). Let Nm: 7,0y, — My be
the norm map. Then div(¢)+m7*D > 0 implies div(Nm(y)) + m(deg7)D > 0. In
particular, kK(7*D) = —oo if and only if k(D) = —oco. Hence we may assume that
D is effective. The multiplication by ¢ defines an endomorphism of 7,0y (x7*D)
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and that of 7.9y ~ My @ 7.0y . Let P(x) € M(X)[x] be the polynomial defined
by

det(z -id — ¢) € End(det(Mx @ 7.0v))[z] ~ M(X)[z].
Then P(¢) = 0. For the non-singular locus U = X,eg, we have an isomorphism

7Oy (*x7*D)|y = Um>0 7Oy (" ((mD|y,))

~ Um>0 (’)U(LmDJ) R 1.0y = OX(*D)lU & T*Ov|U.
Since O(U, *D|y) = O(X, D), the polynomial P(z) belongs to O(X, *D)[z]. Hence
¢ is integral over O(X, D). Therefore, O(V, *7*D) is integral over O(X,*D) and
tr. deg M(V, *7* D) = tr.deg M(X, xD). O

3.12. Corollary Let f: Y — X be a proper surjective morphism of normal
varieties and let D be an R-divisor of X. Then

k(D) = max{k(fID + E) | E is an f-exceptional effective divisor}.

ProOOF. We may assume that X and Y are non-singular by[3.6] Then it follows
from 3.11] ([l

83.c. Relative D-dimension. Let f: X — Y be a proper surjective mor-
phism from a non-singular variety and let D be an R-Cartier divisor of X. For a
general point y € Y, the fiber f~!(y) is non-singular and the restriction Dlf-1(y) is
well-defined as the pullback of the R-divisor D by f~!(y) < X. Since y is general,
we have an isomorphism

Ox (D) @ Op-1(y) = Op-1() (Ll p-1y)-
For a positive integer m, by the upper-semicontinuity theorem and the flattening

theorem, we can find a Zariski-open dense subset U,, C Y such that

(1) f is flat over Uy,
(2) f~Y(y) is non-singular for any y € U,,,

®3)
y — 0 (f7 (), Ox(mD,) @ Of-1y))
is constant on U,,.

Let X — V — Y be the Stein factorization of f. Then a connected component of
a general fiber f~1(y) is a general fiber of g: X — V. Therefore,

rank f,Ox(,mD,) = (deg ) rank g.Ox ( mD,)
for the finite morphism 7: V — Y. Therefore, by [3.8] we have

— 1 k f. D
w(Dlr) = Tim ogrank f,.Ox(,mD,)
m— o0 log m

for a connected component I of a ‘general’ fiber f~1(y). The relative D-dimension
k(D; X/Y) is defined as k(D|r).

Next, we consider a dominant proper meromorphic mapping f: X -+-— Y from
a normal variety and an R-divisor D of X. Let u: Z — X be a bimeromorphic
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morphism from a non-singular variety such that g = f o u is holomorphic. If Y is
a point, then X is compact and

(D, X) = max{k(u¥!D + E) | E is a p-exceptional effective divisor}
by [3.6] We define the relative D-dimension by
k(D; X/Y) := max{r(u* D+ E; Z/Y) | E is a p-exceptional effective divisor}.
If f is holomorphic and D is R-Cartier, then x(D; X/Y) = k(u*D; Z/Y).

3.13. Theorem (Easy addition) Let f: X — Y be a proper surjective mor-
phism of compact normal varieties and let D be an R-divisor of X. Then the easy
addition formula:

K(D,X)<k(D;X/Y)+dimY
holds. If k(D —ef*H) > 0 for some ample divisor H and for some & > 0, then
k(D) =k(D; X/Y)+dimY.

PROOF. We may assume that X is non-singular and f is a fiber space by taking
a desingularization of X and the Stein factorization of f. There is a countable
intersection ) of dense Zariski-open subsets of Y such that

(1) f~Y(y) is non-singular,

(2) Ox(mD,) ® Op-iy) = Opryy ((mDlp-1gy), ),

(3) h? (fil(y% I_mD|f*1(y)_,) =rank f.Ox(mD,),
for any y € Y, m € N. The evaluation mapping f*f.Ox(,mD,) — Ox(,mD),)
defines a meromorphic mapping

Pyt X = Py (fiOx(mD),))

over Y. The restriction of ®,, to the fiber f~!(y) over a point y € Y is the
meromorphic mapping associated with [mD|s-1,)|. Let Z,, be the image ®,,(X).
Then «(D; X/Z,,) = 0 for some m € N. Replacing X by a blowing-up, we may
assume that there exist a fiber space ¢: X — Z into a non-singular variety Z over
Y and a bimeromorphic mapping p: Z -— Z,, with ®,, = po ¢. Then, for a
member A € |[mD|, the ¢-horizontal part A" is contained in the fixed part |mD|gy
since k(D; X/Z) = 0. There are an effective R-divisor G of Z and an effective
¢-exceptional R-divisor E of X such that ¢*G + E > AY. Hence (D, X) <
k(¢*G + E) = k(G) by [3.11. Since (@) < dim Z and the dimension of the fiber
of Z—=Y overy €Y is k(D; X/Y), we have k(G) < k(D; X/Y) +dimY.

We may assume that p: Z -— Z,, is also holomorphic. Let B be a divisor such
that Oz(B) is isomorphic to the pullback of the tautological line bundle O(1) of
Py (f:Ox(mD,)). Then mD — ¢*B is linearly equivalent to an effective R-divisor.
Let p: Z — Y be the induced morphism. Then B + bp*H is free for some b > 0.
Since k(D —ef*H) > 0, we have

k(D) > k(mD+bf*H) >dimZ = k(D; X/Y) + dimY. O
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3.14. Theorem-Definition Let X be a compact normal complex analytic va-
riety, D an R-divisor of X with k(D) > 0 and f: X =Y a meromorphic fiber
space. If k(D; X/Y) = 0, then there exists a meromorphic mapping p: Y — Wyp
with ®,,p = po f form € (D). In particular, the following conditions are mutually
equivalent:

(1) kK(D;X/Y) =0 and dimY = k(D, X);
(2) There is a bimeromorphic mapping p: Y -— Wy,p for m € I(D) such
that ®,,p = po f.
If f satisfies the conditions above, then it is called the D-canonical fibration or the
Titaka fibration for D.

PrROOF. We may assume that f is holomorphic and X is non-singular. By
considering the restriction homomorphism

HY(X, mD,) — H’ (f'(y), mDl|s-1(,) ~C,

we infer that the image of f~!(y) under ®,,p is a point for m € I(D). Hence the
existence of the meromorphic mapping p follows from [1.12+(2). The implication
(1) = (2) follows from[1.12-(1). The inverse implication is shown in[3.10\ O

§3.d. Big divisors. Let X be a compact normal variety and let D be an
R-divisor.

3.15. Definition D is called big if x(D, X) = dim X.

If X admits a big R-divisor, then the algebraic dimension a(X) is equal to dim X.
Hence X is a Moishezon variety, which is a compact complex variety bimeromorphic
to a projective variety, by definition.

3.16. Lemma (Kodaira’s lemma) Let D be a big R-divisor and let H be an
R-divisor. Then there exist a positive integer m and an effective R-divisor A such
that mD ~ H + A.

PROOF. Let u: X’ — X be a bimeromorphic morphism from a non-singular
projective variety. There is a big R-divisor D’ of X’ with D = p,D’ by 3.6l
Suppose that there exist a positive integer m and an effective R-divisor A’ of X’
such that mD’ ~ ul*H 4+ A’. Then mD ~ H + pu,A’. Thus we may assume that
X is non-singular projective. Let A be an ample divisor. Then |kA — H| # () for
k > 0 by Theorem A. Hence we may assume that H is a very ample non-singular
divisor that does not contain any intersection I' NI of two mutually distinct prime
components I and TV of D. We consider the exact sequence

0— Ox(mD, —H)— Ox(mD,) — Ox(mD,)® 0Oy — 0

for m € N. Here we have an isomorphism Ox(,mD,) ® Oy ~ Oy( mD|u,). By
applying 3.7/to D and D|g, we infer that h®(X, mD, — H) # 0 for some m. [

3.17. Corollary If D is a big R-divisor, then there is a positive integer ¢ such
that [tD] # 0 for any real number t > c. In particular, mo(D) = ged N(D) = 1.
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PRrROOF. We may assume that X is non-singular projective. Then aD ~ H + A
for a very ample divisor H, an effective R-divisor, and a positive integer a. There is
a positive integer b such that h®(X, 7D, +bH) # 0 for any real number 0 < r < a,
since we have only finitely many divisors rD,. If ¢ > ba, then t = ka + r for some
integer £k > b and 0 < r < a. Hence

tD = (k — b)aD + (ba+r)D ~ (k — b)(H + A) + bA + (bH + rD).

Thus [tD] # (). O

The following theorem is proved by Fujita [26] in the case where D is Q-Cartier
and t € N:

3.18. Theorem Let D be a big R-divisor of a compact normal variety X of
dimension n. Then the limat

.1
v(D) =n! lim — h(X, tD))
exists. Here v(rD) = r™v(D) holds for any positive real number r. If in addition D
is R-Cartier and o < v(D), then there exist a bimeromorphic morphism p:Y — X

from a non-singular projective variety and an effective R-divisor E of Y such that
k(u*D — E) is a free Z-divisor for some k € N and (u*D — E)" > a.

ProoF. We follow the proof by Fujita. We may assume that X is a non-
singular projective variety as before. Thus D is R-Cartier. We consider

1 — 1
v(D) = n!tlim —h’(X, tD,) and w(D):= n!N im — h(X, mD,).
—o0 N >m—oo M"
Then v(D) > w(D). For a € N, we have w(aD) < a"w(D). Let ¢ be a positive
integer such that [¢D| # () for any real number ¢ > c. For t > ca, we write t = ka—r
for a real number 0 < r < a and an integer k > ¢. Thus we have

1

R h(X, (k + c)aD,),

tinhO(X, D)) < tinhO(X, (k+c)aD,) <
since tD = (k + ¢)aD — ¢(a — 1)D — (¢ + r)D. Thus a™v(D) < w(aD). Therefore,
v(D) = w(D) and v(aD) = a™v(D). Consequently, v(¢D) = ¢"v(D) for 0 < g € Q.
If ¢ <7 < g for qi, @2 € Qso, then v(q1 D) < v(rD) < v(g2D). Hence v(rD) =
r"v(D) holds for any r > 0.

For m € I(D), let fiy,: Y, — X be a birational morphism from a non-

singular projective variety such that |p*, (mD)|eq is base-point free. We set E,, :=
(1/m)|ps,(mD)|ax and L, := pk, D — E,,. Then we have

1 1
v(D) > n! lim 7hO(X7 kD) >n!  lim 7h0(Xa KLly,) = v(Lim) = L,
Nok—oo K" Nsh—oo K"
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Suppose that v(D) > v := sup{v(L,,) | m € I(D)}. Then, for any ¢ > 0 with
v+ n(nl)e < v(D), there is an m with L? > v —e. For s € N, we have

hO(X, smD,) = h (Yo, smLgy) < h°(Y,,, smLy,) 4+ n(sm)™(L",, — L")
< h°(V,,, smLyy,) + en(sm)™

by the key lemma [26] Lemma 2]. Thus v(D) = m~"v(mD) < v(L.,) + n(nl)e <
v(D). This is a contradiction. Thus v(D) = v. O

84. Canonical divisor

The canonical sheaf (or the dualizing sheaf) wx of an n-dimensional normal
complex analytic variety X is the unique reflexive sheaf whose restriction to Xjeq
is isomorphic to the sheaf Q}mg of germs of holomorphic differential n-forms. For
the trivial morphism fx: X — SpecanC = (point), we have a dualizing complex
w% ~qis fxC (cf. [37], [116]). Then wx ~ H "(w%) (cf. [113]). A non-zero
meromorphic n-form 7 on X, is regarded as a meromorphic section of wx. The
associated divisor div(n) is called the canonical divisor and is denoted by K x even
though it depends on the choice of 7. In order to make the definition reasonable,
we must define Kx as a divisor class. Since Ox(Kx) ~ wx, the role of Kx is
almost identical to that of wx. Some complex analytic variety X does not admit
any non-zero meromorphic section of wyx. However, we use the symbol Kx as a
formal divisor class with an isomorphism Ox (Kx) ~ wx and call it the canonical
divisor of X. If Kx is Cartier, in other words wy is invertible, then X is called
1-Gorenstein. Note that X is Gorenstein if and only if X is 1-Gorenstein and
Cohen-Macaulay. If Kx is Q-Cartier, then X is called Q-Gorenstein. In this case,
there exists a positive integer m locally on X such that mK x is Cartier.

84.a. Kodaira dimension. Let f: Y — X be a generically finite morphism
of n-dimensional non-singular varieties. The sheaf Q% of germs of holomorphic
1-forms is locally free and the natural pullback homomorphism

ok — 0
is injective. By taking determinant, we have a natural injection f*wx — wy and
the ramification formula:
Ky ~ f*Kx + Rf.
The divisor Ry is effective and is called the ramification divisor of f. The support
Supp I coincides with the ramification locus that is the set of points of ¥ at which

f is not étale. If f is proper, then the induced homomorphism wx — fiwy is an
isomorphism into a direct summand since the composite

wx — fuwy — wx

with the trace map of f is the multiplication map by deg f. In what follows, we
shall write the ramification formula as Ky = f*Kx + Ry by replacing ~ with =,
because we can compare Ky and f*Kx in such a way that the difference remains
only over the ramification locus. Suppose that X and Y are compact and f is
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bimeromorphic. Then Ry is f-exceptional. Therefore, by the covering lemma|3.11]
we have k(Ky,Y) = k(Kx, X). In particular, if X; and X5 are mutually bimero-
morphically equivalent compact complex manifolds, then k(K x,) = k(Kx,). litaka
has defined the Kodaira dimension k(X) for a compact complex analytic variety
X as k(Ky,Y) for a compact complex manifold ¥ bimeromorphically equivalent
to X. Similarly, the m-genus P,,(X) for m > 1 is defined as h°(Y,mKy). Here,
Pi(X) is just the geometric genus py(X).

Remark (1) If X is singular, then k(X) < k(K x,X) and the equality
does not hold in general.
(2) We write the D-dimension of X explicitly by (D, X) when we must
distinguish it from the Kodaira dimension k(D) of a prime divisor D.
(3) If K(X) = dim X, then X is called of general type.

For a meromorphic fiber space f: X +— Y, we define k(X/Y) as k(K x; X'/Y")
for bimeromorphic morphisms X’ — X and Y’ — Y from compact complex
manifolds such that the induced X’ --— Y’ is holomorphic. Then we have the
easy addition formula: k(X) < k(X/Y) + dimY. If f is holomorphic, then
K(X/Y) = k(f~1(y)) for a‘general’ y € Y. If k(X/Y) = 0 and (X ) = dim Y, then
f is called an Iitaka fibration of X. An litaka fibration is bimeromorphic to @,k ,
for a compact complex manifold X’ bimeromorphic to X and for m € I(Kx).

If f: X =Y is a dominant proper generically finite meromorphic map, then
k(X) > k(Y) by the ramification formula. If f is holomorphic and étale in addition,
then k(X) = k(Y) by the covering lemma[3.11.

By the litaka fibration, the study of compact complex manifolds X with 0 <
k(X) < dim X is reduced to that of fiber spaces whose ‘general’ fiber is a compact
complex manifold with £ = 0. The Kodaira dimension is one of the most important
bimeromorphic invariant for the classification of compact complex manifolds. Here,
the following conjecture posed by litaka was considered as a central problem for
the bimeromorphic classification:

Conjecture (C, or Cy, ) Let f: X — Y be a fiber space of compact complex
manifolds with dim X = n, dimY = m. Then x(X) > k(X/Y) + k(Y.

This is sometimes called Iitaka’s addition conjecture. Iitaka proved C5 by
applying the classification theory of compact complex surfaces. Conversely, the
classification theory of surfaces is simplified if we can assume the conjecture to be
true. In fact, Ueno gave a proof of C5 without using the classification theory. There
are counterexamples to C, for n > 3 found by Nakamura. But C,, still is expected
to be true in case X belongs to the class C in the sense of Fujiki [18|. During
ten years from the middle of 1970’s, remarkable progress was made in the case of
projective varieties by Ueno, Viehweg, Fujita, Kawamata, and Kollar. We discuss
the details of the addition conjecture C,, in Chapter [V.

84.b. Logarithmic ramification formula.
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4.1. Definition A reduced divisor D of an n-dimensional non-singular variety
X is called a normal crossing divisor if D is locally expressed as div(z122 - - 2;) for
a local coordinate (21,22, -+ ,2,) and for some 1 < [ < n. This is called simple
normal crossing if furthermore every irreducible component of D is non-singular.
A meromorphic 1-form 7 is said to have at most logarithmic poles along D if locally
7 is expressed as

l dzZ n
1= w( Y

for holomorphic functions a;(z) = a;(z1,22,...,2,), in which D = div(z122- - 2;).
Such a form 7 is called a logarithmic 1-form along D. The sheaf of germs of
logarithmic 1-forms along D is denoted by Q% (log D). The p-th wedge product
N Q% (log D) is denoted by Q% (log D) and is called the sheaf of germs of logarith-
mic p-forms along D for p > 1.

Let D be a normal crossing divisor. For a generically finite morphism f: ¥ — X
from an n-dimensional non-singular variety, suppose that £ = (f*D),eq is also a
normal crossing divisor. Then the injection f*Q% < O extends to the injection

Q% (log D) — Q3 (log E).

The isomorphism det Q% (log D) ~ wx (D) = Ox(Kx + D) induces the logarithmic
ramification formula:

Ky +FE=f"(Kx + D)+ R,

where the effective divisor R is called the logarithmic ramification divisor. Note
that R = E— f*D+ Ry < Ry. In particular, if f is bimeromorphic, then any prime
component of R is f-exceptional.

litaka has introduced the logarithmic Kodaira dimension for open varieties.
An open variety is a complex analytic variety X together with its compactification
X as a complex analytic space in which X is a Zariski-open subset. Note that
there is an example of complex manifold X admitting two such compactifications
with different algebraic dimensions. If we consider only algebraic varieties (an
integral scheme of finite type over C), then we can take X as a complete algebraic
variety which is unique up to the bimeromorphic equivalence. The logarithmic
Kodaira dimension %(X) of the open variety X = (X, X) is defined as follows: Let
p:Y — X be a bimeromorphic morphism from a compact complex manifold such
that D := Y ~ p~!(X) is a normal crossing divisor. The existence of u follows
from Hironaka’s desingularization theorem. Then K(X) := k(K5 + D,Y). It is
well-defined by the logarithmic ramification formula. Iitaka proceeded the study of
birational classification of open algebraic varieties and posed a logarithmic version

C', m of the conjecture C,, ,,.

Remark In the definition %, we consider K x + D for a normal crossing divisor
D = > D, of a compact complex manifold X. Before litaka introduced &, Sakai
[123], [124] found a similar invariant related to the Q-divisor Kx + > (1 —e; ") D;
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for e; > 2 in the study of a higher-dimensional version of the Second Main Theorem
in the Nevanlinna theory.

The following generalization of logarithmic ramification formula is due to litaka
[45] Proposition 1, Part 2] which improves the proof by Suzuki [133]:

4.2. Theorem Let p: W — V be a generically finite morphism of non-singular
varieties of the same dimension, X C V a non-singular divisor, and Y C W a
reduced divisor such that p[*]X <Y. Let BCV and D C W be effective divisors
such that

(1) X + B is a reduced normal crossing divisor,
(2) Y + D is reduced,
(3) p~'(Supp B) C Supp D.
Then
Kw+Y +D=p"(Ky + X+ B)+R"
for an effective divisor R%.

PROOF. We may assume that X + B and p~'X U D are simple normal cross-
ing divisors and Y = pX. If Y = (p*X);eq, then R¥ is effective by the usual
logarithmic ramification formula. Thus it is enough to show multp R% >0 for any
p-exceptional prime component I' of p*X. Let P be a general point of I" such that
p(P) is a non-singular point of p(I"). Let (w1, ws,...,wy,) be a local coordinate
system of W at P and let (vi,vs,...,v,) be that of V at p(P). We may assume
that w is a defining equation of T at P, v; is a defining equation of X at p(P),
and that v2 = 0 on p(I'). Then we can replace coordinates so that p*v; = wf
and p*vy = wle for some k, I € N and for a holomorphic function & = (w) with
e(0,wa, ..., wy,) #0. Then

d d
p*(% Advg A ANdoy) = k% A (lwt e dw; +whde) Ap*(dos A--- Adwy,)
1 1
=kw' " dw; Ade A p*(dus A--- Adwy,)
=Y(w)dwy Adwa A+~ Adw,
for a holomorphic function ¢(w). Thus R¥ = div(¢)) > 0. O
We generalize the logarithmic ramification formula to the case of R-divisors:

4.3. Lemma Let f: Y — X be a generically finite morphism between non-
singular varieties of the same dimension. Let Ry be the ramification divisor of
f-

(1) Let A be an effective R-divisor of X such that Ayeq is a normal crossing
divisor and (A, = 0. Then the R-divisor

Ra = Ky — [*(Kx +A)
satisfies the following properties:
(a) 0< "Ra' < Ry;
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(b) multg f*(Area) = multy Ry + 1 for any prime component E of f*A
not contained in rRA1 .
(2) Let L be an R-divisor of X such that Supp(L) is a normal crossing divisor.
Then
Ky + f*'L' = f*(Kx + L") + "Ry
for the R-divisor R(_r, defined in (1).
PrOOF. (1) We may assume that A,eq and (f*A),eq are simple normal crossing
divisors. By the logarithmic ramification formula,
R:=Ky 4+ (f"A)rea — [ (Kx + Aved) = Ry + (f*"A)red — f*(Area)
= RA + (f*A)red - f*(Ared - A)
is effective. Hence Ra + (f*A)yeq is effective. If E is a prime component of f*A,
then
multg(Ra + (f*A)red) = multg R+ multg f*(Areqa — A) > 0.
Hence multgy Ra > —1. If further multy RA < 0, then multgy R = 0. Combining
with Ry = RA + f*A > Ra, we infer that Ra satisfies the expected properties.
(2) Let A be the R-divisor (—L). Since 'L’ = L + A, we have
Ky + f*L=f*(Kx + L") + Ra.
Hence (—f*L) = (~Ra) and "f*L' = f*L + (—Ra). Thus
KY+rf*L—|_f*(KX+rL_\>:I—RAT. |:|
We have the following variant:

4.4. Lemma Let p: W — V be a generically finite morphism of non-singular
varieties of the same dimension and let B be an effective R-divisor of V' such that
'B' is reduced and is a non-singular divisor.

(1) Let A be an effective R-divisor of V' such that A, =0 and Aveq + Bred
is a normal crossing divisor. Then, for the R-divisor

R% == Kw + p'B — p*(Kv + B+ A),

its round-up er is effective.
(2) Let L be an R-divisor of V' such that (L)yeq + Brea i a normal crossing
divisor. Then

Kw+p"B+ L' = p*(Kv + B+ L") + "RE )
for the R-divisor Rf&_m defined in (1).

PRrROOF. (1) We may assume that Aeq + Brea and (p*(A + B))req are simple
normal crossing divisors. By (4.2,

Kw + p[*]Bred + (p*A)red - P* (KV + Bred + A1red)
= R% + (P A)red — P (Area — A) — (p*(Brea — B) — P[*] (Brea — B))



4. CANONICAL DIVISOR 59

is an effective divisor. Hence R¥ + (p*A)yeq is effective. For any prime component
E of p*A, we have multg p*(Aeq — A) > 0. Thus '_Rﬁj > 0.
(2) We set A = (—L). Then 'L' = L + A and

Kw +p"B+p*L = p*(Ky + B+ L") + R.
Hence (—p*L) = (—R%) and "p*L' = p*L + (—R%). Thus

84.c. Terminal, canonical, and log-terminal singularities. Let f: Y —
X be a bimeromorphic morphism from a non-singular variety into a normal Q-
Gorenstein variety. Then we can write

Ky = f"Kx + ZaiEi
for f-exceptional prime divisors F; and for a; € Q.

4.5. Definition (Reid [113], [114]) A germ (X, z) of a normal Q-Gorenstein
variety is called a canonical singularity if there is a bimeromorphic morphism
f:Y — X as above over a neighborhood of x such that a; > 0 for all i. The
germ (X, z) is called a terminal singularity if a;, > 0 for all 7.

Note that a non-singular germ is a terminal and canonical singularity.

Remark If a normal variety X has only terminal (resp. canonical) singulari-
ties, then, for any bimeromorphic morphism f: Y — X from a non-singular variety,
a; > 0 (resp. a; > 0 ) in the formula: Ky = f*Kx + Y a;E;. This follows from
the relative Chow lemma [41] and the ramification formula.

4.6. Definition Let (X,A) be a pair of a normal variety and an effective
R-divisor. It is called log-canonical if the following conditions are satisfied:
(1) Kx + A is R-Cartier;
(2) There exist a bimeromorphic morphism f: Y — X from a non-singular
variety and a normal crossing divisor F = > E; on Y such that
(a) E contains the f-exceptional locus and f~*(Supp A),
(b) a; > —1 for any ¢ in the formula:

Ky = f*(Kx +A) +ZaiEi-

The pair (X, A) is called log-terminal if further a; > —1 for any 7 in the condition
above.

Remark If (X, A) is log-terminal (resp. log-canonical), then a; > —1 (resp.
a; > —1 ) hold for all ¢ for any bimeromorphic morphism f:Y — X from a non-
singular variety such that the union of the f-exceptional locus and f~!(Supp A) is
a normal crossing divisor E = > E;. This follows from the logarithmic ramification

formula (cf.[4.3).
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The germ (X, A,z) for the pair (X,A) and for a point z € X is called a
log-terminal (resp. log-canonical) singularity if (U, A|y) is log-terminal (resp. log-
canonical) for an open neighborhood U of z. If (X, A) has only log-terminal (resp.
log-canonical) singularities, then (X, A) is log-terminal (resp. log-canonical). If
(X, A) is log-terminal, then X has only rational singularities: R f.0y = 0 for
i > 0 for a bimeromorphic morphism f: Y — X from a non-singular variety (cf. [61,

1-3-6],[VIT/1.1).

84.d. Bimeromorphic pairs. As an analogy of birational pair defined by
Titaka [45], we shall introduce the notion of bimeromorphic pair. A bimeromorphic
pair consists of a normal complex analytic variety V' and an effective R-divisor B
of V such that "B is reduced. We denote the bimeromorphic pair by the symbol
V&B. A morphism p: W&C — V&B of bimeromorphic pairs is defined to be a
morphism p: W — V such that C > p)B. If p: W — V is a bimeromorphic
morphism and if V', W, B, and C are all non-singular, then

H(V,m(Kyv + B)) — H (W, m(Kw + C))

is an isomorphism for m > 0 by Hence H(V, m(Ky + B)) is a bimeromorphic
invariant for the bimeromorphic pair V&B. If V' is compact, then its dimension
P,,(V&B) = h°(V,m(Ky + B)) is called the m-genus of V&B.

4.7. Definition A bimeromorphic pair V& B is called canonical if the following
two conditions are satisfied:

(1) Ky + B is R-Cartier;
(2) For any bimeromorphic morphism p: W — V from a non-singular variety,
Kw +p"B = p*(Kv + B) + R®
for an effective R-divisor R¥.

A canonical bimeromorphic pair V&B is called terminal if, in the second condition
above, multz R¥ > 0 for any p-exceptional prime divisor E.

For a point z € V, the germ (V&B, z) is called a canonical (resp. terminal)
singularity if U&(B|y) is canonical (resp. terminal) for an open neighborhood U
of z. By definition, if V&B is canonical, then (V| B) is log-terminal. If V&B is
canonical, then H°(V, /m(Ky 4 B),) is a bimeromorphic invariant.

4.8. Definition Let V&B be a bimeromorphic pair and let A be an effective
R-divisor of V" having no common prime component with B. The symbol (V&B, A)
is called log-terminal if the following conditions are satisfied:

(1) Ky + B + A is R-Cartier;
(2) For any bimeromorphic morphism p: W — V from a non-singular variety
and for the R-divisor

R% = Kw + pM B — p*(Kv + B+ A),

. r 1. .
its round-up R% is effective.
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By definition, (V&B, A) is log-terminal if and only if (V& B, (B)+A) is log-
terminal. If Ky + B+ A is R-Cartier and if there exists a bimeromorphic morphism
p: W — V such that pl*!B,.q is non-singular and '—R%—' above is effective, then
(V&B, A) is log-terminal, by

Remark The condition: (V&B, A) is log-terminal is equivalent to the condi-
tion: (V, B+ A) is purely log terminal (plt) in the sense of [132] and [74].

The following properties are proved in [132] and [74]:
4.9. Lemma Suppose that (V&B, A) is log-terminal. Then:
(1) B, is normal;

(2) For any component X of B,, there is a natural effective R-divisor Ax
such that (Ky + B+ A)|x ~g Kx + Ax and (X, Ax) is log-terminal.

In the following proof, we use some notation and results discussed in later sections.

PROOF. There is a bimeromorphic morphism p: W — V from a non-singular
variety such that pfl(B U A) is a normal crossing divisor and p[*] Bieq is a non-
singular divisor. Let us consider the R-divisor

RS = Ky + pM B — p*(Ky + X + A)
and Y = pll( B)) = L,0[*]BJ. Then f(Y) = _B,. Let R be the p-exceptional
effective divisor FR‘X—l (cf.[4.4) and set
Aw = (~RK) +o(B).
Then
R-Y — (Kw +Aw) = —p"(Ky + X + A)

is p-numerically trivial. Thus R'p.Ow (R —Y) = 0 by [5.12 below. Furthermore,
we have the surjection

Ov ~ p.Ow ~ p.Ow(R) — p.Oy (R).
In particular, B, is normal by
OLB_I ~ p, Oy =~ p,Oy(R).
For the proof of (2), we may assume X = B, is irreducible. We set Ay :=
Awly. Then Ay, =0, (Ay)req is a normal crossing divisor of Y,
Rly — (Ky + Ay) = —=(p"(Kv + B+ A))ly,

and Rly is p|y-exceptional. Hence for the push-forward Ax := p.Ay, we infer
that Kx + Ax is an R-Cartier divisor R-linearly equivalent to (Ky + B + A)|x
and that

Ky = (ply)"(Kx + Ax) + R|ly — Ay,
in which '—R\y —Ay' = Rly is effective. Thus (X, Ax) is log-terminal. O

Remark In 5.1, we shall prove a kind of inverse to [4.9.
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85. Numerical properties of divisors

85.a. Ample and nef cones. Let X be an n-dimensional normal projective
variety. Let NS(X) be the Néron-Severi group and let N*(X) be the real vector
space NS(X)®R. If X is non-singular, then N*(X) is isomorphic to the vector sub-
space in H? (X, R) generated by the first Chern classes of all the invertible sheaves.
The dimension dimg N*(X) is called the Picard number of X and denoted by p(X).
Let ¢; (D) denote the image of an R-Cartier divisor D under CDiv(X,R) — N*'(X).
Note that ¢1 (D) = 0 if and only if D-C = 0 for any irreducible curve C. If D1 — Dy
is an R-Cartier divisor with ¢1(D; — D3) = 0, then two R-divisors Dy and D are
called numerically equivalent. The numerical equivalence relation is denoted by
D1 &8 Dy. An R-Cartier divisor D of X is called nef if D-C > 0 for any irreducible
curve C C X. The nef cone Nef(X) C N'(X) is the set of first Chern classes
¢1(D) of nef R-Cartier divisors D of X. This is a strictly convex closed cone. The
dual space N (X) of N'(X) is considered as the real vector space generated by the
numerical equivalence classes of all the algebraic 1-cycles of X. Let NE(X) be the
cone of the numerical equivalence classes of effective 1-cycles and let NE(X) be
the closure in Ny (X) (cf. [86]). Kleiman’s criterion [64] asserts that NE(X) and
Nef(X) are dual to each other and that a Cartier divisor A is ample if and only
if ¢1(A) is contained in the interior of Nef(X). The interior Amp(X) is an open
convex cone and is called the ample cone. Its closure is Nef(X). An R-Cartier
divisor D is called ample if ¢;(D) € Amp(X).

5.1. Lemma Let C' be a convex cone of a finite-dimensional real vector space
V' such that C' generates V' as an R-module. Let C' be the closure of C in V. Then
the interior Int C' is contained in C. If V = L QR for a finitely generated abelian

group L C V, then
It €= ZwELﬁIntC R>Ow.

PrOOF. Let U be an open neighborhood of 0 in V' and let v be a vector con-
tained in Int C. We can find vectors wi, ug, ..., 4, € U such that v+u; € C for all
i and {uy,uz,...,u,} is a basis of V. There is also a vector u = Y r;u; such that
r; > 0 for all 4 and v — u € C. The vector v + Au is contained in C'if A )" r; = 1.
Hence (A+1)v = A(v—u) + (v+Au) € C. Thus Int C = Int C. Let {e1,ea,...,e,}
be a basis of L. Then any v € V is written uniquely by v = Y a;e; for a; € R.
We define (v, by > a;,¢e;. For v € Int C, there is a positive integer m such that
U = 1w, € Int C and v, + ne; € Int C for all 4. Then

mv = E Zi:1<mai>(vm +ne;) + (1 1 Zi:1<mai>>vm. O

n n

5.2. Corollary Let A be an ample R-divisor of a mormal projective variety.
Then A = Y sjH;, for some ample Cartier divisors H; and s; € Rsq. In other
words, Amp(X) is generated by c1(A) for ample Cartier divisors A of X.

5.3. Lemma Let f: X — Y be a generically finite surjective morphism between
n-dimensional normal projective varieties and let D1 and Dy be R-divisors of X.
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If D1 ® Do, then
Ly-Ly-- Ly 1-fiDy=Ly-Ly--Ly_1- fuDo

for any Cartier divisors Ly, Lo, ...Ly_1 of Y. If Y is non-singular, then f.D, &
f*DQ-

PROOF. Let D be a divisor of X and let H be a general very ample divisor of
Y. Then H and T = f*H are also normal and f.Ox (D) ® Og ~ (f|1)«Or(D|r).
In particular, (f.D)|g = (f|17)«(D|r). Therefore, for general very ample divisors
Ay, As, ... A1 of Y we have the equality

Ay-AgeApoy - fD = [*Ay - f*As-o f*Auy - D.

In fact, this is shown in the case f is bimeromorphic and in the case X and Y are
non-singular. The equality in general case is reduced to these cases by a standard
argument. Since any Cartier divisor is expressed as a linear combination of ample
divisors, the first assertion is proved. Next, suppose that Y is non-singular. Then,
for the divisor C = f.D; — f. D2, we have

C'An71 202.An7220
for any ample divisor A. Then C' & 0 by the Hodge index theorem. O

85.b. Big and pseudo-effective cones. Suppose that X is a non-singular
projective variety. Let Eff(X) C N'(X) be the subset consisting of ¢;(D) of all
effective R-divisors D. It is called the effective cone. The closure of Eff(X) is
denoted by PE(X) and is called the pseudo-effective cone. The interior of PE(X)
is denoted by Big(X) and is called the big cone. Note that Amp(X) C Big(X) C
Eff(X) by 5.1 and Nef(X) C PE(X).

5.4. Lemma Let X be an n-dimensional non-singular projective variety and
let B be an R-divisor on X. Then the following conditions are mutually equivalent:
(1) e1(B) € Big(X);
(2) For any ample divisor A, there exist a positive rational number § and an
effective R-divisor A such that B ~g dA + A;
(3) There exists an effective R-divisor A such that B — A is ample;
(4) B is big.

PROOF. (2) = (3) is trivial. = is done in[3.16.

(1) = (3): By applying 5.1 to C' = Eff(X), we infer that ¢;(B) € Int Eff(X).
Thus for an ample divisor A, there exist a positive number § and an effective R-
divisor A such that ¢;(B — 0A) = ¢1(A). Hence B — A is ample.

(3) = (@): For the ample R-divisor A := B— A, let U be an open neighborhood
of 0 in Nl(X) such that D+ A is ample for any R-divisor D with ¢;(D) € U. Then
B+U C PE(X).

(3) = (4): There is a positive integer mg such that A := meB — mpA, is an
ample divisor. There is a positive integer k such that [iB+kA| # 0 for 0 < i < my.
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For m > mg, we have
mB+ kA= m/mqy, (A+ moA) +mo{m/mg)B + m/mg,(moB — moA) + kA.
Hence, there is an injection
Ox( m/mg,A) — Ox( mB, +kA),
which induces the inequality
h(X, m/mo, A) < (X, mB, + kA) <h°(X, (m+ kmo)B,).
Hence k(B) = n, since h(X, mA) is a polynomial of degree n for m > 0. O

5.5. Definition An R-divisor D of a normal projective variety X is called
pseudo-effective if there exist a birational morphism p: Y — X from a non-singular
projective variety and an R-divisor D’ of Y such that ¢;(D’) € PE(Y) and u.D’ =
D.

An R-divisor is pseudo-effective if and only if D + A is big for any ample R-divisor
A.

5.6. Lemma Let f: Y — X be a surjective morphism of non-singular projec-
tive varieties and let D be an R-divisor of X.

(1) Suppose that f is a generically finite morphism. Then f*D is big if and
only if so is D.
(2) The pullback f*D is pseudo-effective if and only if so is D.

PRroOF. It is enough to show the ‘only if’ parts.

(1) If f*D is big, then there exist an ample divisor A of X, an effective R-
divisor A on Y, and a positive number k such that kf*D ~g f*A + A. Then, by
taking f., we have k(deg f)D ~q (deg f)A + f+A. Thus D is big.

(2) If f is a generically finite morphism, then this is derived from (1) above.
Thus we may assume that dimY > dim X. Let H C Y be a ‘general’ hyperplane
section. Then the restriction f*(D)|x is also pseudo-effective. Thus we can replace
the situation to f|g: H — X. Therefore, by induction on dimY’, we can conclude
that D is pseudo-effective. O

If D is pseudo-effective, then the intersection number D-A-As - -+ A,,_1 is non-
negative for any ample divisors Ay, A, ..., A,_1. If n = 2, then an R-divisor D
is pseudo-effective if D - A > 0 for any ample divisor A of X. This is a consequence
of Kleiman’s criterion [64]. However, D is not necessarily pseudo-effective even if
D-A;-Ay---A,_1 >0 in the case n > 3.

5.7. Example Let X — P? be the blowing-up at a point, E the exceptional
divisor, and F a fiber of the induced P!-bundle structure X — P!, Let p: P — X
be the P1-bundle associated with the vector bundle O(F) @ O(E) and let H be the
tautological divisor. For an R-divisor D of X, we have the following properties by
2.6:
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(1) p*D + H is nef if and only if D — F' is nef (Note that D+ E and D + F
are both nef if and only if D — F is nef);
(2) p*D+ H is pseudo-effective if and only if there is a real number 0 < s <1
such that D + (1 — s)F + sFE is pseudo-effective.
Consequently, the divisor p*(—2F) + H is not pseudo-effective. But (p*(—2F) +
H)A Ay > 0 for any ample divisors Ay, Ag of P.

5.8. Remark Let W be a compact complex analytic variety. An R-Cartier
divisor of W is defined as an R-linear combination of Cartier divisors of W. An
R-divisor D is called pseudo-effective, nef, big, or ample, according as v*D is so,
for the normalization v: V. — W. Let X be a non-singular projective variety, D
an R-divisor, and W a closed subvariety of X. Suppose that W ¢ Supp D. Then
we can define the restriction D]y, as an R-Cartier divisor. If D is effective, then
Dlw is effective. Next, suppose that W C Supp D. Then D|y is defined only as
an R-Cartier divisor class of W. Even though, we can say D|y is pseudo-effective,
nef, big, or ample if v*(D|w ) is so as an element of CCL(V,R).

85.c. Vanishing theorems. Let X be a compact Kahler manifold of dimen-
sion n. An invertible sheaf H of X is called positive if it admits a Hermitian metric
with positive Ricci curvature form. Then we have the following results:

(1) (Kodaira vanishing theorem [67]) H? (X,wx ® H) =0 for p > 0.
(2) (Kodaira’s embedding theorem [68]) X is projective and H is ample.
(3) (Akizuki-Nakano vanishing theorem [1]) HY(X, Q% @ H) = 0 for p+¢ > n.

The Kodaira vanishing theorem is generalized to the following form by Kawa-
mata [51] and Viehweg [146] independently.

5.9. Theorem Let X be a non-singular projective variety and let D be a nef
and big R-divisor of X. Suppose that Supp(D) is a normal crossing divisor. Then
HP(X,Kx + 'D") =0 for any p > 0.

Their proofs need some covering tricks. Viehweg has prepared the following
lemma on cyclic coverings (cf. [147]).

5.10. Lemma Let D be a Q-divisor of a non-singular variety X such that
Supp(D) is a normal crossing divisor and rD ~ 0 for an integer r > 1. Let
i: Ox(—rD) — Ox be an isomorphism. ThenY = Specan A is normal with only
quotient singularities over Sing Supp(D) for the Ox-algebra

r—1
A= @mzo OX( —mD,)

defined by i. Here, 7D 1is a Cartier divisor linearly equivalent to zero and there
are isomorphisms

r—1 r—1
TeWy =~ @m:O Ox(Kx + 'mD'"), 71.0y(ar*D) ~ @ Ox((a—m)D,)

m=0

for a € Z and for the structure morphism 7:' Y — X.
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By composing cyclic coverings, Kawamata [50] has obtained a Kummer cov-
ering from a non-singular variety which changes a Q-divisor to a Z-divisor. His
argument is also effective also for non-algebraic cases:

5.11. Lemma ([50, Theorem 17] (cf. [98])) Let Dy, Ds, ..., Dy be non-
singular prime divisors of a non-singular variety X and let my, mo, ..., mg be
integers greater than 1. Suppose that Zle D; is a stimple normal crossing divisor
and X is a weakly 1-complete manifold with a positive line bundle. Then, for a
relatively compact open subset U C X, there is a finite Galois morphism 7: Y — U
from a non-singular variety such that 7*(D;|y) = m; D} for divisors D} of Y.

PROOF OF[5.9. There is an effective divisor A such that D — eA is ample for
0 <e< 1. Let u: X’ — X be a birational morphism from a non-singular projective
variety such that the union of the u-exceptional locus and ! A is a simple normal
crossing divisor. We may assume that there is a u-exceptional divisor E with —F
being p-ample. Hence D' = p*(D — eA) — ¢’F is ample and 'D"" = "u*D" for
0 <& < e. We have

/J’*OX'(KX' + ,_,U/*D—l) ~ OX(KX + ,_D—l)

by[4.3+(2). Hence we may assume that D is ample from the beginning. Further, we
can assume that D is a Q-divisor since (1/m) mD, is ample and "(1/m) mD," =
'D' for m > 0. Replacing X by a blowing-up of X and applying [4.3}(2), we may
also assume that Supp(D) is a simple normal crossing divisor. Let 7: Y — X
be a finite Galois morphism from a non-singular projective variety obtained by
such that 7*D is a Cartier divisor. Then 7,0y (—7*D) contains Ox(,—D,)
as the direct summand corresponding to the invariant part of the Galois action.
Thus 7,wy (7* D) contains wx('D') as a direct summand. Hence the vanishing for

wx("D") follows from the Kodaira vanishing for wy (7* D). O

The following variant is proved in [98] by Nakano’s vanishing theorem [95] for
weakly 1-complete manifolds and by [5.11t

5.12. Corollary Let f: X — S be a projective morphism from a non-singular
complex analytic variety and let D be an R-divisor of X. Suppose that D is f-nef
and f-big and that Supp(D) is a normal crossing divisor. Then, for p > 0,

R? f.Ox(Kx + 'D')=0.

It induces the Grauert—Riemenschneider vanishing theorem [30].
We insert the following application of Kodaira’s vanishing theorem:

5.13. Lemma Let P be a nef and big R-divisor of a non-singular projective
variety X of dimension n such that Supp(P) is a normal crossing divisor. Then

lim
m—oo mn—1

h'(X, mP,) =0.
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Proor. Byl2.11] we can replace X by a blowing-up and P by the total trans-
form. Thus, we may assume that there exist an effective divisor A and a positive
integer mg such that

(1) Supp A U Supp(P) is a simple normal crossing divisor,
(2) mP, — A — Kx is ample for any m > my.

Hence H' (X, mP, — A) = 0 by Kodaira’s vanishing theorem. In particular, we

have h*(X, mP,) <h'(A,Oa(mP,)). It is enough to show that

1
lim ——h'"(E,L® Op(,mP,)) =0
m—oo MmN~
for any prime component F of A and for any line bundle £ of E. There is an ample
effective divisor H of X such that

L+ l_mPJ|E+H|E7KE

is ample for any m > 0, since P is nef. Thus H(E,£L ® Og( mP, + H)) = 0 by
Kodaira’s vanishing theorem. Hence

hW'(E,L® Op(mP,)) <h(ENH,LQ Opnu( mP, + H)),

which is bounded by a polynomial of m of order at most n — 2. O

§5.d. Relative numerical properties.

5.14. Definition Let 7: X — S be a projective surjective morphism from a
normal complex analytic variety and let W C S be a subset. An R-Cartier divisor
D of X is called w-ample, m-nef , and w-numerically trivial over W if D|x_ is ample,
nef, and numerically trivial for any s € W, respectively, where X, = 77 1(s). It is
also called relatively ample, relatively nef, or relatively numerically trivial over W.
If W =5, we drop the phrase ‘over S.’

5.15. Lemma Let 7: X — S be a proper surjective morphism from a normal
complex analytic space and let D be an R-Cartier divisor on X.

(1) Suppose that 7 is projective. If D is w-ample over a point s € S, then
there is a Zariski-open neighborhood U C S over which D is w-ample.

(2) Suppose that 7 is projective. If D is w-nef over a point s € S, then there
is a countable union W of proper Zariski-closed subsets of S such that
s €W and D is w-nef over S~ W.

(3) Suppose that S is connected and 7 is a smooth morphism whose fibers
are bimeromorphically equivalent to projective analytic spaces. If D is
w-numerically trivial over a point s € S, then D is m-numerically trivial.

(4) Suppose that 7 is a projective morphism. For a point s € S, there is a
Zariski-open subset U C S containing s having the following property: If
an R-Cartier divisor of X is m-numerically trivial over the point s € S,
then it is w-numerically trivial over U.
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ProOOF. (1) Let D; (1 <1i <) be a finite number of Q-divisors of X such that
D; is m-ample over s for any i and D = ) s;D; for some positive real numbers
s; (cf.5.2). Since the ampleness is an open condition, we can find a Zariski-open
neighborhood U; C S such that D; is m-ample over U;. Thus D is m-ample over
N U.

(2) Let A be a m-ample invertible sheaf. By (1), for any positive integer m,
there is a Zariski-open neighborhood U,,, C S of s such that mD|x, +.A|x, is ample
for any s € Uy,,. We can take W to be the complement of (| Up,.

(3) The real first Chern class ¢;(D) is an element of H*(X,R). Let ¢ be the
image under H?(X,R) — H°(S,R? 7,Rx). Now R? 7, Rx is a locally constant sheaf
whose stalk at s is canonically isomorphic to H? (Xs,R). Thus ¢; = 0 implies ¢ = 0.
This means that D is m-numerically trivial.

(4) Let X9 — X be a bimeromorphic morphism from a non-singular space
obtained by Hironaka’s desingularization [40] and let my be the composite Xy —
X — S. Let Sy C S be an analytic subset such that dimS; < dim.S and mg is
smooth over S~ S;. Let X1 — ng(Sl) be a proper surjective morphism from a
non-singular analytic space obtained by Hironaka’s desingularizations of irreducible
components of 1(S1). We can define inductively a sequence of analytic subsets

52503513“-3513514,_1,

proper surjective morphisms 7;: X; — S;, and proper surjective morphisms X; —
7, 5 (S;) for 1 < i <1 satisfying the following conditions:

dim; S; < dim; S;_1 for any t € S;;

s €S~ Sl+1;

m; is smooth over S; N\ S;y1;

m; is isomorphic to the composite X; — w[_ll(Si) — S;;

e 7; is, locally on S;, bimeromorphic to a projective morphism.

Let C be a connected component of S; ~ ;1 for i < [ such that s ¢ C. Note
that C is an analytic subset of S. Let U C S be the Zariski-open subset whose
complement is the union of all such C for all i above and of Sj.

Let A be a m-ample invertible sheaf of X and let D be an R-divisor of X which
is m-numerically trivial over s. For any integer m € Z, there is a Zariski-open
neighborhood U,, of s such that mD + A is m-ample over U,,. Hence the set 3(D)
of points over which D is m-numerically trivial is a countable intersection of Zariski-
open subsets. Since X(D) is dense, (S; \ Si+1) N X(D) # 0 for any i. Therefore,
U C (D) by (3). O

5.16. Definition Let 7: X — S be a locally projective morphism. An R-
divisor D of X is called w-big or relatively big over S if there exist an open covering
S = [J Sy, Cartier divisors Ay of X, := 7~ 1(S)), and positive integers m, such
that Ay is w-ample over S and

maOx, (maD,|x, — Ax) #0,
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for the restriction my: Xy — Sy of 7. An R-divisor D is called w-pseudo-effective
or relatively pseudo-effective over S if there exist an open covering S = |J.S) and
my-ample Cartier divisors Ay of X such that D|x, +eA, is ma-big for any ¢ > 0.

Let B be an R-divisor of X and set d := dim X — dim S. Then the following
conditions are mutually equivalent by the same argument as
(1) B is 7-big;
(2) There exist integer my and a positive number C' such that

rank 7,Ox (mB,) > Cm?

for m > my;
(3) limy,—oo m~drank m,.Ox( mB,) > 0.
If there is a m-ample invertible sheaf A, then the following condition also is equiv-
alent to the conditions above:

(4) m.(Ox(mB,) ® A™1) # 0 for a positive integer m.
We can define the notion of m-bigness also for the case 7 is not locally projective

by the properties above. If a w-big R-divisor exists, then, locally over S, 7 is
bimeromorphic to a projective morphism.

5.17. Corollary An R-divisor D of X is w-big (resp. m-pseudo-effective) if
and only if, for any component F of a ‘general’ fiber, D|p is big (resp. pseudo-
effective).

Remark (1) If D is m-nef over a point, then it is m-pseudo-effective, by
5.15

(2) If 7 is generically finite, then every R-divisor is 7-big.

(3) If a projective morphism 7 is the composite of two surjective morphisms
f: X =Y and g: Y — S of complex analytic varieties, then every m-big
divisor is f-big and every m-pseudo-effective divisor is f-pseudo-effective.
Moreover, if g is generically finite, then D is mw-big (resp. w-pseudo-
effective) if and only if D is f-big (resp. f-pseudo-effective).

5.18. Example On deformation of divisors, pseudo-effectivity and bigness
are not open conditions: Over the projective line P!, let us consider the group
Extpi (O, O(—2)) ~ C of extensions:

0—-0(-2)—=&—-0—0.

If the extension is non-trivial, then & ~ O(—1) ® O(—1). Therefore, we can con-
struct a family of ruled surfaces 7: X — P! x C — C and a Cartier divisor H of X
such that
(1) Xy := m1(t) is isomorphic to P! x P* for t # 0,
(2) Xo=P(O®O(-2)),
(3) fort # 0, the restriction Hy := H|x, is linearly equivalent to ¢; — o, where
¢; is a fiber of the i-th projection X; — P!,
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(4) the restriction Hy := H|x, is linearly equivalent to the negative section
of the ruled surface Xq — P!.
Thus Hj is pseudo-effective and H; is not pseudo-effective for ¢ # 0. Let I be a
fiber of X — P! x C — P'. Then (H + xF)|x, is big for x > 0 and (H + 2 F)|x, is
not big for any x < 1.

Let 7: X — S be a projective surjective morphism of complex analytic spaces
and let W be a compact subset of S. Let Z; (W) be the free abelian group generated
by the irreducible curves v C X with () being a point of W. For an open
neighborhood U of W, we have the intersection pairing

Pic(r~Y(U)) x Z1(W) > (L,y) — L -y € Z.

If £-y = 0 for any v € Z; (W), then £ is w-numerically trivial over W. Let A(U, W)
be the quotient group of Pic(7~1U) by the m-numerical trivial relation over W. We
define B

AYX/S; W) = lim AU, W),
where U runs through all the open neighborhoods of W. This definition coincides
with that in [98, 4.1]. We also define N*(X/S; W) := A'(X/S; W) ®R. We correct
the statements [98)] 4.3, 4.4] as follows:

5.19. Lemma Suppose that W N'Y has only finitely many connected compo-
nents for any analytic subset Y defined over an open neighborhood of W. Then
AY(X/S; W) is a finitely generated abelian group.

PROOF. Let S = Sy D S1 D -+ and m;: X; — 5; be the objects constructed
in the proof of [5.15-(4)). Let W; ; for 1 < j < k; be the connected components of
W N S;. We choose a point w; ; € W; j \ Si1 for (4,5) with W, ; ¢ Sip1. It is
enough to show that

AN(X/S; W) — EDNS(m; H (wi 5))/ (tor)

is injective. For a line bundle £ on 71U for an open neighborhood U of W, assume
that £ is m-numerically trivial over all w; ;. Then L is m-numerically trivial over
Ui,j \ Si41 for the connected component U; ; of S; NU containing w; ;. Note that
WnS; U, Ui, Therefore, £ is m-numerically trivial over W = J, W N S;. O

Assume that the compact subset W C S satisfies the condition of [5.19. Then
we can define the relative Picard number p(X/S; W) to be the rank of A'(X/S; W).
We can consider similarly several cones such as: the m-ample cone Amp(X/S; W),
the m-nef cone Nef(X/S;W), the m-big cone Big(X/S;W), and the m-pseudo-
effective cone PE(X/S; W), over W. Let A;(X/S; W) be the image of

Z1 (W) — Hom(AY(X/S; W), Z)

given by the intersection pairing. We set N1 (X/S; W) := A;(X/S; W) @ R and let
NE(X/S; W) be the set of the numerical equivalence classes of effective 1-cycles con-
tracted to points of W. Then the following Kleiman’s criterion holds: Nef(X/S; W)
and the closure NE(X/S; W) of NE(X/S; W) are dual to each other (cf. [98, 4.7]).
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Even if the compact set W does not satisfy the condition of [5.19, we can con-
sider another abelian group A'(X/S; W) similar to A(X/S; W) above as follows:
For a while, let W be a subset of S. A coherent sheaf F of X is called invertible over
W if the restriction to 71U is an invertible sheaf for some open neighborhood U of
W. A homomorphism F; — F3 of coherent sheaves of X is called an isomorphism
over W if the restriction to 71U is an isomorphism for an open neighborhood U of
W. We define ﬁl\C(X ; W) to be the set of coherent sheaves of X which are invertible
over W, modulo the isomorphisms over W. Then ISI\C(X ; W) has an abelian group
structure by the tensor-product and the restriction map ﬂ:(X ;W) — Pic(r~H(w))
is a homomorphism for w € W. Let n’: X’ — S be another projective surjec-
tive morphism from a normal variety. A meromorphic map ¢: X’ +— X over S
is called a morphism over W if p: 7/71U — 771U is a morphism over U for an
open neighborhood U of W. In this situation, we have the pullback homomorphism
p*: ISi\c(X; W) — P/’i\c(X’; W'). If ¢ is dominant, then ¢* is injective, and if p* is
isomorphic in addition, then ¢ is an isomorphism over an open neighborhood of W.
We have the natural intersection pairing P/’i\c(X; W) x Z1(W) — Z, where Z1(W)
is the free abelian group generated by the curves of X contracted to points of W.
Let AY(X/S; W) be the quotient of lgi\c(X; W) defined as the image of

Pic(X; W) — Hom(Z, (W), Z).

5.20. Lemma If W is a compact subset, then Al (X/S; W) is a finitely gener-
ated abelian group.

PROOF. Let S =859 D51 D---and m;: X; — S; be the objects constructed in
the proof of [5.15-(4). We have an injection

A\l(X/S,W) — @'>O A\l(Xz AN Wi_lsH_l/(Si AN Si+1);W n Sz AN Si+1).

Since W N S; is compact, we may assume that S; has only finitely many connected
components. Therefore, the target of the injection above is a finitely generated
abelian group by 5.15F(3). O

We can define another candidate p(X/S; W) for the relative Picard number over
the compact subset W as the rank of A'(X/S; W). We can consider similarly several
cones in the vector space N'(X/S; W) := AY(X/S; W) ® R such as: the m-ample
cone m(X/S; W), the m-nef cone D/Te\f(X/S;W), the 7-big cone Ei\g(X/S; W),
and the m-pseudo-effective cone P/’I\E(X/S; W), over W. Let A;(X/S; W) be the
image of

Zy(W) — Hom(A'(X/S; W), Z)
given by the intersection pairing. We set ﬁl(X/S; W) = A, (X/S;W)®R and let
@(X /S; W) be the set of the numerical equivalence classes of effective 1-cycles
contracted to points of W. Then Kleiman’s criterion also holds: ﬁe\f(X /S; W) and

the closure ﬁ(X/S; W) of NE(X/S; W) are dual to each other.
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We can consider the relative minimal model program by applying NE (X/S;W).
For example, if F is a coherent sheaf of X invertible over W and if F is m-semi-
ample over W, the/n\ some positive multiple of F is the pullback of a relatively
ample element of Pic(X"”;W) by a meromorphic map X --— X" over S which
is a morphism over W. In fact, there exist an open neighborhood U of W and a
positive integer k such that F is invertible over U and 7*7, F®*F — F®* is surjective
over 7~ 'U. Tt induces a meromorphic map X -— Ps(ﬂ*f®k) over S, which is
holomorphic over U, and F®* is considered as the pullback of the tautological line
bundle.

86. Algebraic cycles

8§6.a. Chow groups. Let X be an n-dimensional non-singular projective va-
riety. Let CH'(X ) denote the Chow group of algebraic cycles of codimension ¢ > 0.
There is a homomorphism cl: CH (X) — H*(X,Z) called the cycle map. Here
CH'(X) ~ Pic(X) and the cycle map CH'(X) — H?*(X,Z) is induced from the
connecting homomorphism H*(X, o%) — H?(X,Z) of the exponential exact se-
quence of X. A cycle is called homologically equivalent to zero if it goes to zero by
the composite CH'(X) — H*(X,Z) — H*(X,Q). Let N*(X) ¢ H*(X,R) be the
real vector subspace generated by the image cI(CH*(X)). By the Poincaré duality,
the vector subspace N;(X) C Hy;(X,R) generated by algebraic cycles of dimension
i is isomorphic to N”~*(X). The cup product of H*(X,R) induces the intersection
homomorphism N*(X) x N/(X) — N“*(X), which is compatible with the ring
structure of the Chow ring CH®*(X) = @ CH'(X). A cycle ¢ of codimension i
is called numerically trivial or numerically equivalent to zero if ¢ - n = 0 for any
n € CH" *(X). By the trace map H*"(X,R) ~ R, two vector spaces H* (X, R) and
H?"~2(X,R) are dual to each other by the intersection pairing. However, it is still
conjectural that N*(X) and N"~*(X) are dual to each other. This is equivalent to
saying that the numerical equivalence and the homological equivalence on CHi(X )
coincide. For i = 1, it is true by H*(X,Q) nH*'(X) = NS(X) ® Q.

6.1. Definition An algebraic R-cycle of codimension k is a finite R-linear
combination ¢ = Y ¢;W; of subvarieties W; of codimension k. The R-cycle ( is
called effective if all the coefficients ¢; are non-negative. We call ¢; the multiplicity
of ¢ along W; and denote ¢; = multy, . For cycles (i, (2 of codimension ¢, both
of the relations (; > (5 and (» < (3 indicate that {; — (o is effective.

6.2. Definition Let Eff*(X) c N*(X) be the cone of the cohomology classes
of effective algebraic R-cycles of codimension k. The closure PE*(X) is called the
pseudo-effective cone of algebraic cycles of codimension k. Note that PE" (X)) =
NE(X). An algebraic R-cycle ¢ is called pseudo-effective if cl(¢) € PEF(X).

6.3. Proposition Let ¢ be a pseudo-effective R-cycle of codimension k. Then,
for any nef R-divisor D, the intersection number ¢ - D™ % is non-negative. If
¢ A% =0 for an ample R-divisor, then ( is homologically equivalent to zero.
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PROOF. It is enough to show the second statement. Let P¥ ¢ H**(X,R) be
the set of cohomology classes [w] of global C*°-real d-closed (k, k)-forms

w= (V-1

where the matrix (wr ) is positive definite everywhere. Then P is an open convex
cone in the space H**(X R) and ¢;(A)"~* belongs to P"~*. Since ¢ is pseudo-
effective, cl(¢) U [w] = 0 for any [w] € P *. Thus cl(¢) = 0, since H**(X,R) and
H"%"=F(X R) are dual to each other by the intersection pairing. a

wr.gdzy NdZz
I,JC{1,2,....,n} I,Je<1 T

Remark The proposition above proves the conjecture [98] 2.12] affirmatively.

For a morphism f: Y — X from a non-singular projective variety Y of dimen-
sion m, we have the natural homomorphisms

FroNY(X) = NU(Y), far Ni(Y) = NTTH(Y) — NG(X) =~ N™7/(X),
where the projection formula
foffuv)=u- fo e N (x)
holds for v € N*(X) and v € N/(Y).

Remark Let f: Y — X be a morphism from a non-singular projective variety
Y of dimension m. Then f.(PE™™*(Y)) C PE""(X).

86.b. Chern classes of vector bundles. Let X be a non-singular projective
variety of dimension n. For a vector bundle £ of X of rank r, its i-th Chern
classes ¢;(£) is defined as an element of the Chow group CH'(X) as follows: Let
p: P = Px(£) — X be the projective bundle and let H = H¢ be a tautological
divisor associated with £: Op(H) is the tautological line bundle. There is an
isomorphism

CHY(P) ~CH(X)® CH" ' (X)-H®---© CH*(X) - H'

for any i < r, where H is regarded as an element of CH'(P) = Pic(P). Under
the natural isomorphism CH"(X) ~ H%(X, Z), ¢o(€) is defined to be 1. The other
Chern classes ¢;(€) are defined as elements of CH'(X) satisfying the equality:

SO BT =0,

The usual i-th Chern class ¢;(£) is defined as the image of ¢;(£) under cl: CH'(X) —
H?(X,Z). Let us introduce polynomials

Ce(t) =D &(@),
Pe(t) == Z;l(—l)r’iéi(é')tr’i = (=1)"t"Cev(1/1),

Qg(t) = Pe (t + %61(5)> = Z:_()(—l)iﬁi(g)t’“—i.
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Here, Cg(t) is called the Chern polynomial which belongs to CH®(X)[¢]. For other
polynomials, we have Pg(t) € CH*(X)[t] and Qg(t) € CH*(X)[t] ® Q. The coefhi-
cients Ag(£) € CH"(X)g are written in terms of Chern classes & (€) by

A N G ) (e E o A VA
Ak(g) = ijo i ( j )Cl(g)J . Ck,j(g).
If £ <2, we have

r—1,_
o 61(5)2.

6.4. Definition A normalized tautological divisor A = Ag of £ is a Q-divisor
of P =P(€) such that rA is a Z-divisor and

Op(rA) =~ Og(r) @ p*(det £) L.

Ao(€) =e(E) =1, AL(E) =0, Ay(f)=c() -

In particular, rA ~ —Kp/x.

From the vanishing Pg(H) = 0, we have

Qe(V) =Y (~)'p AN =0.
Note that p,A7 = 0 for j <7 —1 and p,A"* =1 € CH(X). Thus
PAT=A(E) =0, p AT =—Ay(E), p AT = Ag(E),
PN = Ay (€)? — Ay(E), etc.
For an exact sequence 0 — & — & — & — 0 of vector bundles &;, we have
Cg, (t) = Cg, (t) - Ce, (1)

Let Ko(X) be the Grothendieck K-group of vector bundles of X. Then & — Cg(t)
gives rise to a homomorphism Ko(X) — CH®(X)[t]/(t"™!) from the additive group
structure (Ko(X),+) into the semi-group structure (CH®*(X)[t]/(¢"*1), x). Since
X has an ample divisor, every coherent sheaf F has an exact sequence

0—-&, —w&p1— " —&E—=F—=0

such that &; are all vector bundles. Thus the K-group of coherent sheaves coincides
with Ko(X) and hence the Chern classes &(F), ¢;(F), and also Ai(}') of a coher-
ent sheaf F are well-defined. The Chern character ch(£) and the Todd character
Todd(€) of a vector bundle £ of rank r are defined as elements of CH®*(X) ® Q as
follows: For formal elements &1, &o, ..., & satisfying Ce(t) = [](1 + &),

. r - _ r 52
Ch(g) = Zi:l exp(fz) and TOdd(g) = Hi:l ﬁp(_&)
The Chern character extends to a ring homomorphism ch: Ky(X) — CH*(X)® Q.
We denote Todd(Tx) for the tangent bundle Tx by Todd(X).
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Let F be a coherent sheaf of X with codim Supp F = k > 0 and let Z C Supp F
be an irreducible component of codimension k. We define the length [z (F) of F
along Z as follows: There is a filtration

FoCH C---CF=F

of coherent sheaves such that F,;/F;_1 is a non-zero torsion-free Oz-module for
1> 0and Z ¢ Supp Fy. Here, we set

I7(F) = Zi>0rank Fi|Fi_1,
which does not depend on the choice of such filtrations. We define

o 2k
cl(F) = chsupp o eodim 7k Iz(F)cl(Z) € H* (X, 7).

6.5. Lemma Under the situation above, ¢;(F) =0 for 0 <i <k and
eu(F) = (=1)F 1k — 1)l cl(F).

PrOOF. We shall prove by induction on dim Supp F.

Let Z1, Zs, ..., Z; be the irreducible component of codimension k of Supp F.
Then there exist coherent sheaves F(;) with Supp F(;) = Z; and a homomorphism
F - @221 F(;) whose kernel and cokernel are sheaves supported on analytic subset
of codimension greater than k. Hence we are reduced to the case: Z = Supp F is
irreducible.

Let 7o C Fy C --- C F; = F be the filtration above calculating | = Iz (F).
Then ch(F) = ch(Fy) + 23:1 ch(F;/F;-1). Thus we are reduced to the case:
Z = Supp F is irreducible and F is a torsion-free O z-module.

Let f: Y — Z be a resolution of singularities of Z and set G := f*F/(tor).
Then the kernel and the cokernel of F — f,G are torsion sheaves on Z. There
are homomorphisms fi: Ko(Y) — Ko(X), f.: CH(Y) — CH"™(X) given by
fiG =Y (~1)R! f,G and

fo: CHY(Y) ~ CH,_j_i(Y) — CH,_p_s(X) ~ CH""F(X).
By the Grothendieck-Riemann-Roch formula [5], we have
ch(fiG) - Todd(X) = f.(ch(G) - Todd(Y)).

Let ch(F)® € CH (X) ® Q denote the i-th component of ch(F) in CH*(X) ® Q:
ch(F) = Y. ch(F)®. By induction, we infer that ch(F)® = 0 for i < k and
ch(F)*) = (rank G)Z € CH (X) ® Q. Since ch(F)® =0 for i < k, we have

& (F) = (=1)F 1 (k — 1)l ch(F)™).

Thus we are done. O

For example, if F is a skyscraper sheaf, then
1

dimHY(X, F) = x(X, F) = (—1)"_1m

deg cpn (F).
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If codim Supp F > k, then
(—1)" lep(F)- AR >0

for an ample divisor A and the equality holds only when codim Supp F > k + 1.
An entire holomorphic function ¥(z) = U(x1,x9,...,24) of d-variables is writ-
ten by the following form:

2l glid

U(x) = E Ci s o2 4 00 ad
( ) i1yin,yig>0 IR il - dg!

where ¢, iy, iy = Ciyis,....iq (¥) are constants and
LI {Hf_é(l” +7), k>1
1, k= 0.
Let A; be the j-th difference operator defined by
(A O)(z) =9 (z1,..., 25, .,xq) — V(z1,...,2; — 1,...,2q)
for 1 < j <d. Then ijgk]

e, 10==c11,..1(¥) = (A1Az--- Ag¥)(0).

= k:vgk_l] for £k > 1. Thus we have

For example, for the function ¢ (z) = exp(z:?:1 Aiz;) for A; € C, we have
d

(Aji)(x) = (1 —exp(=X;))¥(x), and 1. 1(¥) = szl(l — exp(=A;)).

6.6. Lemma Let F be a coherent sheaf with codim SuppF = k =n —d and
let Ly, Lo, ..., Lgq be invertible sheaves on X. Let F(x) = F(x1,22,...,24) be the
polynomial satisfying

F(ml,mg,...,md) :X(X,]:®Li®m1 ®®£§md)

form; € Z. Then

C1,1 1(F)=£1-£2~~-,Cd~cl(.7-').

IR REEE)

PROOF. Since ch is a ring homomorphism, we have
ch(F@ L™ @+ @ LE™) = ch(F) ch(L1)™ -+ - ch(Lq)™,

where
n

(L™ =explmil) =Y ]%mfc{f € CH*(X) © Q

for 1 < ¢ < d. By the Riemann-Roch formula, F(z) is regarded as the n-th
component of

ch(F) - f(z) - Todd(X) € CH*(X) ® Q,

o) =exp (Y L)

where
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Thus ¢;,..1(F) is the n-th component of

d

a7 (T

Jj=

1(1 - exp(—ﬁj))) - Todd(X).

By 6.5, we have
e 1(F)=ch(F)® . Ly Ly=Ly-- Lyg-cl(F). O

8§6.c. Semistable vector bundles. Let X be a non-singular projective va-
riety of dimension d. Let F be a non-zero torsion-free coherent sheaf of X. The
averaged first Chern class p(F) is defined by

HF) = ranlk]-—c1 (F):

For an ample divisor A, we set pa(F) = p(F) - A" A torsion-free sheaf F
is called A-p-stable and A-p-semi-stable if the inequalities pa(G) < pa(F) and
14(G) < pa(F) hold for any coherent subsheaf 0 C G C F, respectively. There is a
notion of A-stable sheaf which is different from the notion of A-pu-stable sheaf. The
first notion is important when we consider some moduli space of vector bundles.
However, in our article, we call an A-u-stable sheaf by an A-stable sheaf and an
A-p-semi-stable sheaf by an A-semi-stable sheaf, for short.

Let F be a non-zero torsion-free sheaf of X. The Harder—Narasimhan filtration
[35] of F with respect to A is a filtration

O=FCFC---CF=F

of coherent subsheaves satisfying the following conditions:

(1) F;/F;—1 are non-zero A-semi-stable sheaves;

(2) pa(Fi/Fic1) > pa(Figr/F;) for 1 <i<1l—1.
This exists uniquely up to isomorphisms. The existence essentially follows from the
lower-boundedness of ¢;(G) - A%~! for all quotient sheaves G of F. The number I is
called the length of the filtration.

Assume that dim X = 1. Then the notion of stability is independent of the
choice of ample divisors. A vector bundle £ on X is semi-stable if and only if
the normalized tautological divisor A is nef (cf. [107], [82, 3.1]). Moreover if A is
nef, then every effective divisor of P is nef. If £ is not semi-stable, then A is big.
Therefore, if dim X = 1, then A is always pseudo-effective.

Example In higher dimension, the normalized tautological divisor is not nec-
essarily pseudo-effective. Let Tx be the tangent bundle of the projective plane
X = P2. Then P = Px(Ty) is a hypersurface of P? x P? and there are two P!-
bundle structures pi,p2: P — P2. We consider p; as the associated P'-bundle
structure of Tx. The tautological divisor H associated with T is linearly equiv-
alent to pj¢ + pi¢ for a line £ C P2. Thus the normalized tautological divisor is
written by A = p3¢ — (1/2)pi¢. Then we infer that A is not pseudo-effective by
A (p30)? =—-1/2<0.
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Suppose that dim X > 2. Then, for an A-semi-stable reflexive sheaf F on X,
we have the Bogomolov inequality
r—1
2r

For a short exact sequence 0 — & — F — G — 0 of non-zero torsion-free coherent
sheaves, we have the following formula:

A(F) - A2 = (CQ(I) - e (]-')2> CAM2 > 0.

% (H(E) — u(G))*

Thus, if pa(€) = pa(F) = pa(G) for an ample divisor A, then
Ao(F)- A%72 > Ny(&) - A2 + Ay(G) - A92

by the Hodge index theorem. Here, the equality holds if and only if u(F) = u(€) =
1(G).

(11-9) Ao (F) = Do(E) + DAy (G) —



