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Abstract

An introduction is given to the Littlewood-Richardson rule, and various
combinatorial constructions related to it. We present a proof based on
tableau switching, dual equivalence, and coplactic operations. We conclude
with a section relating these fairly modern techniques to earlier work on the
Littlewood-Richardson rule.
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\S 0. Introduction.

The Littlewood-Richardson rule is a combinatorial rule describing the multiplica-
tion of Schur polynomials; it was first formulated in $[LiRi]$ , but its general valid-
ity remained unproved for several decades. The various proofs that have been
given since have created a rich combinatorial theory, with many interrelated con-
structions, including the Robinson-Schensted correspondence, and $jeu$ de taquin.
We describe several such constructions, and use them to prove the rule; we are
not however narrowly focused on this proof, and discuss several topics that are
not used in it. We make use of certain “modern” (post-1980) notions, while we
do not treat some other notions that figure prominently in many other proofs of
the Littlewood-Richardson rule, and are well documented elsewhere (e.g., [Fult],
[Fom]); specifically, we focus on tableau switching (which includes jeu de taquin),
dual equivalence, and coplactic operations* , but do not introduce Schensted’s algo-
rithm, Knuth equivalence, or Greene’s poset invariant. We do not really define or
use Zelevinsky’s pictures, but they are mentioned in several places, and have in-
spired much of our work. At the end, we give an overview of earlier work on the
subject, to help clarify its relation to our approach.

The proof we give does not require many technical verifications; moreover, we
believe that our main theorem 3.3.1 makes the correspondences considered more
transparent. We do prove in detail some properties of the constructions that are
so basic that they might have been left to the reader; this is because we feel that
it is often these “low-level” properties that really explain why the more significant
theorems work. Most facts presented in this paper are known (at least to experts),
although for some it is hard to find a published reference. Nonetheless the global
structure of our proof, and theorem 3.3.1, seem to be new, even if the latter is
related to the known fact that “coplactic operations are compatible with plactic
equivalence” (which in fact motivates their name).

The remainder of this paper is organised in four sections: in \S 1 we formulate
the Littlewood-Richardson rule; in \S 2 we define tableau switching and derive an
expression for Littlewood-Richardson coefficients in terms of jeu de taquin; in \S 3
we define coplactic operations and establish our main theorem, which implies the
Littlewood-Richardson rule; finally in \S 4 we comment on earlier work.

A word on notation: we always start indexing at $0$ ; in particular this applies
to parts of partitions, and rows, columns, and entries of tableaux. We define
$[n]=\{i\in N|i<n\}$ for $n\in N$ .

*Arguably coplactic operations are not at all new: even if not considered in isolation,
they do occur in various forms and contexts, as a part of larger constructions; see
$[LiRi]$ , [Rob], [BrTeKr], $[GrK1]$ , [Thom2], $[LaSch]$ .
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\S 1. Formulation of the Littlewood-Richardson rule.

1.1. Symmetric polynomials and partitions.

We fix some $n\in N$ , and let $\{X_{i}|i\in[n]\}$ be a set of $n$ indeterminates. The
symmetric group $S_{n}$ acts on this set, and hence on the ring $Z[X_{0}, \ldots, X_{n-1}]$ ,
by permuting the indeterminates. A polynomial $P\in Z[X_{0}, \ldots, X_{n-1}]$ is called
symmetric if it is fixed by every $\pi\in S_{n}$ . We shall denote by $\Lambda_{n}$ the set
of symmetric polynomials, which is a subring of $Z[X_{0}, \ldots, X_{n-1}]$ (the ring of
invariants for the action of $S_{n}$ ); since the the action of $S_{n}$ preserves the natural
grading of $Z[X_{0}, \ldots, X_{n-1}]$ by total degree, $\Lambda_{n}$ is a graded ring, and we shall denote
by $\Lambda_{n}^{d}$ the set of homogeneous symmetric polynomials of degree $d$ . Our interest will
be in an explicit description of the multiplicative structure of this ring, expressed
on a particular Z-basis, that of the so-called Schur polynomials. But let us first
consider some other Z-bases.

The simplest symmetric polynomials are those which are formed as the sum
over an orbit of a monomial in $Z[X_{0}, \ldots, X_{n-1}]$ ; we shall call these minimal
symmetric polynomials. The monomials in $Z[X_{0}, \ldots, X_{n-1}]$ are of the form
$X_{0}^{\alpha_{0}}\cdots X_{n-1}^{\alpha_{n-1}}$ , which we shall abbreviate to $X^{\alpha}$ , where $\alpha=(\alpha_{0}, \ldots, \alpha_{n-1})\in N^{n}$ .
We shall write $|\alpha|=\deg X^{\alpha}=\sum_{i\in[n]}\alpha_{i}$ . In order to select a specific representative
within each orbit of monomials, we define a partial ordering $‘\leq$ on the set of
monomials $X^{\alpha}$ ; or equivalently on the set $N^{n}$ of multi-exponents $\alpha$ . This ordering
is generated by the relations $X_{i}>X_{i+1}$ and the condition that $X^{\alpha}<X^{\beta}$ implies
$MX^{\alpha}<MX^{\beta}$ for any monomial $M$ (as a consequence, monomials of distinct
degrees are always incomparable); explicitly, one has $X^{\alpha}\leq X^{\beta}$ if and only if
$\sum_{i<k}\alpha_{i}\leq\sum_{i<k}\beta_{i}$ for $k\in[n]$ , and $|\alpha|=|\beta|$ . Every $S_{n}$-orbit of monomials
contains a maximum for $‘\leq$ , which is a monomial $X^{\lambda}$ with $\lambda_{0}\geq\cdot$ . . $\geq\lambda_{n-1}\geq 0$ ;
such a $\lambda\in N^{n}$ is called a partition of $ d=|\lambda$ I into $n$ parts, written $\lambda\in \mathcal{P}_{d,n}$ .
We define the minimal symmetric polynomial $m_{\lambda}(n)=\sum_{\alpha\in S_{n}\cdot\lambda}X^{\alpha}$ , where $S_{n}\cdot\lambda$

denotes the $S_{n}$ -orbit of $\lambda$ in $N^{n}$ . The $m_{\lambda}(n)$ , for $\lambda\in \mathcal{P}_{d,n}$ , form a Z-basis of $\Lambda_{n}^{d}$ .
A partition $\lambda$ of $d$ (without qualification, written $\lambda\in \mathcal{P}_{d}$ ) is defined as a sequence
$(\lambda_{i})_{i\in N}$ of natural numbers (called parts) with $\lambda_{i}\geq\lambda_{i+1}$ for all $i$ and $\lambda_{m}=0$ for
some $m\in N$ , and with $\sum_{i\in[m]}\lambda_{i}=d$ . A partition is denoted by the parenthesised
list of its parts, with trailing zeros omitted; $\mathcal{P}_{d,n}$ is identified with the subset of $\mathcal{P}_{d}$

of partitions that have at most $n$ non-zero parts. Finally, we put $\mathcal{P}=\bigcup_{d\in N}\mathcal{P}_{d}$ .

In the special case that $\lambda$ is the partition of $d\leq n$ for which all non-zero
parts are 1 (so there are $d$ such parts), the minimal symmetric polynomial $m_{\lambda}(n)$

is called the d-th elementary symmetric polynomial, and written $e_{d}(n)$ . The
“fundamental theorem on symmetric functions” states that the polynomials $e_{i}(n)$ ,
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for $1\leq i\leq n$ , generate $\Lambda_{n}$ as a ring, and are algebraically independent; in other
words, $\Lambda_{n}$ is isomorphic as a graded ring to $Z[Y_{1}, \ldots, Y_{n}]$ with $\deg Y_{i}=i$ , the
isomorphism sending $Y_{i}$ to $e_{i}(n)$ . We shall however not make use of this fact (we
refer to [Macd] for many more facts about symmetric polynomials and functions).
We may also express $e_{d}(n)$ as $\sum_{0\leq i_{0}<\cdots<i_{d-1}<n}X_{i_{0}}\cdots X_{i_{d-1}}$ . If in this expression
we replace the strict inequalities between the indices by weak ones, then we obtain
another symmetric polynomial $h_{d}(n)=\sum_{0\leq i_{0}\leq\cdots<i_{d-1}<n}X_{i_{0}}\cdots X_{i_{d-1}}$ , called the
d-th complete symmetric polynomial. The fact that this is indeed a symmetric
polynomial follows from the fact that it contains every monomial $X^{\alpha}$ with $|\alpha|=d$

exactly once, whence $h_{d}(n)=\sum_{\lambda\in \mathcal{P}_{d,n}}m_{\lambda}(n)$ . Note that if we would replace
only some strict inequalities by weak ones, the result would not be a symmetric
polynomial. Like the $e_{i}(n)$ , the $h_{i}(n)$ for $1\leq i\leq n$ form a polynomial basis for $\Lambda_{n}$ .
We saw that $\{m_{\lambda}(n)|\lambda\in \mathcal{P}_{d,n}\}$ is a Z-basis of $\Lambda_{n}^{d}$ ; since monomials of degree $d$

in the generators $e_{i}(n)$ or $h_{i}(n)$ are naturally parametrised by $\mathcal{P}_{d,n}$ , each part $i$

representing a factor $e_{i}(n)$ or $h_{i}(n)$ , we have two more such bases parametrised by
the same set.

1.2. Semistandard tableaux and Schur polynomials.

The Schur polynomials of degree $d$ form yet another Z-basis of $\Lambda_{n}$ parametrised
by $\mathcal{P}_{d,n}$ . Although their significance is not immediately obvious from a purely
ring-theoretic perspective, they are of fundamental importance in many situations
where the ring $\Lambda_{n}$ is encountered. For instance, $\Lambda_{n}$ occurs as the character ring of
polynomial $GL_{n}(C)$ representations, and the Schur polynomials are the irreducible
characters. They can be defined as quotients of alternating polynomials, or be
expressed in terms of power sums $(m_{d}(n))$ using symmetric group characters; for
our purposes however, a purely combinatorial description will serve best, and it
is in that way that we shall define Schur polynomials. For those who wish some
motivation for this definition, we refer to places where it is respectively deduced
from an algebraic definition [Macd, I (5.12)], from an explicit construction of
irreducible $GL_{n}(C)$ representations [Fult], and even in an axiomatic approach
[Ze12].

Our definition of Schur polynomials is rather similar to the description of
$e_{d}(n)$ and $h_{d}(n)$ as the sum of a collection of monomials $X_{i_{0}}\cdots X_{i_{d-1}}$ ; indeed
$e_{i}(n)$ and $h_{i}(n)$ are instances of Schur polynomials. The linear sequence of strict
respectively weak inequalities relating the indices $i_{0},$

$\ldots,$
$i_{n-1}$ for $e_{i}(n)$ and $h_{i}(n)$

are replaced for general Schur polynomials by a more complicated mixture of
strict and weak inequalities. As we remarked above, this does not always give
rise to a symmetric polynomial; we shall see however that it will do so when
the inequalities follow a specific pattern associated to certain d-element subsets
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of $N^{2}$ called diagrams. For the Schur polynomial $s_{\lambda}(n)$ (with $\lambda\in \mathcal{P}_{d}$), this will
be the Young diagram $Y(\lambda)$ of $\lambda$ , defined as $\{(i,j)\in N^{2}|j\in[\lambda_{i}]\}$ . We display
Young diagrams as sets of squares in the plane, arranged like matrix entries: for
a square $(i,j)$ , the row index is $i$ (increasing downwards) and the column index
is $j$ (increasing to the right); the reader is warned however that other display
conventions can be found in the literature. One obtains a sequence of left-justified
rows of successive lengths $\lambda_{0},$ $\lambda_{1},$

$\ldots$ ; e.g., for $\lambda=(4,2,1)$ we display $Y(\lambda)asF$]コ.

For future reference we mention the notion of diagonals in $N^{2}$ , defined as sets
$\{(i,j)\in N^{2}|j-i=k\}$ for some constant $k$ . The value $k$ is called the in$dex$ of a
diagonal, and we consider the set of all diagonals as totally ordered by their indices.

For defining $s_{\lambda}(n)$ , an index of summation, ranging over $[n]$ , is associated with
each square of $Y(\lambda)$ . Thus, each term is identified by an assignment $T:(i,j)\leftrightarrow T_{i,j}$

that can be displayed by writing each index $T_{i,j}$ as entry into its square $(i,j)$ ; the
indices are subject to the conditions $T_{i,j}<T_{i+1,j}$ (strict increase down columns)
and $T_{i,j}\leq T_{i,j+1}$ (weak increase along rows) whenever both referenced indices exist.
An assignment $T$ satisfying these conditions is called a $sem$istandard Young tableau
of shape $\lambda$ and entries in $[n]$ ; the set of all such tableaux is denoted by $SST(\lambda, n)$ .
For instance,

$00$ 11
depicts a semistandard Young tableau of shape (4, 2, 1) and

entries in [3], i.e., an element of $SST((4,2,1), 3)$ . Like in the case of $e_{d}(n)$ and $h_{d}(n)$ ,
each term in the summation will be a monomial, containing a factor $X_{k}$ for each
occurrence of $k$ as summation index. Therefore we define for $T\in SST(\lambda, n)$ its
weight $\alpha=$ wt $T\in N^{n}$ to be such that $\prod_{(i,j)\in Y(\lambda)}X_{T_{t,j}}=X^{\alpha}$ , in other words
$\alpha_{k}$ counts the occurrences of the entry $k$ in $T$ ; the tableau just depicted has
weight (2, 3, 2). Then for $\lambda\in \mathcal{P}_{d,n}$ , the Schur polynomial $s_{\lambda}(n)$ is defined by

$s_{\lambda}(n)=\sum_{T\in SST(\lambda,n)}X^{wtT}$
. (1)

For instance, by enumerating $SST((4,2,1), 3)$ one finds that $s_{(4,2,1)}(3)$ is a
symmetric polynomial with 15 terms, which equals $m_{(4,2,1)}(3)+m_{(3,3,1)}(3)+$

$2m_{(3,2,2)}(3)$ . The $S_{n}$ -invariance of $s_{\lambda}(n)$ is not at all evident from the definition,
however. Although this will follow from properties independently derived later, let
us prove this key fact right now.

1.2.1. Proposition. The Schur polynomials are symmetric polynomials, i.e.,
$s_{\lambda}(n)\in\Lambda_{n}^{d}$ for $\lambda\in \mathcal{P}_{d,n}$ .

Proof. It suffices to prove for any $k<n-1$ that $s_{\lambda}(n)$ is invariant under the
interchange of $X_{k}$ and $X_{k+1}$ ; to this end we construct an involution of the set
$SST(\lambda, n)$ , that realises an interchange of the components $\alpha_{k}$ and $\alpha_{k+1}$ of the
weight $\alpha$ . We shall leave all entries $T_{i,j}\not\in\{k, k+1\}$ unchanged, as well as the entries
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$k$ and $k+1$ in any column of $T$ that contains both of them. It is readily checked
that the set of squares containing the remaining entries (i.e., entries $k$ or $k+1$ that
as such are unique in their column) meets any given row in a contiguous sequence
of squares. Let the entries of that sequence be $r$ times $k$ followed by $s$ times $k+1$

( $r$ or $s$ might be $0$ ); we replace them by $s$ times $k$ followed by $r$ times $k+1$ .
The transformation of $T$ consists of performing this change independently for each
row; clearly the operation is an involution, and has the desired effect on wt T. $\square $

Remark. This involution, which was introduced in $[BeKn]$ , is simple to describe,
but not the best one from a mathematical point of view, as it does not give rise to an
action of $S_{n}$ on $SST(\lambda, n)$ (denoting interchange of $i$ and $i+1$ by $s_{i}$ , one may check
that application of $s_{0}s_{1}s_{0}$ and $s_{1}s_{0}s_{1}$ to the tableau $T$ shown above gives different
results). There is another involution, the rel\‘evemen $t$ plaxique of [LaSch, \S 4], that
does extend to an $S_{n}$ -action; it is related to the coplactic operations discussed in \S 3
below.

Other $prop_{\backslash }erties$ of Schur polynomials are easy to establish. One has wt $ T\leq\lambda$

for all $T\in SST(\lambda, n)$ , with equality for exactly one such $T$ , namely the tableau
with $T_{i,j}=i$ for all $(i,j)\in Y(\lambda)$ ; this tableau will be denoted by $1_{\lambda}$ . This fact
follows from the observation that in any $T\in SST(\lambda, n)\backslash \{1_{\lambda}\}$ , one can find at least
one entry $k+1$ that can be replaced by $k$ (for some $k<n-1$ ). Being a symmetric
polynomial, $s_{\lambda}(n)$ can be written as a sum of terms $m_{\mu}(n)$ for $\mu\in \mathcal{P}_{d,n}$ with integer
coefficients. These coefficients are all non-negative, they are zero unless $\mu\leq\lambda$ , and
the coefficient of $m_{\lambda}(n)$ is equal to 1: the transition from the $s_{\lambda}(n)$ to the $m_{\lambda}(n)$

is “unitriangular” with respect to $‘\leq$ . Then the fact that $\{m_{\lambda}(n)|\lambda\in \mathcal{P}_{d,n}\}$ is a
Z-basis of $\Lambda_{n}$ , implies that $\{s_{\lambda}(n)|\lambda\in \mathcal{P}_{d,n}\}$ is one as well.

We can now state the problem with which the Littlewood-Richardson rule is
concerned, as expressing multiplication in $\Lambda_{n}$ on the basis of the Schur polynomials.
In somewhat more detail: given $\lambda\in \mathcal{P}_{d,n}$ and $\mu\in \mathcal{P}_{d^{\prime},n}$ , we wish to determine the
integer coefficients $c_{\lambda,\mu}^{\nu}$ for all $\nu\in \mathcal{P}_{d+d^{\prime},n}$ , such that

$s_{\lambda}(n)s_{\mu}(n)=\sum_{\nu\in \mathcal{P}_{d+d^{\prime},n}}c_{\lambda,\mu}^{\nu}s_{\nu}(n)$
. (2)

We have suppressed $n$ in the notation $c_{\lambda,\mu}^{\nu}$ , since it will turn out that this coefficient
is independent of $n$ (although $n$ must be sufficiently large for $c_{\lambda,\mu}^{\nu}$ to appear in the
formula in the first place). More generally, for identities valid for any number $n$

of indeterminates, we shall sometimes write $h_{d}$ for $h_{d}(n)$ and $s_{\lambda}$ for $s_{\lambda}(n)$ , etc.
(there is an algebraic structure called the ring of symmetric functions that justifies
this notation, see [Macd], but we shall not discuss it here). The $c_{\lambda,\mu}^{\nu}$ are called
Littlewood-Richardson coefficients. Representation theoretic considerations show
that $c_{\lambda,\mu}^{\nu}\in N$ ; the Littlewood-Richardson rule will in fact describe the $c_{\lambda,\mu}^{\nu}$ as the
cardinalities of certain combinatorially defined sets.
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1.3. Skew shapes, and skew Schur polynomials.

In order to formulate the Littlewood-Richardson rule, we need to extend the class of
tableaux beyond that of the semistandard Young tableaux. Giving $N^{2}$ its natural
partial ordering (simultaneous comparison of both coordinates), Young diagrams
can be characterised as its finite order ideals (if $r\in Y(\lambda)$ , then also $q\in Y(\lambda)$

for all $q\leq r$). For the class of skew diagrams, this is relaxed to convexity with
respect to $‘\leq$ : a skew $di$agram $D$ is a finite subset of $N^{2}$ for which $p,$ $r\in D$ and
$p\leq q\leq r$ imply $q\in D$ . The summation analogous to (1) using a skew diagram
will still give rise to a symmetric polynomial (one may for instance check that the
proof of proposition 1.2.1 remains valid). A skew diagram can always be written
as the difference of two Young diagrams: $D=Y(\lambda)\backslash Y(\mu)$ with $Y(\mu)\subseteq Y(\lambda)$ ; this
representation is not unique in general (although in some cases it is, for instance
when the sets of rows and columns meeting $D$ are both initial intervals of N).
In many cases, for instance when considering the shapes of tableaux, it will be
important to fix the partitions $\lambda,$

$\mu$ used to represent a skew diagram, which leads
us to define the related but distinct notion of a skew shape.

A skew shape is a symbol $\lambda/\mu$ where $\lambda,$ $\mu\in \mathcal{P}$ and $Y(\mu)\subseteq Y(\lambda)$ ; the set of all
skew shapes will be denoted by $S$ . For $\lambda/\mu\in S$ we define $Y(\lambda/\mu)=Y(\lambda)\backslash Y(\mu)$ and
$|\lambda/\mu|=|Y(\lambda/\mu)|=|\lambda|-|\mu|$ . A shape of the form $\lambda/(0)$ is called a partition shape;
occasionally we consider partitions as skew shapes, in which case $\lambda$ is identified
with $\lambda/(0)$ . It is a trivial but useful fact that if $|\lambda/\mu|\leq 3$ , no diagonal can meet
$Y(\lambda/\mu)$ in more than one square. We shall say that a skew shape $\chi$ represents the
product $\chi_{0}*\chi_{1}$ of two other skew shapes if $Y(\chi)$ can be written as a disjoint union
of skew diagrams $\overline{\chi}_{0}$ and $\overline{\chi}_{1}$ , where $\overline{\chi}_{k}$ is obtained by some translation from $Y(\chi_{k})$

$(k=0,1)$ , while for all $(i, j)\in\overline{\chi}_{0}$ and $(i‘, j^{\prime})\in\overline{\chi}_{1}$ one has $i>i$ and $j<j$ . For
instance,

$\ovalbox{\tt\small REJECT}$

One could define an equivalence relation on $S$ such that this relation defines a
monoid structure on the quotient set, but this would be cumbersome, and it is not
really needed for our purposes.

Let $\chi=\lambda/\mu\in S$ ; a skew $s$emistandard tableau $T$ of shape $\chi$ and with entries
in $[n]$ is given by specifying $\chi$ itself, together with a map $Y(\chi)\rightarrow N$ written
$(i,j)\vdash\div T_{i,j}$ , satisfying $T_{i,j}\in[n]$ , $T_{i,j}<T_{i+1,j}$ and $T_{i,j}\leq T_{i,j+1}$ whenever
these values are defined. The set of all such $T$ is denoted by $SST(\chi, n)$ , and
$SST(\chi)=\bigcup_{n\in N}SST(\chi, n)$ ; we identify $SST(\lambda)$ with $SST(\lambda/(O))$ . The weight
$\alpha=$ wt $T\in N^{n}$ of $T\in SST(\chi, n)$ is defined by $\prod_{(i,j)\in Y(\chi)}X_{T_{z,j}}=X^{\alpha}$ , and the
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skew Schur polynomial $s_{\chi}(n)$ by

$s_{\chi}(n)=\sum_{T\in SST(\chi,n)}X^{wtT}$
. (3)

Note that unlike in (1), there is no restriction to $\mathcal{P}_{d,n}$ here, for the partitions $\lambda,$
$\mu$

forming $\chi$ ; the skew Schur polynomial will be non-zero as long as there are no
columns in $Y(\chi)$ of length exceeding $n$ . If a skew shape $\chi$ represents the product
$\chi_{0}*\chi_{1}$ of two other skew shapes, then there is an obvious weight preserving
bijection $SST(\chi)\rightarrow SST(\chi_{0})\times SST(\chi_{1})$ ; therefore $s_{\chi}=s_{\chi 0}s_{\chi_{1}}$ . In this case
we shall denote $s_{\chi}$ by $s_{\chi 0*\chi_{1}}$ , or if $\chi_{0}=(\lambda/(0))$ and $\chi_{1}=(\mu/(0))$ , by $s_{\lambda*\mu}$ ; our
problem can be restated as finding the decomposition of the skew Schur polynomial
$s_{\lambda*\mu}(n)$ as a sum of ordinary Schur polynomials. In fact the Littlewood-Richardson
rule will describe the decoInposition of any skew Schur polynomial $s_{\chi}(n)$ .

1.3.1. Definition. For any skew shape $\chi$ and all $\nu\in \mathcal{P}_{|\chi|}$ , the numbers $c_{\chi}^{\nu}$ are
defined as the coefEicien $ts$ appearing in the decomposition formula

$s_{\chi}=\sum_{\nu\in \mathcal{P}_{|\chi|}}c_{\lambda}^{\nu}s_{\nu}$

. (4)

It is clear that if $\chi$ represents $(\lambda/(0))*(\mu/(0))$ , then one has $c_{\chi}^{\nu}=c_{\lambda,\mu}^{\nu}$ .

1.4. Littlewood-Richardson tableaux.

Let $\lambda/\mu\in S$ , and $\nu\in \mathcal{P}$ with $|\lambda/\mu|=|\nu|$ ; we shall now introduce the objects
that are counted by $c_{\lambda/\mu}^{\nu}$ , which will be called Littlewood-Richardson tableaux of
shape $\lambda/\mu$ and weight $\nu$ . We need a preliminary definition. For $T\in SST(\lambda/\mu)$ and
$k,$ $l\in N$ , define $T_{k}^{l}$ to be the number of entries $l$ in row $k$ of $T$ , i.e., the cardinality
of the set $\{j\in[\lambda_{k}]\backslash [\mu_{k}]|T_{k,j}=l\}$ .

1.4.1. Definition. Two tableaux $T\in SST(\lambda/l4)$ and $\overline{T}\in SST(\nu/\kappa)$ are $c$alled
companion tableaux if $T_{k}^{l}=\overline{T}_{l}^{k}$ for every $k,$ $ l\in$ N. In this case $T$ is called $\nu/\kappa-$

dominant (and $\overline{T}$ is $\lambda/\mu- dom$inan $t$).

Here is an example of a pair of companion tableaux, with a table of the
pertinent values $T_{k}^{l}=\overline{T}_{l}^{k}$ :

(5)
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$(T_{k}^{l})_{0\leq k<5}=(01011$ $00211$ $00002$ $00111$ $00200$ $01100)$ . (6)

Note that if $T$ is $\nu/\kappa$-dominant, then wt $ T=\nu-\kappa$ , since $($wt $T)_{j}=\sum_{i}T_{i}^{j}=$

$\sum_{i}\overline{T}_{j}^{i}=\nu_{j}-\kappa_{j}$ . We shall simply say that $T$ is $\kappa$-dominant if it is $\nu/\kappa$-dominant
for $\nu=\kappa+wtT$ ; this notion is used in [Litm2]. $T$ may have companion tableaux
of different shapes, but at most one of a given shape $\nu/\kappa$ : the multiset of entries
of any row is determined by $T$ , and they must be weakly increasing. Therefore
different companion tableaux of $T$ differ only by borizontal slides of their rows; in
the above example one could for instance shift the first 4 rows of $\overline{T}$ one place to
the left. To test for $\kappa$-dominance of a tableau $T$ , it suffices to construct the unique
candidate for $\overline{T}$ and check that its columns are strictly increasing.

1.4.2. Definition. A tablea$uL\in SST(\lambda/\mu)$ is a Littlewood-Richardson tableau
if it is $(O)- dom$inant. The set ofall $\nu/(0)$ -dominant tableaux in $SST(\lambda/\mu)$ is denoted
by $LR(\lambda/\mu, \nu)$ .

Here is an example Littlewood-Richardson tableau $L$ , and its companion
Young tableau $\overline{L}$ .
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We have the following property: for any square $(i, j)\in Y(\lambda/\mu)$ , all squares whose
images are on the same row as $p(i,j)$ and to the left of it, themselves lie in a column
to the right of $(i, j)$ , and in the same row or above it; in formula: if $p(i, j)=(r, c)$

and $p(i‘, j)=(r, c)$ with $c’<c$ , then $j^{\prime}>j$ and $i\leq i$ . For instance, in the
second part of (8) the labels $d$ and $a$ appear in the same row as $e$ and to its left;
therefore these labels appear in the first part of (8) strictly to the right of $e$ , and
weakly above it. Now given $T$ and $\kappa$ , one can construct $p$–and implicitly $\overline{T}$–by
traversing $Y(\lambda/\mu)$ in such an order that the mentioned other squares $(i^{\prime}, j^{\prime})$ are
always encountered before $(i,j)$ is (in the example the alphabetic order of the labels
has this property): the image $p(i,j)$ can then be taken to be the first currently
unused square in row number $T_{i,j}$ of $Y(\nu/\kappa)$ . If moreover the traversal is by rows
(like the alphabetic order in the example), then strict increase in the column of $\overline{T}$

at the square $p(i,j)$ can be checked as soon as $p(i, j)$ is located: if the square
directly above $p(i, j)$ lies in $Y(\nu/\kappa)$ , then it must have been included in the image
of $p$ before $p(i,j)$ is. What this amounts to, is that at each point during the
construction, the union of $Y(\kappa)$ and the image of $p$ so far constructed must be a
Young diagram (this can be checked in (8), adding labels in alphabetic order).

1.4.3. Proposition. A tableau $T\in SST(\lambda/\mu, n)$ is $\kappa$-dominant if and only if
the following test succeeds. A variable $\alpha\in N^{n}$ is initialised to $\kappa$ ; then the
squares $(i,j)\in Y(\lambda/\mu)$ are traversed by weakly increasin$gi$ , and for fixed $i$ by
strictly decreasing $j$ : at square $(i,j)$ the component $\alpha_{T_{j}}.$, is $increa_{\wedge}sed$ by 1. The
test succeeds if an $d$ only if one has $\alpha\in \mathcal{P}$ throughout the entire procedure. $\square $

For $\kappa=(0)$ this is still not quite the traditional description of Littlewood-
Richardson tableaux, which states that the word over the alphabet $[n]$ obtained
by listing the entries $T_{i,j}$ in the order described in the proposition (e.g., for the
Littlewood-Richardson tableau $L$ shown in (7), the word 00110221031042)
should be a “lattice permutation” (see \S 3 for a definition; one also finds the terms
“lattice word” and “Yamanouchi word”). However, if one expands the definition of
that term, one finds that testing whether the indicated word read off from $T$ is a
lattice permutation amounts to performing the test of the proposition with $\kappa=(0)$ .
Incidentally, the (very old) term lattice permutation appears to be related to the
fact that the sequence of values assumed by $\alpha$ in the proposition describes a path
(from $\kappa$ to $\kappa+wtT$ ) in the lattice $N^{n}$ , that is confined to remain inside the
cone $\bigcup_{d\in N}\mathcal{P}_{d,n}\subseteq N^{n}$ . It may also be noted that the original formulation in $[LiRi]$

is very close to our definition 1.4.2, see \S 4. We can now state the Rule.

1.4.4. Theorem [Littlewood-Richardson rule]. For all $\chi\in S$ and $\nu\in \mathcal{P}$ one
has $c_{\chi}^{\nu}=\#LR(\chi, \nu)$ .
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We shall present a proof of this theorem in the course of \S \S 2, 3. Given the
definitions (4) of $c_{\chi}$ and (1) and (3) of (skew) Schur polynomials, it suffices to
construct a bijection

$\mathcal{R}:SST(\chi, n)\rightarrow\bigcup_{\nu\in \mathcal{P}_{|x|,n}}LR(\chi, \nu)\times SST(\nu, n)$
(9)

for any $n$ , such that whenever $\mathcal{R}(T)=(L, P)$ , one has wt $T=$ wt $P$ . Once
$\mathcal{R}$ is defined, the fact that the same set $LR(\chi, \nu)$ occurs, independently of $n$

(provided only that $\nu$ occurs in the summation) will prove that the coefficient $c_{\chi}^{\nu}$ is
independent of $n$ , as we claimed. We shall refer to $\mathcal{R}$ as Robinson’s correspondence,
since it was first described in [Rob] (albeit in different terms, not using tableaux).
It is natural to describe the correspondence by separately defining its components
$\mathcal{R}_{0}$ and $\mathcal{R}_{1}$ , where $\mathcal{R}(T)=(\mathcal{R}_{0}(T), \mathcal{R}_{1}(T))$ .

The decomposition of ordinary Schur functions is trivial, so according to the
Littlewood-Richardson rule, $LR(\lambda/(O), \nu)$ should be empty unless $\lambda=\nu$ , in which
case it should be a singleton. Indeed, for companion tableaux $T\in SST(\lambda/(O))$ and
$\overline{T}\in SST(\nu/(O))$ one has wt $ T=\nu$ and wt $\overline{T}=\lambda$ , which together with wt $ T\leq\lambda$

and wt $\overline{T}\leq\nu$ imply $\lambda=\nu$ and $T=\overline{T}=1_{\lambda}$ . Now let $L\in LR(\chi, \nu)$ be a
Littlewood-Richardson tableau whose shape $\chi$ represents $\lambda*\mu$ . Then the test
of proposition 1.4.3 for (O)-dominance succeeds; if one interrupts the test after
traversing the squares of the factor $\mu$ of $\lambda*\mu$ , one sees that the restriction $L_{\mu}$ of $L$

to that factor is (O)-dominant, and hence a Littlewood-Richardson tableau. Being
of partition shape, $L_{\mu}$ must then be equal (up to translation) to $1_{\mu}$ ; in particular,
the value of $\alpha$ at the point of interruption is $\mu$ . The remainder of the test of
(O)-dominance of $L$ then shows that its restriction $L_{\lambda}$ to the factor $\lambda$ of $\lambda*\mu$ is
$\nu/\mu$-dominant. By the symmetry of companion tableaux, this proves:

1.4.5. Proposition. $\#LR(\chi, \nu)=\#LR(\nu/\mu, \lambda)$ for $\chi\in S$ representing $\lambda*\mu$ . $\square $

As an example of the correspondence underlying this proposition, we derive
from (7) the following pair of corresponding Littlewood-Richardson tableaux, for
$\lambda=(5,4,3,1,1),$ $\mu=(4,2,1),$ $\nu=(6,5,5,3,2)$ :
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In order to use the Littlewood-Richardson rule to decompose a skew Schur
polynomial $s_{\chi}$ on the basis of Schur polynomials, an effective enumeration is
required of the union of sets $LR(\chi, \nu)$ , as $\nu$ varies over $\mathcal{P}_{|\chi|}$ . This can be done
using an efficient search procedure, in which the choices for the entries of the
squares of $Y(\chi)$ are fixed in the same order as the traversal of proposition 1.4.3
(alternatively, any “valid reading order” as defined below works equally well). For
any square $(i,j)$ , the possible values $T_{i,j}$ that can be chosen must make the test of
that proposition succeed (i.e., they must index a part of the partition $\alpha$ constructed
so far that can be increased), and they must satisfy the monotonicity conditions
for the rows and columns of $T$ . The reason that we called the search efficient, is
that there is always at least one value that satisfies all these conditions (cf. $[vLee2$ ,
proposition 2.5.3]), so that the search tree will not have unproductive branches.
Here we have assumed that no upper limit $n$ is imposed on the number of non-zero
parts of $\nu$ and hence on the entries in the Littlewood-Richardson tableau $T$ ; such
a restriction can however be incorporated into the search, by placing an additional
condition on the values $T_{i,j}$ tried: they should be sufficiently small to allow column $j$

of $T$ to be completed in a strictly increasing manner. With this extra requirement
there will still always remain at least one possible value, unless $Y(\chi)$ has columns
of length exceeding $n$ (in which case of course no suitable tableaux $T$ exist at all).

By contrast, no efficient search procedure is known for enumerating just a
single set $LR(\chi, \nu)$ , i.e., one for which the size of the search tree that has to be
traversed is proportional to $\neq LR(\chi, \nu)$ . In fact no sufficient condition for $LR(\chi, \nu)$

to be non-empty, that does not amount to actually finding an element, is even
known; therefore it is not possible in general to tell beforehand whether some value
tried for an entry will lead to any solutions. So it is worth observing that, while all
bijections described in this paper are easily computable, it is in some cases much
harder to enumerate the sets themselves linked by these bijections. We add one
more remark, prompted by the fact that many texts give the Littlewood-Richardson
rule only in the form $c_{\lambda,\mu}^{\nu}=\neq LR(\nu/\mu, \lambda)$ , while defining Littlewood-Richardson
tableaux in terms of a reading of the tableau. This would falsely suggest that the
rule is not practical for calculating a product $s_{\lambda}s_{\mu}$ , since it would seem to require
either the construction of complete trial tableaux of varying shapes before testing
the Littlewood-Richardson condition (which would fail in most cases), or separate
searches for any plausible shape $\nu/\mu$ and fixed weight $\lambda$ (which is also unattractive
for reasons just mentioned). In reality, by viewing the search strategy outlined
above for Littlewood-Richardson tableaux of a shape representing $\lambda*\mu$ from the
perspective of the companion tableaux, one easily finds an efficient enumeration
procedure for $\bigcup_{\nu}LR(\nu/\mu, \lambda)$ . Actually, such an enumeration procedure is just
what the rule, in its original form given by Littlewood and Richardson, describes;
a literal quotation of this description can be found in \S 4 below.
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1.5. Pictures and reading orders.

We have constructed a bijection $p:l^{7}(\lambda/\mu)\rightarrow Y(\nu/\kappa)$ corresponding to a pair
of companion tableaux $T\in SST(\lambda/l\iota)$ and $\overline{T}\in SST(\nu/\kappa)$ , in order to derive
proposition 1.4.3. Since $T$ and $\overline{T}$ can easily be reconstructed from $p$ , one may
study the bijections that arise in this way, in place of such pairs of companion
tableaux, or of $\nu/\kappa$-dominant tableaux of shape $\lambda/\mu$ . The conditions that $T$ and $\overline{T}$

be semistandard tableaux translate into a geometric characterisation of these
bijections; this leads to the concept of pictures introduced in [Zell]. Due to
the symmetry between companion tableaux, the inverse of any picture is again
a picture. One important aspect of pictures is that there are many equivalent ways
to define them (like the different characterisations of companion tableaux above).
We shall not discuss pictures in depth here, for which we refer to $[FoGr]$ and $[vLee2]$ ,
but it is useful to makea few observations that result from study of pictures.

We have observed above that if one traverses a row from left to right, then
the row index of the (inverse) image by $p$ increases weakly, while the column
index decreases strictly. A similar condition holds for traversal of a column from
top to bottom: the row index of the (inverse) image increases strictly, while the
column index decreases weakly (this can be proved by induction on the column
considered). Therefore, when verifying $\kappa$-dominance with a single traversal of $T$

(as in proposition 1.4.3), it is not necessary to have encountered all squares in
rows above it before handling a square $(i, j)$ : only those in column $j$ or to its
right can influence the test made at $(i,j)$ . We might for instance also traverse
columns from top to bottom, processing the columns from right to left. We shall
consider any ordering of the squares that encounters $(i^{\prime}, j^{\prime})$ before $(i, j)$ whenever
$i\leq i$ and $j^{\prime}\geq j$ to be a valid reading order. The two cases where one proceeds
systematically by rows or by columns merit special names: we shall refer to the
former as the Semitic reading $ord$er (after the Arabic and Hebrew way of writing),
and to the latter as the Kanji reading $ord$er (after the Japanese word for Chinese
characters, which are thusly read). In (8), the Semitic reading of the left diagram
gives abcdefghklmnpqrs, the Kanji reading order gives acbdgmehnfkprlqs, while
acbdegfhkmlnprqs corresponds to yet another a valid reading order.

In constructing the picture $p$ corresponding to a $\nu/\kappa$-dominant tableau $T$ , a
distinction is forced between the values at all squares of $Y(\lambda/\mu)$ , i.e., $p$ is injective
even if $T$ is not. Such a distinction can be used in order to apply to $T$ operations
that are initially defined only for tableaux with distinct entries (\S 2 provides an
example): it suffices to use an injective map $r$ : $Y(\nu/\kappa)\rightarrow N$ such that $r\circ p$ is
a tableau. Taking for $r$ the map corresponding to the Semitic reading of $Y(\nu/\kappa)$ ,
one obtains a tableau $S=r\circ p$ such that $T_{i,j}<T_{i^{\prime},j^{\prime}}$ implies $S_{i,j}<S_{i^{\prime},j^{\prime}}$ , and
when $T_{i,j}=T_{i,j^{\prime}}$ one has $S_{i,j}<S_{i^{\prime},j^{\prime}}$ if and only if $j<j^{\prime}$ ; this is essentially the
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operation of standardisation defined in \S 2. We note however that $r\circ p$ will be a
tableau whenever $r$ corresponds to any valid reading order; such tableaux may be
called specialisations of $p$ . It is shown in $[vLee2]$ that all relevant operations that
are defined for $T$ in terms of its standardisation $S$ could equally well be defined in
terms of any specialisation of $p$ . When studying semistandard tableaux however,
it is simplest to use the standardisation (as we shall do), mainly because it does
not depend on any choice of a shape $\nu/\kappa$ for which $T$ is $\nu/\kappa$-dominant.

One can develop the theory of the Littlewood-Richardson rule entirely in terms
of pictures; doing so clarifies the structure behind many operations and makes
certain symmetries explicit. Nevertheless we believe the exposition in terms of
tableaux that we shall give is easier to understand, which is in part due to the fact
that pictures are, in spite of their name, more difficult to visualise than tableaux are.

\S 2. Tableau switching and jeu de taquin.

In this section we shall consider a combinatorial procedure that will turn out to be
intimately related to the Littlewood-Richardson rule. This procedure is essentially
Sch\"utzenbergers $jeu$ de $taqu$in, but we prefer to introduce it in a slightly different
form called “tableau switching” (a term that was introduced in [BeSoSt] for an
operation that, although defined in a somewhat different way, constructs the same
correspondence between pairs of skew tableaux as we shall do below).

2.1. Chains in the Young lattice and standardisation.

Inclusion of Young diagrams defines a partial ordering on the set $\mathcal{P}$ of partitions,
which shall be denoted by $‘\subseteq;$ the poset $(\mathcal{P}, \subseteq)$ is called the Young lattice. We
define a skew standard tablea $u$ of shape $\lambda/\mu$ to be a saturated increasing chain in
the Young lattice from $\mu$ to $\lambda$ , i.e., a sequence of partitions starting with $\mu$ and
ending with $\lambda$ such that the Young diagram of each partition is obtained from
that of its predecessor by the addition of exactly one square. We shall denote the
set of all skew standard tableaux of shape $\lambda/\mu$ by $ST(\lambda/\mu)$ , and say that each of
its elements has size $|\lambda/\mu|$ . A skew standard tableau of partition shape is called
a standard Young tableau, and we write $ST(\lambda)$ for $ST(\lambda/(O))$ . If its shape $\lambda/\mu$

is given, then specifying some $S\in ST(\lambda/\mu)$ amounts to putting a total ordering
on $Y(\lambda/\mu)$ , describing the order in which the squares are added. This can be done
by labelling the squares in the desired order with increasing numbers (or elements
of some other totally ordered set); these labels will increase along each row and
column, whence the name tableau. For instance, the sequence with Young diagrams
$P3,$ $HF\cdot H,$ $\ovalbox{\tt\small REJECT}\cdot\ovalbox{\tt\small REJECT},$ $\ovalbox{\tt\small REJECT}$ is represented by $\ovalbox{\tt\small REJECT}$ . In the literature it is
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usually this representation that is called a standard tableau, but chains of partitions
will be more convenient for us to work with.

In fact any skew semistandard tableau $T$ determines a chain of partitions,
with the convention that the squares $(i, j)$ are ordered by increasing value of their
entries $T_{i,j}$ , or in case these entries are equal, by increasing column number $j$ ;
this chain (a skew standard tableau) will be called the $st$andardisation of $T$ . For
instance, the standardisation of $\ovalbox{\tt\small REJECT}$ is the skew standard tableau depicted above.
Any skew semistandard tableau is determined by its standardisation together with
its weight, but a given combination of a skew standard tableau $S$ and a weight $\alpha$

does not necessarily correspond to any skew semistandard tableau $T$ . The condition
for the existence of $T$ is that any sequence of squares successively added in $S$

that according to $\alpha$ should have the same entry $k$ in $T$ (so the sequence has
length $\alpha_{k}\geq 2$ ) should lie in columns whose numbers strictly increase; another
formulation is that the indices of the diagonals of the squares should increase (in
this case increase is automatically strict, since no two squares on the same diagonal
can be successively added). When these equivalent conditions are met, we shall
say that $S$ is compatible with $\alpha$ .

2.2. Tableau switching and $jeu$ de taquin.

Among the skew shapes $\lambda/\mu$ of with $|\lambda/\mu|=2$ , two different kinds can be
distinguished: shapes for which the two squares of $Y(\lambda/\mu)$ are incomparable in
the natural ordering of $N^{2}$ , and which shapes therefore admit two different skew
standard tableaux, and shapes for which those squares lie in the same row or
column (and are adjacent), which shapes admit only one skew standard tableau.
The latter kind of shapes will be called dominos. We shall give a construction,
based on a certain class of doubly indexed families of partitions, that can be found
in [vLeel, 2.1.2]. Let $I=\{i\in Z|k\leq i\leq l\}$ and $J=\{j\in Z|m\leq j\leq n\}$ be
intervals in $Z$ , and let $(\lambda^{[i,j]})_{i\in I,j\in J}$ be a family of partitions; we shall call this a
tableau switching family on $I\times J$ if each “row” $\lambda^{[i,m]},$

$\ldots,$

$\lambda^{[i,n]}$ and each “column”
$\lambda^{[k,j]},$

$\ldots,$

$\lambda^{[l,j]}$ is a skew standard tableau, and if $\lambda^{[i,j+1]}\neq\lambda^{[i+1,j]}$ whenever
$\lambda^{[i+1,j+1]}/\lambda^{[i,j]}$ is not a domino. Here is a small example:

$(\lambda^{[i,j]})_{0\leq i,j<4}=(\circ\square F\coprod$ $FFH\square $ $\ovalbox{\tt\small REJECT} H^{I\supset}Fm$
$\ovalbox{\tt\small REJECT} ffl^{\text{コ}}fflF)$ (10)

Whenever either the sequence $\lambda^{[i,j]},$ $\lambda^{[i,j+1]},$ $\lambda^{[i+1,j+J]}$ or the sequence $\lambda^{[i,j]},$ $\lambda^{[i+1,j]}$ .
$\lambda^{[i+1,j+1]}$ is specified to be some skew standard tableau of size 2, there is a unique
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value for the remaining partition for which one obtains a tableau switching family
on $\{i, i+1\}\times\{j, j+1\}$ (because if $\lambda^{[i+1,j+1]}/\lambda^{[i,j]}$ is a domino, then necessarily
$\lambda^{[i,j+1]}=\lambda^{[i+1,j]})$ . It follows that if values $\lambda^{[i,j]}$ are prescribed for indices $[i,j]$

traversing some “lattice path” going from $[k, m]$ to $[l, n]$ (a zig-zag path in which at
each step either $i$ or $j$ increases by 1) by any skew standard tableau, then there is a
unique way to extend these values to tableau switching family on $I\times J$ . Applying
this to the path passing through $[l, m]$ enables the following definition.

2.2.1. Definition. Let $S$ an$dT$ be skew $st$andard tableaux of respective shapes
$\mu/\nu$ an $ d\lambda/\mu$ . The pair $(T’, S’)$ of skew standard tableaux obtain $ed$ from $(S, T)$

by tableau switching, written $(T^{\prime}, S’)=X(S, T)$ , is defined by the existence of a
tableau switching family $(\lambda^{[i,j]})_{k\leq i\leq l;}m\leq j\leq n$ such that

$S=(\lambda^{[k,m]}, \ldots, \lambda^{[l,m]})$ , $T=(\lambda^{[l,m]}, \ldots, \lambda^{[l,n]})$ ;
$T’=(\lambda^{[k,m]}, \ldots, \lambda^{[k,n]})$ , $S’=(\lambda^{[k,n]}, \ldots, \lambda^{[l,n]})$ .

As an $exan\iota ple$ , the tableau switching family (10) establishes the fact that
$X(\ovalbox{\tt\small REJECT},\ovalbox{\tt\small REJECT})=(\ovalbox{\tt\small REJECT}, \ovalbox{\tt\small REJECT})$ . A visual way to interpret this definition is the following.
Represent $S$ and $T$ together in the skew diagram $Y(\lambda/\nu)$ , by filling the squares
of their diagrams with labels coming from two disjoint totally ordered sets
$A=\{a_{k}< -- <a_{l-1}\},$ $B=\{b_{m}<\cdots<b_{n-1}\}$ ; for instance one can take red
numbers $a_{i}$ for $S$ and blue numbers $b_{j}$ for $T$ . We shall associate any vertical segment
from $[i,j]$ to $[i+1,j]$ in a lattice path with the label $a_{i}$ , and any horizontal segment
from $[i,j]$ to $[i, j+1]$ with the label $b_{j}$ . Then each lattice path from $[k, m]$ to $[l, n]$

gives rise to a shuffle of the sets $A$ and $B$ , i.e., a total ordering on $A\cup B$ that is
compatible with the orderings of $A$ and $B$ individually. Along each lattice path
a skew standard tableau of shape $\lambda/\nu$ can be read off from the tableau switching
family, which can be represented by filling the squares of $Y(\lambda/\nu)$ with the elements
of $A\cup B$ , using the total ordering of that set associated to the lattice path.

The initial data of $Y(\lambda/\nu)$ filled with elements of $A$ according to $S$ , and
elements of $B$ according to $T$ , defines the part of the tableau switching family
along the lattice path that traverses the left and bottom edges. To determine the
other members of that family, we shall gradually transform the path, determining
a single new member $\lambda^{[i,j]}$ at the time, while updating the filling of $Y(\lambda/\nu)$ with
elements of $A\cup B$ so as to correspond to the skew standard tableau read off along the
current path, as described above. Eventually the whole family will be determined,
and we shall have obtained the lattice path that traverses the top and right edges,
from which $T^{\prime}$ and $S$ ’ can be read off. The change to the lattice path at each
step amounts to transposing one $a_{i}$ with one $b_{j}$ in the shufHe, and only a minimal
modification, if any, is needed to update the filling of $Y(\lambda/\nu)$ : if the squares filled
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with $a_{i}$ and $b_{j}$ are adjacent, then these entries are interchanged, and otherwise
the filling is unchanged (this easily follows from definition 2.2.1). Any interchange
thus made is a special case of a switch in the sense of [BeSoSt], and this shows that
$X(S, T)$ coincides with the result of the tableau switching procedure defined there
(in fact that procedure is more liberal, and allows using intermediate fillings that
do not correspond to any lattice path).

Here is an example of a transformation of the fillings using the family of (10),
and a not very systematic choice of intermediate lattice paths. The paths used are
identified by the shufHes written above the tableaux; in many steps this is the only
thing that changes. We have used numbers in italics for the $a_{i}$ , and numbers in
bold face for the $b_{j}$ .

012 $012$ 010212 $001212$ $001122$ $001122$ $001122$ 001122 001212 $010212$ $012012$

$\overline{\ovalbox{\tt\small REJECT}^{011}22}$ $\overline{\ovalbox{\tt\small REJECT}^{011}02}$ $\overline{\ovalbox{\tt\small REJECT}^{011}02}$ $\ovalbox{\tt\small REJECT}_{2}^{11}02$ $\overline{F_{2}^{011\lrcorner}02}$ $\frac{\ulcorner 0\mathfrak{m}}{*_{2}^{02}}$ $\frac{\cap oT}{H_{2}^{02\lrcorner}}$ $\overline{\#_{2}^{\mu^{1}}0102}$ $\overline{F_{2}^{011}02}$ $\overline{\ovalbox{\tt\small REJECT} 20011}$

In retrospect, some traces of the tableau switching procedure can be already be
found in [Haiml] and in the tables de $pr$omotion of [Sch\"u2]. The symmetry of our
definition with respect to $i$ and $j$ has an obvious but important consequence.

2.2.2. Theorem. Tableau switching is involutive: if $X(S, T)=(T$ ‘, $S$ ‘ $)$ , then
$X(T, S’)=(S, T)$ . $\square $

One particular way to transform the lattice path via $[l, m]$ into the one
via $[k, n]$ , i.e., to go from the shuMe in which all $a_{i}$ precede all $b_{j}$ to the one in
which all $b_{j}$ precede all $a_{i}$ , is to start transposing the final element $a_{l-1}$ of $A$ with
all elements of $B$ , then to do the same with $a_{l-2}$ , etc. If, while processing each $a_{i}$ ,
we temporarily view the square labelled by it as “empty”, then each interchange
of entries corresponds to sliding some $b_{j}$ either up or to the left, into the empty
square; the description we so obtain for the transformation of the tableau labelled
by $B$ before and after processing $a_{i}$ is exactly that of in inward $jeu$ de taquin slide
into the square initially containing $a_{i}$ (see [Sch\"u3], or for instance [Fult]). It follows
that if $X(S, T)=(T, S’)$ , then $T$ is obtained from $T$ by a sequence of inward jeu
de taquin slides, which we shall write as $T\triangleright T^{\prime}$ . In the example displayed above
we obtain the transformation $T\triangleright T$ (the entries in bold face) as follows:

$\overline{\ovalbox{\tt\small REJECT}_{2}^{1}}$
$\triangleright$

$\overline{\#^{\underline{1}}02}$
$\triangleright$

$\overline{\ovalbox{\tt\small REJECT}^{1}02}$
$\triangleright$

$\frac{\lceil\overline{0}1\neg^{-}}{H^{2_{\lrcorner}}}$

By theorem 2.2.2, one also has $S\triangleleft S’$ , i.e., $S^{\prime}$ is obtained from $S$ by a sequence of
outward jeu de taquin slides. For the italic entries above:

$\overline{F201\lrcorner}$
$\triangleleft$

$\overline{F_{2}^{1\lrcorner}0}$
$\triangleleft$

$\overline{\#_{2}^{\underline{1}}0}$
$\triangleleft$

$\overline{\#_{2}^{0}i^{1\lrcorner}}$ .



112 MARC A. A. VAN LEEUWEN

The following simple observation will allow us to define tableau switching for
skew semistandard tableaux as well as for skew standard tableaux.

2.2.3. Proposition. If $T,$ $T^{\prime}$ are skew standard tableaux with $T\triangleright T$ , then $T$ ’ is
compatible with a weight $\alpha$ (as defined in $su$bsection 2.1) if and only if $T$ is.

Proof. Compatibility of $T$ and $T^{\prime}$ with $\alpha$ is checked by comparing positions of
certain pairs of squares added at successive steps in the chain of partitions; therefore
the general case reduces to the one where $X(S, T)=(T^{\prime}, S’)$ with $T$ of size 2 and
$S$ of size 1. The validity in this case is fairly obvious by inspection, but here is a
formal argument. We show that the relative order of the diagonals of the two entries
of $T$ is unchanged in $T^{\prime}$ ; then compatibility with $\alpha$ does not change either. For
each of the two entries of $T$ , the index of its diagonal changes by at most 1 during
the slide, and the two entries certainly do not exchange places. Then since the only
other square involved, that of $S$ , does not lie on the same diagonal as either of the
entries of $T$ , the relative order of their diagonals remains unchanged by the slide. $\square $

Remark. In fact even more is true: if $T\triangleright T$ for $T\in ST(\lambda/\mu)$ and $T’\in ST(\lambda^{\prime}/\mu)$ ,

then for any skew shape $\nu/\kappa$ there exists a $\nu/\kappa$-dominant tableau in $SST(\lambda/\mu)$ with
standardisation $T$ if and only if there is one in $SST(\lambda’/\mu’)$ with standardisation $T^{\prime}$

(both have weight $\nu-\kappa$). This is more a bit difficult to prove, but the proof is
still straightforward: one has to prove that after modifying the relevant companion
tableau to reflect the slide $T\triangleright T^{\prime}$ , it still satisfies the tableau condition. This is
essentially what is shown in [$vLee2$ , theorem 5.1.1]; see also subsection 3.4 below.

2.2.4. Definition. Let $T_{1},$ $T_{2}$ be skew semistandard tablea $ux$ such that tableau
switching can be applied to the pair $(S_{1}, S_{2})$ of their standardisations; then
tablea $u$ switching can also be applied to $(T_{1}, T_{2})$ , resulting in a pair of $skew$

semistandar$d$ tablea$ux(T_{2}, Ti)=X(T_{1}, T_{2})$ determin $ed$ by the $con$ditions that
their $st$andardisations are $(S_{2}, S\text{\’{i}})=X(S_{1}, S_{2})$ , and the weight of $T_{i}^{\prime}$ is equal to
that of $T_{i}(i=1,2)$ . The notion ofjeu de taquin slides is also extended to this
case; we write $T_{2}\triangleright T_{2}$ and $T_{1}\triangleleft\tau i$ .

We note one further property of tableau switching that is immediate from
its definition. From $T\in ST(\mu/\nu)$ and $U\in ST(\lambda/\mu)$ , a skew standard tableau
of shape $\lambda/\nu$ can be formed by joining together the chains of partitions; we shall
denote it by $T|U$ . As a filling of the diagram $Y(\lambda/\nu)$ , it is the union of the fillings
for $T$ and $U$ , after making sure (by adding some offset) that all entries used for $U$

exceed those for $T$ . Then by similarly joining tableau switching families we get:

2.2.5. Proposition. If $X(S, T)$ $=$ $(T’, S^{\prime})$ and $X(S’, U)$ $=$ $(U^{\prime}, S’)$ , then
$X(S, T|U)=(T^{\prime}|U’, S’)$ . $\square $
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2.3. $Jeu$ de taquin equivalence and dual equivalence.

Jeu de taquin defines an equivalence relation on skew standard tableaux, and on
skew semistandard tableaux, generated by the relations $T\triangleright T$ ; this relation is
called jeu de taquin equivalence. Tableau switching allows us to define another
equivalence relation, called dual equivalence (see [Haim2]).

2.3.1. Definition. Two skew (semi)standard tableaux $S_{1},$ $S_{2}$ of equal shape
are called dual equivalent if for any tableau $T$ of appropriate shape, and with
$X(S_{i}, T)=(T_{i}^{\prime}, S_{i})$ for $i=1,2$ , one has $T_{1}^{\prime}=T_{2}^{\prime}$ .

It follows from proposition 2.2.5 that the tableaux S\’i and $S_{2}^{\prime}$ in this definition
are also dual equivalent. The meaning of dual equivalence can be expressed in two
ways in terms of jeu de taquin. Firstly, if $S_{1}$ and $S_{2}$ are dual equivalent, then they
have the same shape, and this remains true whenever the same sequence of outward
jeu de taquin slides is applied to each of them (i.e., each slide starts with the same
empty square in both cases); this is because the tableaux $\tau i$ and $T_{2}$ record the
squares in which the successive slides end. Secondly, when $S_{1}$ and $S_{2}$ are used to
determine sequences of inward slides, then these sequences will always have the
same effect when applied to any tableau $T$ .

It is somewhat surprising that there exist pairs of distinct skew standard
tableaux that are dual equivalent, since the definition refers to arbitrarily large
tableaux $T$ , and therefore for instance to arbitrarily long sequences of jeu de
taquin slides. To describe the most elementary cases of such pairs, we need some
notation for skew standard tableaux of size 3. As mentioned above, a skew standard
tableau $T\in ST(\lambda/\mu)$ can be described by an ordering of the squares of $Y(\lambda/\mu)$ .
If $|\lambda/\mu|=3$ those squares lie on distinct diagonals, which are ordered by index, so
we may specify $T$ using a permutation of the letters $a,$ $b,$ $c$ , which we shall call the
type of $T$ . The convention used is that the three positions in the word correspond
to the diagonals, while $a,$

$b$ , and $c$ , respectively indicate the first second and third
square added. As an example, the tableau displayed as $\frac{\lceil 1T2\neg}{\cup 3}$ is of type cab.

2.3.2. Proposition. Let $\lambda/\mu$ be a $sh$ape with $|\lambda/l\iota|=3$ . Then $ST(\lambda/\mu)$ contains
a tableau of type $bca$ if and only if it $conf$ains a tableau of $typeacb$ , and if so, the
two tableaux are dual equivalent. Similarly, $ST(\lambda/\mu)$ contains a tablea $u$ of type $bac$

if and only if it contains one of type cab, and if so, the two are $dual$ equivalent.

Proof. The shape may restrict the possible types of tableaux, due to adjacency of
squares: the leftmost or upper one of two adjacent squares must be added before the
other one. But within either of the sets of types $\{bca, acb\}$ or { $bac$ , cab}, the relative
order among squares of $Y(\lambda/\mu)$ on successive diagonals is fixed (only the ordering
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between the outer diagonals differs), so possibility of one type implies that of the
other. For the dual equivalence, we shall show that any pair of tableaux matching
the hypotheses of the proposition is transformed by a single jeu de taquin slide into
another such pair, having in particular equal shapes: then dual equivalence follows
by induction on the size of the tableau $T$ in definition 2.3.1 (using proposition 2.2.5).
So let $S_{1},$ $S_{2}\in ST(\lambda/\mu)$ either have types $\{bca, acb\}$ or types { $bac$ , cab}, and let $T$

be of size 1 occupying a square $t$ , with $X(S_{i}, T)=$ ( $T_{i}$ , S\’i) defined for $i=1,2$ .

Suppose first that $t$ lies on a diagonal that does not meet $Y(\lambda/\mu)$ ; in this case
we shall show that $S_{i}$ has the same type as $S_{i}(i=1,2)$ , and that $T_{1}=T_{2}^{\prime}$ (which
implies that S\’i and $S_{2}^{\prime}$ have the same shape). The former statement is proved
in essentiallv the same way as proposition 2.2.3: no transpositions are possible
in the ordering by diagonal index of the squares of $S_{i}$ , because diagonal indices
change by at most one during the slide, and at most one square is available on
each diagonal. To show $\tau i=T_{2}$ , we view each computation of $X(S_{i}, T)$ as three
successive applications of an inward slide to $T$ ; we claim that the sequence of
actual moves of the square of $T$ (i.e., ignoring the slides that leave it in place) is
the same for $X(S_{1}, T)$ as for $X(S_{2}, T)$ . The only difference between the two cases
is the relative order of the slides into the squares on the outer diagonals of $Y(\lambda/l\iota)$ ,
which squares cannot both be adjacent to $t$ ; then at least one of these slides leaves
the square of $T$ in place (both for $i=1$ and $i=2$ ). Therefore the relative order of
these two slides makes no difference, proving our claim.

If $t$ lies a diagonal that does meet $Y(\lambda/\mu)$ , then that must be the middle
diagonal, and $Y(\lambda/\mu)$ must have the form $F$ . This is impossible if the types
of $S_{1},$ $S_{2}$ are $\{bca, acb\}$ , and the proof for that case is therefore complete. We
are left with the case that can be depicted as $S_{1}$ $=\frac{m}{\cup 1}02\triangleleft\ovalbox{\tt\small REJECT}=$ S\’i and
$S_{2}=F_{2}^{01}\triangleleft\ovalbox{\tt\small REJECT}=S_{2}$ ; we see that S\’i and $S_{2}$ have the same shape (so $T_{1}^{\prime}=T_{2}$ ),
and types $bca$ respectively $acb$ , whence they match the case just completed. $\square $

This basic case implies many others by the following immediate consequence
proposition 2.2.5:

2.3.3. Proposition. If $S_{1}$ and $S_{2}$ are dual equivalent, and also $T_{1}$ and $T_{2}$ , then
so are $S_{1}|T_{1}$ and $S_{2}|T_{2}$ . $\square $

2.4. Confluence of $jeu$ de taquin.

A crucial property ofjeu de taquin is its confluence, i.e., the property that whenever
$T\triangleright T_{1}$ and $T\triangleright T_{2}$ , then there exists a tableau $U$ such that $T_{1}\triangleright U$ and $T_{2}\triangleright U$ .
Since any sequence of slides can be extended until a tableau of partition shape is
reached, and no further (Young tableaux are the normal forms for jeu de taquin),
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this is equivalent to saying that for any skew tableau $T$ there is a unique Young
tableau $P$ such that $T\triangleright P$ . Although this property will follow as a corollary to our
main theorem in \S 3, we shall give an independent proof here, that does not require
any further constructions; what is more, we have in fact already established the
essential part of the argument, in proving proposition 2.3.2. Our proof is inspired
by the one given in [Eriks] (although it must be admitted that by translating the
reasoning using tableau switching, it has become rather similar to the arguments
contained in [Haim2]). The confluence we wish to prove can be formulated as
follows: given any $T\in ST(\lambda/\mu)$ , all sequences of inward jeu de taquin slides to fill
up all squares of $Y(\mu)$ give the same standard Young tableau as result when applied
to $T$ . Those sequences of slides are determined by the standard Young tableaux of
shape $\mu$ , and the statement means that these should all be dual equivalent (by the
second interpretation of that term, given after its definition). Therefore we state:

2.4.1. Theorem. For any $\lambda\in \mathcal{P}$ , all tablea$ux$ in $ST(\lambda)$ are $dual$ equivalent.

Proof. The proof is by induction on $|\lambda|$ ; the case $|\lambda|=0$ is trivial (in fact all
cases with $|\lambda$ I $\leq 3$ are either trivial or already established). By the induction
hypothesis and proposition 2.3.3, one has for any corner $s$ of $Y(\lambda)$ dual equivalence
among all members of the subset $C(\lambda, s)$ of $ST(\lambda)$ of tableaux whose highest entry
occupies the square $s$ (as chains of partitions, these tableaux have in common
a predecessor of $\lambda$ in $(\mathcal{P}, \subseteq))$ . It will then suffice to establish dual equivalence
between a pair of elements chosen from any two such subsets $C(\lambda,p),$ $C(\lambda, r)$ ; we
assume that the diagonal of the corner $p$ has smaller index than that of $r$ . The
Young diagram $Y(\lambda)\backslash \{p, r\}$ contains at least one corner $q$ on a diagonal whose
index is between those of $p$ and $q$ : one can take for instance its unique corner
in the row above $p$ . Let $\mu\in \mathcal{P}$ be such that $Y(\mu)=Y(\lambda)\backslash \{p, q, r\}$ , and let
$S_{1},$ $S_{2}\in ST(\lambda/\mu)$ be the tableaux of respective types cab and $bac$ ; these tableaux
are dual equivalent by proposition 2.3.2. For any $R\in ST(\mu)$ one has $R|S_{1}\in C(\lambda,p)$

and $R|S_{2}\in C(\lambda, r)$ , and $R|S_{1}$ and $R|S_{2}$ are dual equivalent by proposition 2.3.3. $\square $

Remark. The statement of the theorem corresponds to a global form of confluence
of jeu de taquin, in the sense that any two sequences of jeu de taquin slides applied
to $T$ will eventually converge when the normal form (Young tableau) is reached.
The proof however shows that confluence can in fact be obtained locally, namely
if two different jeu de taquin slides are applied to $T$ , then the resulting tableaux
can be made equal by applying at most two more slides to each of them: the dual
equivalence of $S_{1}$ and $S_{2}$ in the proof means that successive slides into $p,$ $r,$ $q$ have
the same effect as those into $r,p,$ $q$ .

We defined two tableaux to be dual equivalent if their equality of shape is
preserved under sequences of outward slides, or equivalently if the two sequences of
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inward slides (applied to some tableau $T$ ) determined by them always have the same
effect. One may ask whether this implies the same property with “inward” and
“outward” interchanged; indeed that is part of the requirement for dual equivalence
in its original definition in [Haim2]. To prove that this property follows from our
definition (in fact it is equivalent to it), we use an involutive poset anti-isomorphism
of the sub-poset of the Young lattice of partitions contained in some fixed (large)
rectangular partition. Fix a partition $\rho$ with $7t$ non-zero parts, all equal to $m$ ; then
this anti-isomorphism, which we shall denote by $\lambda\leftrightarrow\lambda^{o}$ for $\lambda\subseteq\rho$ , is given by
$\lambda_{i}^{o}=m-\lambda_{n-1-i}$ for $i\in[n]$ . For any $T\in ST(\lambda/\mu)$ with $\lambda\subseteq\rho$ , we also define
$T^{o}\in ST(\mu^{\langle\rangle}/\lambda^{o})$ by applying the anti-isomorphism to all partitions in the chain
of $T$ , and reversing their order. By a similar operation applied to tableau switching
families, it can be seen that $X(S, T)=(T, S^{\prime})$ implies $X(T^{o}, S^{o})=(S^{o}, T^{\prime^{o}})$ .

2.4.2. Proposition. Two tableaux $S_{1},$ $S_{2}$ of the same shape are dual equivalen $t$

if and on$ly$ if for any tableau $T$ of appropriate $sh$ape, and $wi$th $X(T, S_{i})=(S_{i}, T_{i})$

for $i=1,2$ , one has $T_{1}=T_{2}$ .

Proof. Let us temporarily call the relation in the second clause of the proposition
reverse dual equivalence. Suppose first that $S_{1}$ and $S_{2}$ are reverse dual equivalent
and of shape $\lambda/\mu$ . Let $T\in ST(\mu/(O))$ , and put $X(T, S_{i})=(S_{i}, T^{\prime})$ for $i=1,2$ ;
then S\’i and $S_{2}$ are dual equivalent by theorem 2.4.1, so $S_{1}$ and $S_{2}$ are also dual
equivalent by the remark after definition 2.3.1. (In fact theorem 2.4.1 is equivalent
to the “if” part of the current proposition, since Young tableaux of equal shape
are trivially reverse dual equivalent.) Conversely, suppose that $S_{1}$ and $S_{2}$ are dual
equivalent; then for any choice of a rectangular partition $\rho\supseteq\lambda$ , the tableaux
$ S_{1}\langle\rangle$ and $S_{2}^{o}$ are reverse dual equivalent, whence (by what we just proved) they are
dual equivalent, and so $S_{1}=S_{1}^{oo}$ and $S_{2}=S_{2}^{oo}$ are reverse dual equivalent. $\square $

This proposition provides an effective test of dual equivalence. Given tableaux
$S_{1},$ $S_{2}$ of equal shape, one applies successive inward slides into the same squares to
both tableaux; if at any moment their shapes become different, then $S_{1}$ and $S_{2}$ are
not dual equivalent, but if the tableaux become Young tableaux without exhibiting
shape difference, then one has established the second clause of the proposition, and
therefore dual equivalence of $S_{1}$ and $S_{2}$ . For jeu de taquin equivalence one also has
a test, due to confluence: one reduces both tableaux to Young tableaux, which will
be equal if and only if the original tableaux are jeu de taquin equivalent.

2.4.3. Corollary. If $S_{1},$ $S_{2}$ are both dual equivalent andjeu de taquin equivalent,
then $S_{1}=S_{2}$ .

Proof. Reducing $S_{1}$ and $S_{2}$ in parallel preserves shapes and eventually produces
equal tableaux; reversing the slides, one must have had $S_{1}=S_{2}$ to begin with. $\square $
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2.5. An alternative Littlewood-Richardson rule.

Let $\chi\in S$ ; the fact that to each skew tableau $T\in ST(\chi)$ there is associated a unique
Young tableau $P$ obtainable from it by jeu de taquin, allows us to subdivide $ST(\chi)$

according to the shape of this $P$ . Define $ST(\chi)^{\triangleright P}=\{\mathcal{I}^{1}\in ST(\chi)|T\triangleright P\}$ for any
standard Young tableau $P$ , and for $\nu\in \mathcal{P}_{|\chi|}$ set $ST(\chi)^{\triangleright\nu}=\bigcup_{P\in ST(\nu)}ST(\chi)^{\triangleright P}$ .
The sets $ST(\chi)^{\triangleright P}$ are the fibres of the map $ST(\chi)^{\triangleright\nu}\rightarrow ST(\nu)$ sending $T\leftrightarrow P$

when $T\triangleright P$ . We show that these fibres all have the same number of elements,
and that in fact there are canonical bijections between them, so that $ST(\chi)^{\triangleright\nu}$ is in
natural bijection with the Cartesian product of ST(v) and any one such fibre.

2.5.1. Proposition. Let $\lambda/\mu\in S$ and $\nu\in \mathcal{P}$ , and let $C\in ST(\nu)$ be fixed. Then
there is a bijection $\phi:ST(\lambda/\mu)^{\triangleright C}\times ST(\nu)\rightarrow ST(\lambda/\mu)^{\triangleright\nu}$ , that can be characterised
by the conditions that $\phi(L, P)\triangleright P$ and that $\phi(L, P)$ is dual equivalent to $L$ .

Proof. We can construct $\phi(L, P)$ , which is then uniquely determined due to
corollary 2.4.3, as follows. Choose any $Q\in ST(\mu)$ , then $X(Q, L)=(C, S)$ for
some $S\in ST(\lambda/\nu)$ ; then compute $X(P, S)$ , which because of $S\triangleright Q$ will be of the
form $(Q, T)$ with $T\in ST(\chi)^{\triangleright P}$ . From $X(Q, L)=(C, S)$ and $X(Q, T)=(P, S)$
with $C,$ $P\in ST(\nu)$ , we get dual equivalence of $L$ and $T$ ; we set $\phi(L, P)=T$ . Since
$(P, S, L)$ can be reconstructed from $(T, Q, C)$ , the correspondence $\phi$ is bijective. $\square $

As an example of this construction, let

The reader may check that the same tableau $T$ is obtained for other choices of $Q$ .
The above proposition can be generalised to skew semistandard tableaux,

using proposition 2.2.3. It suffices to replace $ST(\nu)$ and $ST(\lambda/\mu)$ respectively
by $SST(\nu, n)$ and $SST(\chi, n)$ , and $ST(\lambda/\mu)^{\triangleright\nu}$ by $SST(\chi, n)^{\triangleright\nu}$ , which is defined as
$\bigcup_{C\in SST(\nu,n)}SST(\chi)^{\triangleright C}$ where $SST(\chi)^{\triangleright C}=\{L\in SST(\chi, n)|L\triangleright C\}$ . We obtain
the following corollary, either by applving proposition 2.5.1, or by reusing its proof
almost literally.
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2.5.2. Corollary. Let $\chi\in S,$ $\nu\in \mathcal{P},$ $n\in N$ , a$nd$ fix $C\in SST(\nu, n)$ . Then there
$is$ a bijection $\phi:SST(\chi)^{\triangleright C}\times SST(\nu, n)\rightarrow SST(\chi, n)^{\triangleright\nu}$ , that can be characterised
by the $con$ditions that $\phi(L, P)\triangleright P$ and that $\phi(L, P)$ is $dual$ equivalent to $L$ . $[\lrcorner$

If one combines the inverses of such bijections $\phi$ for all $\nu\in \mathcal{P}_{|\chi|,n}$ , one obtains
a bijection $\mathcal{R}$

’ defined on $\bigcup_{\nu\in \mathcal{P}_{|\chi|,n}}SST(\chi, n)^{\triangleright\nu}=SST(\chi, n)$ , whose codomain
strongly resembles that specified for Robinson’s bijection $\mathcal{R}$ at the right hand side
of (9); the difference is that, in each component of the union over $\nu\in \mathcal{P}_{|\chi|,n}$ , the
factor $LR(\chi, \nu)$ is replaced by $SST(\chi)^{\triangleright c}$ , for some $C\in SST(\nu, n)$ chosen separately
for every $\nu$ . Writing $\mathcal{R}’(T)=(\mathcal{R}_{0}(T), \mathcal{R}_{1}(T))$ , the map $\mathcal{R}_{1}^{\prime}$ preserves weight (since
$T\triangleright \mathcal{R}_{1}(T))$ ; therefore the bijection $\mathcal{R}^{\prime}$ gives us an alternative expression for the
value of Littlewood-Richardson coefficients:

2.5.3. Corollary. If the $skewsh$ape $\chi$ represents $\lambda*\mu$ , then the Littlewood-
Richardson coefficient $c_{\lambda,\mu}^{\nu}$ equals $\#SST(\chi)^{\triangleright c}$ for any $C\in SST(\nu)$ . More generally,
$\neq SST(\chi)^{\triangleright C}=c_{\lambda}^{\nu}$ for any skew shape $\chi$ . $\square $

Although this version of the Littlewood-Richardson rule has the advantage of
already being proved, it is of little practical use in its present form, since the sets
$SST(\chi)^{\triangleright c}$ cannot be enumerated in any useful manner. However, we shall in the
next section prove the identity

SST $(\chi)^{\triangleright 1_{\nu}}=LR(\chi, \nu)$ ; (11)

it follows that for the special choice $C=1_{\nu}\in SST(\nu, n)$ for all $\nu$ , the bijection $\mathcal{R}^{\prime}$

exactly matches the specification of Robinson’s bijection, providing a proof of the
Littlewood-Richardson rule. Indeed, we shall define $\mathcal{R}$ so that it coincides with this
specialisation of $\mathcal{R}^{\prime}$ . The remark we made following definition 2.2.4 implies (11),
so we could complete our proof of the Littlewood-Richardson rule by proving that
remark. Using coplactic operations, as we shall do, is certainly not the sirnplest
way to prove (11), but it provides a better insight into Robinson’s bijection. and in
particular it gives a simpler description of $\mathcal{R}_{0}$ than the one that can be extracted
from what has been presented so far. It will also lead to a proof of the Littlewood-
Richardson rule that does not depend on any of the non-trivial results derived in
this section.

By proposition 1.4.5, (11) also implies $\#SST(\chi)^{\triangleright 1_{\nu}}=\#SST(\nu/\mu)^{\triangleright 1_{\lambda}}$ when
$\chi$ represents $\lambda*\mu$ , and hence $c_{\lambda,\mu}^{\nu}=c_{\nu/\mu}^{\lambda}$ . On the other hand $c_{\nu/\mu}^{\lambda}=c_{\nu/\lambda}^{\mu}$

can be obtained without using (11): the relation $X(1_{\mu}, T)=(1_{\lambda}, T^{*})$ defines
a bijection between tableaux $ T\in$ SST $(\nu/\mu)^{\triangleright 1_{\lambda}}$ and $\tau*\in SST(\nu/\lambda)^{\triangleright 1_{\mu}}$ (this can
be generalised by replacing $1_{\mu}$ and $1_{\lambda}$ by other fixed tableaux of the same shape).
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For instance, here is the computation for the tableau $L^{*}$ corresponding to the
Littlewood-Richardson tableau $L$ of (7).

$L^{*}=$ (12)

The identity $c_{\nu/\mu}^{\lambda}=c_{\nu/\lambda}^{\mu}$ is of course related to the symmetry $c_{\lambda,\mu}^{\nu}=c_{\mu,\lambda}^{\nu}$ that
is obvious from the definition (2). If we assume (11), we can derive a bijection
corresponding to that symmetry. Write $LR(\lambda*\mu, \nu)$ for $LR(\chi, \nu)$ when $\chi$ represents
$\lambda*\mu$ , and let $L\in LR(\lambda*\mu, \nu)$ be given. First determine $\overline{L}_{\lambda}\in LR(\nu/\mu, \lambda)$

corresponding to $L$ by proposition 1.4.5 (the companion tableau of the subtableau
$L_{\lambda}$ of $L$ ), then compute $\overline{L}_{\lambda}^{*}\in LR(\nu/\lambda, \mu)$ as above by $X(1_{\mu},\overline{L}_{\lambda})=(1_{\lambda},\overline{L}_{\lambda}^{*})$ ,
and finally apply the bijection corresponding to proposition 1.4.5 in the opposite
direction to $\overline{L}_{\lambda}^{*}$ so as to obtain a tableau in $LR(\mu*\lambda, \nu)$ . It does not appear that
this somewhat complicated process can be simplified.

\S 3. Coplactic operations.

In this section we shall introduce another kind of operations on skew semistandard
tableaux, which we shall call coplactic operations. Unlike jeu de taquin, these
transformations do not change the shape of a tableau, but rather its weight, by
changing the value of one of the entries. The basic definitions can be formulated
most easily in terms of finite words over the alphabet $[n]$ . In the application
to tableaux, these words will be the ones obtained by listing the entries of skew
semistandard tableaux using a valid reading order as described in \S 1.5; this means
in particular that notions of “left” and “right” within words will (unfortunately)
get a more or less opposite interpretation within tableaux.

3.1. Coplactic operations on words.

We first fix some terminology pertaining to words. A word over a set $A$ (called
the alphabet) is a finite (possibly empty) sequence of elements of $A$ , arranged from
left to right; the elements of the sequence forming a word $w$ are called the letters
of $w$ . The set of all words of length $l$ over $\Lambda$ is denoted by $A^{l}$ , and $A^{*}=\bigcup_{l\in N}A^{l}$ .
The concatenation of two words $u,$ $v\in A^{*}$ will be denoted by $uv$ (the sequence $u$

of letters, followed by the sequence $v$ ); this defines an associative product on $A^{*}$ .
Whenever a word $w$ can be written as $uv$ , the word $u$ is called a prefix of $w$ , and $v$

a suffix of $w$ ; a subword of $w$ is any word that can be obtained by removing from $w$

a (possibly empty) prefix and a suffix.
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For words $w\in[n]^{*}$ we define the weight wt $w\in N^{n}$ in the same way as for
semistandard tableaux, i.e., $($wt $w)_{i}$ counts the number of letters $i$ in $w$ . A word
$w\in[n]^{*}$ will be called dominant for $i\in[n-1]$ if every prefix $u$ of $w$ satisfies
$($wt $ u)_{i}\geq$ $($wt $u)_{i+1}$ , and it will be called anti-dominant for $i$ if every suffix $v$ of $w$

satisfies $($ wt $ v)_{i}\leq$ $($wt $v)_{i+1}$ . If $w$ is both dominant and anti-dominant for $i$ , it will
be called neutral for $i$ . If $w$ is either dominant or anti-dominant for $i$ , then it is
neutral for $i$ if and only if $($ wt $w)_{i}=$ $($wt $w)_{i+1}$ . In a word $w$ that is neutral for $i$

there is a matching between letters $i$ and letters $i+1$ to their right, like properly
matched left and right parentheses (the words in $\{i, i+1\}^{*}$ that are neutral for $i$

form a so-called Dyck language). Removing from any word a subword that is
neutral for $i$ does not affect whether it is dominant, anti-dominant, or neutral for $i$ .
A word that contains no non-empty subwords that are neutral for $i$ is of the form
$(i+1)^{r}i^{s}$ with $r,$ $s\in N$ , where exponentiation signifies repetition of the same letter.

A word in $[n]^{*}$ that is simultaneously dominant for all $i\in[n-1]$ will be simply
called dominant, or in older terminology a lattice permutation. Equivalently, a
word is dominant if the weight of every one of its prefixes is a partition (of the
length of the prefix into $n$ parts). Observe the similarity with O-dominance for
semistandard tableaux, as characterised in proposition 1.4.3; this is what motivated
our choice of terminology. The sequence of weights of the successive prefixes of a
dominant word $w$ forms a standard Young tableau, from which $w$ can be readily
reconstructed. For later reference we state this as follows:

3.1.1. Proposition. The set of dominant words $w\in[n]^{d}$ of weight $\lambda\in \mathcal{P}_{d,n}$ is in
bijection with $ST(\lambda)$ , associatin$g$ to $w$ to the sequence of weights of its prefixes. $\square $

3.1.2. Definition. A coplactic operation in $[n]^{*}$ is a transition between words
$w=uiv$ and $w=u(i+1)v$ , where $i\in[n-1],$ $u,$ $v\in[n]^{*}$ , and $u$ is anti-dominant
for $i$ while $v$ is dominan $t$ for $i$ . In this case we shall write $w=e_{i}(w’)$ and $w=f_{i}(w)$ .

For instance, in the following word over the alphabet [6], decrementing by 1
any one of the numbers with an underline, or incrementing by 1 any one of the
numbers with an overline, constitutes a coplactic operation, and no other coplactic
operations are possible; the word is dominant for 1 and neutral for 2.

40 1 52 $\overline{\underline{1}}3\underline{5}01\overline{4}2\overline{0}012\overline{3}34$ (13)

In the definition, the letter $i$ in $w$ that is changed to $i+1$ in $w$
’ is not contained in

any subword $u_{0}iv_{0}$ of $w$ that is anti-dominant for $i$ , for $v_{0}$ would then have strictly
more letters $i+1$ than letters $i$ , contradicting the dominance for $i$ of $v$ ; similarly
the indicated letter $i+1$ in $w^{\prime}$ is not contained in any subword that is dominant
for $i$ . In particular the changing letters are not contained in any subword that is
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neutral for $i$ , and $u$ is the longest prefix of u) that is anti-dominant for $i$ , while $v$

is the longest suffix of $w^{\prime}$ that is dominant for $i$ . Hence the expressions $f_{i}(w)$ and
$e_{i}(w)$ , when defined, are unambiguous.

3.1.3. Proposition. The expression $e_{i}(w)$ is defined unless $w$ is dominant for $i$ ,
and $f_{i}(w)$ is defin$edunlessw$ is anti-dominan $t$ for $i$ .

Proof. We shall prove the latter statement, the proof of former being analogous.
Let $u$ be the longest prefix of $w$ that is anti-dominant for $i$ ; clearly $f_{i}(w)$ cannot
be defined if $u=w$ . Otherwise $w=uiv$ for some $v$ , and we show by induction
on its length that $v$ is dominant for $i$ , which will prove the proposition. The cases
where $v$ is empty or ends with a letter other than $i+1$ are trivial, so assume
$v=v^{\prime}(i+1)$ and suppose $v$ is not dominant for $i$ while (by induction) $v^{\prime}$ is.
Then $v$ has as many letters $i$ as letters $i+1$ , and is therefore neutral for $i$ , so
that $w=uiv^{\prime}(i+1)$ is anti-dominant for $i$ since $ui(i+1)$ is; a contradiction. $\square $

If $w=e_{i}(w)$ , then wt $w>wtw^{\prime}$ (for the ordering of \S 1); therefore the $e_{i}$ are
called raising operation $s$ , and the $f_{i}$ are called lowering operations. Starting with
any $w\in[n]^{*}$ one can iterate application of a fixed $e_{i}$ until, after a finite number of
iterations, $w$ is transformed into a word that is dominant for $i$ . More generally any
sequence of applications of operations $e_{i}$ , where $i$ is allowed to vary, must eventually
terminate, producing a dominant word. For instance, for the word in (13), if
we choose at each step to apply the operation $e_{i}$ with minimal possible $i$ , the
sequence of operations applied is $e_{0},$ $e_{3},$ $e_{2},$ $e_{1},$ $e_{0},$ $e_{4},$ $e_{3},$ $e_{2},$ $e_{1},$ $e_{4},$ $e_{3},$ $e_{2},$ $e_{1}$ , which
respectively decrease the letters at positions 5, $0,0,0,0,7,10,10,11,3,3,3,4$ from
the left, leading finally to the dominant word $0012103401210012334$ . Thus
the raising operations $e_{i}$ define a rewrite system on $[n]^{*}$ , whose normal forms are
the dominant words. We shall show below that this rewrite system is confluent;
for instance the dominant word just obtained from the word in (13) can also be
obtained by always applying the $e_{i}$ with maximal possible $i$ , which leads to the
sequence $e_{4},$ $e_{3},$ $e_{3},$ $e_{4},$ $e_{2},$ $e_{2},$ $e_{3},$ $e_{1},$ $e_{2},$ $e_{0},$ $e_{1},$ $e_{0},$ $e_{1}$ , respectively affecting letters
at positions 7, 10, $0,3,10,0,3,0,3,5,11,0,4$ .

The coplactic operations define a labelled directed graph on the set $[n]^{*}$ , with
an edge labelled $i$ going from $w$ to $w$ whenever $f_{i}(w)=w$ ; we shall call this the
coplactic graph on $[n]^{*}$ . For each $w\in[n]^{*}$ , we shall call the connected component of
the coplactic graph on $[n]^{*}$ containing $w$ the coplactic graph of $w$ ; we consider this
to be a rooted graph, with as root the element $w$ itself. For $n=2$ , these coplactic
graphs are linear with a dominant word at one end and an anti-dominant word at
the other end; distinct raising operations do not commute however, so that for $n>2$
the coplactic graph associated to $w$ can contain other words with the same weight
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as $w$ (for instance the coplactic graph of 102 also contains 201). Coplactic graphs
are isomorphic to the crystal graphs for irreducible integrable $U_{q}(\mathfrak{g}\mathfrak{l}_{n})$-modules
of $[KaNa]$ ; this places their properties in a broader perspective. Their structure
is intricate, and not easy to describe in an independent way; however, as we shall
see, it occurs frequently that distinct words have isomorphic coplactic graphs (for
instance the coplactic graphs of 102 and $021$ are isomorphic). The coplactic graph
of the word $w$ in (13) for $n=6$ contains 53460 words, 120 of which have the same
weight as $w$ (for instance 2015314501320012434); we shall not attempt to
depict this graph. However, we encourage the reader to draw some small coplactic
graphs, e.g., for the word $0101$ and $n=4$ (cf. $[LeTh$ , Figure 2]).

3.2. Coplactic operations on tableaux.

As we mentioned, our interest in coplactic operations is in applying them to
tableaux rather than to words. For the purpose of defining coplactic operations, the
entries of a tableau will be considered as letters of a word that have been mapped
in some order onto the squares of a skew diagram. In view of the similarity between
dominance of words and O-dominance of tableaux, it should come as no surprise
that the order in which the entries ofatableau are strung together intoa word is a
valid reading order as discussed in \S 1.5. The following properties however, which we
shall prove below, are quite remarkable. When coplactic operations are applied to
the word read off a tableau, modifying its entries in place, the tableau conditions are
preserved; this regardless of which valid reading order is used, and despite the loss
of information about rows and columns of the skew diagram caused by the reading
process. In fact the changes to the entries caused by the coplactic operations are
themselves independent of that order, i.e., the same entry is affected, at whatever
place in the word the reading order places it. For instance, here is a tableau with
the coplactic operations that can be applied to it, labelled as in (13), and two
of its similarly labelled reading words (for the Semitic and Kanji reading order,
respectively) that could be used to determine those possible coplactic operations.

$\overline{1}031\underline{1}\overline{0}\underline{3}\overline{2}20\underline{5}\overline{4}415\overline{3}$ $\overline{1}301\underline{3}\underline{5}\underline{1}\overline{2}\overline{4}\overline{0}24501\overline{3}$

We shall now give a more formal definition. A valid reading order for $\chi\in S$ is
a total ordering $‘\leq_{r}$ on $Y(\chi)$ , such that $(i,j)\leq_{r}(i’,j’)$ whenever $i\leq i$

’ and $j\geq j^{\prime}$ .
A corresponding map $\uparrow v_{r}$ : $SST(\chi, n)\rightarrow[n]^{*}$ is defined by $w_{r}(T)=T_{s_{0}}\cdots T_{s_{k}}.$ , where
$Y(\chi)=\{s_{0}, \ldots, s_{k}\}$ with $s_{0}<_{r}\cdots<_{r}s_{k}$ ; in other words, $w_{r}$ forms a list of all
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entries of $T$ , in increasing order for $‘\leq_{r}$ of their squares. Now let $c$ be a coplactic
operation that can be applied to $w_{r}(T)$ , say $w_{r}(T)=uiv$ and $c(w_{r}(T))=uiv$ with
$i,$ $i^{\prime}\in[n]$ and $i\neq i$ . Then if the length of $u$ is $l$ , the square $s_{l}$ in above enumeration
is called the variable square for the application of $c$ to $T$ (it contains the copy of
the letter $i$ that is changed by $c$). If replacing $i$ in square $s_{l}$ of $T$ by $i$

‘ results in a
tableau $U\in SST(\chi, n)$ , we define $U=c(T, \leq_{r})$ , so that $w_{r}(c(T, \leq_{r}))=c(w_{\Gamma}(T))$ .

3.2.1. Proposition. Let $\chi\in S$ , let $T\in SST(\chi, n)$ and let $c$ be a coplactic
operation $e_{i}$ or $f_{i}$ with $i\in[n-1]$ . Then for any valid reading order $\leq_{r}$ , the
tableau $c(T, \leq_{r})$ is defined if and only if $c(w_{r}(T))$ is; moreover, this condition and
(when it holds) th $e$ value of $c(T, \leq_{r})$ do not depend on $\leq_{r}$ .

Proof. We shall use a process of reduction: $T\in SST(\chi, n)$ is simplified by
successively removing certain sets of squares from $Y(\chi)$ , restricting $T$ and $‘\leq_{r}$ to
the remainder. At each step the change to $w_{r}(T)$ will be the removal of a subword
that is neutral for $i$ , so that neither the condition whether or not $c(w_{r}(T))$ is defined,
nor the variable square, is affected. The reduction steps are of two types. The first
type is the removal of squares whose entries are not $i$ or $i+1$ , as the corresponding
subwords of $u$)$r(T)$ (of length 1) are neutral for $i$ ; this reduces us to the case that $T$

has entries $i$ and $i+1$ only. In that case the second type of reduction applies, which
removes a maximal rectangle within $Y(\chi)$ consisting of two rows of squares (since
the columns of $Y(\chi)$ now have at most 2 squares, maximality means the rectangle
cannot be extended into the columns to its left or right). One easily checks that the
letters of $w_{r}(T)$ corresponding to such a rectangle form a subword that is neutral
for $i$ . When no further reduction of this type is possible, $T$ is reduced to a tableau
with at most one square in any column, and regardless of the original reading order,
$w_{r}(T)$ lists their entries from the rightmost column to the leftmost one. Assuming
now that $c(w_{r}(T))$ is defined, it follows from the definition of coplactic operations
for words that the variable square does not have a left neighbour with entry $i+1$ ,
nor a right neighbour with entry $i$ ; this shows in the reduced case that changing the
entry of the variable square does not violate weak increase along rows. Neither is it
possible that such a neighbouring entry of the variable square was removed by the
second type of reduction (the variable square itself would then have to have been in
a column of length 2, which it was not), showing that weak increase along rows is
preserved in the unreduced case as well; strict increase down columns is preserved
since there are no other entries $i$ or $i+1$ in the column of the variable square. $\square $

3.2.2. Definition. On $SST(\chi, n)$ the coplactic operation$se_{i}$ and $f_{i}$ (for $i<n$)
are (partially) defined by $e_{i}(T)=e_{i}(T, \leq_{r})$ and $f_{i}(T)=f_{i}(T, \leq_{r})$ for an arbitrary
valid $rea$ding order $\leq_{r}$ ; this is taken to mean also that the left hand sides are
undefined when the corresponding right hand sides are.



124 MARC A. A. VAN LEEUWEN

We call $T\in SST(\chi)$ dominant if $w_{r}(T)$ is dominant for any (and hence for
every) valid reading order $r$ ; it means $e_{i}(T)$ is undefined for all $ i\in$ N. From
proposition 1.4.3 we get the following characterisation.

3.2.3. Corollary. For any $\chi\in S$ , the $su$bset of dominant elements of $SST(\chi)$

is equal to $LR(\chi)$ . $\square $

3.3. The main theorem: commutation.

As a result of proposition 3.2.1, one obtains many instances of distinct words with
isomorphic coplactic graphs, namely words obtained as $w_{r}(T)$ for fixed $T$ and
different reading orders $‘\leq_{r}$ . In fact we shall presently find even more instances
than can be found in this manner. The situation resembles to that ofjeu de taquin,
where we found remarkably many cases of dual equivalent skew semistandard
tableaux. We shall now give a theorem that explains both these phenomena,
and at the same time essentially proves the Littlewood-Richardson rule. This
theorem, which is the only one in our paper with a somewhat technical proof,
simply states that jeu de taquin commutes with coplactic operations. $r\Gamma his$ implies
that coplactic operations transform tableaux into dual equivalent ones, and that
words obtained from jeu de taquin equivalent tableaux using any reading order
always have isomorphic coplactic graphs.

3.3.1. Theorem. Coplactic operations $e_{i}$ and $f_{i}$ on tablea$ux$ commute with $jeu$

de taquin slides in the following sense. If $S\in SST(\mu/\nu)$ , $T\in SST(\lambda/\mu)$ , and
$X(S, T)=(T^{\prime}, S^{\prime})$ , then $e_{i}(T)$ is defined if an $d$ on $ly$ if $e_{i}(T$

‘
$)$ is, an $d$ if so, one has

$X(S, e_{i}(T))=(e_{i}(T^{\prime}), S’)$ ; the same holds when $e_{i}$ is replaced by $f_{i}$ .

In the course of the proof we shall need to draw some specific configurations
that may occur within the tableaux. These will involve entries $i$ and $i+1$ only;
in order to fit them into the squares, we subtract $i$ from each, representing them
respectively as $0$ and 1 (one might also say the drawings assume $i=0$ ).

Proof. Since the standardisation of $T$ can be written as $U|V|W$ where $U,$ $V,$ $W$

are the standardisations of the subtableaux of $T$ of entries less than $i$ , in $\{i, i+1\}$ ,
and greater than $i+1$ , respectively, we can reduce by proposition 2.2.5 to the case
that $T$ has entries $i$ and $i+1$ only; we may also assume $|\mu/\nu|=1$ . Since $T_{0}=e_{i}(T_{1})$

means the same as $f_{i}(T_{0})=T_{1}$ , it suffices to consider the operations $e_{i}$ . We may
use any valid reading order to determine coplactic operations on tableaux; it will
be convenient to use the Kanji reading order, which we shall denote by $\leq K$ . The
only differences between $w_{K}(T)$ and $w_{K}(T$

‘
$)$ are due to transitions $H_{11}^{0}\rightarrow\underline{H_{11}^{0}}$ and
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$\overline{H^{0}0_{1}}\rightarrow H^{}10$ during the slide $T\triangleright T$ ; the effect of these transitions on $w_{K}(T)$ amounts
to interchanging one letter with a word $i(i+1)$ . Since that word is neutral for $i$ , this
does not affect the dominance or anti-dominance for $i$ of any subword containing
the change. In particular $w_{K}$ $(T$

‘
$)$ is dominant for $i$ if and only if $w_{K}(T)$ is, whence

$e_{i}(T)$ is defined if and only if $e_{i}(T$
‘

$)$ is; we assume henceforth that this is the case.
Let $v$ be the variable square for the application of $e_{i}$ to $T$ , and $v$ the variable
square for the application of $e_{i}$ to $T^{\prime}$ . We can find $v^{\prime}$ from $v$ by tracing for each
intermediate “tableau with empty square” $\tilde{T}$ during the slide $T\triangleright T$ which of its
entries $i+1$ corresponds to the letter affected by $e_{i}$ in $w_{K}(\tilde{T})$ (like before, we shall
label this entry in drawings by underlining it). This amounts to moving along with
that entry if it slides into another square, and switching to the entry to its right if
an entry $i$ moves into its present column, giving rise to $a$ transition $f\overline{fl_{11}^{0}}\rightarrow\overline{H_{11}^{0}}$ .

We now distinguish two cases, depending on whether or not the path of the
inward slide applied to $T$ (i.e., the set of squares whose entries move) is the same
as for the slide applied to $e_{i}(T)$ . Suppose first that the paths are the same, then
the entry of $v$ makes the same move, if any, during the two slides; since this entry
is $i+1$ in one case and $i$ in the other, it must be unique in its column both before
and after the slide. By the above description of $v$ ‘, we see that $v$

‘ coincides with
final position of the entry of $v$ ; this implies the theorem for this first case.

Suppose next that the paths of the two slides differ, which must be caused
by the change of the entry of $v$ . This means that $v$ occurs in exactly one of these
paths; since the rule for an inward jeu de taquin slide is to select the smallest
candidate entry to move, $v$ must be in the path of the slide applied to $e_{i}(T)$ , where
it has entry $i$ rather than $i+1$ . We can see as follows that this move of the entry $i$

of $v$ in $e_{i}(T)$ cannot be to the left: this would mean that in the slide $T\triangleright T$ ,



126 MARC A. A. VAN LEEUWEN

Figure 1 illustrates the commutation of jeu de taquin and coplactic operations.
In this example the operation $e_{i}$ with smallest possible $i$ is always chosen; several
of them have been combined at each step, to prevent the display from getting
excessively large. The reader is urged to study the transitions carefully.

Figure 1. Commutation of jeu de taquin (right to left) and raising operations (upwards).
Raising operations are grouped: $e_{0},$ $e_{0},$ $e_{1}$ ; $e_{2},$ $e_{1},$ $e_{2},$ $e_{1}$ ; $e_{3},$ $e_{2},$ $e_{3},$ $e_{2}$ ; $e_{4},$ $e_{4},$ $e_{3},$ $e_{2}$ .

3.3.2. Corollary. Equation (11) holds, which establishes the validity of the
Littlewood-Richardson rule.
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Proof. Using corollary 3.2.3, theorem 3.3.1 implies that jeu de taquin preserves
the property of being a Littlewood-Richardson tableau. For $L\in SST(\chi)$ there
exists a tableau of partition shape $P\in SST(\nu/(O))$ with $L\triangleright P$ ; then $P$ is a
Littlewood-Richardson tableau if and only if $P=1_{\nu}$ , in which case $\nu=$ wt L. $\square $

Note that we did not use the commutation statement of theorem 3.3.1, just
the (easier) statement about when $e_{i}(T)$ is defined. Neither did we use confluence
of jeu de taquin here, although it was used to obtain corollary 2.5.3. But in fact
theorem 3.3.1 independently proves this confluence, and more.

3.3.3. Corollary. On the set of a11 $skew$ semistand$ard$ tableaux, the two rewrite
systems defined by inward $jeu$ de taquin slides, respectively by the raising
operations $e_{i}$ , are both confluent (their normal forms are the $s$emistandard Young
tablea$ux$ , and the Littlewood-Richardson tableaux, respectively). Moreover the
two normal forms of a $skew$ semistandard tablea$uT$ uniquely $det$ermine $T$ .

Proof. Since the two rewrite systems commute in the precise sense of theo-
rem 3.3.1, the set of normal forms for one system is closed under the rewrite rules
of the other system. Confluence of that rewrite system on this set of normal forms
is clear, since the only tableaux that are normal forms for both systems simulta-
neously are the tableaux $1_{\lambda}$ for $\lambda\in \mathcal{P}$ , and for a tableau that is a normal form for
one of the systems the pertinent value of $\lambda$ can be directly read off as the shape (in
the case of semistandard Young tableaux) respectively as the weight (in the case
of Littlewood-Richardson tableaux).

Now let $T$ be any skew semistandard tableau, let $P$ be a tableau of partition
shape obtained from $T$ by a sequence of inward jeu de taquin slides, and let $\tilde{P}$

designate the sequence of shapes of the intermediate tableaux. Similarly let $L$ be a
Littlewood-Richardson tableau obtained from $T$ by applying a sequence $\tilde{L}$ of raising
operations. As normal forms for one system, $P$ and $L$ each have a unique normal
form for the other system. By theorem 3.3.1, the normal form of $P$ for raising
operations can be obtained by applying the sequence $\tilde{L}$ of such operations, while
the normal form of $L$ for jeu de taquin can be obtained by applying a sequence
of slides with $\tilde{P}$ as sequence of intermediate shapes; moreover the two normal
forms are the same tableau $1_{\lambda}$ (where $P\in SST(\lambda/(O))$ and wt $ L=\lambda$). Now $P$

can be reconstructed from $1_{\lambda}$ by reversing the the raising operations of $\tilde{L}$ , and
is therefore independent of the sequence $\overline{P}$ used to obtain it from $T$ ; similarly $L$

can be reconstructed using $\tilde{P}$ , and therefore independent of $\tilde{L}$ . Thus both rewrite
systems are confluent. If $L$ and $P$ are given, then $T$ can be reconstructed by a
similar process: for instance, a sequence $\tilde{P}$ of shapes can be found by reducing $L$

by inward jeu de taquin slides into $1_{\lambda}$ , and since the latter is also obtainable from $P$



128 MARC A. A. VAN LEEUWEN

by raising operations, a sequence of outward jeu de taquin slides can be applied
to $P$ involving the shapes of $\tilde{P}$ in reverse order, which produces $T$ as result. $\square $

It may be noted that parts of the argument above could have been formulated
in more concrete terms, e.g., by using a skew standard tableau to encode the
information of $\tilde{P}$ and using tableau switching; we have not done this in order to
stress the conceptual simplicity of the argument, its symmetry with respect to the
two rewrite systems, and the fact that no detailed knowledge about these systems
is used. On the other hand the computation of $T$ from $L$ and $P$ above can easily
be seen to be equivalent to that of $\phi(L, P)$ in corollary 2.5.2, so that the following
defines a specialisation of $\mathcal{R}’$ , as claimed at the end of \S 2.

3.3.4. Corollary. For $\chi\in S$ and $n\in N$ , Robinson’s bijection $\mathcal{R}$ (i.e., one
satisfying the specification (9)) can be defined by $\mathcal{R}(T)=(\mathcal{R}_{0}(T), \mathcal{R}_{1}(T))$ for
$T\in SST(\chi, n)$ , where $\mathcal{R}_{O}(T)\in LR(\chi, \nu)$ is the normal form of $T$ for the rewrite
system of raising operations, and the $\mathcal{R}_{1}(T)\in SST(\nu, n)$ is the normal form of $T$

for the rewrite system of inward $jeu$ de taquin slides. $\square $

3.4. $Jeu$ de taquin on companion tableaux.

Having completed our discussion of the Littlewood-Richardson rule proper, it is
worth while to point out a remarkable connection between coplactic operations
and jeu de taquin performed on companion tableaux. Note that we have already
found, in corollary 3.2.3, that $T$ has a companion tableau that is a normal form for
jeu de taquin (i.e., $T$ is a Littlewood-Richardson tableau) if and only if $\mathcal{I}^{1}$ itself is
a normal form for raising operations; the connection we shall establish generalises
this. It is closely related to the theory of pictures, where instead of coplactic
operations one has a second form of jeu de taquin, with a similar commutation
theorem [$vLee2$ , theorem 5.3.1]. The symmetry exhibited by this connection has
some important implications, which we shall only indicate briefly here. Firstly, it
implies the fundamental symmetry of the Robinson-Schensted correspondence (see
for instance [vLeel, 3.2]), which is more manifest for Schensted’s formulation of
the correspondence [Sche] than for Robinson’s bijection; however, pictures clearly
exhibit the link between these formulations [$vLee2$ , theorem 5.2.3]. Secondly, the
connection clarifies the bijection corresponding to $c_{\lambda,\mu}^{\nu}=c_{\mu,\lambda}^{\nu}$ : as remarked at
the end of \S 1, this bijection involves tableau switching performed on a companion
tableau of (part of) the Littlewood-Richardson tableau. A detailed discussion of
that bijection, and a generalisation, can be found in $[vLee4]$ .

Our starting point is proposition 3.1.1. It gives an interpretation of standard
Young tableaux in terms of words, but we shall consider more generally skew
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standard tableaux. To that end we extend the notion of dominance for words, in
analogy to tableaux, to $\kappa$-dominance: a word $w\in[n]^{*}$ will be called $\kappa$-dominant,
where $\kappa\in \mathcal{P}_{d,n}$ for some $d$ , if $pw$ is dominant for some dominant word $p$ of weight $\kappa$

(this clearly does not depend on the choice of $p$). For any $\nu\supseteq\kappa$ , the $\kappa$-dominant
words of weight $\nu-\kappa$ are in bijection with $ST(\nu/\kappa)$ : one chooses some dominant
word $p$ of weight $\kappa$ , and associates to any $\kappa$-dominant word $w$ the chain of partitions
from $\kappa$ to $\nu$ extracted from the chain $ T\in$ ST(v) that corresponds to $pw$ by
proposition 3.1.1 (again this does not depend on the choice of $p$). Proposition 1.4.3
says that a tableau $T$ is $\kappa$-dominant if and only if $w_{S}(T)$ is $\kappa$-dominant.

3.4.1. Proposition. Let $w\in[n]^{*}$ be a $\kappa$-dominant word, with corresponding
tableau $S\in ST(\nu/\kappa)$ ; let $S\in ST(\nu^{\prime}/\kappa^{\prime})$ be obtained from $S$ by an inward $jeu$ de
taquin slide into a square in row $k$ , ending in row $l$ . Then the sequence of words
$w=w_{k},$ $w_{k+1},$ $\ldots,$

$w_{l}$ given by $w_{i+1}=e_{i}(w_{i})$ for $k\leq i<l$ is well defined, and $w_{l}$

corresponds to $S^{\prime}$ ; moreover $w_{l}$ is th $e$ first word in the sequence that is $\kappa^{\prime}$ -dominant.

Proof. Fix a dominant word $p$ of weight $\kappa$ . When the prefixes of $pw$ are listed in
increasing order, adding a letter $i$ of $w$ will increase part $i$ of the partition in the
chain $S$ that is the weight of the prefix, and therefore add a square in row $i$ of its
diagram. To make more explicit the correspondence of the letter to that square,
we attach to each letter a subscript that we shall call its “ordinate”, describing the
column of the square: the ordinate of the leftmost occurrence of $i$ in $w$ is $\kappa_{i}$ , and
for the remaining occurrences of $i$ the ordinates increase from left to right by unit
steps. Note that it is also true that among the letters with fixed ordinate $j$ , the
value of the letters increases from left to right by unit steps. Let $\tilde{w}$ be the word
obtained by so augmenting the letters of $w$ with ordinates.

The slide $S\triangleright S^{\prime}$ can be described by tableau switching: $X(E, S)=(S^{\prime}, E)$ ,
where $E$ is the unique element of $ST(\kappa/\kappa^{\prime})$ (i.e., the chain $(\kappa \subset\kappa)$ ; the only
square $(k, \kappa_{k})$ of $E$ is the initial position of the empty square), and $E^{\prime}\in ST(\nu/\nu)$

is similarly unique (its square $(l,$ $\nu_{l})$ is the final position of the empty square). Since
each letter $i_{j}$ of $\overline{w}$ describes the square $(i, j)$ added at the corresponding place
in the chain $S$ , we can mirror this tableau switching computation by operations
on $\tilde{w}$ . We add a (subscripted) letter to $\tilde{w}$ , designating the empty square, which
is distinguished from the other letters; we shall indicate it by a caret. Initially
this is $k_{\kappa_{k}}.$

’ added at the left end of $\overline{w}$ . We successively move this distinguished
letter to the right through the word, making adjustments according to the rules
for tableau switching: when $i_{j}^{\wedge}$ is moved across a letter $i_{j+1}$ or $(i+1)_{j}$ , it assumes
the value and ordinate of that letter, while that letter becomes $i_{j}$ after the switch
(so $i_{j}^{\wedge}i_{j+1}\rightarrow i_{j}\overline{i_{j+1}}$ and $i_{j}^{\wedge}(i+1)_{j}\rightarrow i_{j}(i\overline{+1})_{j}$ ); otherwise the letters are simply
interchanged, preserving their own value and ordinate $(i_{j}^{\wedge}a_{b}\rightarrow a_{b}i_{j}^{\wedge})$ .
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We shall show that if the successive intermediate words obtained from $\overline{k_{\kappa_{k}}}^{\sim}tIJ\sim$ are
“stripped”, by which we mean removing the distinguished letter and all ordinates,
then we obtain a sequence of words over $[n]$ that reduces to $w_{k},$ $\ldots w_{l}\wedge$’ by $remov\underline{ing}$

repeated occurrences of words. Switches $i_{j}^{\wedge}a_{b}\rightarrow a_{b}i_{j}^{\wedge}$ and $i_{j}i_{j+1}\rightarrow i_{j}i_{j+1}$

clearly leave the stripped word unchanged. What we must show, is that in the
remaining case, which with the full context of a prefix $u\sim and$ suffix $ v\sim$ takes the form
$ ui_{j}^{\wedge}\sim(i+1)_{j}v\sim\rightarrow u\sim i_{j}(i+1)_{j}v\sim$ , the stripped words undergo a coplactic operation $e_{i}$ ;
this requires that the word $u$ obtained by stripping $ u\sim$ be anti-dominant for $i$ , and
that the word $v$ obtained by stripping $v\sim be$ dominant for $i$ . With the distinguished
letter taken into account, all switches preserve the properties mentioned above of
“increase by unit steps”. Hence in $\overline{u}$ , any letter $i_{j’}$ has a letter $(i+1)_{j^{\prime}}$ somewhere
to its right (and one has $j^{\prime}<j$ ), whence $u$ is anti-dominant for $i$ ; similarly $v$ is
dominant for $i$ because any letter $(i+1)_{j^{\prime}}$ in $\overline{v}$ has a letter $i_{\gamma^{\prime}}$ to its left.

What remains is to prove is that the $stripped$ word is not $\kappa^{\prime}$-dominant until
the last switch of the form $i_{j}^{\wedge}(i+1)_{j}\rightarrow i_{j}(i+1)_{j}$ . The argument given that
such switches affect the stripped word by application of $c_{i}$ remains valid when
a dominant word $p$ of weight $\kappa$ ‘, properly augmented, is prepended to $k_{\kappa_{k}^{\prime}}w$ and—

words obtained from it (now among letters with any fixed value, the ordinates start
with $0$ at the left). So $pw_{i+1}=e_{i}(pw_{i})$ , showing that $w_{i}$ is not $\kappa$ -dominant. $\square $

We now pass from $\kappa$-dominant words to $\kappa$-dominant tableaux. If a $\kappa$-dominant
tableau $T$ has $\overline{T}\in SST(\nu/\kappa)$ as companion tableau, then it follows from the
definitions that the element of ST $(\nu/\kappa)$ corresponding to the $\kappa$-dominant word $w_{S}T$

of weight $\nu-\kappa$ is equal to the standardisation of $\overline{T}$ : the entries in any row $i$ of $T$ ,
traversed in the Semitic reading order, are the row numbers of the squares with
entry $i$ in $\overline{T}$ , listed from left to right. Applying this to the proposition, we obtain:

3.4.2. Theorem. Let $\overline{T}\in SST(\nu/\kappa)$ be a companion tablea $u$ of $T\in SST(\chi)$ , an $d$

let $\overline{T}^{\prime}\in SST(\nu/\kappa^{\prime})$ be obtained from $\overline{T}$ by an inward $jeu$ de $taquin$ slide into a
square in row $k$ , ending in row $l$ . Then the sequence $T=T_{k},$ $T_{k+1},$

$\ldots,$
$T_{l}\in SST(\chi)$

given by $T_{i+1}=e_{i}(T_{i})$ for $k\leq i<l$ is well defined, and $\overline{T}$ ’ is a companion
tablea$uofT_{l}$ ; moreover $T_{l}$ is the first tableau in the sequence that is $\kappa$ -dominant. $\square $

As an example, we apply this construction to the companion tableaux $T,\overline{T}$

of (5), and $k=0$ . The word $w=w_{S}(T)=1031103220544153$ , gets aug-
mented as $\tilde{w}=1_{4}0_{6}3_{2}1_{5}1_{6}0_{7}3_{3}2_{4}2_{5}0_{8}5_{0}4_{1}4_{2}1_{7}5_{1}3_{4}$ , since $\kappa=(6,4,4,2,1,0)$ .
To simulate the slide into the square $(0,5)$ , we prepend $0_{5}^{\wedge}$ to $\tilde{w}$ , and then move this
distinguished letter across the successive letters of $\tilde{w}$ . In the process, it exchanges
its contents successively with $0_{6},1_{6}$ , and 17, with as final result the augmented
word $1_{4}0_{5}3_{2}1_{5}0_{6}0_{7}3_{3}2_{4}2_{5}0_{8}5_{0}4_{1}4_{2}1_{6}5_{1}3_{4}1_{7}^{\wedge}$ . After stripping the words, we
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get the relation $e_{0}(1031103220544153)=103$ 1003220544153. The pair
of companion tableaux is transformed into the following one:

(14)

this shows that $e_{0}(T)$ is $\kappa^{\prime}$-dominant for $\kappa=(5,4,4,2,1,0)$ . A further slide into
the square $(0,4)$ causes $0_{4}^{\wedge}$ to traverse the augmented word, exchanging its contents
with successively $1_{4},1_{5}$ , and 25, and transforming the word into $0_{4}0_{5}3_{2}1_{4}0_{6}0_{7}3_{3}$

$2_{4}1_{5}0_{8}5_{0}4_{1}4_{2}1_{6}5_{1}3_{4}$ . On the stripped word we have application of $e_{1}\circ e_{0}$ , and
the resulting pair of companion tableaux is

(15)

Writing the letters of the augmented words back into $T$ , one finds the transitions

$-\rightarrow e_{0}$ $e_{1_{-\rightarrow}^{\circ e_{0}}}$ (16)

This last representation provides another perspective to proposition 3.2.1.
First observe that the ordinates of the entries of $T$ with a fixed value $i$ increase from
right to left by unit steps, starting with the ordinate $\kappa_{i}$ . It follows that reading the
augmented entries according to any valid reading order $‘\leq_{r}$ will produce a properly
augmented word; stated differently, augmenting (for $\kappa$ ) any $w_{r}(T)$ and then writing
the augmented letters back into $T$ along the reading order $‘\leq_{r}$ always produces
the same augmented tableau. Also, the values of the entries of the augmented
tableau $T$ with a fixed ordinate $j$ increase from top to bottom, by what was said
in \S 1.5. The fact that during the first transition $0_{5}^{\wedge}$ exchanges its contents with $0_{6}$

rather than with 15 is due to the fact that $0_{6}$ precedes 15 in (the augmentation of)
$ws(T)$ , and similarly the exchange with $1_{6}$ was made because $1_{6}$ precedes 07 (for
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the final exchange with 17, there is no alternative). It can be verified that these
ordering relations are unchanged when an augmentation of any reading $w_{r}(T)$ is
used instead of that of $w_{S}(T)$ . This is due to the placement of these entries in
the augmented tableau $T$ , and the same is true for the relevant pairs of entries
$(1_{4},0_{5}),$ $(1_{5},2_{4})$ and $(2_{5},1_{6})$ in the middle augmented tableau of (16). The fairly
easily proved fact that this is always the case (cf. $[vLee2$ , lemma 5.1.2]) provides
an alternative proof of proposition 3.2.1.

Using theorem 3.4.2, one can express coplactic operations on $T$ in terms of jeu
de taquin slides on a suitable companion tableau of $T$ . To compute $e_{k}(T)$ (when
defined), it suffices to find a companion tableau $\overline{T}$ for which one has $l=k+1$ in
the theorem; this can be achieved by choosing $\nu/\kappa$ in such a way that $\kappa_{k}-\kappa_{k+1}$ is
minimal, and that $\nu_{k+2}<\kappa_{k}$ (the latter condition can be weakened considerably).
Conversely, if one wishes to express jeu de taquin slides on a companion tableau
of $T$ in terms of coplactic operations on $T$ , it is necessary to replace the condition
of $\kappa^{\prime}$-dominance in the theorem by a condition stated in terms of coplactic graphs.
This is possible using the following proposition.

3.4.3. Proposition. Let $T\in SST(\chi, n)$ , and let $\nu/\kappa$ be a skew shape with
$\nu-\kappa=wt$ T. Then the following are $eq$uivalent
(i) $T$ is $\kappa$-dominant;
(ii) no operation $e_{i}$ can be applied more than $\kappa_{i}-\kappa_{i+1}$ times successively to $T$ ;
(iii) no operation $f_{i}$ can be applied more than $\nu_{i}-\nu_{\tau+1}$ times successively to $T$ .

For instance, for the tableau $T$ of (5) used in the example above we have
$\kappa=(6,4,4,2,1,0)$ and $\nu=(9,8,6,5,3,2)$ , so the proposition states that $e_{1}$ cannot
be applied to $T$ , that $e_{3},$ $e_{4},$ $f_{0},$ $f_{2}$ and $f_{4}$ cannot be applied more than once to $T$ ,
and that $e_{0},$ $e_{2},$ $f_{1}$ , and $f_{3}$ cannot be applied more than twice; this can be verified.
One finds moreover that the statement can be sharpened for $e_{3}$ (which cannot be
applied) and for $f_{3}$ (which can be applied only once); this corresponds to the fact
that $T$ is also $\nu’/\kappa^{\prime}$-dominant, with $\nu^{\prime}=(8,7,5,4,3,2)$ and $\kappa^{\prime}=(5,3,3,1,1,0)$ .

Proof. We first reduce toastatement about words, by replacingT byw $=?v_{S}(T)$ .
Let $p$ be any dominant word of weight $\kappa$ , denote by $r_{i}$ and $s_{i}$ the maximal number of
times $e_{i}$ respectively $f_{i}$ can be applied to $w$ , and put $c_{i}=\kappa_{i}-\kappa_{i+1},$ $d_{i}=\nu_{i}-\nu_{i+1}$ .
We shall prove for any $i\in[n-1]$ equivalence between: (1) $Iy\iota v$ is doIninant for $i$ ,
(2) $r_{i}\leq c_{i}$ , (3) $s_{i}\leq d_{i}$ . Since wt $ w=\nu-\kappa$ implies $r_{i}-s_{i}=c_{i}-d_{i},$ (2) and (3)
are equivalent. We prove equivalence of (1) and (2) for any word $w\in[n]^{*}$ .
Subwords that are neutral for $i$ neither affect condition (1) nor tlle value of $r_{i}$ .
We remove such subwords from $w$ , reducing it to $(i+1)^{r_{i}}i^{s_{i}}$ , and in (1) also
from $p$ , reducing it to $i^{c_{i}}$ . What remains is to show that $i^{c}\cdot(i-\vdash 1)^{r}\cdot i^{8_{l}}$ is dominant
for $i$ if and only if $r_{i}\leq c_{i}$ , but this is obvious. $\square $
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3.4.4. Corollary. Let $T\in SST(\chi)$ and $T\in SST(\chi’)$ be jeu de taquin equivalent,
and $\nu/\kappa$ a skew shap $e$ . Then $T$ is $\nu/\kappa$-dominant if and only if $T$ ‘ is so, in which
case th $e$ companion tablea $ux$ of $T$ and $T$ ’ of shap $e\nu/\kappa$ are dual equivalent.

Proof. By theorem 3.3.1, $T$ and $T$ ’ have isomorphic coplactic graphs, and
proposition 3.4.3 then shows that $T$ is $\nu/\kappa$-dominant if and only if $T^{\prime}$ is. Let
$\overline{T}$ and $\overline{T}^{\prime}$ respectively be the companion tableaux of $T$ and $T^{\prime}$ of shape $\nu/\kappa$ , and
consider an inward jeu de taquin slide into the same square applied to each of
them. By theorem 3.4.2, the result will in either case be a companion tableau of a
tableau obtained by a sequence of raising operations from $T$ respectively from $T$ ‘.
Moreover, since the condition determining the length of those sequences can be
expressed in terms of the coplactic graphs of $T$ and $T$ by proposition 3.4.3-the
two sequences will be identical. This implies on one hand that the tableaux $T,\tilde{T}^{\prime}$

obtained by applying the sequences arejeu de taquin equivalent (by theorem 3.3.1),
and on the other hand that the jeu de taquin slides applied to $\overline{T}$ and $\overline{T}$ leave the
empty square in the same row, and therefore result in tableaux of equal shape. As
these resulting tableaux are companion tableaux of the jeu de taquin equivalent
tableaux $\tilde{T}$ and $\overline{T}$ , respectively, we have arrived at a situation similar to our
point of depart, but with $T,$ $T^{\prime}$ replaced by $\tilde{T},\overline{T}^{\prime}$ . By the same reasoning the
shapes of the companion tableaux will remain equal when further inward slides are
applied, and by proposition 2.4.2 this proves that $\overline{T}$ and $\overline{T}$ are dual equivalent. $\square $

This proof shows that jeu de taquin slides performed on $T$ commute with jeu
de taquin slides performed on a companion tableau of $T$ (since clearly $\overline{T}$ and $\overline{T}$‘ are
linked by the same sequence of jeu de taquin slides as $T$ and $T’$ ); this is essentially
what is stated in the main theorem 5.3.1 of $[vLee2]$ , but the proof here is simpler.
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\S 4. Some historical comments.

Now that we have seen the Littlewood-Richardson rule from a modern perspective,
let us look at some elements of its intriguing history, in particular the two papers
[LiRi] and [Rob], written in the 1930’s.

4.1. The paper by Littlewood and Richardson.

The paper in which the Littlewood-Richardson rule is first stated, is mainly
concerned with symmetric group characters and Schur functions (a term introduced
in that paper, though mostly contracted to “S-functions”). Out of 16 sections,
only \S 8 deals with the multiplication of S-functions. Remarkably, semistandard
tableaux do not occur explicitly, and in particular are not used in the definition
of Schur functions; instead these are expressed in terms of power sum symmetric
functions using symmetric group characters. In fact no attempt is made at all
to express Schur functions in terms of monomials, or even of minimal symmetric
polynomials $m_{\lambda}$ , although curiously the opposite $is$ done, in \S 5.

Semistandard tableaux do occur implicitly, as follows. For $\mu=(r)\in \mathcal{P}_{r}$ one
has $s_{\mu}=h_{r}$ , and every skew semistandard tableau of weight $\mu$ is automatically a
Littlewood-Richardson tableau; call the shape of such a tableau a horizontal strip.
As starting point for multiplication of S-functions, it is shown that $s_{\lambda}h_{r}$ is the
sum of all $s_{\nu}$ with $\nu/\lambda$ a horizontal strip (this agrees with our proposition 1.4.5).
By iteration this implies that $s_{\lambda}h_{\alpha_{0}}\cdots h_{\alpha}$ , is the sum of $s_{\nu}$ taken over all ways to
successively add horizontal strips of sizes $\alpha_{0},$

$\ldots,$
$\alpha_{l}$ to $Y(\lambda)$ yielding $Y(\nu)$ . The

number of ways to so obtain a given partition $\nu$ is $\#$ { $T\in SST(\nu/\lambda)|$ wt $ T=\alpha$ }.
For the general case of multiplying S-functions, the following rule is formulated

( $[LiRi$ , p. 119]):

”THEOREM III. –Corresponding to two S-functions $\{\lambda_{1}, \ldots, \lambda_{p}\},$ $\{\mu_{1},$
$\ldots$ ,

$\mu_{q}\}$ build tableaux A and $B$ as in Theorem $\Pi$. Then in the product of these
two functions, the coefficient of any S-function $\{\nu_{1}, \nu_{2}, \ldots\}$ is equal to the
number of compound tableaux including all of the symbols of A and B. and
corresponding to $\{\nu_{1}, \nu_{2}, \ldots\}$ , that can be built according to the following
rules.

Take the tableau A intact, and add to it the symbols of the first row
of B. These may be added to one row of $A$ , or the symbols may be divided
without disturbing their order, into any number of sets, the first set being
added to one row of $A$ , the second set to a subsequent row, the third to a
row subsequent to this, and so on. After the addition no row must contain
more symbols than a preceding row, and no tivo of the added symbols may
be in the same column.
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Next add the second row of symbols from $B$ , according to the same
rules, with this added restriction. Each symbol from the second row of $B$

must appear in a later row of the compound tableau than the symbol from
the first row in the same column.

Similarly add each subsequent row of symbols from $B$ , each symbol
being placed in a later row of the compound tableau than the symbol in the
same column from the preceding row of $B$ , until all the symbols of $B$ have
been used.”

The tableaux A and $B$ are Young diagrams of shapes $\lambda$ and $\mu$ , filled with formal
symbols. The rows of $B$ are rearranged into horizontal strips filling $Y(\nu/\lambda)$ ;
as indicated above, such a rearrangement corresponds to some $T\in SST(\nu/\lambda)$

with $wtT=\mu$ . The restriction added in the last two paragraphs depends on
the particular rule that is used to ensure that each horizontal strip is obtained
in only one way from a given row of $B$ ; this rule can be rephrased as stating
that within each row of $B$ , the number of the destination row in $Y(\nu/\lambda)$ of each
symbol increases weakly from left to right. If we replace each symbol in $B$ by this
number of its destination row, then the resulting filling of $Y(\mu)$ , which has weakly
increasing rows by construction, is required in the last two paragraphs to also have
strictly increasing columns; in our terminology, they form a semistandard Young
tableau $\overline{T}\in SST(\mu/(O))$ . In fact, $\overline{T}$ can be seen to be a companion tableau of $T$ in
the sense of the current paper. If we interpret the rearrangement of symbols as a
bijection $Y(\mu)\rightarrow Y(\nu/\lambda)$ , then we almost arrive at the notion of pictures; the only
difference is that when some sequence of symbols from a row of $B$ are moved to
a common destination row, this happens “without disturbing their order”, rather
than by reversing their order, as is done in the case of pictures.

Although claimed to be generally valid, Theorem III is only proved in $[LiRi]$

when $\mu$ has at most two parts (the first sentence after the statement of the Theorem
is “No simple proof has been found that will demonstrate it in the general case” ;
indeed “simple” can be omitted). We already mentioned the case $\mu=(r)$ . The
proof for a partition $\mu=(q, r)$ with two parts $q\geq r>0$ is based on the identity
$s_{\mu}=h_{q}h_{r}-h_{q+1}h_{r-1}$ (an instance of a determinantal formula known as the Jacobi-
Trudi identity), which means that $c_{\lambda,\mu}^{\nu}$ can be found by subtracting the coefficient
of $s_{\nu}$ in $s_{\lambda}h_{q+1}h_{r-1}$ from the one in $s_{\lambda}h_{q}h_{r}$ ; these coefficients can be determined by
counting the tableaux in $SST(\nu/\lambda, 2)$ of weights $(q\dashv- 1, r-1)$ and $(q, r)$ , respectively.
To show that the difference matches the number of tableaux given by Theorem III,
the rule is reformulated in terms of lattice permutations (cf. proposition 1.4.5), and
a bijective correspondence in $SST(\nu/\lambda, 2)$ is given between tableaux of weight $(q, r)$

that do not satisfy the rule, and all tableaux of weight $(q+1, r-1)$ . It is shown
that this transformation, which coincides with our $e_{0}$ , preserves semistandardness.
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It is remarkable that the authors state their rule as a Theorem when, by their
own admission, they only have a proof for some very simple cases. In part this can
be attributed to the general attitude at the time, which appears to have been that
combinatorial statements are less in need of a proof than, say, algebraic statements;
on the other hand, they do devote three pages to a proof of the special cases. It
appears that they viewed their rule mainly as a computational device, useful to
find a result, whose correctness may then be verified by other means. They work
out a complete example for the computation of $ss$ (in their notation
$\{4, 3, 1\}\times\{2^{2}1\})$ , displaying all 34 tableaux contributing to the result. They use

$\left(\begin{array}{llll}a, & b, & c, & d\\e, & f, & g & \\h & & & \end{array}\right)$ , $\left(\begin{array}{ll}\alpha, & \beta\\\gamma, & \delta\\\epsilon & \end{array}\right)$ ,

as tableaux $A,$ $B$ ; replacing the symbols of A by $O’ s$ because they don’t move, they
then display tableaux like

$ 0000\alpha$

$ 000\beta$

$ 0\gamma\delta$

;

$\epsilon$

note the striking resemblance with pictures as displayed in (8) (but the order of
$\gamma$ and $\delta$ is unchanged here). It is clear that they use a geometric criterion ( $\gamma$ should
remain below $\alpha$ , $\delta$ below $\beta$ , and $\epsilon$ below $\gamma$ ) rather than the lattice permutation
condition; their method is therefore an efficient one, as we discussed following
proposition 1.4.5. The authors go on to indicate explicitly how the resulting
decomposition of the product can be verified by computing the dimension of the
corresponding (reducible) representation of the symmetric group $S_{13}$ . Interestingly,
while their set of tableaux is correct, they forget the contributions of three of them
to the decomposition, whence the dimension of the printed result, 398541, falls
short of the correctly predicted dimension 450450; this in spite of their claim that
“this equation proves to be correct”.

One more curious point concerns the Theorem II referred to in Theorem III. It
describes the set of S-functions appearing in a product of two S-functions, without
giving their multiplicities. This would seem to contradict our statement that no
method is known to decide membership of that set, which does not amount to
finding (or failing to find) an appropriate Littlewood-Richardson tableau. This is
not so for two reasons. First, the criterion given is even more impractical than using
the Littlewood-Richardson rule: it states (in a slightly different formulation) that
occurrence of $s_{\nu}$ in $s_{\lambda}s_{\mu}$ is equivalent to the existence of a bijection $Y(\lambda*\mu)\rightarrow Y(\nu)$

mapping squares of any row to distinct columns, and squares of any colunlll
to distinct rows. Enumerating this set of bijections (or proving it empty) is
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certainly not easier than enumerating its subset of pictures, which is equivalent to
enumerating $LR(\nu/\mu, \lambda)$ . Second, the criterion is wrong; for instance the bijection

$\rightarrow$

satisfies the requirements, while $c_{(2,2),(2,2)}^{(4,2,1,1)}=0$ . The proof that is given in fact only
estabishes the necessity of the condition, not its sufficiency. Fortunately, Littlewood
and Richardson will be remembered more for a true Theorem they did not claim
to prove, than for a false Theorem they did claim to prove.

4.2. The paper by Robinson.

In [Rob], Robinson builds forth on these ideas, claiming to complete the proof of
the rule. The paper is quite difficult to read however, its formulations extremely
obscure, and its argumentation mostly implicit; we shall now first try to summarise
the argument as it appears to have been intended. In a deviation from the
previous paper, the proof does not use the Jacobi-Trudi identity, but rather
descending induction on the weight $\mu$ with respect to $‘\leq$ , based on the expression
$s_{\mu}=h_{\mu}-\sum_{\mu>\mu}K_{\mu^{\prime}\mu}s_{\mu^{\prime}}$ , where $ h_{\mu}=h_{\mu 0}h_{\mu_{1}}\cdots$ , and the $K_{\mu^{\prime}\mu}$ are non-negative
integer coefficients (nowadays called Kostka numbers). By taking $\lambda=(0)$ in the
formula of $[LiRi]$ for the decomposition of products $s_{\lambda}h_{\mu}$ , we see that $K_{\mu^{\prime}\mu}$ is the
number of semistandard Young tableau of shape $\mu^{\prime}$ and weight $\mu$ . For $\mu=(q, r)$

for instance, one easily finds $s_{\mu}=h_{q}h_{r}-s_{(q+1,r-1)}-\cdots-s_{(q+r,0)}$ .

Robinson defines the correspondence $\mathcal{R}$ of (9), and uses it as follows to show
that each $L\in LR(\nu/\lambda, \mu)$ corresponds to an occurrence of $s_{\nu}$ in $s_{\lambda}s_{\mu}$ . We already
know that each $T\in SST(\nu/\lambda)$ with wt $ T=\mu$ corresponds to an occurrence of $s_{\nu}$

in $s_{\lambda}h_{\mu}$ . If $\mathcal{R}_{0}(T)\neq T$ , then $\mathcal{R}_{0}(T)$ corresponds by inductive assumption to
an occurrence $X$ of $s_{\nu}$ in $s_{\lambda}s_{\mu^{\prime}}$ , where $\mu^{\prime}=$ wt $\mathcal{R}_{0}(T)>\mu$ . Viewing $s_{\mu}$ as a
constituent of $h_{\mu}$ , and thereby $s_{\lambda}s_{\mu^{\prime}}$ as a part of $s_{\lambda}h_{\mu}$ , we let $T$ correspond to the
occurrence of $s_{\nu}$ in $s_{\lambda}h_{\mu}$ matching $X$ . There may be distinct $T,$ $T\in SST(\nu/\lambda)$

of weight $\mu$ with $\mathcal{R}_{0}(T)=\mathcal{R}_{0}(T^{\prime})$ , but in that case the semistandard Young
tableaux $\mathcal{R}_{1}(T)$ and $\mathcal{R}_{1}(T^{\prime})$ of shape $\mu$

’ and weight $\mu$ differ, and can be used to
distinguish distinct occurrences of $s_{\mu^{\prime}}$ in $h_{\mu}$ , and hence to distinguish occurrences
of $s_{\nu}$ matching $X$ in distinct contributions $s_{\lambda}s_{\mu^{\prime}}$ to $s_{\lambda}h_{\mu}$ . Indeed the number of
such semistandard Young tableaux is precisely the multiplicity $K_{\mu^{\prime}\mu}$ of $s_{\mu}$ in $h_{\mu}$ .
The tableaux $T\in SST(\nu/\lambda)$ that remain, namely those with $T=\mathcal{R}_{0}(T)$ and
therefore $T\in LR(\nu/\lambda, \mu)$ , must then correspond to the occurrences of $s_{\nu}$ in the
remainder of $s_{\lambda}h_{\mu}$ after subtraction of all the $s_{\lambda}s_{\ell\iota^{\prime}}$ , i.e., in $s_{\lambda}s_{\mu}$ , as claimed.
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In order to give the above argument a certain transparency, we have named the
occurring multiplicities $K_{\mu^{\prime}\mu}$ , and related them to semistandard Young tableaux
as they occur (implicitly) in $[LiRi]$ . This is not however the way it is done
in [Rob]. Rather than using the formula of Littlewood and Richardson for the
decomposition of $h_{\mu}=s_{(0)}h_{\mu}$ into Schur functions, Robinson uses a formula by
Young, given in the cryptic form $h_{\alpha}=\sum[\prod S_{rs}^{\lambda_{rs}}](\alpha)$ , and accompanied by the
following (explanation’, quoted literally from [Young]:

$S_{rs}$ where $r<s$ represents the opemtion of moving one letter from the
s-th row up to the r-th row, and the resulting term is regarded as zero,
whenever any row becomes less than a row below it, or when letters from
the same row overlap,–as, for instance, happens when $\alpha_{1}=\alpha_{2}$ in the
case of $S_{13}S_{23}$ .

This is what is nowadays called Young’s rule, although it is usually stated in a
somewhat different form. The meaning of this original formulation appears to be as
follows. The summation is over certain collections $(\lambda_{rs})_{1\leq r<s\leq n}$ with $\lambda_{rs}\in N$ , each
of which gives rise to a monomial $M=\prod S_{rs^{rs}}^{\lambda}$ in commuting indeterminates $S_{rs}$ .
An operation on Young diagrams is associated to such $M$ , where each factor $S_{rs}$

moves a square from row $s$ up to row $r$ , all factors acting simultaneously. An
application of this operation is assumed implicitly to vanish if any row of the
diagram contains too few squares (in the given summation with application to $Y(\alpha)$ ,
only terms with $\sum_{r}\lambda_{rs}\leq\alpha_{s}$ need to be considered), and it also vanishes in the
explicitly (if not very clearly) described cases. In the summation each remaining
operation contributes the Schur function corresponding to the shape of the diagram
produced by the application of the operation $to\}^{\prime}(\alpha)$ .

In order to understand this formula, it helps to compare it to the decomposition
formula in terms of semistandard Young tableaux: any $P\in SST(\beta)$ with wt $ P=\alpha$

should correspond to a monomial $M$ , whose operation transforms $Y(\alpha)$ into $Y(\beta)$ .
This can be achieved by taking $\lambda_{rs}=P_{r}^{s}$ for all $r,$ $s$ (cf. definition 1.4.1): then each
entry of $P$ records the row of $Y(\alpha)$ that its square came from (i.e., $P$ is obtained
by applying $M$ as square-moving operation to $1_{\alpha}$ , with each entry moving along
with its square). It remains unclear how the quotation above can be interpreted as
making all operations vanish that are not related in this manner to any tableau $P$ .
The given restrictions may be read as requiring $\beta$ to be a partition, and requiring
that squares from one row do not end up in the same column (assuming the
ambiguity about the destination column of squares is resolved). But even with
the most lenient interpretation, it is a mvstery how in the result of application
to $1_{\alpha}$ the monotonicity of columns is enforced: for instance, for $\alpha=(1,1,1,1)$ , the
operation associated to $S_{12}S_{24}$ must be made to vanish, while the one for $S_{12}S_{23}S_{34}$

should survive (their applications to $1_{\alpha}$ result in [IP and $\ovalbox{\tt\small REJECT}$ , respectively).
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In any case, Robinson proceeds to define a process of transforming non-
lattice permutations (in the form of words over an alphabet $\{c_{1},$ $c_{2},$ $\ldots\}$ ) into
lattice permutations, which he calls “association I” ; incidentally, he attributes
the procedure to D. E. Littlewood. In our terminology it amounts to repeatedl$y$

applying the raising operation $e_{i}$ with smallest possible index $i$ (where the letter $c_{j}$

is treated like the letter $j-1$ in our description), until no further application is
possible. Applying it to the Semitic reading $w_{S}(T)$ of a skew tableau $T$ of weight $\alpha$ ,
and writing the resulting lattice permutation back into the shape of $T$ , this
association corresponds to $\mathcal{R}_{0}$ as described in corollary 3.3.4. Inspired by the fact
that the monomials $\prod S_{rs}^{\lambda_{rs}}$ are described as “products of operations”, Robinson
associates such a monomial $M$ to the sequence of operations $e_{i}$ used in determining
association I, by grouping together maximal sequences of successive operations of
the form $e_{s-1},$ $e_{s-2},$ $\ldots,$ $e_{r+1},$ $e_{r}$ , replacing them by $S_{rs}$ , and multiplying all of
these. He calls the resulting correspondence between the original word and this
monomial “association II”. For instance, the sequence used in our figure 1 would
be grouped as $(e_{0}),$ $(e_{0}),$ $(e_{1}),$ $(e_{2}, e_{1}),$ $(e_{2}, e_{1}),$ $(e_{3}, e_{2}),$ $(e_{3}, e_{2}),$ $(e_{4}),$ $(e_{4}, e_{3}, e_{2})$ ,
and would give rise to the monomial $M=S_{01}^{2}S_{12}S_{13}^{2}S_{24}^{2}S_{45}S_{25}$ .

Robinson now states that any such $M$ is one of the monomials that arises when
Young’s rule is applied for $h_{\alpha}$ (in our terms this means that $M$ corresponds to a
semistandard Young tableau $P$ of weight $\alpha$ ); this he justifies only by checking
one example. We can check it for our example by applying $M$ to $1_{\alpha}$ (since
$\alpha=(3,4,2,3,2,2)$ is not a partition, we must extend our definitions a bit, allowing
intermediate “tableaux” whose shapes are not Young diagrams); alternatively we
can find $P$ directly by using $P_{r}^{s}=\lambda_{rs}$ for $r<s<6$ , and $P_{s}^{s}=\alpha_{s}-\sum_{r<s}P_{r}^{s}$ :

$(P_{r}^{s})_{0\leq r\leq s<6}=\left(\begin{array}{llllll}3 & 2 & 0 & 0 & 0 & 0\\ & 2 & 1 & 2 & 0 & 0\\ & & 1 & 0 & 2 & 1\\ & & & 1 & 0 & 0\\ & & & & 0 & 1\\ & & & & & 0\end{array}\right)$ , whence

That this condition is always satisfied (i.e., that $P$ is a semistandard Young tableau)
is by no means clear however. If another criterion for selecting $e_{i}$ were used (say
taking $i$ maximal), it would in fact be very hard to associate a proper monomial $M$

to the sequence of operations $e_{i}$ at all. If we admit that the construction always
works, then association II defines a map that, applied to the word $w_{S}(T)$ , may
serve as $\mathcal{R}_{1}$ (keeping in mind that Robinson works directly with monomials rather
than with semistandard Young tableaux). It is easy to see that the shape $\beta$ of $M$

(i.e., the shape of the corresponding tableau $P$ ) matches the weight of the lattice
permutation found by association I, but not that the map $\mathcal{R}$ defined by combining
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$\mathcal{R}_{0}$ and $\mathcal{R}_{1}$ is a bijection, as required in $Ro$binson’s proof sketched above. For this,
it is of vital importance that the sequence of raising operations can be reconstructed
from $M$ , which is far from obvious since the $S_{rs}$ commute, but the operations $e_{i}$

do not. The key property is that in the sequence of factors $S_{rs}$ found, the index $s$

increases weakly, while for fixed $s$ the index $r$ decreases weakly (this is the hard
part); once this is established the fact that $M$ corresponds to a semistandard Young
tableau can also be proved easily. This is not all however, since the surjectivity
of $\mathcal{R}$ must also be established, i.e., that every monomial $M$ of shape $\beta$ arising
in Young’s rule applied to $h_{\alpha}$ is obtained for some word $w_{S}(T)$ of weight $\alpha$ that
corresponds under association I to a given lattice permutation of weight $\beta$ .

For reading words $w_{S}$ $(P$
‘

$)$ of tableaux $P$ ‘ of partition shape $\beta$ , the mentioned
key property is not difficult to establish; moreover the lattice permutation is $w_{S}(1_{\beta})$

in this case, while $P=P$ . Since we know (by theorem 3.3.1) that the coplactic
graph of any word $w_{S}(T)$ is isomorphic to that of some such word $w_{S}(P’)$ (with
$T\triangleright P’)$ , we can see that the properties stated above do always hold. However,
these facts are highly non-trivial given only the information provided in [Rob].
Nonetheless, Robinson apparently considers them to be obvious: nothing in the
paper even suggests that anything needs to be proved. In conclusion, although
Robinson gives an interesting construction that actually works, and that could
be used in a proof of the Littlewood-Richardson rule, his argument contains such
important gaps, that it definitely cannot be considered to provide such a proof.

4.3. Later developments.

The more recent history of the Littlewood-Richardson rule is no less interesting
than the initial phase, but since it is much more accessible and better known, we
shall limit ourselves to a brief overview. The flawed proof given by Robinson is
so incomprehensibly formulated, that its omissions apparently go unnoticed for
decades; his reasoning is reproduced in [Litw] by way of proof. In the early $1960’ s$ ,
in an unrelated study, Schensted gives a combinatorial construction [Sche] that
will later be considered to be essentially equivalent to that of Robinson; this in
spite of the fact that it defines a rather different kind of correspondence by an
entirely different procedure. $S$chensted’s construction clearly defines a bijection,
but without any obvious relation to the Littlewood-Richardson rule (although it
does involve tableaux); nonetheless it will later be central to several proofs of that
rule. Initially however, no such connection is made, although the combinatorial
significance of the construction is soon observed by Sch\"utzenberger [Sch\"ul].

This changes in the $1970’ s$ , and important new properties of Schensted’s
construction are found: [Knu], [Gre]. From this development emerge the first
proofs of the Littlewood-Richardson rule: Lascoux and Sch\"utzenberger introduce
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jeu de taquin, and using it a proof is given in [Sch\"u3], while Thomas gives a
proof that is based entirely on a detailed study of Schensted’s construction in
[Thoml], [Thom4]. The former proof is by means of a statement similar to our
corollary 2.5.3, but it is obtained differently (e.g., for confluence of jeu de taquin,
results of [Knu] and [Gre] are used). The latter proof is interesting in that it already
derives properties of Schensted’s correspondence that are related to pictures. Both
approaches differ essentially from $[LiRi]$ and [Rob], in that semistandard tableaux
of shape $\lambda$ and weight $\alpha$ figure in the same manner as in the present paper,
identifying monomials $X^{\alpha}$ in $s_{\lambda}$ rather than constituents $s_{\lambda}$ of $h_{\alpha}$ . We also
note that, whereas in [Rob] the basic construction is that of the component $\mathcal{R}_{0}$

of Robinson’s bijection, with many questions remaining unanswered about $\mathcal{R}_{1}$ ,
it is $\mathcal{R}_{1}$ that is central in [Sch\"u3], and $\mathcal{R}_{0}$ does not even occur there. Two
publications from this period do take up the construction of [Rob]. In [Thom2]
the originally deterministic description of $\mathcal{R}_{0}$ is generalised to a rewrite system
(cf. corollary 3.3.4), which is shown to be confluent. In [Macd, I (9.2)] the task
of completing Robinson’s argumentation (and presenting it in an understandable
way) is taken up. A justification is provided for it, by establishing (in the course
of several pages of detailed verifications) some crucial combinatorial properties of
Robinson’s construction; as we noted above, the need to prove such properties is not
in any way mentioned in the original paper. Even so, Macdonald does not appear
to give a convincing argument proving the surjectivity of $\mathcal{R}$ , and some additional
verifications seem to be needed.

After the appearance of these three proofs of the Littlewood-Richardson rule,
many publications follow; some present interesting new ideas that lead to new
proofs, but most of these are based on the same construction as one of these
earlier proofs. Of particular interest is [Zell], whose construction relates to all
three approaches. It generalises Schensted’s correspondence to pictures, which in
essence consists in showing that its bijectivity is preserved when certain restrictions
parametrised by shapes (like $\nu/\kappa$-dominance) are imposed at both sides. This is
exactly the information that is required in Schensted-based proofs (cf. [Thom4].
[White], $[ReWh]$ ), to make the connection with Littlewood-Richardson tableaux.
One also obtains as a special case a bijection $\mathcal{R}$ matching the specification (9), which
provides a shortcut for the proof of [Macd] (what is not so obvious, is that this is
in fact the same correspondence as defined by Robinson). Finally, this establishes
a symmetry between $\mathcal{R}_{0}$ and $\mathcal{R}_{1}$ (which is what is most notably lnissing in the
approach of [Sch\"u3]), which allows not only $\mathcal{R}_{1}$ but also $\mathcal{R}_{0}$ to be defined by jeu
de taquin. At the time however, these connections are not made, and the paper
apparently does not get much attention (this may be due to its somewhat obscure
definition of pictures, which bears no apparent relation to semistandard tableaux).
The mentioned observations are made only quite a bit later, in $[vLee2]$ .
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There are many more recent developments that relate to the Littlewood-
Richardson rule; we shall mention a few here, but a detailed discussion is beyond the
scope of this paper. Alternative combinatorial expressions for the coefficients $c_{\lambda,\mu}^{\nu}$

have been found (e.g., $[BeZe]$ ), as well as generalisations to representations of other
groups than $GL_{n}(C)$ ([Litml]), and yet more new proofs. Of the latter we note the
“involution style” proofs in $[ReSh]$ and [Gash], which (apart from being particularly
simple and concise) are remarkable by their similarity to the original proof for
two-part partitions $\mu$ in $[LiRi]$ : they use the Jacobi-Trudi identity to express
the Schur function $s_{\mu}$ in terms of complete symmetric functions, and proceed to
combinatorially cancel terms obtained after expansion of the determinant. The
crucial difference (it seems) with that original proof is that the factors in the
products $h_{\alpha}$ of complete symmetric functions are ordered in such a way that the
weights $\alpha$ are “wide apart”, and only dominant if $\alpha=\mu$ : for $\mu=(q, r)$ one uses
the expression $s_{\mu}=h_{(q,r)}-h_{(r-1,q+1)}$ rather than $s_{\mu}=h_{(q,r)}-h_{(q+1,r-1)}$ .

We conclude by returning to the practical use of the rule as a computational
tool, which was what it was formulated for in the first place, but which seems to
have moved to the background in the course of time. Already in 1968, early in
the computer era, the rule is implemented (including dimension checks, as there
is no proof at that time!), and used to mechanically produce tables published
in [Wyb]. The programme containing that implementation, originally written
in FORTRAN, has evolved (with considerable extensions and several conversions
to different programming language) into the current programme SCHUR. A more
recent paper $[ReWh]$ discusses theoretical aspects of computer implementation of
the Littlewood-Richardson rule. Surprisingly, what it calls “a new combinatorial
rule for expanding the product of Schur functions”, is merely a translation of
the problem of multiplying $s_{\lambda}*s_{\mu}$ into counting objects that are straightforward
encodings of pictures $Y(\lambda*\mu)\rightarrow Y(\nu)$ , for varying $\nu$ ; as we have indicated, this
differs only marginally from the process described in $[LiRi]$ . Nonetheless, the
formulation given is more straightforward to implement efficiently than most other
formulations current at that time. While the paper does not specify a detailed
algorithm, it has been used in concrete implementations (but we know of none
that are available at the time of writing).

Currently, there are several freely available and efficient implementations of
the Littlewood-Richardson rule, in various computer algebra systems. We Inen-
tion an implementation by J. Stembridge, contained in the Maple package SF
(http: $//www$ . math. lsa. umich. $edu/\sim jrs/maple$ . html) and a similar implemen-
tation in ACE (http: $//weyl$ . univ-mlv. $fr/\sim ace/$ ). The stand-alone program $LiE$

(http: //wwwmathlabo. univ-poitiers. $fr/\sim maavl/LiE/$ ) contains an implemen-
tation, written by the current author; it is available for online use and for consul-
tation of the documented source code $[vLee3]$ , via the mentioned WWW-page.
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