
CHAPTER 7

Contractions onto curves

In this chapter we discuss complements on $\log$ surfaces over curves. The main
result is Theorem 7.2.11. From Theorem 6.0.6 we have

COROLLARY 7.0.10. Let $f:X\rightarrow Z\ni 0$ be a contmction from a nomal surface
$X$ onto a smooth curve Z. Let $D$ be a boundary on X. Assume that $K_{X}+D$ is
$lc$ and $-(K_{X}+D)$ is f-nef and f-big. Then there exists a nonklt 1, 2, 3, 4,
or 6-complement of $K_{X}+D$ near $f^{-1}(0)$ . Moreover, if there are no nonklt 1 or
2-complements of $K_{X}+D$ , then $f:X\rightarrow Z\ni 0$ is exceptional.

Below we give generalization of this result for the case when $K_{X}+D\equiv 0$ and
classify two-dimensional $\log$ conic bundles.

7.1. ${\rm Log}$ conic bundles

7.1.1. Assumptions. Let $(X\supset C)$ be a germ of normal surface $X$ with only
klt singularities along a reduced curve $C$ , and $(Z\ni 0)$ a smooth curve germ. Let
$f:(X, C)\rightarrow(Z, 0)$ be a $K_{X}$ -negative contraction such that $f^{-1}(0)_{red}=C$ . Then it
is easy to prove that $p_{a}(C)=0$ and each irreducible component of $C$ is isomorphic
to $\mathbb{P}^{1}$ . Everywhere in this paragraph if we do not specify the opposite, we assume
that $C$ is irreducible (or, equivalently, $\rho(X/Z)=1$ , i.e., $f$ is extremal). Let $ X_{\min}\rightarrow$

$X$ be the minimal resolution. Since the composition map $f_{\min}$ : $X_{\min}\rightarrow Z$ is
flat, the fiber of $f_{\min}^{-1}(0)$ is a tree of rational curves. Therefore it is possible to
define the dual graph of $f_{\min}^{-1}(0)$ . We draw it in the following way: $\bullet$ denotes
the proper transform of $C$ , while $O$ denotes the exceptional curve. We attach the
selfintersection number to the corresponding vertex. By construction, the proper
transform of $C$ is the only $-1$ -curve in $f_{0}^{-1}(0)$ , so we usually omit $-1$ over $\bullet$ .

EXAMPLE 7.1.2. Let $\mathbb{P}^{1}\times \mathbb{C}^{1}\rightarrow \mathbb{C}^{1}$ be the natural projection. Consider the
following action of $\mathbb{Z}_{m}$ on $\mathbb{P}_{x,y}^{1}\times \mathbb{C}_{u}^{1}$ :

$(x, y;u)\rightarrow(x, \epsilon^{q}y;\epsilon u)$ , $\epsilon=\exp 2\pi i/m$ , $gcd(m, q)=1$ .

Then the morphism $f:X=(\mathbb{P}^{1}\times \mathbb{C}^{1})/\mathbb{Z}_{m}\rightarrow \mathbb{C}^{1}/\mathbb{Z}_{m}$ satisfies the conditions
above. The surface $X$ has exactly two singular points which are of types $\frac{1}{m}(1, q)$

and $\frac{1}{m}(1, -q)$ . The morphism $f$ is toric, so $K_{X}$ is l-complementary. One can check
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that the minimal resolution of $X$ has the dual graph

$-b_{1}$ $-b_{s}$ $-a_{r}$ $-a_{1}$

$O-$ $-O-\bullet-O-$ $-O$ ,

where $(b_{1}, \ldots , b_{s})$ and $(a_{r}, \ldots, a_{1})$ are defined by (2.1).

PROPOSITION 7.1.3 (see also $[KeM$ , (11.5.12)]). Let $f:(X, C)\rightarrow(Z, 0)$ be a
contmction as in 7.1.1, but not necessarily extremal ($i.e.,$ $C$ may be reducible).
Assume that $X$ singular and has only $DuVal$ singularities. Then $X$ is analyti-
cally isomorphic to a surface in $\mathbb{P}_{x,y,z}^{2}\times \mathbb{C}_{t}^{1}$ which is given by one of the following
equations:

(i) $x^{2}+y^{2}+t^{n}z^{2}=0$ , then the central fiber is a reducible conic and $X$ has only
one singular point, which is of type $A_{n-1}$ ;

(ii) $x^{2}+ty^{2}+tz^{2}=0$ , then the centml fiber is a nonreduced conic and $X$ has
exactly two singular points, which are of type $A_{1}$ ;

(iii) $x^{2}+ty^{2}+t^{2}z^{2}=0$ , then the centml fiber is a nonreduced conic and $X$ has
only one singular point, which is of type $A_{3}$ ;

(iv) $x^{2}+ty^{2}+t^{n}z^{2}=0,$ $t\geq 3$ then the centml fiber is a nonreduced conic and
$X$ has only one singular point, which is of type $D_{n+1}$ .

SKETCH OF PROOF. One can show that the linear system $|-K_{X}|$ is very ample
and determines an embedding $X\subset \mathbb{P}^{2}\times Z$ . Then $X$ must be given by the equation
$x^{2}+t^{k}y^{2}+t^{n}z^{2}=0$ . $\square $

7.1.4. Construction. Notation and assumptions as in 7.1.1. Let $d$ be the
index of $C$ on $X,$ $i$ . $e$ . the smallest positive integer such that $dC\sim 0$ . If $d=1$ ,
then $C$ is a Cartier divisor and $X$ must be smooth along $C$ , because so is $C$ . If
$d>1$ , then there exists the following commutative diagram:

$\hat{X}\rightarrow^{g}X$

$ f\wedge\downarrow$ $ f\downarrow$

$\hat{Z}\rightarrow^{h}Z$ ,

where $\hat{X}\rightarrow X$ is a cyclic \’etale outside SingX cover of degree $d$ defined by $C$

and $\hat{X}\rightarrow\hat{Z}\rightarrow Z$ is the Stein factorization. Then $f:\wedge\hat{X}\rightarrow\hat{Z}$ is also a $K_{\hat{X}}-$

negative contraction but not necessarily extremal. By construction, the central
fiber $\hat{C}$ $:=f^{-1}(0)\wedge\wedge$ is a reducible Cartier divisor. Note that $p_{a}(\hat{C})=0$ . Therefore
$\hat{X}$ is smooth outside $Sing\hat{C}$ . We distinguish two cases.

7.1.5. Case: $\hat{C}$ is irreducible. Then $\hat{X}$ is smooth and $\hat{X}\simeq \mathbb{P}^{1}\times\hat{Z}$ . Thus
$f:X\rightarrow Z$ is analytically isomorphic to the contraction from Example 7.1.2.
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7.1.6. Case: $\hat{C}$ is reducible. Then the group $\mathbb{Z}_{d}$ permutes components of
$\hat{C}$ transitively. Since $p_{a}(\hat{C})=0$ , this gives that all the components of $\hat{C}$ passes
through one point, say $\hat{P}$ , and they do not intersect each other elsewhere. The
surface $\hat{X}$ is smooth outside $\hat{P}$ . Note that in this case $K_{X}+C$ is not plt, because
neither is $K_{\hat{X}}+\hat{C}$ .

COROLLARY 7.1.7. Notation as in 7.1.4. Then $X$ has at most two singular
points on $C$ .

PROOF. In Case 7.1.6 any nontrivial element $a\in \mathbb{Z}_{d}$ have $\hat{P}$ as a fixed point.
It can have at most one more fixed point $\hat{P}_{i}$ on each component $\hat{C}_{i}\subset\hat{C}$ . Moreover,
$\mathbb{Z}_{d}$ permutes points $\hat{P}_{1},$

$\ldots$ . Then $X$ can be singular only at images of $\hat{P}$ and
$\hat{P}_{1},$

$\ldots$ . $\square $

7.1.8. Additional notation. In Case 7.1.6 we denote $P;=g(\hat{P})$ . If $X$ has
two singular points, let $Q$ be another singular point. To distinguish exceptional
divisors over $P$ and $Q$ in the corresponding Dynkin graph we reserve the notation
$O$ for exceptional divisors over $Pand\ominus for$ exceptional divisors over $Q$ .

COROLLARY 7.1.9. In the above conditions, $K_{X}+C$ is $plt$ outside of $P$ .

LEMMA 7.1.10. Notation as in 7.1.1, 7.1.4 and 7.1.8. $LetX^{\prime}\rightarrow X$ be a finite
\’etale in codimension one cover. Then there exists the decomposition $\hat{X}\rightarrow X’\rightarrow X$ .
In particular, $X’\rightarrow X$ is cyclic and the preimage of $P$ on $X^{\prime}$ consists of one point.

PROOF. Let $X^{\prime\prime}$ be the normalization of $X^{\prime}\times x\hat{X}$ . Consider the Stein fac-
torization $X^{\prime}\rightarrow Z^{\prime}\rightarrow Z$ . Then $X^{\prime}\rightarrow Z^{\prime}$ is flat and a generically $\mathbb{P}^{1}$ -bundle.
Therefore for the central fiber $C^{\prime\prime}$ one has $(-K_{X^{\prime}},. C^{\prime\prime})=2$ , where $C^{\prime}$ is reduced
and it is the preimage of $\hat{C}$ . On the other hand,

$(-K_{X^{\prime\prime}}\cdot C^{\prime\prime})=n(-K_{\hat{X}}\cdot\hat{C})=2n$ ,

where $n$ is the degree of $X^{\prime}\rightarrow\hat{X}$ . Whence $n=1,$ $X^{\prime}\simeq\hat{X}$ . This proves the
assertion. $\square $

LEMMA 7.1.11. Let $f:X\rightarrow(Z\ni 0)$ be an extremal contmction as in 7.1.1
(with irreducible $C$). Assume that $K_{X}+C$ is $plt$ . Then

(i) $f:X\rightarrow(Z\ni 0)$ is analytically isomorphic to the contmction from Example
7.1.2 (so it is toroidal). In particular, $X$ has exactly two singular points on
$C$ which are of types $\frac{1}{m}(1, q)$ and $\frac{1}{m}(1, -q)$ ;

(ii) $K_{X}+C$ is l-complementary.

PROOF. In the construction 7.1.4 we have Case 7.1.5. Then

Diff$c(0)=(1-1/d)P_{1}+(1-1/d)P_{2}$ ,

where $P_{1},$ $P_{2}$ are singular points of $X$ and $d$ is the index of $C$ . By Corollary 4.1.11
and by Proposition 4.4.3, $K_{X}+C$ is l-complementary. $\square $
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The following result gives the classification of surface $\log$ terminal contrac-
tions of relative dimension one. For applications to three-dimensional case and
generalizations we refer to [P2], [P3].

THEOREM 7.1.12 ([P3]). Let $f:(X\supset C)\rightarrow(Z\ni 0)$ be an extremal con-
tmction as in 7.1.1 (with irreducible $C$). Then $K_{X}$ is 1, 2 or 3-complementary.
Moreover, there are the following cases:

Case $A^{*}:$ $K_{X}+C$ is $plt$, then $K_{X}+C$ is l-complementary and $f$ is tomidal
(see Example 7.1.2, cf. Conjecture 2.2.18);

Case $D^{*}:$ $K_{X}+C$ is $lc$ , but not $plt$, then $K_{X}+C$ is 2-complementary and $f$

is a quotient of a conic bundle of type (i) of Proposition 7.1.3 by a cyclic
group $\mathbb{Z}_{2m}$ which permutes components of the centml fiber and acts on $X$

freely in codimension one. The minimal resolution of $X$ is

$-2$

$O$

$1$

$-b$ $-b_{1}$ $-b_{s}$ $-a_{r}$ $-a_{1}$

$O$ – $O$ – . . . $O$ – $\bullet$ – $\ominus$ –. .. $\ominus$

$1$

$-2$

$O$

where $s,$ $r\geq 0$ (recall that $X$ can be smooth outside $P$ , so $r=0$ is also
possible).

Cas$eA^{**}:$ $K_{X}$ is l-complementary, but $K_{X}+C$ is not $lc$ . The minimal reso-
lution of $X$ is

$-a_{1}$ $-a_{2}$ $-a_{i}$ $-a_{r}$

$O-O$ –... $-O-$ ... $-O$
$1$

$\bullet$

$1$

$-2$ $-2$

$\ominus$ – . . . – $\ominus$

where $r\geq 4,$ $i\neq 1,$ $r$ .
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Case $D^{**}:$ $K_{X}$ is 2-complementary, but not l-complementary and $K_{X}+C$ is
not $lc$ . The minimal resolution of $X$ is

$-a_{r}$ $-a_{i}$

O $O-$
$1$

$\bullet$

$1$

$-2$

$-a_{1}$ $-b$ $-2$

$O$ –O $O$

$1$

$O-2$

$-2$

$\ominus$ – .. . – $\ominus$

where $r\geq 2,$ $i\neq r$ .
Case $E_{6}^{*}$ (exceptional case): $K_{X}$ is 3-complementary, but not 1- or 2-

complementary. The minimal resolution of $X$ is

$-3$

$O$

$1$

$-2$ $-2$ $-b$ $-2$

$-3$ $-2$ $-2$

$\ominus$ – $\ominus$ $\ominus$

$1$

$O-O-O-O-\bullet$
Here the number $ of\ominus$-vertices is $b-2$ (it is possible that $b=2$ and $Q\in X$

is smooth).

REMARK 7.1.13. (i) In the case $D^{*}$ the canonical divisor $K_{X}$ can be 1-
complementary:

a) if $P\in X$ is Du Val (see 7.1.3 (ii)), or
b) if $s=0,$ $a_{1}=\cdots=a_{r}=2,$ $b=r+2$ .

(ii) In cases $D^{*},$ $A^{**}$ and $D^{**}$ there are additional restrictions on the graph of
the minimal resolution. For example, in the case $A^{**}$ one easily can check
that

$(\sum_{j=1}^{i-1}a_{j})-(i-1)=(\sum_{j=i+1}^{r}a_{j})-(r-i)$

and

$a_{i}=(number\Theta- vertices)+2$ .
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PROOF. If $K_{X}+C$ is plt, then by Lemma 7.1.11 we have Case $A^{*}$ . Thus we
may assume that $K_{X}+C$ is not plt.

We claim that $K_{X}$ is 1, 2 or 3-complementary. Assume that $K_{X}$ is not 1-
complementary. For some $\alpha\leq 1$ the $\log$ divisor $K_{X}+\alpha C$ is lc, but not plt
(so, $K_{X}+\alpha C$ is maximally lc). Consider a minimal $\log$ terminal modification
$\varphi$ : $(\check{X}, \sum E_{i}+\alpha\check{C})\rightarrow(X, \alpha C)$ , where $\sum E_{i}$ is the reduced exceptional divisor, $\check{C}$

is the proper transform of $C$ and $K_{\overline{X}}+\sum E_{i}+\alpha\check{C}=\varphi^{*}(K_{X}+\alpha C)$ is dlt. As in
3.1.4, applying the $(K_{\overline{X}}+\sum E_{i})$-MMP to $\check{X}$ at the last step we obtain the blowup
$\sigma:\overline{X}\rightarrow X$ with irreducible exceptional divisor $E$ . Moreover, $\sigma^{*}(K_{X}+\alpha C)=$

$K_{\tilde{X}}+E+\alpha\overline{C}$ is lc, where $\overline{C}$ is the proper transform of $C$ and $K_{\tilde{X}}+E$ is plt and
negative over $X$ . Since $K_{\tilde{X}}+E+(\alpha-\epsilon)\tilde{C}$ is antiample for $0<\epsilon\ll 1$ , the curve $\tilde{C}$

can be contracted in the appropriate $\log$ MMP over $Z$ and this gives a contraction
(X, $\overline{E}$) $\rightarrow Z$ with purely $\log$ terminal $K_{\overline{X}}+\overline{E}$ . By Lemma 7.1.11 $(\overline{X},\overline{E})\rightarrow Z$ is as
in Example 7.1.2. If $K_{\tilde{X}}+E$ in nonnegative on $\tilde{C}$ , then by Proposition 4.3.2 we can
pull back l-complements from $\overline{X}$ on $\overline{X}$ and then push-down them on $X$ (see 4.3.1).
Thus we obtain l-complement of $K_{X}$ , a contradiction. From now on we assume
that $-(K_{\tilde{X}}+E)$ is ample over $Z$ . Then by Proposition 4.4.3 complements for
$K_{E}+Diff_{E}(0)$ can be extended on $\overline{X}$ . According to 4.1.11, $Diff_{E}(0)=\sum_{i=1}^{3}(1-$

$1/m_{i})P_{i}$ , where for $(m_{1}, m_{2}, m_{3})$ there are the following possibilities:

$(2, 2, m),$ $(2,3,3),$ $(2,3,4),$ $(2,3,5)$ .

Further, $\overline{X}$ has exactly two singular points and these are of type $\frac{1}{m}(1, q)$ and

1 $(1, -q)$ , respectively (see Lemma 7.1.11). Since $\overline{C}$ intersects $E$ at only one point,
this point must be singular and there are two more points with $m_{i}=m_{j}$ . We get
two cases:

7.1.14. $(2,2, m),\tilde{C}\cap E=\{P_{3}\},$ $thereisa2$-complement;

7.1.15. $(2,3,3),\tilde{C}\cap E=\{P_{1}\},$ $thereisa3$-complement.
This proves the claim.
If $K_{X}+C$ is lc (but not plt), then in Construction 7.1.4 $K_{\hat{X}}+\hat{C}$ is also lc

but not plt (see Proposition 1.2.1). Since $\hat{C}$ is a Cartier divisor, $K_{\hat{X}}$ is canonical.
Hence $ f\wedge$ is as in Proposition 7.1.3, (i). We get the case $D^{*}$ .

To prove that note that $\alpha=1$ and $K_{\overline{X}}+E+\tilde{C}$ is lc. Hence $f:X\rightarrow Z$ is not
exceptional and $K_{X}$ is l-or 2-complementary by Corollary 7.0.10.

Assume that $K_{X}$ is l-complementary, but $K_{X}+C$ is not lc. Then there exists
a reduced divisor $D$ such that $K_{X}+D$ is lc and linearly trivial. By our assumption
and by Propositions 2.1.2 and 2.1.3, $C\not\subset D$ . Let $P\in X$ be a point of index
$>1$ . Then $P\in C\cap D$ and again by Propositions 2.1.2 and 2.1.3 there are two
components $D_{1},$ $D_{2}\subset D$ passing through $P$ . But since $D\cdot L=2$ , where $L$ is a
generic fiber of $f,$ $D=D_{1}+D_{2},$ $P\in D_{1}\cap D_{2}$ and $P$ is the only point of index $>1$

on $X$ .



64 7. CONTRACTIONS ONTO CURVES

Now assume that $K_{X}$ is 2-complementary, but not l-complementary and $K_{X}+$

$C$ is not lc. Then we are in the case 7.1.14. Therefore

$(\overline{X}\ni P_{1})\simeq(\tilde{X}\ni P_{2})\simeq(\mathbb{C}^{2},0)/\mathbb{Z}_{2}(1,1)$ ,

$(\tilde{X}\ni P_{3})\simeq(\mathbb{C}^{2},0)/\mathbb{Z}_{m}(1, q)$ , $gcd(m, q)=1$ .

Take the minimal resolution $X_{\min}\rightarrow\overline{X}$ of $P_{1},$ $P_{2},$ $P_{3}\in\tilde{X}$ . Over $P_{1}$ and $P_{2}$ we have
only $single-2$-curves and over $P_{3}$ we have a chain which must intersect the proper
transform of $\tilde{C}$ , because $\overline{C}$ passes through $P_{3}$ . Since the fiber of $\tilde{X}_{\min}\rightarrow Z$ over $0$

is a tree of rational curves, there are no three of them passing through one point.
Whence proper transforms of $E$ and $\tilde{C}$ on $\tilde{X}_{\min}$ are disjoint. Moreover, the proper
transform of $E$ cannot be a-l-curve. Indeed, otherwise contracting it we get three
components of the fiber over $0\in Z$ passing through one point. It gives that $\tilde{X}_{\min}$

coincides with the minimal resolution $X_{\min}$ of $X$ . Therefore configuration of curves
on $X_{\min}$ looks like that in Case $D^{**}$ . We have to show only that all the curves in
the down part have selfintersections $-2$ . Indeed, $contracting-1$ -curves over $Z$ we
obtain a $\mathbb{P}^{1}$ -bundle. Each time, we contract a-l-curve, we have the configuration
of the same type. If there is a vertex with selfintersection $<-2$ , then at some step
we get the configuration

$O$ – $\bullet$ – $O\cdots$

$1$

$\ominus$

:

It is easy to see that this configuration cannot be contracted to a smooth point
over $0\in Z$ , because contraction of the $central-1$ -curve gives configuration curves
which is not a tree. This completes Case $D^{**}$ .

Case $E_{6}^{*}$ is very similar to $D^{**}$ . We omit it. $\square $

From Corollary 6.1.4 we have

COROLLARY 7.1.16 (cf. [P2]). Fix $\epsilon>0$ . There is only a finite number of
exceptional ($i.e.$ , of type $E_{6}^{*}$ ) $log$ conic bundles $f:X\rightarrow Z$ as in Theorem 7.1.12
with $\epsilon- ltX$ .

EXERCISE 7.1.17 (cf. 2.2.18, 6.2.9). Let $f:X\rightarrow Z\ni 0$ be a contraction from
a surface onto a curve and $D=\sum d_{i}D_{i}$ a boundary on $X$ such that $K_{X}+D$ is lc
and $-(K_{X}+D)$ is nef over $Z$ . Prove that

$\rho_{num}(X/Z)+2\geq\sum d_{i}$ .

Moreover, the equality holds only if $(X/Z\ni 0, \lfloor D\rfloor)$ is a toric pair.
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7.2. Elliptic fibrations

As an application of complements we obtain Kodaira’s classification of degen-
erate of elliptic fibers (see [Sh3]).

DEFINITION 7.2.1. An elliptic fibmtion is a contraction from a surface to a
curve such that its general fiber is a smooth elliptic curve. An elliptic fibration
$f:X\rightarrow Z$ is said to be minimal if $X$ is smooth and $K_{X}\equiv 0$ over $Z$ .

REMARK 7.2.2. (i) Note that any elliptic fibration obtained from minimal one
by contracting curves in fibers has only Du Val singularities.

(ii) Let $K_{X}+B$ be a $\mathbb{Q}$-complement on an elliptic fibration $f:X\rightarrow Z\ni 0$

with $K_{X}\equiv 0$ . Then $B\equiv 0$ . By Zariski’s lemma, $pB\sim qf^{*}o$ for some $p,$ $q\in N$ . In
particular, there exists exactly one complement $K_{X}+B$ which is not klt.

Recall also that a minimal model is unique up to isomorphisms.

PROPOSITION-DEFINITION 7.2.3. Let $f:X\rightarrow Z\ni 0$ be a minimal elliptic
fibration. Then there exists a birational model $\overline{f}:\overline{X}\rightarrow Z$ such that $K_{\overline{X}}+\overline{F}$ is
dlt and numerically trivial near $\overline{f}^{-1}(0)$ , where $\overline{F}$ $:=\overline{f}1(0)_{red}$ . Such a model is
called a $dlt$ model of $f$ . Moreover, if $K_{\overline{X}}+\overline{F}$ is n-complementary, then $K_{X}$ is
n-complementary. More precisely, compl’ $(X)\leq comp1(\overline{X},\overline{F})$ . If $(X/Z\ni 0)$ is
exceptional, then $\overline{F}$ is irreducible, $K_{\overline{X}}+\overline{F}$ is plt and a dlt model is unique.

PROOF. First take the maximal $c\in \mathbb{Q}$ such that $K_{X}+cf^{*}o$ is lc. Put $B$ $:=$

$cf^{*}o$ . Next we consider a minimal $\log$ terminal modification $g:Y\rightarrow X$ of (X, $B$ ) (if
$K_{X}+B$ is dlt, we put $Y=X$ ). Thus we can write $g^{*}(K_{X}+B)=K_{Y}+C+B_{Y}\equiv 0$ ,
where $C$ is reduced and nonempty, $\lfloor B_{Y}\rfloor=0$ and $Supp(C+B_{Y})$ is contained in
the fiber over $0$ . Run $(K_{Y}+C+(1+\epsilon)B_{Y})$-MMP over $Z$ :

$Y$

(7.1) $X$ $\overline{X}$

$Z$

If $B_{Y}\neq 0$ , then $B_{Y}^{2}<0$ and we can contract a component of $B_{Y}$ . At the end
we get the situation when $B_{Y}=0$ . Taking $\overline{F}:=\overline{g}(C)$ we see the first part of the
proposition. The second part follows by 4.3.2 and the fact that all contractions
$Y\rightarrow\overline{X}$ are positive with respect to $K+C$ .

Finally, assume that $(X/Z\ni 0)$ is exceptional. Then by Remark 7.2.2, there is
exactly one nonklt complement $K_{X}+B$ (where $B=cf^{*}o$). Clearly, $C$ is irreducible
in this case. Contractions $g$ and $\overline{g}$ are crepant with respect to $K_{Y}+C+B_{Y}$ . By
Proposition 1.1.6 $K_{\overline{X}}+\overline{F}$ is plt. Assume that there are two dlt models $(\overline{X}/Z\ni 0,\overline{F})$
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and $(\overline{X}^{\prime}/Z\ni 0,\overline{F}’)$ . Consider the diagram
$X_{\min}$

$X$ $\overline{X}$

$Z$

where $\overline{h}:X_{\min}\rightarrow\overline{X}$ is the minimal resolution and $h:X_{\min}\rightarrow X$ is a composition
of contractions of-l-curves. Let $K_{\overline{X}}+\overline{F}+\overline{D}$ be a $\mathbb{Q}$-complement and

$K_{X_{\min}}+F_{\min}+D_{\min}=\overline{h}^{*}(K_{\overline{X}}+\overline{F}+\overline{D})$

the crepant pull back, where $F_{\min}$ is the proper transform of $\overline{F}$ and $D_{\min}$ is a
boundary. Clearly,

$-1=a(F_{\min}^{i}, F_{\min}+D_{\min})=a(F_{\min}^{i}, h_{*}(F_{\min}+D_{\min}))$

for any irreducible component $F_{\min}^{i}$ of $F_{\min}$ . Hence $K_{X}+h_{*}(F_{\min}+D_{\min})$ is a
nonklt $\mathbb{Q}$-complement, so $h_{*}(F_{\min}+D_{\min})=B$ and $a(\overline{F}^{i}, B)=-1$ . Similarly, we
get $a(\overline{F^{\prime^{j}}}, B)=-1$ . By exceptionality, $\overline{F}$ and $\overline{F}^{\prime}$ are irreducible and $\overline{F}\approx\overline{F}^{\prime}$ (as
discrete valuations of X(X)). Then $\overline{X}--*\overline{X}^{\prime}$ is an isomorphism in codimension
one, hence it is an isomorphism. $\square $

REMARK 7.2.4. Let $\overline{f}:(\overline{X}, \overline{F})\rightarrow Z\ni 0$ be a dlt model of an elliptic fibration
and $K_{\overline{X}}+\overline{F}+\overline{B}$ a $\mathbb{Q}$-complement. As in Remark 7.2.2 we have $Supp\overline{B}\subset\overline{F}$ , hence
$\overline{B}=0$ .

COROLLARY 7.2.5. Under notation of 7.2.3 the following are equivalent:
(i) $(X/Z\ni 0)$ is exceptional;
(ii) $(\overline{X}/Z\ni 0,\overline{F})$ is exceptional;
(iii) $K_{\overline{X}}+\overline{F}$ is $plt$ .

PROOF. The implication $(ii)\Rightarrow(iii)$ is obvious (because $\overline{F}$ is reduced, see
2.2.6). If $K_{\overline{X}}+\overline{F}$ is plt, then by Remark 7.2.4 $K_{\overline{X}}+\overline{F}$ is the only nonklt comple-
ment and $\overline{F}$ is the only divisor with $a(\overline{F},\overline{F})=-1$ . This shows $(iii)\Rightarrow(ii)$ . $(i)\Rightarrow$

(ii) follows by 7.2.3.
Let us prove the implication $(ii)\Rightarrow(i)$ . Assume that $(X/Z\ni 0)$ is nonex-

ceptional. By Remark 7.2.2 there are two different divisors $E_{1},$ $E_{2}$ such that
$a(E_{1}, B)=a(E_{2}, B)=-1$ . Then in (7.1) we have $a(E_{1}, C+B_{Y})=a(E_{2}, C+B_{Y})=$

$-1$ . Since $K_{Y}+C+B_{Y}\equiv 0,$ $a(E_{1},\overline{F})=a(E_{2},\overline{F})=-1$ , i.e., $(\overline{X}/Z\ni 0,\overline{F})$ is
nonexceptional. $\square $

Similar to Theorem 6.1.6 we have the following

PROPOSITION 7.2.6. Let $\overline{f}:\overline{X}\rightarrow Z\ni 0$ be $dlt$ model of an elliptic fibration
and $\overline{F}:=\overline{f}^{-1}(0)_{red}$ . Then one of the following holds:
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$Ell-\overline{A}_{n}$ : $p_{a}(\overline{F})=1,$ $\overline{X}$ is smooth and $\overline{F}$ is either
$Ell$ : a smooth elliptic curve, $or$

$\tilde{A}_{n}$ : a wheel of smooth rational curves;
$\tilde{D}_{n},$ $n\geq 5:\overline{F}$ is a chain of smooth rational curves, and it is as in Lemma 6.1.9

and Fig. 6.6 (here $n-3$ is the number of components of $\overline{F}$);
$Exc:K_{\overline{X}}+\overline{F}$ is $plt$ (therefore it is exceptional), then $Diff_{\overline{F}}(0)=\sum_{i=1}^{r}(1-$

$1/m_{\underline{i}})$ where for $(m_{1}, \ldots , m_{r})$ there are possibilities as in 4.1.12:
$D_{4}$ : (2, 2, 2, 2);
$\overline{E}_{6}$ : (3, 3, 3);
$\overline{E}_{7}$ : (2, 4, 4);
$\overline{E}_{8}$ : (2, 3, 6).

PROOF. Follows by 6.1.7 and 6.1.9. $\square $

COROLLARY 7.2.7. Notation as in Proposition 7.2.6. Then the index of $K_{\overline{X}}+\overline{F}$

is equal to 1, 2, 3, 4, or 6, in cases $\overline{A}_{n}$ (and $Ell$), $\tilde{D}_{n}(n\geq 4),\overline{E}_{6},\overline{E}_{7}$ and $\tilde{E}_{8}$ ,
respectively.

SKETCH OF PROOF. Applying Zariski’s lemma on the minimal resolution we
get $\overline{F}\sim_{Q}0$ . Let $r$ be the index of $\overline{F}$ , i.e., the smallest positive integer such that
$r\overline{F}\sim 0$ . By taking the corresponding cyclic cover (cf. 1.3)

$X^{\prime}$ $:=Spec(\bigoplus_{i=0}^{r-1}\mathcal{O}_{\overline{X}}(-i\overline{F}))\rightarrow\overline{X}$

we obtain an elliptic fibration $f^{\prime}$ : $X\rightarrow Z\ni 0^{\prime}$ such that $F^{\prime}$ is linearly trivial and
$\log$ canonical. Since $\overline{X}$ is smooth at singular points of $\overline{F}$ , we have that $K_{X}+F^{l}$

is dlt (see Theorem 2.1.3 or [Sz]). Again by Theorem 2.1.3 $X^{\prime}$ is smooth along $F^{\prime}$

(because $F$ ‘ is Cartier). Hence the elliptic fibration $f$
’ : $X^{\prime}\rightarrow Z^{\prime}\ni 0^{\prime}$ must be of

type $Ell$ or $\tilde{A}_{k}$ . By the canonical bundle formula, $K_{X^{\prime}}+F^{\prime}\sim 0$ (see e.g. [BPV,
Ch. V, \S 12]). Therefore, $m(K_{\overline{X}}+\overline{F})\sim 0$ for some $m$ . Again let $m$ be the index of
$K_{\overline{X}}+\overline{F}$ . Now we consider the $\log$ canonical cover (see 1.3)

$X^{\prime}$ $:=Spec(\bigoplus_{i=0}^{m-1}\mathcal{O}_{\overline{X}}(-iK_{\overline{X}}-i\overline{F}))\rightarrow\overline{X}$

As $abo\underline{v}e,$
$K_{X^{\prime}},+F^{\prime}$ is dlt and the elliptic fibration $f^{\prime}$

’ : $X$ $\rightarrow Z$ $\ni 0^{\prime\prime}$ is of type
$Ell$ or $A_{k}$ .

If $f^{\prime\prime}$ is of type $\tilde{A}_{k}$ , then the group Gal(X” $/\overline{X}$) acts on $F^{\prime}$ so that the stabilazer
of every $sing\underline{u}lar$ point is trivial. If $m>1$ , then the only possibility is $m=2$ and
$f$ is of type $D_{n},$ $n\geq 5$ .

Assume that $f^{\prime\prime}$ is of type $Ell$ . Note that Gal(X” $/\overline{X}$) contains no subgroups $G$

acting freely on $F^{\prime\prime}$ (otherwise the quotient $X^{\prime\prime}/G\rightarrow Z^{\prime\prime}/G$ is again of type $Ell$ ). In
particular, Gal(X” $/\overline{X}$) $\subset Aut(F^{\prime\prime})$ and this group contains no translations of the
elliptic curve $F^{\prime}$ . It is well known (see e.g., [Ha]) that, in this situation, the order
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of Gal(X” $/\overline{X}$) can be 2, 3, 4 or 6. Moreover, it is easy to see that the ramification
indices are such as in $\tilde{D}_{4},\overline{E}_{6},\tilde{E}_{7}$ , or $\overline{E}_{8}$ of 4.1.12. $\square $

COROLLARY 7.2.8. Notation as in Proposition 7.2.6. Assume that $\overline{f}$ is excep-
tional and not of type Ell. Thenf isaquotient ofa smooth elliptic fibration of type
$Ell$ by a cyclic group of order 2, 3, 4, 6 in cases $\tilde{D}_{4},\tilde{E}_{6},\tilde{E}_{7}$ , and $\tilde{E}_{8}$ , respectively.

COROLLARY 7.2.9. Let $f:X\rightarrow Z\ni 0$ be a minimal elliptic fibration. Then
there exists a regular complement of $K_{X}$ .

For convenience we recall Kodaira’s classification of singular elliptic fibers and
give a new proof of it using birational techniques (cf. e.g. [BPV, Ch. V, \S 7]).

THEOREM 7.2.10. Let $f:X\rightarrow Z\ni 0$ be a minimal elliptic fibration (X is
smooth) and $F=(f^{*}o)_{red},$ $0\in Z$ the special fiber. Then there is one of the
following possibilities for $F$ (in the gmphs all vertices correspond to -2-curves
which are components of $F$):

$I_{b}$ : a smooth elliptic curve $(b=0)$ ;
a rational curve with one node $(b=1)$ ;
a wheel of smooth rational curves $(b\geq 2)$ ;

$mI_{b}$ : multiple $I_{b}$ ;
II: a mtional curve with a simple cusp;
III: $F=F_{1}+F_{2}$ is a pair of smooth mtional, tangent each other curves;
IV: $F=F_{1}+F_{2}+F_{3}$ is a union of three smooth mtional curves passing

through one point;
$I_{b}^{*}:$

$O$ $O$ $O$

$|$ $|$

$|$

$O$
$\vee$

$O$
(for

$orb=0$
)

$O$ – $O$ – $O$

$|$

$(b)$

$|$

$|$

$O$ $O$ $O$

$II^{*}:$

$O$ – $O$ – $O$ – $O$ – $O$ – $O$ – $O$

$1$

$O$

$1$

$O$
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$III^{*}:$

$O-O-O-O-O-O-O$
$1$

$O$

$IV^{*}:$

$O-O-O-O-O$
$1$

$O$

$1$

$O$

The proof is very similar to that of Theorem 6.1.6.

PROOF. We $are-go\underline{in}g$ to apply Proposition 7.2.6. So we consider a dlt model
$\overline{f}:\overline{X}\rightarrow Z\ni o$ and $h:X\rightarrow\overline{X}$ the minimal resolution of singularities of $\overline{X}$ . Then
we have the following diagram:

$\overline{X}$

$X$ $\overline{X}$

$Z$

where $h:\tilde{X}\rightarrow X$ is a sequence of contractions of-l-curves. If $p_{a}(\overline{C})=1$ , then
$\overline{X}=\overline{X}$ and $C$ is a smooth elliptic curve or a wheel of smooth rational curves.
Contracting, if necessary, $-1$-curves we obtain case $mIb$ . Further, we assume that
$p_{a}(\overline{C})=0$ . Then $\overline{X}$ is singular, so $\tilde{X}\neq\overline{X}$ . Consider the crepant pull back

$\overline{h}^{*}(K_{\overline{X}}+\overline{C})=K_{\overline{X}}+\tilde{C}+\overline{B}$ ,

where $\tilde{C}$ is the proper transform of $\overline{C},$ $\sim h_{*}\tilde{B}=0$ , and $\tilde{B}\geq 0$ . Since $K_{\overline{X}}+\overline{C}$ , it is
easy to see that $\lfloor\tilde{B}\rfloor=0$ . It is clear also that the set $Supp(\overline{C}+\tilde{B})$ coincides with
the fiber over $0$ . By construction, $Supp\tilde{B}$ contains no -l-curves.

First we consider the case when $Supp\tilde{C}$ also contains no $-1$-curves. Then
$X=\tilde{X}$ is exactly the minimal resolution of $\overline{X}$ . By 7.2.2 singular points of $\overline{X}$ are
Du Val. Cases $\tilde{D}_{n}(n\geq 5),\tilde{D}_{4},\tilde{E}_{6},\overline{E}_{7},\tilde{E}_{8}$ of Proposition 7.2.6 gives cases $I_{b}^{*}$ (with
$b\geq 1),$ $I_{0}^{*},$ $IV^{*},$ $III^{*}$ , and $II^{*}$ , respectively. For example, if rr is irreducible and



70 7. CONTRACTIONS ONTO CURVES

$-2$

FIGURE 7.1

there are exactly three singular points of $\overline{X}$ , then similar to 6.1 the graph of the
minimal resolution $\overline{h}:\overline{X}\rightarrow\overline{X}$ must be as in Fig. 7.1.

By 4.1.12 we have the following possibilities for $(m_{1}, m_{2}, m_{3})$ :

$\tilde{E}_{6}$ : $(m_{1}, m_{2}, m_{3})=(3,3,3)$ $\Rightarrow$ case $IV^{*}$ ,
$\overline{E}_{7}$ : $(m_{1}, m_{2}, m_{3})=(2,4,4)$ $\Rightarrow$ case $III^{*}$ ,
$\tilde{E}_{8}$ : $(m_{1}, m_{2}, m_{3})=(2,3,6)$ $\Rightarrow$ case $II^{*}$ .

Now, we consider the case when $Supp\tilde{C}$ contains a-l-curve. Since $\sim h:\overline{X}\rightarrow\overline{X}$ is
a minimal resolution, $al1-1$-curves are contained in $\overline{C}$ , the proper transform of $\overline{C}$ .
Using the negative semidefiniteness for the fiber $\overline{F}\subset\tilde{X}$ over $0$ one can show that
the dual graph of $\tilde{F}$ cannot contain proper subgraphs of the form

$-1$ $-1$
and

O $O$

$-2$ $-1$ $-2$

$O$ $O$ – O.
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$-1$

FIGURE 7.2

Suppose that $\overline{C}$ is irreducible. Then $K_{\overline{X}}+\overline{C}$ is plt and $\tilde{C}$ is the only a-l-curve.
Thus in the case $\tilde{D}_{4}$ we obtain the dual graph for a fiber of $\tilde{X}\rightarrow Z$ as below

$-2$

$O$

$1$

$-2$ $-1$ $-2$

$O$ $O-O$
$1$

$-2$

$O$

By the above this is impossible. In other cases we have the dual graphs as in
Fig. 7.2. For $(m_{1}, m_{2}, m_{3})=(3,3,3),\underline{(}2,4,4)$ and (2, 3, 6) we obtain cases IV, III
and II, respectively. Similarly Case $D_{n},$ $n\geq 5$ of Proposition 7.2.6 gives Case $I_{b}^{*}$ .

Non-simply connected fibers are only of type $I_{b}$ , so only they can be multiple.
This proves the theorem. $\square $

The following table shows correspondence between fibers of minimal smooth elliptic
fibrations and their dlt models:
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THEOREM 7.2.11 ([Sh3], cf. Theorem 6.0.6). Let $f:X\rightarrow Z\ni 0$ be a contmc-
tion from a normal surface $X$ onto a smooth curve Z. Let $D=\sum d_{i}D_{i}$ be a
boundary on X. Assume that $K_{X}+D$ is $lcand-(K_{X}+D)$ is f-nef. Then there
exists a regular complement of $K_{X}+D$ . This complement $K_{X}+D^{+}$ can be taken so
that $a(E, D)=-1$ implies $a(E, D^{+})=-1$ for any divisor $E$ of $X(X)$ . Moreover,
if there are no 1, or 2-complements, then $(X/Z\ni 0, D)$ is exceptional.

PROOF. By Corollaries 7.0.10 and 7.2.9 we may assume that $K_{X}+D\equiv 0$ over
$Z$ and a general fiber of $f$ is rational. First, as in the proof of Theorem 6.0.6,
we replace the boundary $D$ with $D+\alpha f^{*}o$ so that $K_{X}+D+\alpha f^{*}o$ is maximally
lc. Replacing $X$ with its $\log$ terminal modification, we may assume that $X$ is
smooth and the reduced part $C$ $:=\lfloor D\rfloor$ of the boundary is nonempty. Next we
blow up a sufficiently general point on $C$ $:=\lfloor D\rfloor$ . We get a new model such that
some component $E$ of $F=f^{-1}(0)$ is $-1$-curve and it is not contained in $SuppD$ .
Moreover, $ E\cap\lfloor D\rfloor$ is a point which is nonsingular for $SuppD$ . Let $ C_{1}\subset\lfloor D\rfloor$ be a
(unique) component passing through $E\cap SuppD$ . Then the curve $SuppF\backslash E$ can
be contracted to a point, say $Q$ :

$f:X\rightarrow^{9}Y\rightarrow Z$.
The central fiber $g(E)$ of $Y\rightarrow Z$ is irreducible. Since $K_{X}+D\equiv 0/Y$ , the point
$Q\in Y$ is lc. Apply Theorem 6.0.6 to the birational contraction $g:X\rightarrow Y$ . We get
a regular n-complement $K_{X}+D^{+}$ in a neighborhood of $g^{-1}(Q)=Supp(F-E)$ .
We claim that this complement extends to a complement in a neighborhood of the
whole fiber $F$ . We need to check only that $nD^{+}\sim-nK_{X}$ in a neighborhood of $F$ .
But in our situation the numerical equivalence over $Z$ coincides with linear one.
Therefore the last is equivalent to $D^{+}\equiv-K_{X}$ . Obviously, both sides have the
same intersection numbers with all components of $F$ different from $E$ . For $E$ we
have $1=-K_{X}\cdot E,$ $E\cdot D^{+}=E\cdot C_{1}=1$ (because the coefficients of $C_{1}$ in $D$ and
$D^{+}$ are equal to 1). This proves the theorem. $\square $


