CHAPTER 7

Contractions onto curves

In this chapter we discuss complements on log surfaces over curves. The main result is Theorem 7.2.11. From Theorem 6.0.6 we have

COROLLARY 7.0.10. Let $f: X \to Z \ni o$ be a contraction from a normal surface X onto a smooth curve Z. Let D be a boundary on X. Assume that $K_X + D$ is lc and $-(K_X + D)$ is f-nef and f-big. Then there exists a nonklt 1, 2, 3, 4, or 6-complement of $K_X + D$ near $f^{-1}(o)$. Moreover, if there are no nonklt 1 or 2-complements of $K_X + D$, then $f: X \to Z \ni o$ is exceptional.

Below we give generalization of this result for the case when $K_X + D \equiv 0$ and classify two-dimensional log conic bundles.

7.1. Log conic bundles

7.1.1. Assumptions. Let $(X \supset C)$ be a germ of normal surface X with only klt singularities along a reduced curve C, and $(Z \ni o)$ a smooth curve germ. Let $f: (X,C) \to (Z,o)$ be a K_X -negative contraction such that $f^{-1}(o)_{\text{red}} = C$. Then it is easy to prove that $p_a(C) = 0$ and each irreducible component of C is isomorphic to \mathbb{P}^1 . Everywhere in this paragraph if we do not specify the opposite, we assume that C is irreducible (or, equivalently, $\rho(X/Z) = 1$, i.e., f is extremal). Let $X_{\min} \to X$ be the minimal resolution. Since the composition map $f_{\min}: X_{\min} \to Z$ is flat, the fiber of $f_{\min}^{-1}(o)$ is a tree of rational curves. Therefore it is possible to define the dual graph of $f_{\min}^{-1}(o)$. We draw it in the following way: \blacksquare denotes the proper transform of C, while \bigcirc denotes the exceptional curve. We attach the selfintersection number to the corresponding vertex. By construction, the proper transform of C is the only -1-curve in $f_0^{-1}(o)$, so we usually omit -1 over \blacksquare .

EXAMPLE 7.1.2. Let $\mathbb{P}^1 \times \mathbb{C}^1 \to \mathbb{C}^1$ be the natural projection. Consider the following action of \mathbb{Z}_m on $\mathbb{P}^1_{x,y} \times \mathbb{C}^1_u$:

$$(x, y; u) \longrightarrow (x, \varepsilon^q y; \varepsilon u), \qquad \varepsilon = \exp 2\pi i / m, \qquad \gcd(m, q) = 1.$$

Then the morphism $f: X = (\mathbb{P}^1 \times \mathbb{C}^1)/\mathbb{Z}_m \to \mathbb{C}^1/\mathbb{Z}_m$ satisfies the conditions above. The surface X has exactly two singular points which are of types $\frac{1}{m}(1,q)$ and $\frac{1}{m}(1,-q)$. The morphism f is toric, so K_X is 1-complementary. One can check

that the minimal resolution of X has the dual graph

$$-b_1$$
 $-b_s$ $-a_r$ $-a_1$ $-a_1$ $-a_2$ $-a_3$ $-a_4$ $-a_5$ $-a_5$

where (b_1, \ldots, b_s) and (a_r, \ldots, a_1) are defined by (2.1).

PROPOSITION 7.1.3 (see also [KeM, (11.5.12)]). Let $f:(X,C) \to (Z,o)$ be a contraction as in 7.1.1, but not necessarily extremal (i.e., C may be reducible). Assume that X singular and has only Du Val singularities. Then X is analytically isomorphic to a surface in $\mathbb{P}^2_{x,y,z} \times \mathbb{C}^1_t$ which is given by one of the following equations:

- (i) $x^2 + y^2 + t^n z^2 = 0$, then the central fiber is a reducible conic and X has only one singular point, which is of type A_{n-1} ;
- (ii) $x^2 + ty^2 + tz^2 = 0$, then the central fiber is a nonreduced conic and X has exactly two singular points, which are of type A_1 ;
- (iii) $x^2 + ty^2 + t^2z^2 = 0$, then the central fiber is a nonreduced conic and X has only one singular point, which is of type A_3 ;
- (iv) $x^2 + ty^2 + t^n z^2 = 0$, $t \ge 3$ then the central fiber is a nonreduced conic and X has only one singular point, which is of type D_{n+1} .

SKETCH OF PROOF. One can show that the linear system $|-K_X|$ is very ample and determines an embedding $X \subset \mathbb{P}^2 \times Z$. Then X must be given by the equation $x^2 + t^k y^2 + t^n z^2 = 0$.

7.1.4. Construction. Notation and assumptions as in 7.1.1. Let d be the index of C on X, i. e. the smallest positive integer such that $dC \sim 0$. If d = 1, then C is a Cartier divisor and X must be smooth along C, because so is C. If d > 1, then there exists the following commutative diagram:

$$\begin{array}{ccc}
\widehat{X} & \xrightarrow{g} & X \\
\widehat{f} \downarrow & & f \downarrow \\
\widehat{Z} & \xrightarrow{h} & Z,
\end{array}$$

where $\widehat{X} \to X$ is a cyclic étale outside $\mathrm{Sing}X$ cover of degree d defined by C and $\widehat{X} \to \widehat{Z} \to Z$ is the Stein factorization. Then $\widehat{f} \colon \widehat{X} \to \widehat{Z}$ is also a $K_{\widehat{X}}$ -negative contraction but not necessarily extremal. By construction, the central fiber $\widehat{C} := \widehat{f}^{-1}(\widehat{o})$ is a reducible Cartier divisor. Note that $p_a(\widehat{C}) = 0$. Therefore \widehat{X} is smooth outside $\mathrm{Sing}\widehat{C}$. We distinguish two cases.

7.1.5. Case: \widehat{C} is irreducible. Then \widehat{X} is smooth and $\widehat{X} \simeq \mathbb{P}^1 \times \widehat{Z}$. Thus $f: X \to Z$ is analytically isomorphic to the contraction from Example 7.1.2.

7.1.6. Case: \widehat{C} is reducible. Then the group \mathbb{Z}_d permutes components of \widehat{C} transitively. Since $p_a(\widehat{C}) = 0$, this gives that all the components of \widehat{C} passes through one point, say \widehat{P} , and they do not intersect each other elsewhere. The surface \widehat{X} is smooth outside \widehat{P} . Note that in this case $K_X + C$ is not plt, because neither is $K_{\widehat{X}} + \widehat{C}$.

COROLLARY 7.1.7. Notation as in 7.1.4. Then X has at most two singular points on C.

PROOF. In Case 7.1.6 any nontrivial element $a \in \mathbb{Z}_d$ have \widehat{P} as a fixed point. It can have at most one more fixed point \widehat{P}_i on each component $\widehat{C}_i \subset \widehat{C}$. Moreover, \mathbb{Z}_d permutes points \widehat{P}_1, \ldots Then X can be singular only at images of \widehat{P} and \widehat{P}_1, \ldots

7.1.8. Additional notation. In Case 7.1.6 we denote $P := g(\widehat{P})$. If X has two singular points, let Q be another singular point. To distinguish exceptional divisors over P and Q in the corresponding Dynkin graph we reserve the notation \bigcirc for exceptional divisors over Q.

COROLLARY 7.1.9. In the above conditions, $K_X + C$ is plt outside of P.

LEMMA 7.1.10. Notation as in 7.1.1, 7.1.4 and 7.1.8. Let $X' \to X$ be a finite étale in codimension one cover. Then there exists the decomposition $\widehat{X} \to X' \to X$. In particular, $X' \to X$ is cyclic and the preimage of P on X' consists of one point.

PROOF. Let X'' be the normalization of $X' \times_X \widehat{X}$. Consider the Stein factorization $X'' \to Z'' \to Z$. Then $X'' \to Z''$ is flat and a generically \mathbb{P}^1 -bundle. Therefore for the central fiber C'' one has $(-K_{X''} \cdot C'') = 2$, where C'' is reduced and it is the preimage of \widehat{C} . On the other hand,

$$(-K_{X''}\cdot C'')=n(-K_{\widehat{X}}\cdot \widehat{C})=2n,$$

where n is the degree of $X'' \to \widehat{X}$. Whence $n = 1, X'' \simeq \widehat{X}$. This proves the assertion.

LEMMA 7.1.11. Let $f: X \to (Z \ni o)$ be an extremal contraction as in 7.1.1 (with irreducible C). Assume that $K_X + C$ is plt. Then

- (i) $f: X \to (Z \ni o)$ is analytically isomorphic to the contraction from Example 7.1.2 (so it is toroidal). In particular, X has exactly two singular points on C which are of types $\frac{1}{m}(1,q)$ and $\frac{1}{m}(1,-q)$;
- (ii) $K_X + C$ is 1-complementary.

PROOF. In the construction 7.1.4 we have Case 7.1.5. Then

Diff_C(0) =
$$(1 - 1/d)P_1 + (1 - 1/d)P_2$$
,

where P_1 , P_2 are singular points of X and d is the index of C. By Corollary 4.1.11 and by Proposition 4.4.3, $K_X + C$ is 1-complementary.

The following result gives the classification of surface log terminal contractions of relative dimension one. For applications to three-dimensional case and generalizations we refer to [P2], [P3].

THEOREM 7.1.12 ([**P3**]). Let $f: (X \supset C) \to (Z \ni o)$ be an extremal contraction as in 7.1.1 (with irreducible C). Then K_X is 1, 2 or 3-complementary. Moreover, there are the following cases:

Case A^* : $K_X + C$ is plt, then $K_X + C$ is 1-complementary and f is toroidal (see Example 7.1.2, cf. Conjecture 2.2.18);

Case D^* : $K_X + C$ is lc, but not plt, then $K_X + C$ is 2-complementary and f is a quotient of a conic bundle of type (i) of Proposition 7.1.3 by a cyclic group \mathbb{Z}_{2m} which permutes components of the central fiber and acts on X freely in codimension one. The minimal resolution of X is

where $s, r \geq 0$ (recall that X can be smooth outside P, so r = 0 is also possible).

Case A^{**} : K_X is 1-complementary, but $K_X + C$ is not lc. The minimal resolution of X is

where $r \geq 4$, $i \neq 1, r$.

Case D^{**} : K_X is 2-complementary, but not 1-complementary and $K_X + C$ is not lc. The minimal resolution of X is

where $r \geq 2$, $i \neq r$.

Case E_6^* (exceptional case): K_X is 3-complementary, but not 1- or 2-complementary. The minimal resolution of X is

Here the number of \bigcirc -vertices is b-2 (it is possible that b=2 and $Q \in X$ is smooth).

- REMARK 7.1.13. (i) In the case D^* the canonical divisor K_X can be 1-complementary:
 - a) if $P \in X$ is Du Val (see 7.1.3 (ii)), or
 - b) if s = 0, $a_1 = \cdots = a_r = 2$, b = r + 2.
- (ii) In cases D^* , A^{**} and D^{**} there are additional restrictions on the graph of the minimal resolution. For example, in the case A^{**} one easily can check that

$$\left(\sum_{j=1}^{i-1} a_j\right) - (i-1) = \left(\sum_{j=i+1}^r a_j\right) - (r-i)$$

and

$$a_i = (\text{number } \odot \text{-vertices}) + 2.$$

PROOF. If $K_X + C$ is plt, then by Lemma 7.1.11 we have Case A^* . Thus we may assume that $K_X + C$ is not plt.

We claim that K_X is 1, 2 or 3-complementary. Assume that K_X is not 1complementary. For some $\alpha \leq 1$ the log divisor $K_X + \alpha C$ is lc, but not plt (so, $K_X + \alpha C$ is maximally lc). Consider a minimal log terminal modification $\varphi : (\check{X}, \sum E_i + \alpha \check{C}) \to (X, \alpha C), \text{ where } \sum E_i \text{ is the reduced exceptional divisor, } \check{C}$ is the proper transform of C and $K_{\check{X}} + \sum E_i + \alpha \check{C} = \varphi^*(K_X + \alpha C)$ is dlt. As in 3.1.4, applying the $(K_{\check{X}} + \sum E_i)$ -MMP to \check{X} at the last step we obtain the blowup $\sigma \colon \widetilde{X} \to X$ with irreducible exceptional divisor E. Moreover, $\sigma^*(K_X + \alpha C) =$ $K_{\widetilde{X}} + E + \alpha \widetilde{C}$ is lc, where \widetilde{C} is the proper transform of C and $K_{\widetilde{X}} + E$ is plt and negative over X. Since $K_{\widetilde{X}} + E + (\alpha - \varepsilon)\widetilde{C}$ is antiample for $0 < \varepsilon \ll 1$, the curve \widetilde{C} can be contracted in the appropriate log MMP over Z and this gives a contraction $(\overline{X}, \overline{E}) \to Z$ with purely log terminal $K_{\overline{X}} + \overline{E}$. By Lemma 7.1.11 $(\overline{X}, \overline{E}) \to Z$ is as in Example 7.1.2. If $K_{\widetilde{X}} + E$ in nonnegative on \widetilde{C} , then by Proposition 4.3.2 we can pull back 1-complements from \overline{X} on X and then push-down them on X (see 4.3.1). Thus we obtain 1-complement of K_X , a contradiction. From now on we assume that $-(K_{\widetilde{X}} + E)$ is ample over Z. Then by Proposition 4.4.3 complements for $K_E + \operatorname{Diff}_E(0)$ can be extended on \widetilde{X} . According to 4.1.11, $\operatorname{Diff}_E(0) = \sum_{i=1}^3 (1 - i)^{-1} (1 - i)^{-1}$ $1/m_i)P_i$, where for (m_1, m_2, m_3) there are the following possibilities:

$$(2,2,m),\ (2,3,3),\ (2,3,4),\ (2,3,5).$$

Further, \overline{X} has exactly two singular points and these are of type $\frac{1}{m}(1,q)$ and $\frac{1}{m}(1,-q)$, respectively (see Lemma 7.1.11). Since \widetilde{C} intersects E at only one point, this point must be singular and there are two more points with $m_i = m_j$. We get two cases:

7.1.14.
$$(2,2,m), \tilde{C} \cap E = \{P_3\}, \text{ there is a 2-complement;}$$

7.1.15. $(2,3,3), \widetilde{C} \cap E = \{P_1\}, \text{ there is a 3-complement.}$ This proves the claim.

If $K_X + C$ is lc (but not plt), then in Construction 7.1.4 $K_{\widehat{X}} + \widehat{C}$ is also lc but not plt (see Proposition 1.2.1). Since \widehat{C} is a Cartier divisor, $K_{\widehat{X}}$ is canonical. Hence \widehat{f} is as in Proposition 7.1.3, (i). We get the case D^* .

To prove that note that $\alpha=1$ and $K_{\widetilde{X}}+E+\widetilde{C}$ is lc. Hence $f\colon X\to Z$ is not exceptional and K_X is 1- or 2-complementary by Corollary 7.0.10.

Assume that K_X is 1-complementary, but $K_X + C$ is not lc. Then there exists a reduced divisor D such that $K_X + D$ is lc and linearly trivial. By our assumption and by Propositions 2.1.2 and 2.1.3, $C \not\subset D$. Let $P \in X$ be a point of index > 1. Then $P \in C \cap D$ and again by Propositions 2.1.2 and 2.1.3 there are two components $D_1, D_2 \subset D$ passing through P. But since $D \cdot L = 2$, where L is a generic fiber of $f, D = D_1 + D_2$, $P \in D_1 \cap D_2$ and P is the only point of index > 1 on X.

Now assume that K_X is 2-complementary, but not 1-complementary and $K_X + C$ is not lc. Then we are in the case 7.1.14. Therefore

$$(\widetilde{X} \ni P_1) \simeq (\widetilde{X} \ni P_2) \simeq (\mathbb{C}^2, 0) / \mathbb{Z}_2(1, 1),$$

 $(\widetilde{X} \ni P_3) \simeq (\mathbb{C}^2, 0) / \mathbb{Z}_m(1, q), \quad \gcd(m, q) = 1.$

Take the minimal resolution $X_{\min} \to \widetilde{X}$ of $P_1, P_2, P_3 \in \widetilde{X}$. Over P_1 and P_2 we have only single -2-curves and over P_3 we have a chain which must intersect the proper transform of \widetilde{C} , because \widetilde{C} passes through P_3 . Since the fiber of $\widetilde{X}_{\min} \to Z$ over o is a tree of rational curves, there are no three of them passing through one point. Whence proper transforms of E and \widetilde{C} on \widetilde{X}_{\min} are disjoint. Moreover, the proper transform of E cannot be a -1-curve. Indeed, otherwise contracting it we get three components of the fiber over $o \in Z$ passing through one point. It gives that \widetilde{X}_{\min} coincides with the minimal resolution X_{\min} of X. Therefore configuration of curves on X_{\min} looks like that in Case D^{**} . We have to show only that all the curves in the down part have selfintersections -2. Indeed, contracting -1-curves over Z we obtain a \mathbb{P}^1 -bundle. Each time, we contract a -1-curve, we have the configuration of the same type. If there is a vertex with selfintersection < -2, then at some step we get the configuration

It is easy to see that this configuration cannot be contracted to a smooth point over $o \in \mathbb{Z}$, because contraction of the central -1-curve gives configuration curves which is not a tree. This completes Case D^{**} .

Case E_6^* is very similar to D^{**} . We omit it.

From Corollary 6.1.4 we have

COROLLARY 7.1.16 (cf. [**P2**]). Fix $\varepsilon > 0$. There is only a finite number of exceptional (i.e., of type E_6^*) log conic bundles $f: X \to Z$ as in Theorem 7.1.12 with ε -lt X.

EXERCISE 7.1.17 (cf. 2.2.18, 6.2.9). Let $f: X \to Z \ni o$ be a contraction from a surface onto a curve and $D = \sum d_i D_i$ a boundary on X such that $K_X + D$ is lc and $-(K_X + D)$ is nef over Z. Prove that

$$\rho_{\text{num}}(X/Z) + 2 \ge \sum d_i.$$

Moreover, the equality holds only if $(X/Z \ni o, |D|)$ is a toric pair.

7.2. Elliptic fibrations

As an application of complements we obtain Kodaira's classification of degenerate of elliptic fibers (see [Sh3]).

DEFINITION 7.2.1. An elliptic fibration is a contraction from a surface to a curve such that its general fiber is a smooth elliptic curve. An elliptic fibration $f: X \to Z$ is said to be minimal if X is smooth and $K_X \equiv 0$ over Z.

REMARK 7.2.2. (i) Note that any elliptic fibration obtained from minimal one by contracting curves in fibers has only Du Val singularities.

(ii) Let $K_X + B$ be a Q-complement on an elliptic fibration $f: X \to Z \ni o$ with $K_X \equiv 0$. Then $B \equiv 0$. By Zariski's lemma, $pB \sim qf^*o$ for some $p, q \in \mathbb{N}$. In particular, there exists exactly one complement $K_X + B$ which is not klt.

Recall also that a minimal model is unique up to isomorphisms.

PROPOSITION-DEFINITION 7.2.3. Let $f \colon X \to Z \ni o$ be a minimal elliptic fibration. Then there exists a birational model $\overline{f} \colon \overline{X} \to Z$ such that $K_{\overline{X}} + \overline{F}$ is dlt and numerically trivial near $\overline{f}^{-1}(o)$, where $\overline{F} := \overline{f}^{-1}(o)_{\text{red}}$. Such a model is called a *dlt model* of f. Moreover, if $K_{\overline{X}} + \overline{F}$ is n-complementary, then K_X is n-complementary. More precisely, $\text{compl}'(X) \leq \text{compl}(\overline{X}, \overline{F})$. If $(X/Z \ni o)$ is exceptional, then \overline{F} is irreducible, $K_{\overline{X}} + \overline{F}$ is plt and a dlt model is unique.

PROOF. First take the maximal $c \in \mathbb{Q}$ such that $K_X + cf^*o$ is lc. Put $B := cf^*o$. Next we consider a minimal log terminal modification $g \colon Y \to X$ of (X, B) (if $K_X + B$ is dlt, we put Y = X). Thus we can write $g^*(K_X + B) = K_Y + C + B_Y \equiv 0$, where C is reduced and nonempty, $\lfloor B_Y \rfloor = 0$ and $\operatorname{Supp}(C + B_Y)$ is contained in the fiber over o. Run $(K_Y + C + (1 + \varepsilon)B_Y)$ -MMP over Z:

If $B_Y \neq 0$, then $B_Y^2 < 0$ and we can contract a component of B_Y . At the end we get the situation when $B_Y = 0$. Taking $\overline{F} := \overline{g}(C)$ we see the first part of the proposition. The second part follows by 4.3.2 and the fact that all contractions $Y \to \overline{X}$ are positive with respect to K + C.

Finally, assume that $(X/Z \ni o)$ is exceptional. Then by Remark 7.2.2, there is exactly one nonklt complement $K_X + B$ (where $B = cf^*o$). Clearly, C is irreducible in this case. Contractions g and \overline{g} are crepant with respect to $K_Y + C + B_Y$. By Proposition 1.1.6 $K_{\overline{X}} + \overline{F}$ is plt. Assume that there are two dlt models $(\overline{X}/Z \ni o, \overline{F})$

and $(\overline{X}'/Z \ni o, \overline{F}')$. Consider the diagram

where $\overline{h}\colon X_{\min}\to \overline{X}$ is the minimal resolution and $h\colon X_{\min}\to X$ is a composition of contractions of -1-curves. Let $K_{\overline{X}}+\overline{F}+\overline{D}$ be a \mathbb{Q} -complement and

$$K_{X_{\min}} + F_{\min} + D_{\min} = \overline{h}^* (K_{\overline{X}} + \overline{F} + \overline{D})$$

the crepant pull back, where F_{\min} is the proper transform of \overline{F} and D_{\min} is a boundary. Clearly,

$$-1 = a(F_{\min}^{i}, F_{\min} + D_{\min}) = a(F_{\min}^{i}, h_{*}(F_{\min} + D_{\min}))$$

for any irreducible component F_{\min}^i of F_{\min} . Hence $K_X + h_*(F_{\min} + D_{\min})$ is a nonklt \mathbb{Q} -complement, so $h_*(F_{\min} + D_{\min}) = B$ and $a(\overline{F}^i, B) = -1$. Similarly, we get $a(\overline{F}^{ij}, B) = -1$. By exceptionality, \overline{F} and \overline{F}' are irreducible and $\overline{F} \approx \overline{F}'$ (as discrete valuations of $\mathcal{K}(X)$). Then $\overline{X} \dashrightarrow \overline{X}'$ is an isomorphism in codimension one, hence it is an isomorphism.

REMARK 7.2.4. Let $\overline{f}:(\overline{X},\overline{F})\to Z\ni o$ be a dlt model of an elliptic fibration and $K_{\overline{X}}+\overline{F}+\overline{B}$ a Q-complement. As in Remark 7.2.2 we have $\operatorname{Supp}\overline{B}\subset\overline{F}$, hence $\overline{B}=0$.

COROLLARY 7.2.5. Under notation of 7.2.3 the following are equivalent:

- (i) $(X/Z \ni o)$ is exceptional;
- (ii) $(\overline{X}/Z \ni o, \overline{F})$ is exceptional;
- (iii) $K_{\overline{X}} + \overline{F}$ is plt.

PROOF. The implication (ii) \Longrightarrow (iii) is obvious (because \overline{F} is reduced, see 2.2.6). If $K_{\overline{X}} + \overline{F}$ is plt, then by Remark 7.2.4 $K_{\overline{X}} + \overline{F}$ is the only nonklt complement and \overline{F} is the only divisor with $a(\overline{F}, \overline{F}) = -1$. This shows (iii) \Longrightarrow (ii) follows by 7.2.3.

Let us prove the implication (ii) \Longrightarrow (i). Assume that $(X/Z \ni o)$ is nonexceptional. By Remark 7.2.2 there are two different divisors E_1 , E_2 such that $a(E_1,B)=a(E_2,B)=-1$. Then in (7.1) we have $a(E_1,C+B_Y)=a(E_2,C+B_Y)=-1$. Since $K_Y+C+B_Y\equiv 0$, $a(E_1,\overline{F})=a(E_2,\overline{F})=-1$, i.e., $(\overline{X}/Z\ni o,\overline{F})$ is nonexceptional.

Similar to Theorem 6.1.6 we have the following

Proposition 7.2.6. Let $\overline{f} \colon \overline{X} \to Z \ni o$ be all model of an elliptic fibration and $\overline{F} := \overline{f}^{-1}(o)_{\rm red}$. Then one of the following holds:

Ell- \widetilde{A}_n : $p_a(\overline{F}) = 1$, \overline{X} is smooth and \overline{F} is either

Ell: a smooth elliptic curve, or

 \widetilde{A}_n : a wheel of smooth rational curves;

 $\widetilde{D}_n, \ n \geq 5$: \overline{F} is a chain of smooth rational curves, and it is as in Lemma 6.1.9 and Fig. 6.6 (here n-3 is the number of components of \overline{F});

Exc: $K_{\overline{X}} + \overline{F}$ is plt (therefore it is exceptional), then $\operatorname{Diff}_{\overline{F}}(0) = \sum_{i=1}^{r} (1 - 1/m_i)$ where for (m_1, \ldots, m_r) there are possibilities as in 4.1.12:

 \widetilde{D}_4 : (2,2,2,2);

 \widetilde{E}_6 : (3, 3, 3);

 \tilde{E}_7 : (2,4,4);

 \widetilde{E}_8 : (2,3,6).

PROOF. Follows by 6.1.7 and 6.1.9.

COROLLARY 7.2.7. Notation as in Proposition 7.2.6. Then the index of $K_{\overline{X}} + \overline{F}$ is equal to 1, 2, 3, 4, or 6, in cases \widetilde{A}_n (and Ell), \widetilde{D}_n ($n \geq 4$), \widetilde{E}_6 , \widetilde{E}_7 and \widetilde{E}_8 , respectively.

SKETCH OF PROOF. Applying Zariski's lemma on the minimal resolution we get $\overline{F} \sim_{\mathbb{Q}} 0$. Let r be the index of \overline{F} , i.e., the smallest positive integer such that $r\overline{F} \sim 0$. By taking the corresponding cyclic cover (cf. 1.3)

$$X' := \operatorname{Spec} \left(\bigoplus_{i=0}^{r-1} \mathcal{O}_{\overline{X}}(-i\overline{F}) \right) o \overline{X}$$

we obtain an elliptic fibration $f'\colon X'\to Z'\ni o'$ such that F' is linearly trivial and log canonical. Since \overline{X} is smooth at singular points of \overline{F} , we have that $K_{X'}+F'$ is dlt (see Theorem 2.1.3 or $[\mathbf{Sz}]$). Again by Theorem 2.1.3 X' is smooth along F' (because F' is Cartier). Hence the elliptic fibration $f'\colon X'\to Z'\ni o'$ must be of type Ell or \widetilde{A}_k . By the canonical bundle formula, $K_{X'}+F'\sim 0$ (see e.g. $[\mathbf{BPV}, \mathrm{Ch.\ V,\ \S12}]$). Therefore, $m(K_{\overline{X}}+\overline{F})\sim 0$ for some m. Again let m be the index of $K_{\overline{X}}+\overline{F}$. Now we consider the log canonical cover (see 1.3)

$$X'':=\operatorname{Spec}\left(igoplus_{i=0}^{m-1}\mathcal{O}_{\overline{X}}(-iK_{\overline{X}}-i\overline{F})
ight)
ightarrow \overline{X}$$

As above, $K_{X''} + F''$ is dlt and the elliptic fibration $f'': X'' \to Z'' \ni o''$ is of type Ell or \widetilde{A}_k .

If f'' is of type \widetilde{A}_k , then the group $\operatorname{Gal}(X''/\overline{X})$ acts on F'' so that the stabilazer of every singular point is trivial. If m > 1, then the only possibility is m = 2 and f is of type \widetilde{D}_n , $n \geq 5$.

Assume that f'' is of type Ell. Note that $Gal(X''/\overline{X})$ contains no subgroups G acting freely on F'' (otherwise the quotient $X''/G \to Z''/G$ is again of type Ell). In particular, $Gal(X''/\overline{X}) \subset Aut(F'')$ and this group contains no translations of the elliptic curve F''. It is well known (see e.g., [Ha]) that, in this situation, the order

of $Gal(X''/\overline{X})$ can be 2, 3, 4 or 6. Moreover, it is easy to see that the ramification indices are such as in \widetilde{D}_4 , \widetilde{E}_6 , \widetilde{E}_7 , or \widetilde{E}_8 of 4.1.12.

COROLLARY 7.2.8. Notation as in Proposition 7.2.6. Assume that \overline{f} is exceptional and not of type Ell. Then \overline{f} is a quotient of a smooth elliptic fibration of type Ell by a cyclic group of order 2, 3, 4, 6 in cases \widetilde{D}_4 , \widetilde{E}_6 , \widetilde{E}_7 , and \widetilde{E}_8 , respectively.

COROLLARY 7.2.9. Let $f: X \to Z \ni o$ be a minimal elliptic fibration. Then there exists a regular complement of K_X .

For convenience we recall Kodaira's classification of singular elliptic fibers and give a new proof of it using birational techniques (cf. e.g. [BPV, Ch. V, §7]).

Theorem 7.2.10. Let $f: X \to Z \ni o$ be a minimal elliptic fibration (X is smooth) and $F = (f^*o)_{red}$, $o \in Z$ the special fiber. Then there is one of the following possibilities for F (in the graphs all vertices correspond to -2-curves which are components of F):

 I_b : a smooth elliptic curve (b = 0); a rational curve with one node (b = 1); a wheel of smooth rational curves $(b \geq 2)$; $_{m}I_{b}$: multiple I_{b} ; II: a rational curve with a simple cusp;

III: $F = F_1 + F_2$ is a pair of smooth rational, tangent each other curves; IV: $F = F_1 + F_2 + F_3$ is a union of three smooth rational curves passing

The proof is very similar to that of Theorem 6.1.6.

PROOF. We are going to apply Proposition 7.2.6. So we consider a dlt model $\overline{f} \colon \overline{X} \to Z \ni o$ and $\widetilde{h} \colon \widetilde{X} \to \overline{X}$ the minimal resolution of singularities of \overline{X} . Then we have the following diagram:

where $h \colon \widetilde{X} \to X$ is a sequence of contractions of -1-curves. If $p_a(\overline{C}) = 1$, then $\overline{X} = \widetilde{X}$ and C is a smooth elliptic curve or a wheel of smooth rational curves. Contracting, if necessary, -1-curves we obtain case ${}_mI_b$. Further, we assume that $p_a(\overline{C}) = 0$. Then \overline{X} is singular, so $\widetilde{X} \neq \overline{X}$. Consider the crepant pull back

$$\widetilde{h}^*(K_{\overline{X}} + \overline{C}) = K_{\widetilde{X}} + \widetilde{C} + \widetilde{B},$$

where \widetilde{C} is the proper transform of \overline{C} , $\widetilde{h}_*\widetilde{B}=0$, and $\widetilde{B}\geq 0$. Since $K_{\overline{X}}+\overline{C}$, it is easy to see that $\left\lfloor \widetilde{B} \right\rfloor =0$. It is clear also that the set $\operatorname{Supp}(\overline{C}+\widetilde{B})$ coincides with the fiber over o. By construction, $\operatorname{Supp}\widetilde{B}$ contains no -1-curves.

First we consider the case when $\operatorname{Supp}\widetilde{C}$ also contains no -1-curves. Then $X=\widetilde{X}$ is exactly the minimal resolution of \overline{X} . By 7.2.2 singular points of \overline{X} are Du Val. Cases \widetilde{D}_n $(n\geq 5)$, \widetilde{D}_4 , \widetilde{E}_6 , \widetilde{E}_7 , \widetilde{E}_8 of Proposition 7.2.6 gives cases I_b^* (with $b\geq 1$), I_0^* , IV^* , III^* , and II^* , respectively. For example, if \overline{C} is irreducible and

FIGURE 7.1

there are exactly three singular points of \overline{X} , then similar to 6.1 the graph of the minimal resolution $h: \widetilde{X} \to \overline{X}$ must be as in Fig. 7.1.

By 4.1.12 we have the following possibilities for (m_1, m_2, m_3) :

$$\widetilde{E}_6: \qquad (m_1,m_2,m_3)=(3,3,3) \quad \Longrightarrow \quad \mathrm{case} \; IV^*, \\ \widetilde{E}_7: \qquad (m_1,m_2,m_3)=(2,4,4) \quad \Longrightarrow \quad \mathrm{case} \; III^*, \\ \widetilde{E}_8: \qquad (m_1,m_2,m_3)=(2,3,6) \quad \Longrightarrow \quad \mathrm{case} \; II^*.$$

Now, we consider the case when $\operatorname{Supp}\widetilde{C}$ contains a -1-curve. Since $\widetilde{h}\colon\widetilde{X}\to\overline{X}$ is a minimal resolution, all -1-curves are contained in \widetilde{C} , the proper transform of \overline{C} . Using the negative semidefiniteness for the fiber $\widetilde{F}\subset\widetilde{X}$ over o one can show that the dual graph of \widetilde{F} cannot contain proper subgraphs of the form

FIGURE 7.2

Suppose that \overline{C} is irreducible. Then $K_{\overline{X}} + \overline{C}$ is plt and \widetilde{C} is the only a -1-curve. Thus in the case \widetilde{D}_4 we obtain the dual graph for a fiber of $\widetilde{X} \to Z$ as below

By the above this is impossible. In other cases we have the dual graphs as in Fig. 7.2. For $(m_1, m_2, m_3) = (3, 3, 3)$, (2, 4, 4) and (2, 3, 6) we obtain cases IV, III and II, respectively. Similarly Case \widetilde{D}_n , $n \geq 5$ of Proposition 7.2.6 gives Case I_b^* .

Non-simply connected fibers are only of type I_b , so only they can be multiple. This proves the theorem.

The following table shows correspondence between fibers of minimal smooth elliptic fibrations and their dlt models:

\overline{X}	Ell	$\widetilde{A}_n, n \geq 1$	\widetilde{D}_4	$\widetilde{D}_n, n \geq 5$	\widetilde{E}_{6}	$\mid \widetilde{E}_{7} \mid$	\widetilde{E}_8
$\widetilde{X} = X$ $\widetilde{X} \neq X$ $\operatorname{compl}(\overline{X}, \overline{F})$	$egin{array}{c} {}_mI_0 \ - \ 1 \end{array}$	$egin{aligned} & I_n, \ n \geq 2 \ & I_b, \ b \leq n-1 \ & 1 \end{aligned}$	<i>I</i> ₀ * - 2	I_{n-4}^* $I_b^*, b \le n-5$	IV* IV 3	III* III 4	II* II 6

THEOREM 7.2.11 ([Sh3], cf. Theorem 6.0.6). Let $f: X \to Z \ni o$ be a contraction from a normal surface X onto a smooth curve Z. Let $D = \sum d_i D_i$ be a boundary on X. Assume that $K_X + D$ is lc and $-(K_X + D)$ is f-nef. Then there exists a regular complement of $K_X + D$. This complement $K_X + D^+$ can be taken so that a(E, D) = -1 implies $a(E, D^+) = -1$ for any divisor E of $\mathfrak{K}(X)$. Moreover, if there are no 1, or 2-complements, then $(X/Z \ni o, D)$ is exceptional.

PROOF. By Corollaries 7.0.10 and 7.2.9 we may assume that $K_X + D \equiv 0$ over Z and a general fiber of f is rational. First, as in the proof of Theorem 6.0.6, we replace the boundary D with $D + \alpha f^*o$ so that $K_X + D + \alpha f^*o$ is maximally lc. Replacing X with its log terminal modification, we may assume that X is smooth and the reduced part $C := \lfloor D \rfloor$ of the boundary is nonempty. Next we blow up a sufficiently general point on $C := \lfloor D \rfloor$. We get a new model such that some component E of $F = f^{-1}(o)$ is -1-curve and it is not contained in Supp D. Moreover, $E \cap \lfloor D \rfloor$ is a point which is nonsingular for Supp D. Let $C_1 \subset \lfloor D \rfloor$ be a (unique) component passing through $E \cap \text{Supp } D$. Then the curve Supp $F \setminus E$ can be contracted to a point, say Q:

$$f\colon X \xrightarrow{g} Y \to Z.$$

The central fiber g(E) of $Y \to Z$ is irreducible. Since $K_X + D \equiv 0/Y$, the point $Q \in Y$ is lc. Apply Theorem 6.0.6 to the birational contraction $g \colon X \to Y$. We get a regular n-complement $K_X + D^+$ in a neighborhood of $g^{-1}(Q) = \operatorname{Supp}(F - E)$. We claim that this complement extends to a complement in a neighborhood of the whole fiber F. We need to check only that $nD^+ \sim -nK_X$ in a neighborhood of F. But in our situation the numerical equivalence over Z coincides with linear one. Therefore the last is equivalent to $D^+ \equiv -K_X$. Obviously, both sides have the same intersection numbers with all components of F different from E. For E we have $1 = -K_X \cdot E$, $E \cdot D^+ = E \cdot C_1 = 1$ (because the coefficients of C_1 in D and D^+ are equal to 1). This proves the theorem.