CHAPTER 7

Contractions onto curves

In this chapter we discuss complements on log surfaces over curves. The main
result is Theorem 7.2.11. From Theorem 6.0.6 we have

COROLLARY 7.0.10. Let f: X — Z 3 o be a contraction from a normal surface
X onto a smooth curve Z. Let D be a boundary on X. Assume that Kx + D is
lc and —(Kx + D) is f-nef and f-big. Then there exists a nonkit 1, 2, 3, 4,
or 6-complement of Kx + D near f~'(0). Moreover, if there are no nonklt 1 or
2-complements of Kx + D, then f: X — Z 3 o is exceptional.

Below we give generalization of this result for the case when Kx + D = 0 and
classify two-dimensional log conic bundles.

7.1. Log conic bundles

7.1.1. Assumptions. Let (X D C) be a germ of normal surface X with only
klt singularities along a reduced curve C, and (Z 3 0) a smooth curve germ. Let
f:(X,C) - (Z,0) be a K x-negative contraction such that f~!(0);eq = C. Then it
is easy to prove that p,(C) = 0 and each irreducible component of C is isomorphic
to P!. Everywhere in this paragraph if we do not specify the opposite, we assume
that C is irreducible (or, equivalently, p(X/Z) = 1, i.e., f is extremal). Let X i, —
X be the minimal resolution. Since the composition map fumin: Xmin — Z is
flat, the fiber of f_! (o) is a tree of rational curves. Therefore it is possible to
define the dual graph of f_} (0). We draw it in the following way: @ denotes
the proper transform of C, while (O denotes the exceptional curve. We attach the
selfintersection number to the corresponding vertex. By construction, the proper

transform of C is the only —1-curve in f;!(0), so we usually omit —1 over @.

EXAMPLE 7.1.2. Let P! x C! — C! be the natural projection. Consider the
following action of Z,, on P} , x Cy:

(z,y;u) — (z,e%y;eu),  e=exp2ri/m,  ged(m,q) = 1.

Then the morphism f: X = (P! x C')/Z,, — C!/Z,, satisfies the conditions
above. The surface X has exactly two singular points which are of types %(l,q)
and T%(Iv —q). The morphism f is toric, so K x is 1-complementary. One can check
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that the minimal resolution of X has the dual graph

b —bs —ar —a;
where (b1,...,bs) and (a,,...,a1) are defined by (2.1).

PROPOSITION 7.1.3 (see also [KeM, (11.5.12)]). Let f: (X,C) — (Z,0) be a
contraction as in 7.1.1, but not necessarily extremal (i.e., C may be reducible).
Assume that X singular and has only Du Val singularities. Then X is analyti-
cally isomorphic to a surface in P2 x C} which is given by one of the following
equations:

T,Y,2

(i) 22 +y2+t"2% = 0, then the central fiber is a reducible conic and X has only
one singular point, which is of type Ap_1;

(ii) z2 + ty? + t22 = 0, then the central fiber is a nonreduced conic and X has
ezactly two singular points, which are of type A;;

(i) z2 + ty? + t222 = 0, then the central fiber is a nonreduced conic and X has
only one singular point, which is of type Az;

(iv) 2 +ty? + 1722 = 0, t > 3 then the central fiber is a nonreduced conic and
X has only one singular point, which is of type Dyp41.

SKETCH OF PROOF. One can show that the linear system |— K x| is very ample
and determines an embedding X C P2 x Z. Then X must be given by the equation
z? + thy? + 1722 = 0. a

7.1.4. Construction. Notation and assumptions as in 7.1.1. Let d be the
index of C' on X, i. e. the smallest positive integer such that dC ~ 0. If d = 1,
then C is a Cartier divisor and X must be smooth along C, because so is C. If
d > 1, then there exists the following commutative diagram:

)’(:L»X

AR
5 h
z — Z,
where X 5 Xisa cyclic étale outside SingX cover of degree d defined by C
and X — Z — Z is the Stein factorization. Then f X — Z is also a K-
negative contraction but not necessarily extremal. By construction, the central
fiber C:=Ff- 1(0) is a reducible Cartier divisor. Note that pa(C) = 0. Therefore

X is smooth outside SmgC’ We distinguish two cases.

7.1.5. Case: C is irreducible. Then X is smooth and X ~ P! x Z. Thus
f: X — Z is analytically isomorphic to the contraction from Example 7.1.2.
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7.1.6. Case: C is reducible. Then the group Z4 permutes components of
C transitively. Since pa(a) = 0, this gives that all the components of c passes
through one point, say P, and they do not intersect each other elsewhere. The
surface X is smooth outside P. Note that in this case Kx + C is not plt, because
neither is K5 + C.

COROLLARY 7.1.7. Notation as in 7.1.4. Then X has at most two singular
points on C.

PROOF. In Case 7.1.6 any nontrivial element a € Zq have 13 as a fixed point.
It can have at most one more fixed point P, on each component C;cC. Moreover,

Zd permutes points Pl,.... Then X can be singular only at images of P and
Pl, e O

7.1.8. Additional notation. In Case 7.1.6 we denote P := g(ﬁ) If X has
two singular points, let ) be another singular point. To distinguish exceptional
divisors over P and @ in the corresponding Dynkin graph we reserve the notation

O for exceptional divisors over P and @ for exceptional divisors over Q).
COROLLARY 7.1.9. In the above conditions, Kx + C is plt outside of P.

LEMMA 7.1.10. Notation as in 7.1.1, 7.1.4 and 7.1.8. Let X' — X be a finite
étale in codimension one cover. Then there exists the decomposition X — X' — X.
In particular, X' — X is cyclic and the preimage of P on X' consists of one point.

PROOF. Let X" be the normalization of X' x x X. Consider the Stein fac-
torization X" — Z" — Z. Then X" — Z'" is flat and a generically P!-bundle.
Therefore for the central fiber C” one has (—Kx» - C") = 2, where C" is reduced

and it is the preimage of C. On the other hand,
(=Kx»-C")=n(-Kg -C) = 2n,

where n is the degree of X" — X. Whence n = 1, X" ~ X. This proves the
assertion. O

LEMMA 7.1.11. Let f: X — (Z > 0) be an extremal contraction as in 7.1.1

(with irreducible C'). Assume that Kx + C is plt. Then

(i) f: X — (Z > o) is analytically isomorphic to the contraction from Ezample
7.1.2 (so it is toroz'dal) In particular, X has ezactly two singular points on
C which are of types —(1 q) and (1, —q);

(ii) Kx +C is 1- complementary

PROOF. In the construction 7.1.4 we have Case 7.1.5. Then
Diffc(0) = (1 - 1/d)P, + (1 — 1/d) Ps,

where P,, P, are singular points of X and d is the index of C. By Corollary 4.1.11
and by Proposition 4.4.3, Kx + C is 1-complementary. O
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The following result gives the classification of surface log terminal contrac-
tions of relative dimension one. For applications to three-dimensional case and
generalizations we refer to [P2], [P3].

THEOREM 7.1.12 ([P3]). Let f: (X D C) — (Z > o) be an extremal con-
traction as in 7.1.1 (with irreducible C). Then Kx is 1, 2 or 3-complementary.
Moreover, there are the following cases:
Case A*: Kx + C is plt, then Kx + C is 1-complementary and f is toroidal
(see Example 7.1.2, cf. Conjecture 2.2.18);

Case D*: Kx + C 1is lc, but not plt, then Kx + C is 2-complementary and f
is a quotient of a conic bundle of type (i) of Proposition 7.1.8 by a cyclic
group Zo., which permutes components of the central fiber and acts on X
freely in codimension one. The minimal resolution of X is

—b —-b; —b —ay

O — O — ... QS._‘__@T__...@

where s,r > 0 (recall that X can be smooth outside P, so v = 0 is also
possible).

Case A**: Kx 1is 1-complementary, but Kx + C is not lc. The minimal reso-
lution of X is

O———Q———...———Ol—...———or

—2 —2
& — . — O

wherer > 4,1 #1,r.
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Case D**: Kx 1is 2-complementary, but not 1-complementary and Kx + C is
not lc. The minimal resolution of X is

r —ay — -2

@ O -2

-2 —2
& — - — O

where T > 2,1 #T.
Case E¢ (exceptional case): Kx is 3-complementary, but not 1- or 2-
complementary. The minimal resolution of X is

-3 . -3 -2 -2

O ©C—06 - ©

~2 -2 -b -2
O—0 —0—0— e

Here the number of O-vertices is b—2 (it is possible that b=2 and Q € X
is smooth).

REMARK 7.1.13. (i) In the case D* the canonical divisor Kx can be 1-
complementary:

a) if P € X is Du Val (see 7.1.3 (ii)), or
b)ifs=0,a1=---=a,=2,b=1+2. :
(ii) In cases D*, A** and D** there are additional restrictions on the graph of

the minimal resolution. For example, in the case A** one easily can check
that

Sa | —Gi-1)= Zaj)—(r—n
7j=1 Jj=1+1
and

a; = (number © -vertices) + 2.
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PRrooF. If Kx + C is plt, then by Lemma 7.1.11 we have Case A*. Thus we
may assume that Kx + C is not plt.

We claim that Kx is 1, 2 or 3-complementary. Assume that Kx is not 1-
complementary. For some a < 1 the log divisor Kx + aC is lc, but not plt
(so, Kx + aC is maximally 1c). Consider a minimal log terminal modification
0: (X, E; + aC) — (X,aC), where 3_ E; is the reduced exceptional divisor, C
is the proper transform of C and K3 + Y_ E; + aC = p*(Kx + aC) is dlt. As in
3.1.4, applying the (K + 3. E;)-MMP to X at the last step we obtain the blowup
o0: X — X with irreducible exceptional divisor E. Moreover, o*(Kx + aC) =
Ky +E+ aC is lc, where C is the proper transform of C and K % + E is plt and

negative over X. Since K¢+ E+ (o — 5)5 is antiample for 0 < € < 1, the curve C
can be contracted in the appropriate log MMP over Z and this gives a contraction
(X,E) — Z with purely log terminal K+ + E. By Lemma 7.1.11 (X,E) — Z is as
in Example 7.1.2. If K 3 + F in nonnegative on C~’, then by Proposition 4.3.2 we can

pull back 1-complements from X on X and then push-down them on X (see 4.3.1).
Thus we obtain 1-complement of Kx, a contradiction. From now on we assume
that —(Kg + E) is ample over Z. Then by Proposition 4.4.3 complements for
Kpg + Diff g(0) can be extended on X. According to 4.1.11, Diff 5(0) = Zle(l —
1/m;)P;, where for (m;,mq, m3) there are the following possibilities:

(2,2,m), (2,3,3), (2,3,4), (2,3,5).

Further, X has exactly two singular points and these are of type ;;—(l,q) and

%(1, —q), respectively (see Lemma 7.1.11). Since C intersects F at only one point,
this point must be singular and there are two more points with m; = m;. We get
two cases:

7.1.14. (2,2,m), CNE= {Ps}, there is a 2-complement;

7.1.15. (2,3,3), CNE = {P,}, there is a 3-complement.

This proves the claim.

If Kx + C is lc (but not plt), then in Construction 7.1.4 K¢ + C is also lc
but not plt (see Proposition 1.2.1). Since C is a Cartier divisor, K £ is canonical.
Hence fis as in Proposition 7.1.3, (i). We get the case D*.

To prove that note that a =1 and K5 + E + C is lc. Hence f: X — Zis not
exceptional and Kx is 1- or 2-complementary by Corollary 7.0.10.

Assume that K x is 1-complementary, but Kx + C is not lc. Then there exists
a reduced divisor D such that Kx + D is Ic and linearly trivial. By our assumption
and by Propositions 2.1.2 and 2.1.3, C ¢ D. Let P € X be a point of index
> 1. Then P € C N D and again by Propositions 2.1.2 and 2.1.3 there are two
components Dy, Dy C D passing through P. But since D - L = 2, where L is a
generic fiber of f, D = Dy + Do, P € D; N D2 and P is the only point of index > 1
on X.
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Now assume that K x is 2-complementary, but not 1-complementary and K x +
C is not lc. Then we are in the case 7.1.14. Therefore

(X 5 P) ~ (X 3 Py) ~ (C?,0)/Z5(1,1),
(X 3 P3) ~ (C2,0)/Z(1,q), gecd(m,q)=1.

Take the minimal resolution X, — X of P,,P,,P; € X. Over P, and P, we have
only single —2-curves and over P; we have a chain which must intersect the proper
transform of C because C passes through Pj3. Since the fiber of Xmm — Z over o
is a tree of ratlonal curves, there are no three of them passing through one point.
Whence proper transforms of £ and C on Xy, are disjoint. Moreover, the proper
transform of E cannot be a —1-curve. Indeed, otherwise contracting it we get three
components of the fiber over o € Z passing through one point. It gives that X min
coincides with the minimal resolution Xpn,in, of X. Therefore configuration of curves
on Xpnin looks like that in Case D**. We have to show only that all the curves in
the down part have selfintersections —2. Indeed, contracting —1-curves over Z we
obtain a P!-bundle. Each time, we contract a —1-curve, we have the configuration
of the same type. If there is a vertex with selfintersection < —2, then at some step
we get the configuration

O — @ — O--
©

It is easy to see that this configuration cannot be contracted to a smooth point
over o € Z, because contraction of the central —1-curve gives configuration curves
which is not a tree. This completes Case D**.

Case Ej is very similar to D**. We omit it. O

From Corollary 6.1.4 we have

COROLLARY 7.1.16 (cf. [P2]). Fiz ¢ > 0. There is only a finite number of
ezceptional (i.e., of type E¢) log conic bundles f: X — Z as in Theorem 7.1.12
with e-lt X.

EXERCISE 7.1.17 (cf. 2.2.18, 6.2.9). Let f: X — Z 3 o be a contraction from
a surface onto a curve and D = Y _d;D; a boundary on X such that Kx + D is Ic
and —(Kx + D) is nef over Z. Prove that

pnum(X/Z) +2 > Zdi‘

Moreover, the equality holds only if (X/Z 3 o, | D]) is a toric pair.
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7.2. Elliptic fibrations

As an application of complements we obtain Kodaira’s classification of degen-
erate of elliptic fibers (see [Sh3]).

DEFINITION 7.2.1. An elliptic fibration is a contraction from a surface to a
curve such that its general fiber is a smooth elliptic curve. An elliptic fibration
f: X — Z is said to be minimal if X is smooth and Kx = 0 over Z.

" REMARK 7.2.2. (i) Note that any elliptic fibration obtained from minimal one
by contracting curves in fibers has only Du Val singularities.
(ii) Let Kx + B be a Q-complement on an elliptic fibration f: X — Z 3 0
with Kx = 0. Then B = 0. By Zariski’s lemma, pB ~ qf*o for some p,q € N. In
particular, there exists exactly one complement K x + B which is not klt.

Recall also that a minimal model is unique up to isomorphisms.

PROPOSITION-DEFINITION 7.2.3. Let f: X — Z 3 o be a minimal elliptic
fibration. Then there exists a birational model f: X — Z such that K + F'is

dlt and numerically trivial near f (o), where F := F '(0)..,. Such a model is
called a dlt model of f. Moreover, if K+ + F is m-complementary, then Kx is
n-complementary. More precisely, compl’ (X) < compl(X,F). If (X/Z 3 o) is
exceptional, then F is irreducible, K5 + F is plt and a dlt model is unique.

Proo¥r. First take the maximal ¢ € Q such that Kx + cf*o is lc. Put B :=
cf*o. Next we consider a minimal log terminal modification g: Y — X of (X, B) (if
Kx+Bisdlt, we put Y = X). Thus we can write ¢*(Kx+B) = Ky +C+By =0,
where C' is reduced and nonempty, | By | = 0 and Supp(C + By) is contained in
the fiber over 0. Run (Ky + C + (1 + €)By )-MMP over Z:

Y —
/ \
(7.1) X X

If By # 0, then B2 < 0 and we can contract a component of By. At the end
we get the situation when By = 0. Taking F := g(C) we see the first part of the
proposition. The second part follows by 4.3.2 and the fact that all contractions
Y — X are positive with respect to K + C.

Finally, assume that (X/Z 3 o) is exceptional. Then by Remark 7.2.2, there is
exactly one nonklt complement Kx + B (where B = cf*0). Clearly, C is irreducible
in this case. Contractions g and g are crepant with respect to Ky + C + By. By
Proposition 1.1.6 Kw+F is plt. Assume that there are two dlt models (X/Z > o, F)
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and (X /Z 3 0, F). Consider the diagram
mln

where h: Xmin — X is the minimal resol_utio_n_ and h: Xpnin — X is a composition
of contractions of —1-curves. Let K5 + F' + D be a Q-complement and

K mm+me+Dmm—h (K +F+I—))

the crepant pull back, where Fy,;, is the proper transform of F and D, is a
boundary. Clearly,

-1= a( mmame + Dmm) = a( min>? b (me + Dmm))
for any irreducible component F:. of Fp,. Hence Kx + h. (Fmin + Dmin) is a
nonklt Q-complement, so h.(Fnin + Dmin) = B and o(F*',B) = —1. Similarly, we

get a(ﬁ‘_’j,B) —1. By exceptionality, F and F' are irreducible and F ~ F' (as

discrete valuations of X(X)). Then X --»+ X' is an isomorphism in codimension
one, hence it is an isomorphism. O

REMARK 7.2.4. Let f: (X,F) — Z 3 o be a dlt model of an elliptic fibration
and K+ + F + B a Q-complement. As in Remark 7.2.2 we have SuppB C F, hence
B=0.

COROLLARY 7.2.5. Under notation of 7.2.3 the following are equivalent:
(i) (X/Z 5 o) is exceptional;

(ii) (X/Z 3 o, F) is exceptional;

(iii) K + F is pit.

PROOF. The implication (ii)=(iii) is obvious (because F is reduced, see
2.2.6). If K + F is plt, then by Remark 7.2.4 Ky-f-F is the only nonklt comple-
ment and F is the only divisor with a(F,F) = —1. This shows (iii)==(ii). (i) =
(ii) follows by 7.2.3.

Let us prove the implication (ii) == (i). Assume that (X/Z 3 o) is nonex-
ceptional. By Remark 7.2.2 there are two different divisors E;, E, such that
a(Ey, B) = a(E2,B) = —1. Thenin (7.1) we have a(E;,C+By) = a(E2,C+By) =
—1. Since Ky + C + By = 0, a(Ey,F) = a(E;,F) = -1, i.e,, (X/Z 5 o,F) is
nonexceptional. O

Similar to Theorem 6.1.6 we have the following

PROPOSITION 7.2.6. Let f: X — Z 3 o be dit model of an elliptic fibration
and F :=f (o) Then one of the following holds:

red *
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Ell-A,: p.(F) =1, X is smooth and F is either
Ell: a smooth elliptic curve, or
Zn: a wheel of smooth rational curves;
En, n > 5: F is a chain of smooth rational curves, and it is as in Lemma 6.1.9
and Fig. 6.6 (here n — 3 is the number of components of F);
Exc: K% + F is plt (therefore it is exceptional), then Diff#(0) = Yoo (1 -
1/m;) where for (m, ..., m,) there are possibilities as in 4.1.12:
54: (25 27 2a 2)7
Eg: (3,3,3);
Eq: (2,4,4);
Es: (2,3,6).

PRrooOF. Follows by 6.1.7 and 6.1.9. O

COROLLARY 7.2.7. Notation as in Proposition 7.2.6. Then the index ofK—f—!—F
is equal to 1, 2, 3, 4, or 6, in cases A, (and Ell), D, (n > 4), Eg, E7 and Eg,
respectively.

SKETCH OF PROOF. Applying Zariski’s lemma on the minimal resolution we
get F ~4 0. Let v be the index of F), i.e., the smallest positive integer such that
rF ~ 0. By taking the corresponding cyclic cover (cf. 1.3)

r—1
X' := Spec (@ (’)Y(—ﬁ?_)) - X
i=0

we obtain an elliptic fibration f': X' — Z' 5 o’ such that F’ is linearly trivial and
log canonical. Since X is smooth at singular points of F', we have that Kx: + F'
is dIt (see Theorem 2.1.3 or [Sz]). Again by Theorem 2.1.3 X' is smooth along F”
(because F’ is Cartier). Hence the elliptic fibration f': X’ — Z’ 5 o’ must be of
type Ell or Ax. By the canonical bundle formula, Kx: + F’ ~ 0 (see e.g. [BPV,
Ch. V, §12]). Therefore, m(K~ + F') ~ 0 for some m. Again let m be the index of
K+ + F. Now we consider the log canonical cover (see 1.3)

m~—1
X" := Spec (@ Ox(—iKx — zf)) - X
i=0

As above, Kx + F" is dlt and the elliptic fibration f": X" - Z" 30" is of type
Ell or Ag. _

If f" is of type Ay, then the group Gal(X"/X) acts on F” so that the stabilazer
of every singular point is trivial. If m > 1, then the only possibility is m = 2 and
f is of type 1~)n, n > 5.

Assume that f” is of type Ell. Note that Gal(X"”/X) contains no subgroups G
acting freely on F"’ (otherwise the quotient X”"/G — Z" /G is again of type Ell). In .
particular, Gal(X"”/X) C Aut(F") and this group contains no translations of the
elliptic curve F". It is well known (see e.g., [Ha]) that, in this situation, the order
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of Gal(X"/X) can be 2, 3, 4 or 6. Moreover, it is easy to see that the ramification
indices are such as in D4, Es, E7, or Es of 4.1.12. O

COROLLARY 7.2.8. Notation as in Proposition 7.2.6. Assume that f is excep-
tional and not of type Ell. Then f is a quotient of a smooth elliptic fibration of type
Ell by a cyclic group of order 2, 3, 4, 6 in cases D4, Eg, E7, and Eg, respectively.

COROLLARY 7.2.9. Let f: X — Z 3 o be a minimal elliptic fibration. Then
there exists a reqular complement of Kx.

For convenience we recall Kodaira’s classification of singular elliptic fibers and
give a new proof of it using birational techniques (cf. e.g. [BPV, Ch. V, §7]).

THEOREM 7.2.10. Let f: X — Z 3 o be a minimal elliptic fibration (X is
smooth) and F = (f*0)red, 0 € Z the special fiber. Then there is one of the
following possibilities for F' (in the graphs all vertices correspond to —2-curves
which are components of F):

I: a smooth elliptic curve (b=0);
a rational curve with one node (b =1);
a wheel of smooth rational curves (b > 2);
mIp: multiple Iy;
II: a rational curve with a stmple cusp;
III: F = F\ + F5 is a pair of smooth rational, tangent each other curves;
IV: F = Fy + F» + F3 is a union of three smooth rational curves passing
through one point;
I:

O O O

O—_v—o (forb—O)O O — 0

(®)
O O O

II*:

O—O0 —— 00— 00— 0 —0—20

O
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IIT*:

O—0—0O0—0—0—0—20

O
IV*:

O — 0 — 0 —0—20

O

O

The proof is very similar to that of Theorem 6.1.6.

PROOF. We are > going to apply Proposition 7.2.6. So we consider a dlt model
f: X - Z>0and h: X —» X the minimal resolution of singularities of X. Then
we have the following diagram:

\ /

where h: X — X is a sequence of contractions of —1-curves. If P.(C) = 1, then
X = X and C is a smooth elliptic curve or a wheel of smooth rational curves.
Contracting, if necessary, —1-curves we obtain case ,,I. Further, we assume that
Pa(C) = 0. Then X is singular, so X # X. Consider the crepant pull back

h*(Kx+C)=Kz+C+B,
where C is the proper transform of C, h.B = 0, and B > 0. Since Ky + C, it is
easy to see that [gJ = 0. It is clear also that the set Supp(C + ﬁ) coincides with

the fiber over o. By construction, SuppE contains no —1-curves.

First we consider the case when SuppC~' also contains no —1-curves. Then
X =2Xis exactly the minimal resolution of X. By 7.2.2 singular points of X are
Du Val. Cases D, (n > 5), Dy, Eg, E, Eg of Proposition 7.2.6 gives cases I} (with
b>1), If, IV*, IIT*, and II*, respectively. For example, if C is irreducible and
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-2

( Amg—l } ﬁ ( Amg—l )

Am1—1

FIGURE 7.1

there are exactly three singular points of X, then similar to 6.1 the graph of the

minimal resolution A: X — X must be as in Fig. 7.1.
By 4.1.12 we have the following possibilities for (m;,m2, m3):

1276 : (my,m2,m3) = (3,3,3) = caseIV*,
E;: (my,mge,m3) =(2,4,4) = case III*,
Eg : (my,ma,m3) =(2,3,6) =— case IT*.

Now, we consider the case when Suppé’ contains a —1-curve. Since h: X — X is
a minimal resolution, all —1-curves are contained in C, the proper transform of C.

Using the negative semidefiniteness for the fiber F' C X over o one can show that
the dual graph of F' cannot contain proper subgraphs of the form

-1 -1

and -2 -1 -2
O — O — O
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-1
( <z, ) O ( ¢z, )

C? /L,

FIGURE 7.2

Suppose that C is irreducible. Then K+ + C is plt and C is the only a —1-curve.
Thus in the case D4 we obtain the dual graph for a fiber of X — Z as below

-2

O

-2 -1 -2

By the above this is impossible. In other cases we have the dual graphs as in
Fig. 7.2. For (my,ms,m3) = (3,3,3), (2,4,4) and (2, 3,6) we obtain cases IV, II]
and II, respectively. Similarly Case 5n, n > 5 of Proposition 7.2.6 gives Case I;.

Non-simply connected fibers are only of type I, so only they can be multiple.
This proves the theorem. O

The following table shows correspondence between fibers of minimal smooth elliptic
fibrations and their dlt models:
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Y Ell ;{n, n 2 1 .54 ﬁna n Z 5 Eﬁ E7 E’g
X=X mdo | mIn, n > 2 I \1;_, Iv* | III* | IT*
X#X — mlp, b<n—1|—- |[Ix,b<n-5|IV |III |II
compl(X, F) || 1 1 2 |2 3 4 6

THEOREM 7.2.11 ([Sh3], cf. Theorem 6.0.6). Let f: X — Z 3 o be a contrac-
tion from a normal surface X onto a smooth curve Z. Let D = Y.d;D; be a
boundary on X. Assume that Kx + D is lc and —(Kx + D) is f-nef. Then there
exists a reqular complement of Kx +D. This complement Kx + D% can be taken so
that a(E, D) = —1 implies a(E,D%) = —1 for any divisor E of X(X). Moreover,
if there are no 1, or 2-complements, then (X/Z > o, D) is exceptional.

PROOF. By Corollaries 7.0.10 and 7.2.9 we may assume that K x + D = 0 over
Z and a general fiber of f is rational. First, as in the proof of Theorem 6.0.6,
we replace the boundary D with D + af*o so that Kx + D + af*o is maximally
lc. Replacing X with its log terminal modification, we may assume that X is
smooth and the reduced part C' := | D] of the boundary is nonempty. Next we
blow up a sufficiently general point on C := |D]. We get a new model such that
some component E of FF = f~1(0) is —1-curve and it is not contained in SuppD.
Moreover, EN | D] is a point which is nonsingular for SuppD. Let C; C |D] be a
(unique) component passing through E N SuppD. Then the curve SuppF \ E can
be contracted to a point, say Q:

f: XLy —-2Z

The central fiber g(E) of Y — Z is irreducible. Since Kx + D = 0/Y, the point
Q €Y islc. Apply Theorem 6.0.6 to the birational contraction g: X — Y. We get
a regular n-complement Kx + D% in a neighborhood of g71(Q) = Supp(F — E).
We claim that this complement extends to a complement in a neighborhood of the
whole fiber F'. We need to check only that nD* ~ —nKx in a neighborhood of F.
But in our situation the numerical equivalence over Z coincides with linear one.
Therefore the last is equivalent to DT = —Kx. Obviously, both sides have the
same intersection numbers with all components of F' different from E. For E we
have 1 = ~Kx - E, E- Dt = E-C; = 1 (because the coefficients of C; in D and
Dt are equal to 1). This proves the theorem. O



