Chapter 2

Preliminaries

§2.1. Two lemmas on Riccati’s differential equations

First of all, we give two lemmas on ordinary differential equations of Riccati’s

type. These two lemmas are due to L. Hérmander [Hol].

Lemma 2.1. Let z = 2(t) be a solution in [0,T] of the Riccati’s differential

equation:
d
= = ao(t)2? + a1()z + as(t), (2.1.1)
where a;(t) (7 = 0,1, 2) are continuous, ag(t) > 0, and T > 0 is a given real number.
Let ‘
T T
K =/ laz(t)| dt - exp (/ |a1(t)|dt) . (2.1.2)
0 0
If
2(0) > K, (2.1.3)
then it follows that
T T
/ ao(t)dt - exp (—/ lai(t)] dt) < (2(0) = K)7t. (2.1.4)
0 0
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Proof. Let us first assume that a,(¢t) =0 (0 <t < T), and introduce

z(t) = /Ot |laz(s)lds.
Obviously,
22(0) =0, 2z(T)=K and 0<2(t) <K, Vte]|0,T].
Let z; be the solution of the Cauchy problem
2 = ao(t)(z1 — K)?,
t=0:2 = 2(0).

Then ;
(z(0) —K)" ' —(z1(t) - K) ' = / ao(s)ds

0
on the existence domain of 2; = z;(t). Moreover, z;(t) is an increasing function of

t. If 23 = 21(t) exists in [0, 7], then

/t ag(s)ds < (2(0) — K)~1. (2.1.4a)
0

Thus, in order to get (2.1.4a), it suffices to prove that z; = z;(t) exists in the whole
interval [0,T]. Since on the existence domain of z; = 21 (t)

d(Zl(t) - Zg(t))

7 = ao(t)(21(t) — K)? — Jaz(t)] < ao(t)(21(t) — 22(1))? + aa(2),

and 2;(t) — 22(t) = z(0) when t = 0, we obtain
z1(t) — 22(t) < z(t) in [0,T)

as long as z;(t) exists. Therefore z;(t) can not become infinite in [0,T], namely,
z1 = 21(t) exists in [0, T]. This proves (2.1.4a).

For the general case a;(t) # 0, we just make the following transformation

2(t) = Z(t) exp (/O-t al(s)ds) .

This reduces (2.1.1) to

%}(}) = ao(t) exp (/Ot al(s)ds) Z(t)? + aa(t) exp (— /Ot a1(8)ds) :
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We apply the special case of the lemma already proved, and then get immediately
the desired (2.1.4). Q.E.D.

For a fixed positive number T', consider equation (2.1.1). We have

Lemma 2.2. Suppose that a;(t) (7 = 0,1,2) are continuous functions in [0,T].

Set
ag (t) = max {ao(t), 0}, (2.1.5)
and define K by (2.1.2). If
z0 2 0, (2.1.6)
T T
/ ag (t)dt - exp (/ lay(t)] dt) < (20 + K)™* (2.1.7)
0 0
and
T T
/ lao(t)| dt - exp (/ |a1(t)|dt> < K1, (2.1.8)
0 0

where zp is a given real number. Then (2.1.1) has a unique solution z = z(t) in

[0,T] with 2(0) = zp, and the following estimates hold

T

: T
(«T)' > (zo+K)"1—/ o (£)dt - exp (/ |a1(t)|dt>, if 2(T) > 0, (2.1.9)
0 0
T T
(D) > K —/ lao(£)] dt - exp (/ |a1(t)|dt), if 2(T) < 0. (2.1.10)
0 0

O

Proof. We first prove this lemma in the special case a;(t) =0 (0 <t <T).
Let zo = 23(t) be still the integral of |az] with 22(0) = 0 and 22(T) = K and

21 = z1(t) be the solution of the following initial value problem
2 = of (t)(21 + K)?,
t=20: 21 = 2.

Then .
(21(t) + K) ™' = (20 + K)7! = / af (s)ds.
| 0
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By (2.1.7), 21 = 2z1(t) exists in [0,7] and z;(¢) is an increasing function of ¢ in
[0, 7).

We now assume that z(t) exists in {0,7], and prove that (2.1.9)-(2.1.10) hold
in this case.

Since

d(z1 () + 2 (1) _

= af (O)(wi(8) + K)* + laz(®)] 2 af ((a1(8) + K)* + aal),

and z; + 22 = 29 at t = 0, we get
z2(t) < z1(t) + 22(t) < z1(t) + K in [0,T].

Hence

T
2(T) 1> (z1(T) + K)™! = (20 + K)™! —/ af (t)dt
0

if z(T) > 0, which proves (2.1.9).

On the other hand, if z has a zero in [0, T'], then we can apply (2.1.9) to —z, with
2o replaced by 0 and to an interval starting at the zero of z. This gives (2.1.10).

If we do not assume a priori that z(t) exists in [0, 7], it follows that (2.1.9)-
(2.1.10) hold with T replaced by any smaller ¢ such that a solution exists in [0, ¢].
Hence we have a fixed upper bound in any such interval. It follows at once that
a solution does exist in [0, T}, for the considered set of ¢ values is both open and
closed.

Finally, when a;(t) # 0, we can reduce to the case already studied just as in

the proof of Lemma 2.1. The proof is completed. Q.E.D.

§2.2. John’s formula on decomposition of waves and
generalized Hormander’s lemma

Suppose that on the domain under consideration, system (1.1) is hyperbolic
and (1.4)-(1.5) hold.
Let
vi=lLuwu (F=1,---,n), (2.2.1)
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wi =L(wu, (i=1,---,n) (2.2.2)
and |
bi(w) = L;(w)B(w) (i=1,---,n) (2.2.3)
where
L) = (), ln(w)) (2.2.4)

denotes the ¢-th left eigenvector.
By (1.4), it follows from (2.2.1)-(2.2.3) that

U= zn:vk'rk(u), | (2.2.5)

k=1
Uy = iwkrk(u) (2.‘2.6)

k=1

and .

B(u) = Z b (u)rk(u). (2.2.7)

k=1

Let
d 0 0

be the directional derivative along the i-th characteristic. Similar to [LZK1], we
have (see [K3])

% = Z /Bz'jk ('I.L) VjWg + Z Vijk (u) vjbk(u) + b,(u) ('I, = 1, H -,n) , (229)

Jrk=1 jrk=1
where
Bijk (w) = (Ak (w) — A (u)) L (w) V7 (u) 7k () (2.2.10)
and
vise (w) = —L(w)Vr; (w)ry (u). (2.2.11)

Hence, we have

Biji (u) =0, V. (2.2.12)
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It follows from (2.2.9) that

vi(t,x) = v;(0,£(0;t,z)) +/0 I:Z Bijk (w)vjwi+

J,k=1

§ Vijk(u)vjbk(u) + bl(u):l (Ta £i(T; t7 l‘))d’l‘ (Z = la e ,TL),
J.k=1
(2.2.13)

where v;, w;, b;(u), Bijx(u) and v;;k(u) are defined by (2.2.1)-(2.2.3) and (2.2.10)-
(2.2.11) respectively, & = &;(7;t, ) stands for the i-th characteristic passing through

(t,z) and satisfies

Noting (2.2.9) and (2.2.6), we have

dv; (dz — X (u)dt)] = %‘s + ﬂ%%&l] dt Adz
= (L% 4 (VA () ux)vi] dt A dz

n

= Z Bijk (u) vywg + Z vijk (u) v;bx (u)

jik=1 k=1

+ bi(u) + Zn: (Vi (w) 7i (u)) 'Uz'wlc:I dt Adz  (2.2.15)

k=1

= Z Bijk (u) V; Wk

Jk=1

+ i vijk (u) v;be(u) + bi(u)] dt A dz,

jok=1
where
Bijk (w) = Bugk (u) + VX (w) i (u) 65 (2.2.16)
It follows from (2.2.12) that

Biji (W) =0, Vj#i (2.2.17)

while _
Biss (w) = VA, (u) 7 (u) (2.2.18)
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which identically vanishes only in the case that A; (u) is linearly degenerate in the

sense of P.D.Lax. ,
On the other hand, similar to [Jo] or [LZK1], we have (see [K3])

c‘:? = > vk @ wyw + (bi(w)e  (G=1,---,n), (2.2:19)
’ gik=1 |
where
Vigh (w) = % {0 (w) = Ak () (w) Vg, (w) 1y (w) — VA (w) 75 () 8 + (G1K)},

(2.2.20)
in which (j]k) stands for all terms obtained by changing j and k in the previous
terms.

It follows from (2.2.20) that
Yijj (W) =0, Vj#i (,5=1,---,n) (2.2.21)

and
visi (W) = =V (w)r; (w) (G=1,---,n). (2.2.22)

When the i-th characteristic A; (u) is linearly degenerate in the sense of P.D.Lax,

we have

Similar to (2.2.13), by (2.2.19) we obtain
wi(t,r) = w;(0,&(0;t,z))+

/0 [Z Vigr(w)wjwg + (bz(u))m} (1, &(75t,2))dr (i =1,---,n),

7.k=1
(2.2.24)

where w;, V5%, bi(u) and € = &;(7;t,z) are defined by (2.2.2), (2.2.20), (2.2.3) and
(2.2.14) respectively.
Similar to (2.2.15), noting (2.2.19) and (2.2.6), we have

d[w; (dz — A; (w)dt)] = [ Z Fijk (u) wjwg + (b,(u))x} dt Adz, (2.2.25)

J,k=1
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where
Yok (0) = vigx (W) + 3 [VA; () 7k (u) 635 + (41))] (2.2.26)
= —;— (A; (w) = Ak (w) i (u) [Vre () 75 (u) = Vrj (u) 7 (w)],
then we get
¥ij; (u) =0, Vi,j. (2.2.27)
Moreover, it follows from (2.2.15) and (2.2.25) that
Ui o >‘ 7 .
by Ol J;lﬂwk () vy +J‘k;1vmk (Wosbi() +bi(w) G =1,,m)
(2.2.28)
and
65“: + ° (Az(;x) = 1;1 Figk (w)wywg + (bi(u))z (=1, ,n) . (2.2.29)

Following L.Hormander [Hol], we get

Lemma 2.3. Suppose that u = u(¢,z) is a C! solution to system (1.1), r; and
To are two C! arcs which are never tangent to the i-th characteristic direction, and
D is the domain bounded by 71, 72 and two ¢-th characteristic curves L;” and L;‘",

see Figure 1. Then we have

/ |’U1' (d.’l? — Ai (u) dt)l S / I'Ui (d.’L‘ - )\1' (u) dt)| +

/ /p E;l sk () o) didat (2.2.30)
// vijk(u)v;bg(u) + bi(u)| dtdx
D 15 k=1
and
/ |lw; (dz — X, (u)dt)] < / |lw; (dz — A; (u) dt)| +
h (2.2.31)

S| 35 s s+

7,k=1
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where v;, Biji(u), vijr(u), bi(u), w; and #;5x(u) are defined. by (2.2.1), (2.2.16),
(2.2.11), (2.2.3), (2.2.2) and (2.2.26) respectively. DO

Proof. By Stokes’ formula and noting that (dz — A;(u)dt) has a fixed sign on 7
and 7o, (2.2.30) easily follows from (2.2.15). The proof of (2.2.31) is similar (see
[Hol)). Q.E.D.

Remark 2.1. Suppose that A(u) and B(u) are Lipschitz continuous, system (1.1)
is hyperbolic on the domain under consideration, and (1.4)-(1.5) hold. Suppose
furthermore that u = wu(t,z) be a Lipschitz solution to (1.1). Employing the
difference technique, we can easily show that (2.2.13), (2.2.30)-(2.2.31) are still
valid, and (2.2.24) holds a.e. in Rt x R, since the Rademacher theorem implies
that any locally Lipschitz continuous function f: R™ — R™ is differentiable almost

everywhere (see [Br]). O

§2.3. Equivalent definition of classical solutions

By means of the argument mentioned above, now we can give an equivalent

definition of classical solutions to system (1.1) by the following

Proposition 2.1. Let u = u(t,z) be a C! function with small L> norm. Suppose
that A(u), B(u) € C' and system (1.1) is hyperbolic in a neighbourhood of u = 0.
Then u = u(t,z) satisfies (1.1) if and only if v; = v;(t,z) (¢ = 1,---,n) satisfy
(2.2.9), where v; = v;(t,x) are defined by (2.2.1). O

Proof. The necessity is easily obtained from the preceding argument (see [K3]).
Moreover, we do not require the smallness of L* norm of u = u(t, x).
It remains to prove the sufficiency.

Noting (2.2.1) and (1.2), we have

= L(u)d + o (VIT (W)

(2.3.1)
= 5w (u + A)uz) + uTVIT (@) (ue + Ai(w)u)  (E=1,--,n).
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On the other hand, by (1.4) we have
Li(u)Vr(u) = —T'JT(’U,)VI;-T(U). (2.3.2)

Thus (2.2.9) becomes

D= N (aw) = A @)rT (w)VIT (w)ry(u)vwe+

Sk=1 (2.3.3)
Z rf(u)Vl?(u)rk(u)vjbk(u) +bi(u) (e=1,---,n).
1,k=1
By (1.2), (2.2.5)-(2.2.7) and (2.2.3), it follows from (2.3.3) that
ZU; = uwTVIT (u) Ni(uw)uz — A(u)ug + B(uw)) + Li(w)B(w) (G=1,---,n). (2.3.4)

The combination of (2.3.1) and (2.3.4) leads to
(1;(u) + uTVl;-F(u)) (us + A(u)uy, — B(u)) =0 (i=1,---,n). (2.3.5)

By (1.3) and the smallness of L* norm of u = u(t,z), from (2.3.5) we get (1.1)
immediately. Thus the proof is finished. Q.E.D.

Proposition 2.2. Suppose that A(u), B(u) € C!, system (1.1) is hyperbolic,
u = u(t,z) is a C! function and satisfies (1.1), then w = (w; (¢, ), -, wn(t,z))T is

a broad solution! to system (2.2.19), where w; = w;(t, z) are defined by (2.2.2). O

Proof. Similar to the deriving process of (2.2.19) (see [K3]), we use the difference
technique and then obtain (2.2.24) easily. (2.2.24) implies that w = w(¢,z) is a
broad solution to system (2.2.19). The proof is completed. Q.E.D.

Remark 2.2. Throughout this paper, we only consider the classical solution to
system (1.1), namely, C?! solution to (1.1). In general, (2.2.19) no longer holds. For-
tunately, by means of the difference technique, we can derive the integral equation
(2.2.24) satisfied by w;. In fact, we only use the integral equation (2.2.24) instead
of the differential equation (2.2.19) in our proofs. We bear in our mind that (2.2.19)
is satisfied formally by w; and (2.2.24) holds actually when we mention equation
(2.2.19) in the sequel. O

1See [Br] for the definition of the broad solution.



