
Hence, to obtain the required formula, it is sufficient to show

$\iota_{d}\check{Z}(U_{+})^{3d}=(-1)^{d}+$ ($terms$ of degree $>0$), (7.9)

$\iota_{d}\check{Z}(\mathcal{L}_{D})=D+$ ($terms$ of degree $>d$). (7.10)

For the proof of (7.9), see [27]. Further we obtain (7.10) by Lemma 7.12 below.
$\square $

Lemma 7.12.

$\check{Z}(\mathcal{L}_{D})=$ $\Vert\Vert\Vert^{\prime}\Vert^{l\backslash }\Vert\Vert$ $+$ ($terms$ of $\#$ {trivalent vertices} $\geq 2$ )

Pmof. We obtain the formula by long calculation along the definition of $\hat{Z}$ . For

example, for the dashed $\theta$ curve $D$ , we show rough pictures of the calculation

below. Recall that $\mathcal{L}_{D}$ is a linear sum of links with 3 components in this case
(with $3d$ components in general).

$\text{ト_{}-------}^{\prime}’\backslash \prime^{\prime}\backslash _{\sim}---’-----\cdot\backslash ’\backslash ’\backslash \leftrightarrow$ $\dot{\text{ト}}-----\grave{\{}\backslash _{\backslash _{\backslash -\cdot\prime}}i\prime^{\prime^{\prime-\sim_{\backslash }}}\backslash $ $6^{\iota}\vdash_{i}\backslash ’\backslash \prime^{\prime}----------:\backslash -----\cdot’-----.’\backslash \backslash $

$D$
$\hat{Z}(\mathcal{L}_{D})\sim\check{Z}(\mathcal{L}_{D})$

For the detailed proof, see [22]. $\square $

8 Quantum invariants and the universal pertur-

bative invariant

8.1 Quantum $SO(3)$ invariant constructed from quantum

invariants of framed links

Let $V_{m}$ be the $m$ dimensional irreducible representation of $sl_{2}$ and $M$ the 3-

manifold obtained from $S^{3}$ by Dehn surgery along a framed link $L$ .

Theorem 8.1 ([12]). Let $r$ be an odd integer $\geq 3$ , and put $q=\exp(2\pi\sqrt{-1}/r)$ .

Then
$\ovalbox{\tt\small REJECT}(\sum[m]Q^{sl_{2};V_{m}}(U_{+}))^{\sigma+}(L)(\sum^{\sum[m]Q^{sl_{2};V_{m}}}[m]Q^{sl_{2};V_{m}}(U_{-}))^{\sigma-}\in \mathbb{C}$
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is invariant under Kirby moves I and II. Hence it becomes a topological invariant

of $M$ ; we denote it by $\tau_{r}^{SO(3)}(M)$ . Here the summations in the above formula

run over all odd integers $m$ with 1 $\leq m\leq r-2,$ $Q^{\epsilon l_{2};V_{m}}$ is the quantum

$(sl_{2}, V_{m})$ invariant, $U_{\pm}$ are the unknots with $framing\pm 1$ and $[m]$ is the quantum

dimension of the representation $V_{m}$ , that is, $[m]=(q^{m/2}-q^{-m/2})/(q^{1/2}-q^{-1/2})$ .

Further $\sigma\pm are$ the numbers of positive and negative eigenvalues of the linking

matrix of $L$ .

Further we have the following theorem.

Theorem 8.2. Let $r$ be an odd prime and $M$ a rational homology 3-sphere.

(1) ([29])
$\tau_{r}^{SO(3)}(M)\in \mathbb{Z}[q]$ .

(2) ([31]) There exists the unique power series $\tau^{SO(3)}(M)\in \mathbb{Q}[[h]]$ such that

(coefficient of $s^{d}$ in $\tau^{SO(3)}(M)|_{h=\log(1+\epsilon)}$ )

$\equiv(\frac{|H_{1}(M;\mathbb{Z})|}{r})$ (coefficient of $s^{d}$ in $\tau_{r}^{SO(3)}(M)|_{q=\epsilon+1}$ ),

modulo $r$ for any odd prime integer $r$ and any $d$ satisfying $0\leq d\leq(r-3)/2$ .

Here $(_{\overline{r}})$ denotes the Legendre symbol.

As for (1) of the theorem, it is non-trivial whether $\tau_{r}^{SO(3)}(M)$ belongs

to $\mathbb{Z}[q]$ after dividing it by normalization factors, though it is easy to show
$\sum[m]Q^{\epsilon l_{2};V_{m}}(L)$ belongs to $\mathbb{Z}[q]$ .

As for (2) of the theorem, we consider the correspondences $q=e^{h}$ and

$q-1=s$ . In the left hand side of the formula, we expand it as a power series

of an indeterminate $s$ . On the other hand, in the right hand side, since $q$ is an

rth root of unity, low coefficients in the expansion in $s=q-1$ in $\mathbb{Z}[q]$ are well

defined modulo $r$ .
As for $PSU(N),$ $\tau_{r}^{PSU(N)}(M)$ is defined by Kohno and Takata [18]. Fur-

ther Takata and Yokota [37] showed $\tau_{r}^{PSU(N)}(M)\in \mathbb{Z}[q]$ ; it is an extension of

Theorem 8.2 (1). We expect an extension of (2) as
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Conjecture 8.3. For $\tau_{r}^{PSU(N)}(M)$ , there exists the unique power series

$\tau^{PSU(N)}(M)\in \mathbb{Q}[[h]]$

which satisfies the same properties as in Theorem 8.2 (2).

We call $\tau^{PSU(N)}(M)$ the perturbative invariant of $M$ . We expect that it

should recover from the universal perturbative invariant $\hat{\Omega}(M)$ as

Conjecture 8.4 ([27]). For any rational homoIogy 3-sphere $M$ , the following

equality holds:

$\tau^{PSU(N)}(M)=\frac{1}{|H_{1}(M;\mathbb{Z})|^{N(N-1)/2}}\hat{W}_{\epsilon l_{N}}(\hat{\Omega}(M))$ .

At this point in time, we have

Theorem 8.5 ([32]). The above conjecture is true for $N=2$ .

We have the following corollary, which was directly proved in [21].

Corollary 8.6. Put $\tau^{SO(3)}(M)=\sum\lambda_{n}h^{n}$ . Then each $\lambda_{n}$ is a finite type in-

variant of degree $3n$ . Further its weight system is equal to $W_{\epsilon l_{2}}$ .

Proof. The proof is obtained in the same way as in the proof of Theorem 5.2. $\square $

By the above corollary, we see that there exist many finite type invariants,

though we had known only a few examples of finite type invariants including

the Casson invariant, before getting the corollary.

8.2 Expression of $j_{n}$ by a map $\alpha$

In this section, we consider a map $\alpha$ which expands $j_{n}$ in some sense. Define

the map $\alpha$ : $\mathcal{A}(S^{1})\rightarrow \mathcal{A}(S^{1})$ by

$\alpha=$ (replace one $O$ by $:\backslash \prime^{\prime}-’’|$ )$\circ\Delta-\backslash -.\backslash :|\backslash ’\prime^{\prime^{-\cdot\backslash }}\backslash _{-}.\prime id$ , (8.1)

where the second part means the disjoint union of a dashed loop. This is a

well-defined map of $\mathcal{A}(S^{1})$ to itself. For example, we show some simple cases
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below.

$O$ 6 $O_{\backslash ..a^{\prime}}^{-\cdot\backslash }:|\backslash $

’
$-’\backslash ’\prime^{\prime^{-\cdot\backslash }}’\backslash $ $O$ $=0$

$o^{\prime}’’$

’

A $0$

$\prime\prime\prime\prime$, $’\prime\prime\prime\prime$ ”, $j$

$\prime\prime’\prime j$

$\prime\prime\prime\prime$, $\prime\prime\prime\prime\prime\prime$

$o^{\prime\prime}$ $\mapsto\alpha O_{-\cdot\prime}^{\prime\prime}:\backslash ’|\prime^{\prime^{-\cdot\backslash }}\backslash \backslash $

$+$
$O_{-\cdot\prime}^{-\cdot\backslash }:\backslash ’|\prime^{\prime}\backslash \prime\prime$

$+$
$O_{--\prime}^{\backslash }:\backslash ’|\prime^{\prime}\backslash ’\backslash $

$+$
$O_{--\prime}^{*}:\backslash ’|\prime^{\prime\backslash }\backslash \prime\prime\backslash $

$-:1\backslash ’\prime^{\prime^{-\cdot\backslash }}\backslash _{-\cdot\prime}\backslash $

$o^{\prime\prime}$

$’’’\prime\prime\prime\prime\prime\prime$ $\prime\prime\prime\prime\prime\prime\prime\prime\prime$ $ j^{\prime\prime},’,\prime\prime$ $’\cdot’\prime\prime\prime\prime\prime\prime$ $\prime\prime j^{\prime\prime},$
,

$j^{\prime\prime},\prime\prime,$

’

$o^{\prime\prime}$

’

fi
$O_{-}^{\prime\prime}’|\backslash ’\prime^{\prime}\backslash ’-\backslash \backslash $

$+$
$O_{--\prime}^{\prime^{\prime^{-\backslash }}\backslash }’|\backslash ’\backslash \prime\prime\prime$

$+$
$O_{-}^{\wedge}’’|\backslash ’\prime^{\prime\backslash }\backslash ’\prime\prime\prime\backslash $

$+$
$O^{\prime},’’|\backslash _{\backslash .\prime}l-\cdot\backslash \prime\prime\prime\backslash $ $+\cdots-:|\backslash ’\prime^{\prime^{-\cdot\backslash }}\backslash _{-}’\backslash 0^{\prime\prime}$

’

Note that, as in the above examples, the first term cancels with the last term.

Further a dashed loop with a trivalent vertex vanishes by the AS relation. Hence

we have a remarkable property of $\alpha$ that it decreases the number of vertices on

a solid circle at least by two. Therefore we have

Lemma 8.7. If the number of vertices on a solid circle of a chord diagram

$D\in \mathcal{A}(S^{1})$ is less than $2m$ , then $\alpha^{m}(D)=0$ .

If we want to calculate $\Omega(M)$ along its definition, we would compute the tree

$T_{m}$ . However it will be a hard calculation. To avoid it, we prepare the following

proposition.

Proposition 8.8. There exists a power series

$p(\alpha)=\sum_{i=1}^{\infty}c_{i}\alpha^{i}\in \mathbb{Q}[[\alpha]]$

such that each $c_{i}$ belongs to $\mathbb{Z}[1/2,1/3, \cdots , 1/(2i+1)]$ and

$W_{\epsilon l_{2}}(j_{1}(D_{m}))=W_{\epsilon 1_{2}}((\epsilon\circ p(\alpha))(D_{m}))$

$\bigwedge_{\prime,\prime}^{m}$

for anym $=0,1,$ $\cdots,$ $whereweputD_{m}=$ $0^{\prime}\prime\prime\cdots’$

’
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Remark 8.9. The coefficients of $\alpha^{i}$ are concretely determined as

$c_{1}=\frac{1}{4}$ $c_{2}=-\frac{1}{16\cdot 3}$ , $c_{3}=-\frac{1}{8\cdot 9\cdot 5}$ , $c_{4}=-\frac{1}{64\cdot 5\cdot 7}$ .

In general, we expect a better evaluation of denominators of $c_{i}$ as

$c_{i}\in \mathbb{Z}[1/2,1/3, \cdots 1/(2i-1)]$

than the condition in the proposition. As for precise values of $c_{i}$ , Thang Le

suggested that $c_{i}$ might be expressed by using the Bernoulli numbers.

Pmof of Proposition 8.8. For any power series $p(\alpha)=\sum_{i=1}^{\infty}c_{i}\alpha^{i}$ , by Lemma
8.7, we have

$p(\alpha)(D_{m})=p_{k}(\alpha)(D_{m})$ ,

for each $m\leq 2k$ , where we put $p_{k}(\alpha)=\sum_{i=1}^{k}c_{i}\alpha^{i}$ . Hence it is sufficient to show
the existence of an infinite series of scalars $c_{1},$ $c_{2},$ $c_{3},$ $\cdots$ satisfying

$W_{sl_{2}}(j_{1}(D_{m}))=W_{\epsilon l_{2}}((\epsilon\circ p_{k}(\alpha))(D_{m}))$ (8.2)

for each $k$ and for each $m\leq 2k$ . We show (8.2) by induction on $k$ as follows.
Suppose that (8.2) holds for $k-1,$ $i.e.$ , there exists a finite series $c_{1},$ $\cdots$ , $c_{k-1}$

satisfying

$W_{\epsilon l_{2}}(j_{1}(D_{m}))=W_{sl_{2}}((\epsilon op_{k-1}(\alpha))(D_{m}))$ , (8.3)

for each $m\leq 2k-2$ . Then, by Lemma 8.7, the required formula (8.2) holds for
$m\leq 2k-2$ , even if we put $c_{k}$ to be any value.

Further we show that (8.2) holds for $m=2k-1$ as follows; note that the

right hand side does not still depend on a choice of $c_{k}$ , as in the above case, by

Lemma 8.7. Put

$x=j_{1}(D_{m})-(\epsilon\circ p_{k-1}(\alpha))(D_{m})$ . (8.4)

Then $W_{sl_{2}}(x)$ belongs to $(sl_{2})^{\otimes m}$ ; recall that we define $W_{\epsilon l_{2}}(x)$ to be the image

of $1\in \mathbb{C}$ in $(sl_{2})^{\otimes m}$ by the linear map defined in Section 3. By interchanging
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two of $m$ dashed ends, we have

$11$ $\backslash ’\backslash ’’\backslash $

$\backslash \backslash ’\backslash 2$

$’.s_{\backslash }$

$\prime^{\prime}\backslash l--\iota\backslash $ ,
$\backslash \backslash $ $=$

$\vee’$,
, (8.5)

$:_{\backslash _{\backslash }--\prime^{\prime}}^{X^{1},}$ $:_{\backslash _{\backslash }--\prime}^{X^{1},}$, $j_{1}(D_{m-1})-\epsilon\circ p_{k-1}(\alpha)(D_{m-1})$

where the equality follows from the STU relation:

$ l-’\iota jj\prime\prime$

$\backslash ’\backslash ’’\backslash *$

$\backslash $:

$’\backslash \prime^{\prime\backslash }\backslash \backslash _{--\cdot\prime}D_{m^{1}}^{\backslash }’$. $’\backslash \backslash \prime^{\prime^{\prime A_{\backslash }}}\backslash \backslash _{\sim}D_{m^{1}}^{\backslash }t--\prime^{\prime}$

’

$STU=$

$:\acute{D}_{m-1_{i}^{1}}^{\backslash }’\backslash \backslash ’\backslash _{\sim}\lrcorner-\backslash -’’\backslash $

(8.6)

Since the right hand side in (8.5) vanishes, $W_{\epsilon l_{2}}(x)$ is invariant under the change

of two adjacent dashed ends. Hence it is invariant under any change of dashed

ends. Therefore $W_{\epsilon l_{2}}(x)$ belongs to the invariant space $((sl_{2})^{\otimes m})^{\mathfrak{S}_{m},\epsilon l_{2}}$ with

respect to the action of the symmetric group $\mathfrak{S}_{m}$ and the action of the tensor

product of $m$ copies of the adjoint action of $sl_{2}$ ; we have the invariance with

respect to the latter action, since $W_{sl_{2}}(x)$ is the image of $1\in \mathbb{C}$ by an inter-

twiner, where $\mathbb{C}$ is the trivial representation of $sl_{2}$ . The invariant space is one

dimensional if $m$ is even, and is the null vector space if $m$ is odd, by invariant

theory; for example, see [9]. Since $m$ is odd in this case, $W_{\epsilon l_{2}}(x)$ vanishes, be-

cause it belongs to the null vector space. Hence, by (8.4), we obtain (8.2) for

$m=2k-1$ , since we have $(p_{k-1}(\alpha))(D_{m})=(p_{k}(\alpha))(D_{m})$ by Lemma 8.7.

We show that (8.2) holds for $m=2k$ for a suitably chosen $c_{k}$ as follows.

We put $x$ as in (8.4) again, and repeat the same argument as above. In this

case $W_{\epsilon l_{2}}(x)$ belongs to one dimensional vector space, since $m$ is even. Further

$W_{sl_{2}}((\epsilon\circ\alpha^{k})(D_{m}))$ is non-zero in the space; in fact, we see below that it does

not vanish, when dashed ends are closed. Hence we put

$W_{\epsilon l_{2}}(x)=c_{k}W_{\epsilon l_{2}}((\epsilon\circ\alpha^{k})(D_{m}))$

for some scalar $c_{k}$ . Therefore we have

$W_{\epsilon l_{2}}(j_{1}(D_{m}))=W_{\epsilon l_{2}}((\epsilon\circ p_{k-1}(\alpha))(D_{m})+x)$

$=W_{\epsilon l_{2}}((\epsilon\circ(p_{k-1}(\alpha)+c_{k}\alpha^{k}))(D_{m}))$ .

Putting $p_{k}(\alpha)=p_{k-1}(\alpha)+c_{k}\alpha^{k}$ , we obtain (8.2) for $m=2k$ .
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We evaluate the factors of the denominator of $c_{k}$ by induction on $k$ , as
follows. Let $\Theta^{k}$ be the chord diagram consisting of a solid circle with $k$ isolated

dashed chords. Since $\Theta^{k}$ has $2k$ dashed chords on $S^{1}$ , we have

$W_{\epsilon l_{2}}(j_{1}(\Theta^{k}))=W_{sl_{2}}(\epsilon\circ p_{k}(\alpha)(\Theta^{k}))$ .

Hence we have

$c_{k}W_{\epsilon l_{2}}((\epsilon\circ\alpha^{k})(\Theta^{k}))=W_{\epsilon l_{2}}(j_{1}(\Theta^{k}))-\sum_{i=1}^{k-1}c_{i}W_{\epsilon l_{2}}((\epsilon\circ\alpha^{i})(\Theta^{k}))$ . (8.7)

By definition of $j_{1},$ $j_{1}(\Theta^{k})$ is $e$qual to the chord diagram obtained from the tree

$T_{2k}$ by closing $2k$ ends with $k$ isolated chords. Hence the first term in the right

hand side of (8.7) belongs to $\mathbb{Z}[1/2,1/3, \cdots 1/(2k-1)]$ . Further the second

terms belong to $\mathbb{Z}[1/2,1/3, \cdots , 1/(2k-3)]$ by the hypothesis of induction. On

the other hand, we calculate the left hand side as follows. $(\epsilon\circ\alpha^{k})(\Theta^{k})$ consists

of terms such that each of $k\alpha’ s$ decreases exactly two chord of $\Theta^{k}$ ; note that

the other terms vanish. Each $\alpha$ makes a dashed loop with two dashed segments.

$W_{\epsilon l_{2}}$ takes it to 4. Hence we have

$W_{\epsilon l_{2}}((\epsilon\circ\alpha)(\Theta^{k}))=4^{k}W_{\epsilon l_{2}}(j_{k}(\Theta^{k}))=4^{k}(2k+1)!!$ .

By (8.7), we obtain $c_{k}\in \mathbb{Z}[1/2,1/3, \cdots 1/(2k+1)]$ . $\square $

8.3 Expression of $\alpha$ by representations

In this section we consider the representation $a$ corresponding to the map $\alpha$ .

Define $a$ to be $V_{3}-3\cdot V_{1}\in R(sl_{2})$ , where $R(sl_{2})$ denotes the representation ring

of $sl_{2}$ with int $e$gral coefficients. We have a relation between $\alpha$ and $a$ as

Lemma 8.10. For any $D\in \mathcal{A}(S^{1})$ , we have

$W_{\epsilon l_{2}}(\epsilon\circ\alpha^{n}(D))=W_{\epsilon l_{2};a^{n}}(D)$ .

Pmof. There are the following correspondences:

replace one $O$ by $:|\prime^{\prime^{-\cdot\backslash }}\backslash \backslash _{-}’$

’

$\leftrightarrow$ substitute the adjoint representation,

73



taking a 2-parallel $\leftrightarrow taking$ a tensor of representation,

taking $\epsilon$ $\leftrightarrow substitute$ the trivial representation.

More precisely, we have

$W_{\epsilon l_{2}}$ ((replace one $O$ by $:\backslash \prime^{\prime^{-\cdot\backslash }}’\backslash |$ ) $(D)$ )$\backslash ..’=W_{sl_{2};V_{3}}(D)$ , (8.8)

$W_{\epsilon l_{2};R_{1},R_{2}}(\Delta(D))=W_{\epsilon l_{2};R_{1}\otimes R_{2}}(D)$ , (8.9)

$W_{\epsilon l_{2}}(\epsilon(D))=W_{\epsilon l_{2};V}.(D)$ . (8.10)

By (8.8) and (8.9), we have

$W_{\epsilon l_{2};R}(\alpha(D))=W_{\epsilon l_{2};R\otimes a}(D)$ (8.11)

by definition of $\alpha$ and $a$ . Applying (8.11) repeatedly to the initial condition

(8.10), we obtain the required formula. $\square $

Lemma 8.11. Suppose $r$ is an odd prime number. Then we have

$-2a^{(r-3)/2}(r)=\sum mV_{m}$ , (8.12)

$a^{(r-1)/2}(r)=0$ , (8.13)

where the sum in the first formula runs over all odd $m$ in $1\leq m\leq r-2$ . Here
$=$ denotes the equivalence relation in $R(sl_{2})$ generated by the following two
$(r)$

relations;

(elements divisible by $r$ in $R(sl_{2})$ ) $\sim 0$ ,

$V_{r}\sim V_{2r}\sim V_{3r}\sim\cdots\sim 0$ .

By this lemma, we cut off higher terms of $a$ modulo $r$ in a polynomial in $a$ ;

recall that we cut off higher terms of $\alpha$ in a power series of $\alpha$ by Lemma 8.7.
We give examples of Lemma 8.11 below. We have

$V_{m}\cdot a=V_{m}\otimes V_{3}-3V_{m}$

$=V_{m-2}+V_{m}+V_{m+2}-3V_{m}$
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$=V_{m-2}-2V_{m}+V_{m+2}$ ,

where the second equality is obtained by the decomposition formula of repre-

sentation for $sl_{2}$ . We pictorially denote the above equality by

$\frac{V_{m}}{1}$ . $a=\frac{V_{m-2}V_{m}V_{m+2}}{1-21}$ .

Here each number under a dot denotes the coefficient of the representation

corresponding to the dot. Note that this formula also holds for negative $m$ by

regarding $V_{-m}as-V_{m}$ . We begin with

$a^{0}=\frac{V_{1}}{1}$ ,

$a^{1}=\frac{V_{1}}{1}$ . $a=\frac{V_{-1}V_{1}V_{3}}{1-21}=\frac{V_{1}V_{3}}{-31}$ .

We show (8.12) in Lemma 8.11 for $r=7$ as

$a^{2}=\frac{V_{-3}V_{-1}V_{1}V_{3}V_{5}}{1-46-41}$

$=\underline{V_{1}V_{3}V_{5}}$

10 $-5$ 1

$\times(-2)\leftarrow\rangle\frac{V_{1}V_{3}V_{5}}{-2010-2}=\frac{V_{1}V_{3}V_{5}}{135}(7)$ .

Further, as for (8.13), we have

$a^{3}=\frac{V_{-5}V_{-3}V_{-1}V_{1}V_{3}V_{5}V_{7}}{1-615-2015-61}$

$=\frac{V_{1}V_{3}V_{5}V_{7}}{-3521-71}=0(7)$

The proof of Lemma 8.11 for general $r$ is left to the reader; it is shown by a

similar calculation as above.

8.4 Proof of Theorem 8.5

In this section, we prove Theorem 8.5, which states the universality of $\hat{\Omega}$ for the

perturbative $SO(3)$ invariant. For simplicity, we show the theorem assuming
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that $L$ is a knot. We begin with the following lemma.

Lemma 8.12. For the power series $p(\alpha)$ given in Proposition 8.8, we have

$j_{n}(D)=\frac{1}{n!}(\epsilon op(\alpha)^{n})(D)$ .

Pmof. By definition of $\Delta$ , we have

$(\Delta^{(k_{1})}\otimes\Delta^{(k_{2})})\circ\Delta=\Delta^{(k_{1}+k_{2}+1)}$ . (8.14)

Since $\alpha^{i}(D)$ is a linear sum of chord diagrams $\Delta^{(k)}(D)$ possibly replaced some
solid circles with dashed ones, we have the following formula by (8.14),

$((\epsilon op_{1}(\alpha))\otimes(\epsilon\circ p_{2}(\alpha)))\circ\Delta=\epsilon o(p_{1}(\alpha)p_{2}(\alpha))$ (8.15)

for any two power series $p_{1}(\alpha)$ and $p_{2}(\alpha)$ , where $p_{1}(\alpha)p_{2}(\alpha)$ implies the usual

product as power series.

Further, since $j_{n}=(1/n!)j_{1}\circ\Delta^{(n-1)}$ holds by definition of $j_{n}$ , we have

$j_{n}(D)=\frac{1}{n!}((\epsilon\circ p(\alpha))^{\otimes n}\circ\Delta^{(n-1)})(D)$

by replacing $j_{1}$ with the power series $p(\alpha)$ by Proposition 8.8, noting that we
$\iota$

need $n$ copies of $p(\alpha)$ since the solid circle in $D$ becomes $n$ solid circles by
$\Delta^{(n-1)}$ . By applying the formula (8.15) $n-1$ times, we obtain the required

formula. $\square $

Sketch of the proof of Theorem 8.5. Let $L$ be a framed link. Applying the above

lemma to the computation of $j_{n}(\check{Z}(L))$ , we have

$h^{n}\cdot\hat{W}_{\epsilon l_{2}}(j_{n}\check{Z}(L))=\frac{1}{n!}\hat{W}_{\epsilon l_{2}}((\epsilon op(\alpha)^{n})(\check{Z}(L)))$ , (8.16)

where the first $h^{n}$ is derived from the fact that the map $j_{n}$ decreases the degree

of chord diagrams by $n$ . We consider terms of at most finite degree in the

following of this proof. Then we can reduce the power series $p(\alpha)^{n}=c_{1}^{n}\alpha^{n}+$

$ nc_{1}^{n-1}c_{2}\alpha^{n+1}+\cdots$ to a finite sum by Lemma 8.7. Moreover using Lemma 8.10,

we replace the right hand side of (8.16) with

$\frac{c_{1}^{n}}{n!}\hat{W}_{\epsilon l_{2};a^{\mathfrak{n}}}(\check{Z}(L))+\frac{nc_{1}^{n-1}c_{2}}{n!}\hat{W}_{sl_{2};a^{\mathfrak{n}+1}}(\check{Z}(L))+\cdots+O(h^{n+(r-1)/2})$ . (8.17)
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Let $r$ be an odd prime $\geq 5$ . Putting $n=(r-3)/2$ , we have

$a^{n}=\sum mV_{m}(r)$

$a^{n+1}(r)=a^{n+2}(r)(r)=\cdots=0$ ,

by Lemma 8.11. Hence (8.17) is congruent to

$\frac{c_{1}^{n}}{n!}\sum mW_{\epsilon l_{2};V_{m}}(\check{Z}(L))+O(h^{n+(r}‘ 1)/2)$ (8.18)

modulo $r$ . By the formula $W_{sl_{2};V_{m}}(\nu)=[m]/m$ and Theorem 3.3, (8.18) is equal

to

$\frac{c_{1}^{n}}{n!}\sum[m]W_{\epsilon l_{2};V_{m}}(\hat{Z}(L))+O(h^{n+(r-1)/2})$

$=\frac{c_{1}^{n}}{n!}\sum[m]Q^{\epsilon l_{2};V_{m}}(L)+O(h^{n+(r-1)/2})$ .

Further we replace $j_{n}$ with $\iota_{n}$ using

$\hat{W}_{\epsilon l_{2}}(\iota_{n}\check{Z}(L))(r)=\hat{W}_{\epsilon l_{2}}(j_{n}\check{Z}(L))+O(h^{(r-1)/2})$

which is obtained by the congruence $W_{sl_{2}}(_{\backslash \prime}^{\prime^{\prime^{--\backslash }}}’.1)\backslash _{-}.’\backslash =3$ and $\iota_{n}(:\backslash \prime^{\prime^{-\cdot\backslash }}\backslash |)\backslash -\cdot’’=-2n$

modulo $r$ . Hence we have the formula7

$h^{n}\cdot\hat{W}_{sl_{2}}(\iota_{n}\check{Z}(L))(r)=\frac{c_{1}^{n}}{n!}\sum[m]Q^{sl_{2};V_{m}}(L)+O(h^{n+(r-1)/2})$ . (8.19)

Let $M$ be the 3-manifold obtained by Dehn surgery along $L$ . Suppose that
$M$ is a rational homology 3-sphere. Further, as in [31], we can assume that $L$

is algebraically split. Using the formula $\Omega_{n}(M)^{(d)}=|H_{1}|^{n-d}\Omega_{d}(M)^{(d)}$ for any

$n\geq d,$ $wehavethefollowingformulabydefinitionof\hat{\Omega}$ ,

$|H_{1}|^{n}\hat{\Omega}(M)=\Omega_{n}(M)=\frac{\iota_{n}\check{Z}(L)}{(\iota_{n}\check{Z}(U_{+}))^{\sigma+}(\iota_{n}\check{Z}(U_{-}))^{\sigma-}}$

where we put $H_{1}=H_{1}(M;\mathbb{Z})$ . Further we have

$|H_{1}|^{n}\hat{W}_{sl_{2}}(\hat{\Omega}(M))$

7To obtain the formula, if we expanded $\check{Z}(L)$ directly, $r$ might appear in the denominator,

though we calculated the formulas modulo $r$ . As in the text, we technically avoid the difficulty

as follows. We replace $\check{Z}(L)$ with quantum invariants, before taking modulo $r$ . Since the

quantum invariants have integral coefficients, we calculate the formulas taking modulo $r$ .
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$=\hat{W}_{\epsilon l_{2}}(\frac{\iota_{n}\check{Z}(L)}{(\iota_{n}\check{Z}(U_{+}))^{\sigma+}(\iota_{n}\check{Z}(U_{-}))^{\sigma-}}I$

$(r)=\ovalbox{\tt\small REJECT}(\sum[m]Q^{\epsilon l_{2};V_{m}}(V_{+}))^{\sigma+}(L)(\sum^{\sum[m]Q^{\epsilon l_{2};V_{m}}}[m]Q^{\epsilon l_{2};V_{m}}(V_{-}))^{\sigma-}+O(h^{(r-1)/2})$

$=\tau_{r}^{SO(3)}(M)+O(h^{(r-1)/2})$

$(r)=(\frac{|H_{1}|}{r})\tau^{SO(3)}(M)+O(h^{(r-1)/2})$ ,

where we obtain the second equality by (8.19), obtain the third equality by the

definition of $\tau_{r}^{SO(3)}(M)$ and obtain the fourth equality by Theorem 8.2 (2)

Here $(_{\overline{r}})$ denotes the Legendre symbol. IFMrther the formula $(rL)\equiv f^{(r-1)/2}$ ,

where $f$ is not divisible by $r$ , is known in number theory. Hence we have

$|H_{1}|^{n}\hat{W}_{\epsilon l_{2}}(\hat{\Omega}(M))(r)=|H_{1}|^{n+1}\tau^{SO(3)}(M)+O(h^{(r-1)/2})$ .

Since this formula holds for infinitely many $r$ , we obtain the required formula.
$\square $

Summary for results in Sections 6 to 9. As mentioned in Section $0$ , we
expect the notion of finite type and the existence of the universal quantum

invariant for the quantum invariants $\tau_{r}^{G}(M)\in \mathbb{C}$ . However, unlike the case of
knots, values of the quantum invariants of 3-manifolds do not belong to a graded

set. That is a reason of the technical difficulty to define finite type invariants
and the universal quantum invariant for the quantum invariants themselves.
Instead of them, we consider the perturbative invariants,9 whose values belong
to the graded set $\mathbb{Q}[[h]]$ . We define finite type invariants and the universal

8To be precise, we should have expanded the formulas in power series of $s$ , putting $h=$

$\log(s+1)$ .
9In this lecture note we use the terminology “perturbative invariant” in the sense of Section

8.1, which is obtained from quantum invariants by number theoretical limit. On the other hand
the terminology has originally been used for invariants obtained from path integral formula of
quantum invariants by perturbative expansion around flat connections. Rozansky $[35, 36]$ gave
rigorous definition of perturbative invariants along this approach. His and our definitions can
be shown to be equal together under some assumption of integrality of coefficients of quantum
invariants; see [36] for numerical examples.
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the quantum $G$ invariant
$\tau_{r}^{G}(M)\in \mathbb{C}$

$\downarrow r\rightarrow\infty int.hesenseofSection8.1Theorem82forG=SO(3)$

Corollary 8.6
for $G=SO(3)$ Definition 7.2 for $\mathbb{Z}HS’ s$

the perturbative $G$ invariant and for $\mathbb{Z}HS’ s$ finite type invariants
$\tau^{G}(M)\in \mathbb{Q}[[h]]$ $v$ : $\{3- manifolds\}\rightarrow \mathbb{C}$

the universal perturbative invariant
$\Omega(M)\in \mathcal{A}(\phi)$

Definition 6.20

Figure 8.1: Invariants of 3-manifolds and the relations between them

invariant for the perturbative invariants; see Figure 8.1 for relations between

these invariants. In the figure we also show the present attainments.
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