
Definition 4.1
the quantum $(\mathfrak{g}, R)$ invariant $\underline{Theorem5.2}$ Vassiliev invariants
$Q^{\mathfrak{g},R}(K)\in \mathbb{Z}[q^{1/2N}, q^{-1/2N}]$ $v:\{knots\}\rightarrow \mathbb{C}$

the modified Kontsevich invariant
$\hat{Z}(K)\in \mathcal{A}(S^{1})$

Theorem 2.2

Figure 5.1: Three kinds of invariants of knots and the relations between them

with the weight system $\hat{W}_{\mathfrak{g},R}$ derived from the substitution of $\mathfrak{g}$ and $R$ into

chord diagrams. The other is the universality among Vassiliev invariants; each

Vassiliev invariant $v$ is expressed as

$v=W\circ\hat{Z}$

with some weight system $W$ .
As a corollary of the two universalities, we obtain a relation between quan-

tum invariants and Vassiliev invariants; the coefficients of the quantum $(\mathfrak{g}, R)$

invariant are Vassiliev invariants and their weight systems are equal to $W_{\mathfrak{g},R}$ .

6 The universal perturbative invariant of 3-manifolds

So far we have dealt with invariants of knots and links. From now on we will

consider invariants of 3-manifolds. The purpose of this section is to construct an
invariant of 3-manifolds which has the universal property that the perturbative

quantum invariants of 3-manifolds recover from it. So we call it the universal

perturbative invariant of 3-manifolds.

6.1 Properties of $\hat{Z}(L)$

We will construct invariants from $\hat{Z}(L)$ in Section 6.4. To show the invariance

under Kirby moves, we need the following properties of $\hat{Z}(L)$ .
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Proposition 6.1 ([24, Theorem 5.1]). Let $L$ be a framed link, $C$ a compo-

nent of $L$ and C’ the component of $U^{l}S^{1}$ corresponding to $C$ . Then we obtain

the following formulas, where $\Delta,$ $S$ and $\epsilon$ are defined in Section 2.

(1) Let $L$ ‘ be the link obtained from $L$ by taking 2-parallel along $C$ . Then we

have
$\hat{Z}(L)=\Delta_{(C’)}(\hat{Z}(L))$ .

(2) Let $L$ be the link obtained from $L$ by reversing the orientation of $C$ . Then

we have

$\hat{Z}(L)=S_{(C)}(\hat{Z}(L))$ .

(3) Let $L$ be the link obtained from $L$ by removing $C$ . Then we have

$\hat{Z}(L)=\epsilon_{(C^{\prime})}(\hat{Z}(L))$ .

Pmof. We prove these relations by fixing a link diagram of $L$ and decomposing

the link into elementary quasi-tangle diagrams. In such a way, we can easily

prove (2) and (3) by the definitions of $\hat{Z},$

$S_{(C’)},$ $\epsilon_{(C’)}$ and properties of $\Phi$ . So

we prove only (1) for elementary quasi-tangle diagrams in the following of this

proof.

For the diagrams $|\backslash |$ and $|/|$ , the proof is trivial by the definition of $\hat{Z}$ .

For the diagrams $\times$ and $\times$ , the proof is a consequence of the

hexagon relation.

It remains to show the proof for the diagrams $\cup or\cap$ . We define $n$ to be the

ratio of $\triangle$ $(\hat{Z}( \cap ))$ to $\hat{Z}(\Delta( \cap ))$ and $u$ that of $\Delta(\hat{Z}( \cup ))$ to $\hat{Z}(\Delta($

$\cup$ )) as follows.

(6.1)
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(6.2)

Alternatively we also give a constructive definition of $u$ and $n$ as follows.

As in (6.1) and (6.2), $n$ and $u$ are error terms for commutation of $\hat{Z}$ and $\Delta$ at

maximal and minimal critical points respectively. Note that, if $n$ and $u$ were

trivial chord diagrams, then the proof would be completed. However $n$ and $u$

are not necessarily trivial.

As for the other orientation at critical points, we express error terms for
$\Delta$ $(\hat{Z}( \cap ))$ and $\hat{Z}(\Delta( \cap ))$ , and for $\Delta(\hat{Z}( \cup ))$ and $\hat{Z}(\Delta(\cup ))$ , by

using $n$ and $u$ as follows. By Proposition 6.1 (2), we have

Further it is equal to the right picture in (6.3) below; this is shown by comparing

both sides of (6.4).

(6.3)

(6.4)

A similar formula holds for $\cup$ . Therefore, for any orientation, the error terms

at maximal and minimal points are equal to $n$ and $u$ respectively.
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By comparing both sides of $\hat{Z}(\ovalbox{\tt\small REJECT})=\hat{Z}(\uparrow\uparrow)$ , we obtain

$|$ . (6.5)

Since the coefficient of degree $0$ part of $u$ is not zero, the inverse of $u$ exists. By

using the existence of $u^{-1}$ , we obtain the following relation from (6.5).

$|$ (6.6)

By (6.5), error terms for the following pairs of critical points cancel together.

$ v^{:}\cap$ and $C^{i}\bigwedge_{i}$

Further that holds for the following pairs by (6.6).

$:\cap$
and

Hence, for a link diagram, all error terms cancel with each other. This completes

the proof of (1). $\square $

Let $L$ be a link with $l$ components. We define $\check{Z}(L)$ to be $\hat{Z}(L)\#\nu^{\otimes l}$ , where

this formula implies that $\check{Z}(L)$ is obtained from $\hat{Z}(L)$ by taking connected sum
of $\nu$ to each component of $L$ .

Proposition 6.2 ([24, Theorem 7.3], [23]). Let $L$ be an oriented framed

link, and $L$ a framed link obtained from $L$ by KII move, that is, the han-

dle slide move in [13]. Then $\check{Z}(L)$ can be obtained from $\check{Z}(L)$ by replacing the

left picture in Figure 6.1 with the right picture.
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$1$

Figure 6.1: KII move on chord diagrams

Figure 6.2: KII move on links

Pmof. We decompose KII move of a link into the following successive operations;

we choose two adjacent vertical segments in $L$ (after deforming it by isotopy if

necessary), replace them by the quasi-tangle obtained by connecting the quasi-

tangles in the statement of Lemma 6.3 below vertically, and take two parallel

of the remaining part of the right one of the above segments, see Figure 6.2.

By Proposition 6.1 (1) (extended to quasi-tangles) and Lemma 6.3 below,

we have the change of $\hat{Z}(L)$ as follows.

$1$
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Hence we have the change of $\check{Z}(L)$ under KII move as follows.

$\check{Z}(L)=|$

$(\cdot)\#(\nu^{-1})^{\otimes 2}\downarrow$ $\uparrow(\cdot)\#(\nu^{\otimes 2})$

$KI\rightarrow^{I}$move

Then we have the desired result. $\square $

Lemma 6.3.

Pmof. We express each of the quasi-tangles in the lemma as a part of a decom-

position of each of $\cup U$ and $\cap\cap$ into elementary quasi-tangle diagrams. By

such expressions, we have the following formulas of chord diagrams.

As for the first formula, $\Delta_{3}\Phi^{-1}$ and $\hat{Z}(\Delta(\cup))$ commute together, since $\Delta(D)$

commutes with any element of $\mathcal{A}(\uparrow\uparrow)$ [$26$ , Theorem 1] for any chord diagram $D$

$on\uparrow possibly$ with dashed external vertices. We push down $\Delta_{3}\Phi^{-1}$ . Further, by

Lemma 6.4 below, it vanished in the formula. In the same way, $\Delta_{3}\Phi$ vanishes

in the second formula. Hence we have the required formulas by applying (6.2)

and (6.1) to the above formulas. $\square $
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Lemma 6.4.

Pmof. As in [25], $\Phi$ has the following expression

$\Phi=\varphi(\}--\cdot\{|, \downarrow\}--\cdot\{)\in \mathcal{A}(\downarrow|\downarrow)$

with a certain power series $\varphi(A, B)$ of non-commutative indeterminates $A$ and $B$

such that $\varphi(A, B)$ is congruent to 1 modulo the relation $AB=BA$ , see Section

2.2 for definition of $\Phi$ . Since

commute with each other, we obtain the required formula. $\square $

We define the map

$\hat{\Delta}$ : $\mathcal{A}(u^{l}S^{1})\rightarrow \mathcal{A}(u^{l}S^{1})\otimes \mathcal{A}(u^{l}S^{1})$

as follows; see also [3] for its definition. For a chord diagram $D$ , we define $\hat{\Delta}(D)$

to be the sum of $D‘\otimes D^{\prime}$ where $D$ runs over all subdiagram of $D$ , and $D$ is its

complement. Here we mean by subdiagram of $D$ a chord diagram obtained from
$D$ by removing some of dashed connected components. We show an example

for $\hat{\Delta}$ below.

$O^{\underline{\hat{\Delta}}}\rangle-+0\rangle-\otimes o_{-+}o_{\otimes f}o|o|\otimes O^{+}\overline{O}O^{-}$

Since $\hat{\Delta}$ plays a similar role as the comultiplication in a Hopf algebra, we $caU\alpha\in$

$\mathcal{A}(U^{l}S^{1})$ gmup-like if $\hat{\Delta}(\alpha)=\alpha\otimes\alpha$ , and call $\alpha$ primitive if $\hat{\Delta}(\alpha)=\alpha\otimes 1+1\otimes\alpha$ ,

as terminology of Hopf algebra.

Proposition 6.5 ([27, Theorem 3.7]). For an oriented framed link $L$ with $l$

components, $\hat{Z}(L)$ is group-like in $u^{l}\mathcal{A}(S^{1})$ .
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As a corollary, we have

Corollary 6.6. $\check{Z}(L)$ is also group-like.

Pmof. By applying Proposition 6.5 to the trivial knot, we see that $\nu$ is group-

like; noting that $\hat{Z}$ (the trivial knot) $=\nu$ . Since $\hat{\Delta}$ is multiplicative with respect

to the connected sum, we have the desired result by the definition of $\check{Z}(L)$ . $\square $

Remark 6.7. For a knot $K$ , Proposition 6.5 gives a strong restriction to the

value of $\hat{Z}(K)$ as follows. In this case, $\hat{Z}(K)$ belongs to $\mathcal{A}(S^{1})$ . Here $\mathcal{A}(S^{1})$

becomes a Hopf algebra such that the multiplication is connected sum, and

the comultiplication is $\hat{\Delta}$ , see [3]. It is known, see for example [1], that a

non-zero group-like element of a graded Hopf algebra can be expressed as the

exponential image of a primitive element. By Proposition 6.5, $\hat{Z}(K)$ is equal

to the exponential image of a primitive element. By definition, a primitive

element in $A(S^{1})$ is a linear sum of chord diagrams with one connected dashed

component. Hence $\hat{Z}(K)$ is expressed as

where $a_{1},$ $a_{2},$ $a_{3},$ $\cdots$ are scalar invariants of $K$ . We expect that these scalar

invariants are fundamental invariants of $K$ . For example, $a_{1}$ is equal to half the

framing of $K$ and $a_{2}$ is equal to the second coefficient of the Conway polynomial.

Pmof of Proposition 6.5. Let $l$ be the number of components of $L$ , and let $X_{1}$

and $X_{2}$ be two copies of $u^{l}s^{1}$ . We define the map $ p:\mathcal{A}(X_{1}UX_{2})\rightarrow \mathcal{A}(X_{1})\otimes$

$\mathcal{A}(X_{2})$ by

$p(D)=\left\{\begin{array}{ll}0, & if D has a chord which connects X_{1} and X_{2},\\D_{1}\otimes D_{2}, & if D is the disjoint union of D_{1}\in \mathcal{A}(X_{1}) and D_{2}\in \mathcal{A}(X_{2}).\end{array}\right.$

By definition of $\hat{\Delta}$ , we have $\hat{\Delta}=p\circ\Delta_{(C_{1})}\circ\cdots\circ\Delta_{(C,)}$ , where $C_{i}$ denotes the

ith component of $u^{lS^{1}}$ . Therefore, by Proposition 6.1 (1), we have

$\hat{\Delta}(\hat{Z}(L))=p\circ\Delta_{(C_{1})}0\cdots 0\Delta_{(C,)}(\hat{Z}(L))=p\circ\hat{Z}(L^{(2)})$ , (6.7)
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where $L^{(2)}$ denotes the 2-parallel of $L$ along all components of $L$ .

Let $LuL$ be the split union of two copies of $L$ . Then, by definition of $p$ , we

have

$p(\hat{Z}(LuL))=\hat{Z}(L)\otimes\hat{Z}(L)$ . (6.8)

By (6.7) and (6.8), it is sufficient to show

$p(\hat{Z}(L^{(2)})-\hat{Z}(LuL))=0$ . (6.9)

We calculate $\hat{Z}(L^{(2)})-\hat{Z}(LuL)$ as follows. We obtain $L^{(2)}$ from $LuL$ by

crossing changes between the first $L$ and the second $L$ . By each of the crossing

changes, the value of $\hat{Z}$ changes by the following difference,

$\exp(\frac{1}{2})---()-\exp(-\frac{1}{2})---()$ .

It consists of chord diagrams with chords connecting $X_{1}$ and $X_{2}$ . Hence it

vanishes by $p$ . Therefore we obtain (6.9). $\square $

6.2 Replacing solid circles with dashed graphs

In this section we construct a series of the maps $\iota_{n}$ : $\mathcal{A}(u^{l}S^{1})\rightarrow \mathcal{A}(\phi)$ for

$n=1,2,$ $\cdots$ , which replace $S^{1}$ with dashed graphs.

We consider chord diagrams with support $m$ ordered points labeled by $0$ ,

1, 2, $\cdots$ , $m-1$ . That is, the chord diagrams are oriented uni-trivalent dashed

graphs whose $m$ univalent vertices are on the $m$ fixed points respectively. We

denote by $\mathcal{A}(m)$ the vector space over $\mathbb{C}$ spanned by such chord diagrams subject

to the AS and IHX relations. In particular, we put $\mathcal{A}(0)=\mathcal{A}(\phi)$ .

We define $T_{m}\in \mathcal{A}(m)$ as follows. We put $T_{0}=T_{1}=0$ , and put $T_{2}$ be a

dashed chord connecting the two ends $0$ and 1. The definition for $m\geq 3$ is

the following. For an element $\tau$ in the symmetric group $\mathfrak{S}_{m-2}$ acting on the

set $\{1, 2, \cdots m-2\}$ , we define $T_{\tau}\in \mathcal{A}(m)$ as follows; see also Figure 6.3 for a

pictorial definition. $i.e.$ , we put a dashed line between $0$ and $m-1$ , and make

$m-2$ trivalent vertices on the line, labeled by 1’, 2, $\cdots$ $(m-2)$ in order from
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m-2

$m- 2\downarrow$

$\ovalbox{\tt\small REJECT}\mapsto^{;}$

1 2 3 ... (m-2 ’

$0---.---\prime^{\prime}-\vee------\tau_{1}-----’\backslash _{\prime}\backslash \backslash !\backslash \backslash $

m-l

1 2 3 m-2

$T$
$T\tau$

Figure 6.3: The definition of $T_{\tau}$

$T_{2}=$ $0----1$

$T_{3}=$ $\frac{1}{2}$

$0_{s_{\backslash _{v^{\prime}}}\prime}2$

$1^{1}|$

$T_{4}=$ $\frac{1}{6}($ $0_{\backslash }31^{\prime}2\prime^{\prime}\backslash \langle+$ $0_{\backslash }31^{\prime}2:::_{\backslash }^{\prime})$

Figure 6.4: Simple cases of $T_{m}$

the end $0$ to the end $m-1$ . For each $i$ , we connect $i$
‘ and $\tau(i)$ by a chord. We

put $T_{\tau}$ to be the uni-trivalent graph obtained in this way.

Further we define $T_{m}\in \mathcal{A}(m)$ by

$T_{m}=\sum_{\tau\in \mathfrak{S}_{m-2}}\frac{(-1)^{r(\tau)}}{(m-1)(m-2)}T_{\tau}$ ,

where we denote by $r(\tau)$ the number of $k$ satisfying $\tau(k)>\tau(k+1)$ , and $(_{r(\tau)}^{m-2})$

the binomial coefficient. We show some simple cases in Figure 6.4; note that we

use the IHX relation to obtain $T_{4}$ in the figure.

We have following two propositions, proved in [27]. We omit the proofs of

them.

Proposition 6.8 ([27]). The chord diagram $T_{m}$ is symmetric by the action of

the dihedral group given by
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Figure 6.5: $T_{m}$ satisfies a relation link the STU relation

(1) $T_{m}$ is invariant by the rotations.

(2) Each inversion takes $T_{m}$ to $(-1)^{m}T_{m}$ .

As for (2), the factor $(-1)^{m}$ is due to reversing vertex-orientation of $T_{m}$ ;

recall the AS relation, though $T_{m}$ itself is symmetric also by the inversions as a

linear sum of graphs.

Proposition 6.9 ([27]). The difference between $T_{m}$ and the element of $\mathcal{A}(m)$

obtained by changing any adjacent two univalent vertices is equal to $T_{m-1}$ with

one extra trivalent vertex as shown in Figure 6.5.

Instead of proving Proposition 6.9, we check the formula shown in Figure

6.5 for $m=2,3,4$ , by concrete calculations. For the complete proof of the

proposition, see [27].

For $m=2$ , we have

For $m=3$ , we have

$\frac{1}{2}\prime^{\prime}J_{\backslash }i\backslash -$
$\frac{1}{2}’\backslash ’>1\llcorner_{1}\backslash _{\backslash }$

’

$=$ $\prime^{\prime}\int^{1}\backslash \backslash $

$=$
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For $m=4$ , we have

$=$ $\frac{1}{6}$ ( $111\mathfrak{l}\mathfrak{l}1\backslash ’\backslash \backslash ’-\backslash ’’+!^{1}1^{1}\prime^{\prime}\backslash ’\backslash \backslash _{\backslash }v^{\prime}1$ )– $\frac{1}{6}(\backslash _{\backslash _{\vee^{\prime}}}’\backslash \prime^{\prime\backslash _{\backslash }}’\backslash \backslash ’-\backslash ’’+\prime^{\prime}\backslash \prime^{\prime}\backslash \backslash \searrow_{\backslash }^{\prime}\bigwedge_{\backslash ,}^{1}\bullet^{\prime^{\prime}}$ $)$

$=$ $\frac{1}{6}(’\backslash ’\backslash \backslash ’\succ s_{\backslash }^{\prime}+’\backslash ’’\backslash _{\backslash }\backslash \bullet\bigvee_{1}^{\prime})-\frac{1}{6}(\backslash \succ s_{\backslash }^{\prime}\backslash ’’-|’\backslash ’\backslash \backslash ’\backslash ’’\backslash ^{-1}’\backslash ’\backslash \bullet\bigwedge_{\backslash }\bullet\vee^{\prime})$

$=$ $\frac{1}{2}$ $\backslash ’’’\backslash _{\backslash }\backslash ’\underline{\bullet 1}$ $=$

Let $\mathcal{A}(X)\circ$ be the space of chord diagrams with support $X$ including trivial

dashed loops, while we do not allow dashed loops in $\mathcal{A}(X)$ . We define

$j_{1}$ : $\mathcal{A}(u^{l}S^{1})\rightarrow \mathcal{A}(\phi)\circ$

to be the linear map replacing a solid circle with $m$ univalent vertices by $T_{m}$ as

$\overline{m}$ $\overline{m}$

This is well defined by Propositions 6.8 and 6.9.

Remark 6.10. If the solid circle has the opposite orientation, we replace it by

reversed $T_{m}$ ; it is equal to $(-1)^{m}T_{m}$ by Proposition 6.9.

Further we define the map $j_{n}$ : $\mathcal{A}(u^{l}S^{1})\rightarrow \mathcal{A}(\phi)\circ$ as follows. We consider the

map $\mathcal{A}(u^{\iota}S^{1})\rightarrow \mathcal{A}(u^{nl}S^{1})$ obtained by acting $\Delta$ to each $S^{1}$ of $\mathcal{A}(U^{l}S^{1}),$ $n-1$

times. We define $j_{n}$ to be $1/n!$ times the composition of the above map and $j_{1}$ .
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$P_{2}$ : $11111||1$ $|1111|||$ $+$ $\backslash _{\backslash _{\backslash _{\backslash _{r_{\backslash }^{\prime}}}\prime}\prime}’\prime^{\prime}J\backslash _{\backslash _{\backslash }}’+$
$\backslash _{\backslash _{\backslash }}\prime^{\prime^{\prime^{-\backslash _{\backslash }}}}\sim’’\backslash \prime^{\prime}\backslash $ $\sim 0$

$P_{3}$ : $l111|\mathfrak{l}|1$ $l11\mathfrak{l}1111$

$|1111|1$

$+$ $\prime 1111\mathfrak{l}1|$

$\backslash ’’\backslash \backslash ’’\backslash \backslash _{w^{\prime}}’\alpha_{\backslash }+$

$\backslash \backslash ’\backslash \backslash \backslash _{\backslash }\backslash \chi^{\prime}l^{\prime}\backslash \backslash +$

$\cdot$ .. $\sim 0$

$\prime^{\prime}\backslash \backslash $ $\backslash \backslash $

$P_{n}$ : (the sum over all $pa\ddot{m}ngs$ of $2n$ points) $\sim 0$

Figure 6.6: Definition of the relations $P_{n}$

Remark 6.11. For a chord diagram $D$ on $u^{l}S^{1}$ which has less than $2n$ univalent

vertices on a component $S^{1}$ , we have $j_{n}(D)=0$ by $T_{0}=T_{1}=0$ and the

definition of $\Delta$ .

6.3 Relation $P_{n}$

In this section we introduce a series of relations $P_{n}$ in $\mathcal{A}(X)\circ$ . These relations

will lead to the invariance of $\check{Z}(L)$ under KII move.

Let $X$ be a compact oriented l-manifold. For any integer $n>1$ , the relations
$P_{n}$ in $\mathcal{A}(X)\circ$ is defined as follows. Let $P_{2}$ be the equivalence relation shown in

the first formula in Figure 6.6. The left hand side of the first formula in the

figure is the sum over all pairings of 4 points. Similarly we define the equivalence

relation $P_{n}$ so that the sum over all pairings of $2n$ points is equivalent to zero.

Before proving the invariance of $\check{Z}(L)$ in Proposition 6.13 below, we prepare

the following lemma.

Lemma 6.12 ([27, Lemma 3.1]). Let $C$ be a component of $X$ and $n$ a pos-

itive integer. Then, with the equivalence relation $P_{n+1}$ , any chord diagram is

equivalent to a linear sum of chord diagrams each of which has at most $2n$

univalent vertices on $C$ .

Pmof. Let $D$ be a chord diagram on $X$ which has $l$ univalent vertices on $C$ . We

prove this lemma by induction on $l$ . It is sufficient to show that, if $l>2n$ , then
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$D$ is equivalent, modulo $P_{n+1}$ , to a linear sum of chord diagrams, $e$ach of which

has at most $l-1$ univalent vertices on $C$ . In the following of this proof, we say

that a circle $S^{1}$ in a chord diagram has $l$ legs if the number of the univalent

vertices on $C$ .

The case $n=1$ . Suppose that $D$ has more than 2 legs. We show that $D$ is

equivalent, modulo $P_{2}$ , to a linear sum of chord diagrams with at most 2 legs.

We have

$O-\leftrightarrow^{OP_{2}i_{1}.}=11++\infty\ovalbox{\tt\small REJECT}^{\backslash i}\wedge^{\backslash }il|v\sim||l\backslash ’|\backslash ||\backslash ’|$

$=$ $\infty^{i}||1||11+(\underline{1\mathfrak{l}1}||1|-l\backslash ’||\backslash ’\infty)+$

$||\backslash -2$

$\underline{*\prime\prime\backslash |}$

$=$ 2
$i||$ $iI|$

$+$

$||\backslash -$,
$+$ (a term with 1 leg)

1 1 $\sim’’\backslash |$

where we obtain the second equality by the STU relation. Hence we reduce

$\underline{\prime \mathfrak{l}||||||1||||}$ to
$’’\backslash j\backslash _{-}l\backslash \backslash $’modulo a term with 1 leg. Further we have

$0\backslash \wedge\leftrightarrow^{O^{1}P_{2}}=1_{l}|+\underline{1|1_{i\backslash \prime\backslash \prime 1}^{\prime}|I|}\underline{!^{l_{I}\backslash ’\iota^{1}}}\backslash A_{1+}’\backslash ^{1}1|t^{1\underline{t\iota^{1}}}|$

$=3$ $ 1\mathfrak{l}|\int_{\infty^{\iota}1t}^{\backslash }\backslash \iota$ $+$ (terms with 2 legs)

by using the STU relation. Hence we can reduce $|1|\backslash \mathfrak{l}\backslash t\prime^{\prime}\prime t$ to terms with less legs.
$\underline{|_{1}I}$

Therefore we can reduce $D$ to terms with less legs, completing this case.

The case $n=2$ . Suppose that $D$ has more than 4 legs. It is sufficient to

show that $D$ is equivalent, modulo $P_{3}$ , to a linear sum of chord diagrams with
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at most 4 legs. We have

$0$

$=$

$\ovalbox{\tt\small REJECT}||\mathfrak{l}I1\mathfrak{l}I11P_{3}1+o_{l}^{1}1Il1\backslash \backslash $

;
$\underline{1I\mathfrak{l}1}$

$\leftrightarrow^{Il’\backslash \hslash l}+\rightarrow^{\backslash \backslash \prime\backslash \prime\backslash )^{\prime}\backslash \backslash \backslash \backslash \prime}+$ (the other 12 terms)

$=6111II1+s11’\backslash +3^{\backslash }’\bigwedge_{\prime,\prime}^{\prime}’+31111\backslash _{\vee}lI111||\backslash i\underline{\mathfrak{l}11}\underline{1}\underline{l_{1}}-\underline{\prime\backslash |}A^{\vee}||^{\prime}\backslash \underline{l,\prime\prime_{t}\prime\prime\prime\backslash }$

$+$ ($tems$ with 2 legs)

We reduce $\underline{|\prime\prime 1\mathfrak{l}1|||||||||||||||}$ to $\underline{|_{1}\iota_{t_{1}}\iota,\prime 1,\backslash I^{\prime}\backslash I}$ modulo terms with 2 legs. So we reduce $D$ to

terms including $||’\backslash \backslash ||\dagger\iota^{t}||$

’ . Further we have
$\underline{|||||t,t||}$

Hence we reduce $\underline{|_{||}^{\prime}||||||ll\backslash \backslash \prime 1tt1}$ to terms with less legs, completing this case.

The case $n\geq 3$ . We reduce any chord diagram with more than $2n$ legs to terms

with less legs modulo $P_{n+1}$ , in the sam$e$ way as above. $\square $

By the above lemma, we have the following proposition.

Proposition 6.13 ([27, Proposition 3.1]). Let $L$ be any oriented framed

link with $l$ components and $n$ any positive integer. Then the equivalence class
$[\check{Z}(L)]$ including $\check{Z}(L)$ in $\mathcal{A}(u^{l}S^{1})/LP\circ$ is invariant under Kirby move II,

where we denote by $L_{<2n}$ the equivalence relation such that any chord diagram

including a solid circle with less than $2n$ univalent vertices is equivalent to zero.

Pmof. We show the proof for the case $n=1$ ; for general case, see [27].

Let $D$ be the chord diagram in the left picture in Figure 6.1, $C$ the closed

solid component of $D$ in the figure. KII move takes $D$ to the right picture in the

figure; we denote it by $D$ ‘ in this proof. Let $m$ be the number of the univalent
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vertices of $D$ on $C$ . We show that $D$ and $D$ are equivalent modulo $P_{2}$ and $L<2$

for each $m$ .
If $m=0$ or 1, then both of $D$ and $D$ are equivalent to $0$ by $L<2$ .
If $m=2$ , then $D$ is a sum of $D$ and chord diagrams with $0$ or 1 univalent

vertex on $C$ ; the latter vanishes modulo $L<2$ .

If $m=3$ , then, for $ D=0^{\prime}’|\prime\prime\prime$ , the linear sum $D$ ‘ is equal to

$\underline{O^{\prime}}+’\prime\prime\mapsto^{j\prime o^{j}j^{\prime}j\prime,,}+\mapsto^{\prime\prime\prime^{\prime\otimes^{\prime}}..\backslash i\prime\prime}+\underline{\prime\prime\prime^{\prime}O\backslash \dot{\backslash }\grave{x}^{\prime}\prime}$

$+\underline{j^{\prime}\prime\prime jo^{j}}\underline{j^{\prime}\prime}’\prime jj\backslash \prime\prime,’’\prime^{\prime}’\vee^{\prime^{\acute{\prime}}}+\underline{\prime\prime\prime\prime^{\prime}\prime J^{\backslash }\prime O:ii\bigwedge_{\wedge^{\prime}}^{\prime\prime}}+\underline{\prime\prime\prime\prime\prime\prime\prime\prime,\prime\prime Oj^{\prime\prime},\prime}$

where the first term is equal to $D$ and the four terms in the second line vanish
by $L_{<2}$ . The remaining three terms are equivalent to

$\frac{-1}{2}\mathcal{O}^{\prime}(_{\lrcorner}--’\backslash ’-\prime^{\prime}’\underline{\backslash +}+-\prime j)$ (6.10)

where, to obtain the formula, we use the following relation derived from $P_{2}$ .

$0$
$o_{\backslash }^{\prime}o|\iota^{\backslash -\prime}\iota_{P_{2}}-\backslash _{\backslash }=$ $IlI\mathfrak{l}11110,$

’
$+2Ol||$

$O|||$ $\rightarrow$

$-\frac{l}{2}Illl1|110,$
’

IXirther (6.10) vanishes by $P_{2}$ , completing this case.
If $m>3$ , we reduce the proof to the case $m\leq 3$ by decreasing univalent

vertices on $C$ by Lemma 6.12. $\square $

Remark 6.14. The formula (6.10) is a reason why the relation $P_{2}$ was introduced
in [23]. The relation $P_{n+1}$ is also derived in such a way, starting from the working

hypothesis $L_{<2n}$ .

Let $X$ be a compact oriented l-manifold and $D$ a chord diagram on $X$ . Recall
that the degree of $D$ is half the number of univalent and trivalent vertices in
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$D$ . Let $D_{>n}$ denote the relation in $\mathcal{A}(X)\circ$ such that terms of degree $>n$ are
equivalent to $0$ . Then the following lemma holds.

Lemma 6.15. The identity map on $\mathcal{A}(\phi)$ induces the following isomorphism

between the quotient spaces

$\mathcal{A}(\phi)/D>n\rightarrow A(\phi)/D{}_{>n}P_{n+1},$$O_{n}\circ,$ ,

where $O_{n}$ denotes the equivalence relation such that a trivial dashed loop is
equivalent $to-2n$ .

Pmof. We also denote by $P_{n+1}$ the formula defining the relation $P_{n+1}$ . Since a
dashed loop can be removed, we have a natural isomorphism between $\mathring{\mathcal{A}}(\phi)/D$ O
and $\mathcal{A}(\phi)/D>n$ . Hence it is sufficient to show that $\mathcal{A}(\phi)/D$ O

$\circ$

is isomorphic
to $\mathcal{A}(\phi)/DP,$$ O_{n}\circ$ . We show that an element of $\mathcal{A}(\phi)\circ$ including $P_{n+1}$ van-
ishes modulo $D_{>n}$ and $O_{n}$ as follows, by dividing the shape outside of $P_{n+1}$ into
the following three cases.
Case 1. If there exists a chord without trivalent vertices connecting two ends

of $P_{n+1}$ as

’ $\backslash $

$(||-\prime j+2n)$

This vanishes by $O_{n}$ .
Case 2. If there exists a chord with one trivalent vertex connecting two ends

of $P_{n+1}$ as $op_{n+1}’\tau^{\prime^{\prime}}$ , then it vanishes by the AS relation and the interior

symmetry of $P_{n+1}$ .
Case 3. Otherwise, we show the degree of a chord diagram including $P_{n+1}$ is
greater than $n$ by counting argument as follows. For each end point of $P_{n+1}$ ,
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we associate at least one trivalent vertex as in the following picture.

$’\backslash a-$

$\sim’\prime 1$

$O_{\backslash }^{+1\backslash }p_{n_{T\cdot---}}’$ .
V

$\backslash \backslash \backslash $

Hence the number of trivalent vertices is at least $2n+2$ . Therefore the chord

diagram has degree $>n$ , and it vanishes by $D_{>n}$ . $\square $

Since $xP_{\mathfrak{n}+1,\sim}y$ implies $j_{n}(x)P_{n+1,\sim}j_{n}(y)$ , the map $j_{n}$ : $\mathcal{A}(U^{l}S^{1})\rightarrow \mathcal{A}(\phi)\circ$

induces the following map

$\mathcal{A}(u^{l}S^{1})/LP,$$O_{n}\circ\rightarrow\mathring{\mathcal{A}}(\phi)/P_{n+1},$ $O_{n}$ , (6.11)

noting that $L_{<2n}$ vanishes by $j_{n}$ , see Remark 6.11. Further we consider

$\mathcal{A}(\phi)/P_{n+1},$
$O_{n}\circ\rightarrow \mathcal{A}(\phi)/D{}_{>n}P_{n+1},$$O_{n}\circ,\leftarrow^{=}\mathcal{A}(\phi)/D>n$

’ (6.12)

where the first map is the projection, and the second map is an isomorphism

given in Lemma 6.15. We define the map

$\iota_{n}$ : $\mathcal{A}(u^{l}S^{1})\rightarrow \mathcal{A}(\phi)/D_{>n}$

by putting $\iota_{n}(z)$ to be the image of $[z]\in \mathcal{A}(u^{l}S^{1})/L,$ $P,$$ O_{n}\circ$ by the com-
position of the maps (6.11) and (6.12). Since $[\check{Z}(L)]$ is invariant under Kirby

move II, so is $\iota_{n}(\check{Z}(L))$ .

Remark 6.16. By the same argument as in the proof of Lemma 6.12, any solid

circle can be changed into $\Theta^{n}$ modulo $P_{n+1}$ and $L<2n$ ’ where $\Theta^{n}$ denotes

the left picture in Figure 6.7; we often depict it as in the right picture, not-

ing that they are equivalent by the STU relation. Hence any element $ z\in$

$\mathcal{A}(u^{l}S^{1})/P_{n+1,<2n}L,$ $O_{n}$ can be presented by a disjoint union of $\Theta^{n}$ and a

dashed trivalent graph. The image $\iota_{n}(z)$ is equal to the dashed trivalent graph

up to a scalar multiple; the proof is left to the reader.
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$n$

Figure 6.7: Two pictures of $\Theta^{n}$

6.4 Invariants of 3-manifolds

In this section we construct a series of topological invariants $\Omega_{n}(M)\in \mathcal{A}(\phi)/D_{>n}$

of a 3-manifold $M$ for each positive integer $n$ and unify the series $\Omega_{n}(M)$ into

an invariant $\Omega(M)\in \mathcal{A}(\phi)$ ; we call it the universal perturbative invareant of $M$ .
We have an algebra structure in $\mathcal{A}(\phi)$ such that the product is induced from

the disjoint union of chord diagrams.

Theorem 6.17 ([27, Theorem 3.7]). Let $L$ be a fram$ed$ link, and $M$ the 3-

manifold obtained from $S^{3}$ by Dehn surgery along $L$ . Then

$\Omega_{n}(M)=(\iota_{n}(\check{Z}(U_{+}))^{-\sigma+}(\iota_{n}(\check{Z}(U_{-}))^{-\sigma-}(\iota_{n}(\check{Z}(L)))\in \mathcal{A}(\phi)/D_{>n}$ (6.13)

is a topological invariant of $M$ for any positive integer $n$ , where $U\pm denotes$

the trivial knot with $\pm 1$ framing and $\sigma\pm the$ number of positive and negative

eigenvalues of the linking matrix of $L$ .

Pmof. It is sufficient to show the invertibility of $\iota_{n}(\check{Z}(U_{\pm}))$ in $\mathcal{A}(\phi)/D>n$ and

the invariance of the right hand side of (6.13) under the changes of the orienta-

tion of $L$ and under Kirby moves I and II.

Invariance under changes of the orientation of $L$ . Suppose $L$ is a link

obtained from $L$ by reversing the orientation of a component $C$ of $L$ . Then, by

Proposition 6.1 (2), $\hat{Z}(L^{\prime})$ differs from $\hat{Z}(L)$ by $S_{(C)}$ , and so does for $\check{Z}(L)$ and
$\check{Z}(L)$ , since $ S(\nu)=\nu$ . Let $D$ be a chord diagram in $\check{Z}(L)$ with $m$ univalent

vertices on $C$ . Then the factor $(-1)^{m}$ appears by acting $s_{(C)}$ . On the other
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hand, $(-1)^{m}$ also appears when we replace the circle with $T_{m}$ , see Remark 6.10.
Then both $(-1)^{m}$ cancel each other, and we obtain the invariance.

Invariance under KI move. We obtain the invariance, since the change of
$\iota_{n}(\check{Z}(L))$ under the move cancels with the change of $\sigma\pm\cdot$

Invariance under KII move. We obtain the invariance by Proposition 6.13.
The invertibility of $\iota_{n}(\check{Z}(U_{\pm}))$ . The map $\hat{\Delta}$ induces the following map

$\mathcal{A}(u^{l}S^{1})/P_{n+1},$$O_{n<2n}oL$
$\rightarrow \mathcal{A}(u^{l}S^{1})/P_{n_{1}+1},$$O_{n_{1}’<2n_{1}}oL\otimes \mathcal{A}(u^{l}S^{1})/P_{n_{2}+1},$$ O_{n_{2}’<2n_{2}}L\circ$

between the quotient spaces; we denote it by $\hat{\Delta}_{n_{1},n_{2}}$ , where we put $n=n_{1}+n_{2}$ .

We have

$\hat{\Delta}0\iota_{n}=(\iota_{n_{1}}\otimes\iota_{n_{2}})\Delta_{n_{1},n_{2}}$ , (6.14)

by definition of $\iota_{n}$ . By using (6.14) $n-1$ times repeatedly, we have

$\hat{\Delta}^{(n-1)}\circ\iota_{n}=\iota_{1}^{\otimes n}\circ\hat{\Delta}^{(n-1)}$ , (6.15)

where we define $\hat{\Delta}^{(k)}$ : $\mathcal{A}(X)\rightarrow \mathcal{A}(X)^{\otimes(k+1)}$ by the recursive formula $\hat{\Delta}^{(k)}=$

$(\hat{\Delta}^{(k-1)}\otimes id)\circ\hat{\Delta}$ and $\hat{\Delta}^{(1)}=\hat{\Delta}$ . More precisely, $\hat{\Delta}^{(n-1)}$ in the right hand side

is the map induced between the quotient spaces. Since $\check{Z}(U_{\pm})$ is group-like by

Corollary 6.6, we have

$\hat{\Delta}^{(n-1)}(\check{Z}(U_{\pm}))=\check{Z}(U_{\pm})^{\otimes n}$ .

Hence, by (6.15), we have

$\hat{\Delta}^{(n)}\circ\iota_{n}(\check{Z}(U_{\pm}))=(\iota_{1}\check{Z}(U_{\pm}))^{\otimes n}$

Since the constant term of $\iota_{1}\check{Z}(U_{\pm})$ is non-zero (see [23]), that of $\iota_{n}(\check{Z}(U_{\pm}))$ is

also non-zero. Hence it is invertible. $\square $

$\Omega_{n}(M)$ has the following properties.

Proposition 6.18. For any positive integers $n_{1}$ and $n_{2}$ , we have

$\hat{\Delta}_{n_{1},n_{2}}(\Omega_{n_{1}+n_{2}}(M))=\Omega_{n_{1}}(M)\otimes\Omega_{n_{2}}(M)$ .
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Pmof. This is shown by (6.14) and the property that $\check{Z}(L)$ is group-like. $\square $

Proposition 6.19. Let $\Omega_{n}(M)^{(d)}$ be the degree $d$ part of $\Omega_{n}(M)$ . Then

$\Omega_{n}(M)^{(d)}=k^{n-d}\Omega_{d}(M)^{(d)}$ ,

where $k=\Omega_{1}(M)^{(0)}\in \mathbb{C}$ .

Pmof. Let $\hat{\epsilon}$ : $\mathcal{A}(\phi)\rightarrow \mathbb{C}$ be the map which picks up the degree $0$ part of an
element of $\mathcal{A}(\phi)$ . Since $(\hat{\epsilon}\otimes id)\circ\hat{\Delta}_{1,n-1}$ is equal to the projection

$\mathcal{A}(\phi)/D_{>n}\rightarrow \mathcal{A}(\phi)/D_{>n-1}$

we have

$(\hat{\epsilon}\otimes id)\circ\hat{\Delta}_{1,n-1}(\Omega_{n}(M))=\Omega_{n}(M)^{(n-1)}\in \mathcal{A}(\phi)/D_{>n-1}$ .

On the other hand, by Proposition 6.18, we have

$(\hat{\epsilon}\otimes id)\circ\hat{\Delta}_{1,n-1}(\Omega_{n}(M))=\hat{\epsilon}(\Omega_{1}(M))\otimes\Omega_{n-1}(M)\in \mathbb{C}\otimes \mathcal{A}(\phi)/D>n-1$ .

Comparing the above two formulas, we obtain

$k\Omega_{n-1}(M)=\Omega_{n}(M)^{(\leq n-1)}$ ,

since $k=\hat{\epsilon}(\Omega_{1}(M))$ by definition of $\hat{\epsilon}$ . By using the above formula repeatedly,

we obtain the required formula. $\square $

By Proposition 6.19, independent invariants obtained from the series $\Omega_{n}(M)$

are $\Omega_{n}(M)^{(n)}$ , noting that $\Omega_{n}(M)^{(<n)}$ is obtained from $\Omega_{n-1}(M)$ .

Definition 6.20. We define an invariant $\Omega(M)$ by

$\Omega(M)=1+\sum_{d=1}^{\infty}\Omega_{d}(M)^{(d)}\in \mathcal{A}(\phi)$ .

We call $\Omega(M)$ the universal perturbative invariant (or the $LMO$ invamant) of

$M$ . For a rational homology 3-sphere $M$ , we also define $\hat{\Omega}(M)$ by

$\hat{\Omega}(M)=1+\sum_{d=1}^{\infty}\frac{\Omega_{d}(M)^{(d)}}{|H_{1}(M;\mathbb{Z})|^{d}}\in \mathcal{A}(\phi)$ ,

where $|\cdot|$ denotes the order of the set.
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Example 6.21 ([27]). For the 3-manifold $M_{n,k}$ obtained from $S^{3}$ by integral

surgery along $(2, n)$ torus knot with $k$ framing, the universal perturbative in-

variant $\Omega(M_{n,k})$ is given by

$\Omega(M_{n,k})$ $=$ $\exp(’\iota^{\prime^{\prime^{\prime^{\prime^{\prime--}}\backslash _{\backslash _{\backslash }}}}}\backslash \backslash \backslash \backslash _{\sim\sim-}\prime^{\prime}’$

$+\frac{1}{2^{7}\cdot 3^{2}}(12n^{4}-12kn^{3}+3k^{2}n^{2}-15n^{2}+12kn-4k^{2}+4)^{\prime--------},’..’’\prime^{\prime^{\prime}}\backslash --------’\backslash \backslash ----.\backslash _{\backslash }\prime^{\prime}\backslash ’\backslash $,

$+$ (terms of degree $\geq 3$) $)$ .

In general $\Omega(M)$ can be expressed as the exponential of alinear sum of connected

chord diagrams; see [27].

7 Finite type invariants and the universal per-

turbative invariant

7.1 Finite type invariants of integral homology 3-spheres

Let $M$ be an oriented integral homology 3-sphere, that is, $H_{*}(M;\mathbb{Z})=H_{*}(S^{3}; \mathbb{Z})$ .
A framed link $\mathcal{L}=(L, f)$ is an unoriented link $L=\bigcup_{i=1}^{n}L_{i}$ in $M$ with framing
$f=$ $(f_{1}, f_{2}, \cdots , f_{n})$ , with $f_{i}\in \mathbb{Z}$ . We call $\mathcal{L}$ algebraically split if the linking
number of $L_{i}$ and $L_{j}$ is zero for each pair $(i, j)$ . We call $\mathcal{L}$ unit-framed if all
framings of $\mathcal{L}are\pm 1$ . By $M_{\mathcal{L}}$ we denote the closed oriented 3-manifold obtained
from $M$ by Dehn surgery along $\mathcal{L}$ with respect to the framing.

Remark 7.1. Let $M$ be an integral homology 3-sphere and $\mathcal{L}$ a framed link in
$M$ . Then the following two conditions are equivalent:

(1) $\mathcal{L}$ is algebraically split and unit-framed.

(2) $M_{\mathcal{L}^{\prime}}$ is an integral homology 3-sphere for any sublink $\mathcal{L}$
’ in $\mathcal{L}$ .

Pmof. If $\mathcal{L}$ is algebraically split and unit-framed, then we can easily verify the

condition (2). Conversely, suppose that the condition (2) holds. Then we have
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