
1 Preliminaries

1.1 Chord diagrams

In this section we introduce definitions and some properties of chord diagrams.

A uni-trivalent graph is a graph, every vertex of which is either univalent or

trivalent, where a vertex of a graph is univalent (resp. trivalent) if there is one
edge (resp. there are three edges) of the graph adjacent to the vertex. For a
compact oriented l-dimensional manifold $X$ (possibly with boundary), a chord

diagram on $X$ is the manifold $X$ together with a uni-trivalent graph whose
univalent vertices are on $X$ and whose trivalent vertices are vertex-oriented.

Here a trivalent vertex is vertex-oreented if a cyclic order of three edges around

the vertex is fixed. The degree of a chord diagram is half the number of univalent

and trivalent vertices of the chord diagram. In figures, we draw $X$ by solid

lines and the graph by dashed lines, and each vertex-orientation is fixed in

counterclockwise orientation in the plane. For definition of chord diagrams, see

also $[3, 27]$ .

Definition 1.1. Let $X$ be a compact oriented l-manifold. We define the vector

space $\mathcal{A}(X)$ by

$\mathcal{A}(X)=\mathbb{C}$ { $chord$ diagrams on $X$ } $/AS$ , IHX, STU (1.1)

where the AS, IHX and STU relations are shown in Figure 1.1.

Let X be the disjoint union of an interval and a circle. We show an example

of a chord diagram below.

7



$\backslash $

.
AS: $i\cdot:.\succ----.$, $=-$

$’.$

] $-----$ .
” .”

IHX: :: $-$

$=$

$\backslash \prime r\cdot-\cdot-\cdot:$: $\backslash ’’’’$

’

$-4-.$ .
$’$

; :.. $’’’--\backslash $

STU: $\rightarrow^{\cdot\cdot........\prime\prime\prime::}$ $=$ $\leftrightarrow^{::::..jj.}$ $\leftrightarrow^{\backslash ....\prime\prime\backslash \prime.\backslash \prime..\backslash :\backslash }$

Figure 1.1: Definition of the AS, IHX and STU relations

Further we show an example of an element in $\mathcal{A}(X)$ below.

Proposition 1.2. $\mathcal{A}(X)$ satisfies the following properties.

(1) The vertically connecting operation gives an algebra structure in $\mathcal{A}(\downarrow)$ .

Further the algebra is commutative.

(2) We have an isomorphism $\mathcal{A}(\downarrow)\rightarrow \mathcal{A}(S^{1})$ as a linear map, given by closing

the interval, $i.e.$ , by attaching the two end points of the interval to obtain

a circle.

(3) Fixing a component $C$ of $X$ , we have an action of $\mathcal{A}(S^{1})$ on $\mathcal{A}(X)$ , given

by taking connected sum of $S^{1}$ to $C$ .

For proof of this proposition, see [3]. Here we illustrate (1) of the proposition

by the following example. As shown in Figure 1.2 a dashed line with a univalent
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vertex on a solid interval can go through a chord diagram on the solid interval.

Since a chord diagram near a solid interval consists of a disjoint union of dashed

lines, two chord diagrams on a solid interval commutes together by the relation

in Figure 1.2 as shown in Figure 1.3.

$---’\backslash \vee^{\prime^{a_{\grave{i}}^{\prime_{\backslash }^{\backslash }}}}\backslash _{\backslash }$

,
$=$

$\backslash -;_{\backslash }--\backslash $

$---\prime^{-}\vee^{\prime^{a_{\grave{i}}}}$

$=$ $\ovalbox{\tt\small REJECT}_{--\vee}^{\backslash }-’\neg i_{-\backslash ---}^{\backslash }’\backslash _{\backslash }\prime^{\prime}\backslash $

$=\cdots=--’\backslash -’\grave{j}\backslash _{\backslash }’\prime^{\backslash }’’\backslash $

$+$ $--\backslash \wedge^{\prime}\backslash ^{-----}’’\wedge^{\backslash }’\backslash \grave{j}$

$+$ $-.--\vee^{\backslash }\backslash _{\backslash }’\grave{j}_{-\cdot---}’\grave{i}+$ $--\vee\backslash ’\prime i’\backslash _{\backslash }’\prime^{\backslash }’’\vee--$

Figure 1.2: A dashed line goes through a chord diagram on a solid interval.

The first and second equalities are derived from the STU and IHX relations

respectively.

$\ovalbox{\tt\small REJECT}_{--}----\backslash \prime^{\prime}--l----’\backslash _{\backslash }\backslash $ $=$ $\ovalbox{\tt\small REJECT}^{--}-\cdot’------’*-\backslash _{\backslash \prime,\prime}\backslash ’\prime\prime\prime^{\prime}\backslash _{\backslash }’\backslash \prime^{\prime}\backslash $ $=$ $\ovalbox{\tt\small REJECT}_{-\wedge}--.’’\backslash ’\backslash $

Figure 1.3: Two chord diagrams on a solid interval commute together. The

equalities are derived from the relation shown in Figure 1.2

Remark 1.3. Generally, the vertically connecting operation also gives an algebra
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structure in
$\mathcal{A}(U\cdot\sim_{n}\downarrow)$

. However it is non-commutative for $n>1$ , unlike the

case $n=1$ .

1.2 Quasi-tangles

We give a combinatorial construction of the modified Kontsevich invariant in

Section 2. The invariant will be defined for a quasi-tangle which is a tangle with

the following extra structure defined as follows.

Definition 1.4. A tangle is a compact l-manifold properly embedded in $\mathbb{R}\times$

$\mathbb{R}\times[0,1]$ such that the boundary of the embedded l-manifold is a discrete subset

of $\{0\}\times \mathbb{R}\times\{0,1\}$ . A quasi-tangle is a tangle with an order of connecting its

end points in each of two lines $\{0\}\times \mathbb{R}\times\{0,1\}$ as shown in the top and bottom

series of end points in Figure 1.4.

Figure 1.4: An example of a quasi-tangle

We show an example of a quasi-tangle in Figure 1.4.

Any quasi-tangle diagram can be decomposed into elementary quasi-tangle

diagrams given as below, after deforming the diagram by isotopy of the plane if

necessary. Here we mean by a diagmm the projective image of a tangle in the

plane.
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Definition 1.5. An elementary quasi-tangle diagram is one of the quasi-tangle

diagrams given in the following (1), (2) and (3).

(1) The trivial quasi-tangle diagrams. A trivial quasi-tangle diagram is a triv-

ial tangle diagram as a tangle diagram and has the same orders of con-
nection of upper and lower end points, where a trivial tangle diagram is a

tangle diagram given as $\{points\}\times[0,1]\subset \mathbb{R}\times[0,1],$ $i.e.$ , a tangle diagram

consisting only of vertical straight lines without crossings.

(2) The diagrams $(OO| (OO)| oo)|$ or $(OO| (OO)| 0)o|$ , where $oo|$ denotes a trivial

quasi-tangle. They are trivial tangles such that the orders of connections

are changed between both sides.

(3)
$(\cdot)\cup\cdot$

and
$(\cdot)\cap$.

We show an example of trivial quasi-tangles below.

$((] |\cdot))$ $|$

.
Further we show an example of (2) below.

$(|\cdot|\cdot)((\int/\cdot/\cdot|))(\cdot|\cdot))$

$((\cdot\cdot)((\cdot\cdot)\cdot))(\cdot\cdot)$

The following lemma can be obtained easily.

Lemma 1.6. Any quasi-tangle diagram, in particular link diagram, is isotopic

(as diagrams in the plane) to a union of elementary quasi-tangle diagrams ob-

tained by attaching them vertically along their end points and by taking disjoint

union of them horizontally.
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$\rightarrow$

Figure 1.5: A decomposition of a knot diagram into elementary quasi-tangle

diagrams

We call such expression of a quasi-tangle diagram by a union of elementary

diagrams a decomposition of a quasi-tangle diagrams into elementary diagrams.

We show an example of a decomposition of a knot diagram in Figure 1.5.

Moves for quasi-tangle diagrams with decompositions. There are many

ways to decompose a link diagram into quasi-tangle diagrams in general. We

introduce the following moves for letting the ways be related to each other.

There are the following three types for the moves.

Moves of type 1 are the following (1.2) to (1.6),

$=I_{(}^{\langle}II_{)}^{)}$ (1.2)
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$=$ (( $II_{)}^{)}I$ , (1.3)

$0$ $(0\langle oo))$
$o|$ $(0|/|(OO))$

$|$ $/||$ $0$ \langle \langle $OO$ ) $0$)

$(to\circ|o)0)oo|/oo|$

$((OO)|/0)|$ $0|$

$=$
$(\circ|t\circ\circ))//$ $0|$ (1.4)

$T$

trivial
quasi-tangle

diagram

trivial
quasi-tangle

diagram

$T$

$=$ $T$ $=$ for $T=(OO|\langle OO|, O)\circ|$ and $(O\circ|(OO)|oo|$

,

(1.5)

$(OO|, \circ O)|$ and
(

$O\circ|(OO)|oo|$

,
for $T=too|(O\circ|, O)\circ|$ and $(O\circ|(OO)|oo|$

,

(1.6)

where we call the move (1.4) the pentagon relation. We show an example of the

move (1.6) below.

$(|(t(\langle\langle\langle\langle|^{t}\iota))|)))))\iota))$ $=$ $((|(t\langle\langle\langle|^{t}\langle\iota)\iota)))))))\iota)$

Moves of type 2 are the following (1.7) to (1.11),

(1.5) for the other elementary quasi-tangle diagrams $T$ , (1.7)
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(1.6) for the other elementary quasi-tangle diagrams $T$ , (1.8)

(1.9)

(1.10)

(1.11)

We show an example of the move (1.8) below.

$|$

$((\cdot))\backslash /\backslash \cdot|$

.
$|$

$//\cdot|((\cdot)\cdot)$

$(]_{t}//))!$
$(!_{t}^{\backslash }/\backslash .))$ I

$((\cdot )\cdot)$ $=(\cdot(\cdot ))$

Remark 1.7. As for the latter three moves (1.9) to (1.11), we fix quasi-tangle

decompositions in both sides in any way. Note that all fixing are equivalent to

each other modulo moves of type 1.

Moves of type 3 are Reidemeister moves RI, RII and IUII; for example see

[5] for the definition of the moves.

Remark 1.8. The moves (1.10) and (1.11) are moves such that a vertical path

moves over a maximal critical point. We realize the moves such that a vertical

path moves over a minimal critical point by moves of types 1 and 2 as follows.

Theorem 1.9. A link diagram determines a link. This correspondence induces
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the following bijection,

{link diagrams with decompositions}/moves of types 1, 2 and 3

$=$ {links}/isotopy.

Outline of the proof. We show outline of the proof in the following three steps.

Stepl. We show

{link diagrams with decompositions}/moves of typel
(1.12)

$=$ {link diagrams}/restricted isotopy of $\mathbb{R}^{2}$ ,

where the isotopy in the right hand side is restricted such that the height func-

tion of $u^{l}s^{1}$ ,
$u^{\iota_{S^{1}}}\rightarrow \mathbb{R}^{2}\rightarrow \mathbb{R}$ ,

is preserved. Here the first map is an immersion of $u^{l}S^{1}$ expressing a link

diagram, and the second map is the projection to the height coordinate. The

formula (1.12) is reduced to the following formula,

{the trivial quasi-tangles with decompositions}/moves of typel

$=$ {the trivial quasi-tangles},

which is shown by elementary calculations.

Step2. The following formula holds

{link diagrams with decompositions}/moves of types 1 and 2
(1.13)

$=$ {link diagrams}/isotopy of $\mathbb{R}^{2}$ .

This equality is shown by (1.12) in Step 1 and results in [40].

Step 3. We obtain the required formula by (1.13) in Step 2 and Reidemeister’s

theorem, see [5]. $\square $

2 The modified Kontsevich invariant

2.1 Definition of the modified Kontsevich invariant

Let $L$ be an oriented framed link with $l$ components in $S^{3}$ . We fix a link diagram

of $L$ such that the framing of $L$ is expressed by the blackboard framing of the link
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