Inference based analyses of functional programs:
dead-code and strictness

Mario Coppo, Ferruccio Damiani and Paola Giannini
Dipartimento di Informatica, Universita di Torino,
Corso Svizzera 185, 10149 Torino (Italy),

Fax. (+39)-11-75.16.03, Tel. (4+39)-11-74.29.111,
E-mail: {coppo,damiani,giannini}@di.unito.it

Abstract

We present a simple framework for “non-standard type inference based”
analyses of functional programs and show how to apply it to dead-code and
strictness analyses. A key feature of this framework is that is based directly
on operational semantics. ‘

1 Introduction

In this paper the A-calculus (see [3, 22, 4]) is seen as a prototype functional pro-
gramming language (see [23] for a survey) rather than a formalism for representing
proofs as in constructive logic. This makes relevant peculiar aspects (as the evalu-
ation strategies) which are typical of this view.

The aim of this paper is to present the main concepts of the type inference
approach to program analysis and to illustrate it through a couple of relevant
examples (dead-code and strictness). We do this by introducing a simple framework
for defining formal systems for reasoning about properties of functional programs.
A number of program analyses useful in the optimization of functional programs
can be handled by instantiating our framework.

1.1 The type inference approach for reasoning about pro-
gram properties

The Curry-Howard isomorphism shows that the construction of a A-term M of a
given type A is equivalent to prove A as a theorem in a suitable (propositional)
logic. From the “\-calculus” point of view, having type A can be seen as a property
of the A-term M, that can be proved using the usual machinery of propositional
logic. The use of formal inference systems to prove program properties is also a
basic feature of Curry’s approach to typing lambda terms (see [4]), in which the

143

144 M. COPPO, F. DAMIANI, P. GIANNINI

inference system to assign types to terms is defined on the top of the type-free A-
calculus. In Curry’s approach different types can be assigned to the same A-term,
representing its different functional properties.

An essential feature of the inference approach is the existence, in many signif-
icant cases, of simple and (at least in the practical cases) efficient algorithms for
automatic type inference. The inference approach has proved to be very useful in
the definition of polymorphic type systems for programming languages. Starting
from ML ([31]) most of the modern functional programming languages incorporate
a polymorphic type system based on these ideas. In this paper we are interested
in types from a “programming” point of view, in which the A-terms are the basic
objects and types are seen as tools for explaining their behaviour.

More recently it has been observed that, also from a “programming” point of
view, the notion of type could be given a richer significance than the usual one,
in which types simply represent collections of object with an uniform behaviour
with respect to the basic ground domains. Indeed the usual inference rules for type
assignment can be seen as the basic inference rules to prove properties of A-terms,
and having a certain type is only the most general one. If we take a more refined
notion of “type” we can use the inference rules to prove more detailed properties.
For instance if we distinguish, in the set of integer numbers, the properties of being
an “even” or an “odd” number, we can try to prove if a given function which maps
integer numbers into integer numbers maps, for instance, even integer numbers
into odd ones. The successor, for instance, has this property. To prove properties
like these we have to add to the basic inference rules also rules which are more
specifically tailored to the properties we are interested in. In the case of even and
odd numbers it could be useful, for example, to have an axiom that says that the
property of being odd (or even) number implies that of being an integer number. So
if we know that the function F' = Az.x*2 maps integer numbers into even numbers
we should be able to deduce that F' maps also odd (or even) numbers into integer
numbers.

In this way we can get inference systems to prove program properties, most
of which are useful in the optimization of functional programming languages. To
this aim an essential requirement is the decidability and efficiency of the associated
decision procedure. One main concern of this paper is to present applications for
which a decision procedure exists and is feasible, even though we will not explicitly
address here this aspect.

The inference approach could be applied to untyped A-terms. However, the
untyped setting does not seem, the most interesting environment in which to de-
velop system for reasoning about programs. Indeed the structure of properties of
untyped languages is very liberal but sometimes excessively general. The inference
approach may, however, be developed for typed languages as well. In this case
properties are defined for terms of a given type. So we will not speak only of
terms of type “even” but rather of “even” terms of type int. We have to distin-
guish between “types” in the usual sense and “types” which represent properties
of terms of a given type (in the previous sense). To keep clear this distinction we
call non-standard types the second kind of types. This more stratified structure of

INFERENCE BASED ANALYSES OF FUNCTIONAL PROGRAMS 145

the inference systems has also the advantage that, if we start from a finite set of
non-standard types at the ground types! , the set of non-standard types represent-
ing properties of terms of each type are finite, making typechecking decidable (at
least in principle). Inference algorithms for these systems can be defined making
possible practical applications.

A formal system to prove program properties is formed by two sets of rules.
The basic assignment rules which are based on the structure of programs, A-terms
in our case, and the specific rules, which are determined by the properties we are
representing. These can be divided, in turn, into two sets: the rules which represent
the structure of the properties in themselves (for instance the property of “being
odd” implies that of “being an integer number”) and the rules that concern the
way in which properties are assigned to A-terms (for instance the axiom that the
successor function maps even numbers in odd ones). We formalize the first rules by
means of a formal inclusion relation (<) which represent the entailment structure
of properties.

The idea of considering inference systems as a tool to prove program properties
was introduced in the literature in [29] where a set of formal inference rules for
the analysis of strictness properties was given (see also [12] where this idea was
implicit). A first framework based on type inference for the proof of properties of
untyped A-calculus setting was given in [13]. For the simply typed A-calculus the
approach was pursued by a number of other authors, see for instance [25, 7, 51, 21,
48, 5, 33].

1.2 Type inference and abstract interpretation

A related approach for the investigation of program properties is based on ab-
stract interpretation. Abstract interpretation was first introduced for imperative
languages in [15] and then applied to functional languages by a number of authors,
see [34, 35, 11, 36, 2, 24, 16]. In this approach programs are interpreted in abstract
(usually finite) domains, instead of the standard denotational domains. Such ab-
stract domains highlight the properties that are considered and are related to the
standard denotational domains by suitable embedding-projection functions. The
detection of properties then is obtained by giving an abstract form of the program-
ming language constructors, and evaluating the meaning of a program over the
abstract finite domains. :

The abstract interpretation approach is related to the inference one, as it has
been shown, for instance, in [14]. In fact an inference system can be seen as a kind
of abstract interpretation. Similarly also abstract domains can be defined from
inference systems via the notion of filter models ([12], [13]).

An explicit connection between the abstract interpretation approach and the
type inference one is obtained by defining an inference system from the logical
presentation of some abstract domain, along the lines of Abramsky in [2]. This
approach has been followed by Jensen in [25] (see also Benton [7]) and subsequent

! We call ground the non-compound type of the language, like int (the type of integers) and
bool (the type of booleans).

146 M. COPPO, F. DAMIANI, P. GIANNINI

papers ([26, 27]) in which the logic of the abstract domains for strictness, introduced
in [11], is presented via a type inference system which is proved to be sound and
complete w.r.t. the abstract semantics. In our work we take a more direct approach:
we connect directly the type inference system to operationally based semantics,
namely the ground and the lazy observational equivalences, without the need of
passing through an abstract interpretation.

1.3 Static analysis of functional programs

Depending on the semantics of function application, functional languages can be
distinguished in two classes. Strict (or eager) languages, in which function applica-
tion has a call-by-value semantics (i.e. the actual parameter is evaluated when the
function is applied and the formal parameter is bound to that value). Non-strict
(or lazy) languages, in which function application has a call-by-name semantics
(i.e. the function’s formal parameter is bound to the unevaluated actual parameter
which is evaluated each time its value is required). For efficiency, application in
non-strict languages is usually implemented using call-by-need, which is the same
as call-by-name, except that after the first evaluation of the actual parameter its
value is retained and used whenever the formal parameter is subsequently required.
The evaluation of an application by call-by-value or call-by-need requires usually
more machinery (and then more time) than the evaluation of the application by
call-by-value.

According to the above definition, Scheme [1], ML [31] and Caml [30] are eager,
whereas Miranda [50], Haskell [40] and Clean [43, 20] are lazy.

One of the main drawbacks of the functional paradigm is that the efficiency
is often rather poor. Modern compilers for functional programming languages use
various kinds of transformations to improve the efficiency of the code produced.
Such transformations are based on static analyses of programs and must be proved
to preserve their semantics. It is of practical interest, then, to find reliable methods
for detecting properties useful to perform such optimizations. Various kinds of
static analysis for functional languages have been proposed in literature.

Dead-code analysis aims to determine the parts of a program that are useless
for the computation of the value of a program. This information allows the simpli-
fication of programs by removing useless parts (which are called dead-code). For
example in the evaluation of an expression (Az'".3)P the value of P is discarded
in the computation of the value of the expression (which is the integer number 3)
and so its evaluation is useless. The expression P would be evaluated anyway in
an eager language, and this can result is a considerable waste of time. P would
not be evaluated, instead, in a lazy language, however the size of P could be big
and its storage could determine a waste of time and memory. In both cases if we
replace P with any constant d (of type int) which does not require evaluation we
get a simpler expression ((Az'".3)d) which is equivalent to the original one (in the
sense that yields the same value?). In this case it is also possible to perform a

2 In an eager language this transformation could change the termination behaviour of the
program: if the evaluation of P does not terminate then the original program diverges while the

INFERENCE BASED ANALYSES OF FUNCTIONAL PROGRAMS 147

more substantial simplification by removing both the abstraction of the variable
z™ on the term 3 which does not contain occurrences of it and the subsequent
application of the resulting term to P, since the whole expression is equivalent to
3.

The information about dead-code can be propagated. We will consider a A-
calculus with pairs (,) and projections proj; and proj,. Let M be the term

Az.proj, (P, Q)N

for some term P,), and N. Since the projection proj, returns the first component
of the pair the term @ is dead code. Moreover, assume that P does not contain
any occurrence of z, in this case also /V is not relevant to the computation of the
final result. So M behaves like the term P, which is of course simpler.

Dead-code analysis has been mainly studied in the context of logical frameworks,
like Coq [6] (see [41] for a short survey on logical frameworks), to remove redundant
code from functional programs extracted from formal proofs (see [39, 38] for an in-
troduction to the subject). In fact, programs extracted from proofs usually contain
large parts that are useless for the computation of the final result, i.e. dead-code,
and some sort of simplification is mandatory. Various simplification techniques
have been developed in the last few years, see for instance [49, 8, 10, 9, 46, 19].
Dead-code can be found also in programs in which general-purpose functions, taken
from standard libraries, are used in specialized contexts.

Strictness analysis aims to determine whether, in a lazy language, a function
is strict in its arguments. A function expecting n arguments is strict in its i-
th argument if diverges whenever its i-th argument (actual parameter) diverges,
independently of the value of all other parameters. For example Az.\y.z + vy, seen
as a function of z and y is strict in both its first and second arguments while
AfAy.(f y) is strict in its first argument but not in the second one. In fact if f is
replaced by a function that does not evaluate its argument (like Ax.3) the value of
the second argument is never used for the computation of the final result which is
3, which can be computed even if the second argument is undefined.

If a function is strict in one of its arguments then, for this argument, we can
replace a call-by-need with a the more efficient call-by-value without affecting the
result of the function. Other optimizations (like, for instance, the parallel evalua-
tion of a function and its argument) are also possible for strict functions.

Other program analyses which can be expressed in our framework but which
are not addressed in this paper are, for instance, totality analysis, which aims
to determine whether the evaluation of an expression terminates (i.e. whether an
expression has a weak head normal form) and binding-time analysis, which aims
to determine the parts of a program that can be evaluated at compile-time.

simplified program could converge. However, when considering terminating programs (as well-
written pure functional programs should be), the simplification preserves also the termination
behaviour of the program. '

148 M. COPPO, F. DAMIANI, P. GIANNINI

1.4 About this paper

The functional language considered in this paper is a non-strict language, called
PCFP, which is an extension of PCF(see [44]). The non-standard type inference
framework that we propose exploits features common to different static analyses of
functional languages. It provides a “core” system for type syntax, entailment ad
assignment rules whose semantics is given in a term model of the language based
on some operational equivalence. The particular equivalence considered as well as
the entailment and inference rules can be tuned to focus on some specific analysis.
Section 2 introduces the programming language we are dealing with, its op-
erational semantics, and some term models based on this semantics. Section 3
introduces our non-standard type inference framework, and Section 4 describes
how to instantiate the framework to a particular analysis. In Sections 5 and 6 the
framework is instantiated to dead-code and strictness analyses, respectively.

2 The language PCFP

In this section we introduce a simple functional programming language (basically
the simply typed A-calculus with cartesian product, if-then-else, fixpoint, and arith-
metic constants) and its operational (call-by-name) semantics. We use the acronym
PCFP for this language, standing for “Programming Computable Function with
Pairs”, since it is the dialect of the language PCF [44] obtained by adding a type
constructor for pairs.

For a more comprehensive presentation of the material in Sections 2.1 and 2.2
see [42], where the language considered includes also lazy lists.

2.1 PCFP syntax and evaluation rules

The set of PCFP types is defined assuming as ground types int and bool: the set
of natural numbers and the set of booleans. Types are ranged over by p, o, 7.

Definition 2.1 (PCFP types) The language of types (T) is defined by the fol-
lowing grammar: p =1 | p — p| p X p, where ¢ € {int, bool}.

PCFP terms are defined from a set of typed term constants

,C — { Omt, lmt, 2|nt’ ,SUCCmt_Hnt, pred'" n , +|nt><|nt—->|nt’ _|nt><|nt—>|nt’

trueb°°', falseb°°', notbool—)bool, and bOOleOOl—%bOOI, Orboolxbool—-)bool

__intxXint—bool }
- b

bl

(ranged over by c), and a set V of typed term variables (ranged over by z°,y7,...).
The type of a constant ¢ is denoted by T(c). The choice of the term constants
is not critical. Other operators on integer and booleans could be added without
problems. PCFP terms, ranged over by M, N, ..., are defined as follows.

Definition 2.2 (PCFP terms) We write - M : p, and say that M is a term
of type p, if = M : p is derivable by the rules in Fig. 1.

INFERENCE BASED ANALYSES OF FUNCTIONAL PROGRAMS 149

(Var) b 2?1 p (Con) k¢ : p
=D Fxriris s (»E) RMipDe TNip
0 s R R e (1)
F) Fiarif 7 1) R T g

Figure 1: Rules for PCFP term formation (system k)

Notation 2.3 1. According to Definition 2.2, in a PCFP term M the types of
variables and constants are explicitly mentioned. In the following we often
omit to write types which are clear from the context.

2. The finite set of the free variables of a term M, denoted by FV (M), is defined
in the standard way. In the following we take PCFP terms to be a-equivalence
classes of syntaz tree, i.e. we will identify terms modulo renaming of the bound
variables.

3. We will often use, as syntactic sugar, the infizr notation for the binary oper-
ators of the language, e.g. we will write “3 + 5” instead of “+(3,5)”.

4. As usual a substitution is a finite function mapping term variables to terms,
denoted by [z := Ni,...,z, := N,] ([T :=]\7] for short), which respects the
types, i.e. each x* is substituted by a term N; of the same type. Substitu-
tion acts on free variables, the renaming of the bound variables is implicitly

assumed.

Let At be the set of PCFP terms, i.e. Ar = {M | k1 M : p for some type p},
and A% be the set of the closed terms, i.e. A = {M | M € At and FV(M) = 0}.
The values of the terms in A% are defined via a standard call-by-name operational
semantics (see [45, 28]) described by judgments of the form M || K, where M is
a closed term and K is a closed term in weak head normal form (w.h.n.f.), i.e.
K € V¢, where

Vi =KU{A?.N | Az?.N € AS} U {{(My, My) | (M, My) € AS}.

The meaning of a functional constant c is given by a set mean(C) of pairs, i.e.
if (P1,P;) € mean(C) then CP;, evaluates to P,. For example (true,false) €
mean(not) and ({1, 3),4) € mean(+).

Definition 2.4 (Value of a term) Let M € AS. We write M || K, and say that
M evaluates to K, if this statement is derivable by using the rules in Fig. 2.

150 M. COPPO, F. DAMIANI, P. GIANNINI

KeV
(CAN) 55 F

(APP) My)\x.]?\ﬂé’hx}:(: Ny K

(APP;) MACo i\’cf €1 (¢, cz) € mean(c)

(APP,) Myc NY <N11{/IA][\§>U C13V1 Yo Nlc ({c1,c2),c3) € mean(c)

(RO MM M VK ;¢ (1,2)

[z :=fixe. M] | K
fixe. M | K

FIx) 4

(IFy) N | true M, | K (IF,) N | false M, | K
1) ¥ Nthen M else M; [K 2) W Nthen M else M, J K

Figure 2: “Natural semantics” evaluation rules

Let M |}, to be read “M is convergent”, mean that, for some K, M || K, and let
M 1}, to be read “M is divergent”, mean that, for no K, M | K. It is easy to
see that, for any types p,o € T, fixz”.x { (fixxz?.x is the typical divergent term of
type p) and that (fixz?~7.z)P 1} (for every closed term P of type p). Moreover,
also proj, (fixx?>*7.z) f (for ¢ € {1,2}).

2.2 Contextual equivalences

Following [42] we introduce two congruences on PCFP terms. The first is the con-
gruence on terms induced by the contextual preorder that compares the behaviour
of terms just at the ground type int (ground contextual equivalence), while the sec-
ond is the one induced by the contextual preorder that compares the behavior of
terms at every type (lazy contextual equivalence).

Let (C[]?)° denote a typed context of type o with a hole of type p in it.

Definition 2.5 (Ground contextual equivalence) Let M and N be terms of
type p. Define M <% N whenever, for all closed contexts (C[7)™, if C[M]

obs

and C[N] are closed terms, then C{M] |} implies C[N] §}. The relation <80 s the
ground contextual preorder and the equivalence induced by jﬁgg, denoted by :ﬁgg,

is the ground observational equivalence.

In [42] a co-inductive characterization of ground contextual equivalence in terms
of bisimulation is given.

INFERENCE BASED ANALYSES OF FUNCTIONAL PROGRAMS 151

(bis 1a) (M Bpoot N and M | b) implies N | b
(bis 1b) (M Bpoot N and N | b) implies M | b
(bis 2a) (M Bine N and M | n) implies N { n
(bis 2b) (M Bint N and N { n) implies M { n
(bis 3) M B, ,, N implies, for all P such that ¢ P :p, MP B, NP
(bis 4) M B,xo N implies
(proj, (M) B, proj; (N) and proj,(M) B, projs(N))

Figure 3: Bisimulation conditions for PCFP

We give here the definition of bisimulation for PCFP, and state the main result
presented in [42]: Theorem 2.7. Such theorem, relating ground contextual equiv-
alence and bisimilarity, is used in this paper to prove some equivalences between
terms.

Definition 2.6 A PCFP bisimulation B is a type indexed family of relations on
closed terms,

B,C{{({M,N)| bx M : p,;bx N : pand FV(M)UFV(N) = 0}
(p € T), satisfying the conditions in Fig. 3. PCFP bisimilarity is the largest
bisimulation and will be denoted by ~.

The relation ~ can be extended to open terms by defining M ~ N if for all
substitutions [z; := Ny,...,z, := N,] such that {z,---,z,} 2 FV(M)UFV(N)
and Ulgn FV(N,) =0

M[z; := Ny,...,2n := Np] =~ N[z1 := Ny, ..., 2, := N,].

Theorem 2.7 (Operational extensionality for PCFP) Ground contextual equiv-
alence coincides with bisimilarity. That is, let M and N be terms of the same type:

M =84 N if and only if M ~ N.

In the following we list some properties of ~] nd which are used in the rest of this
paper, and can be derived from Theorem 2. 7 In particular property 1 says that
the ground observational equivalence is extensional.

1. For all M and N such that bx M :p— o and br N : p— o, M =59 N if
and only if for all P such that -t P: p, MP :EES NP, implies M _ggg N.

2. For alldM and N such that Fr M : p and b N : p, if M {} and N 1, then
M ~8 N,

~—obs

3. Az.M)N =& M[z := N].

152 M. COPPO, F. DAMIANI, P. GIANNINI

4. proj,(My, My) ~52% M (for i € {1,2}).

——obs

From the previous properties we derive that Ay'™.fixz™™.z ~0bs fix zint=int > In-

deed for all P, (A\y'" .fixz™.z)P f since from 3. _()\y_i"t.flx "t .z) P ~§bg fix z'".x.
Moreover since fix 2"t > 4 then for all P, (fix 2" 2) P {}. Therefore, from 2.,

for all P, (\y™.fixz™.z)P ~&89 (fix 2™~>" 2)P. From 1. so we can derive that

A G T
Ayt fix 'tz ~BRC fix 2T 2.

We also define a contextual equivalence that observes terms at all types.

Definition 2.8 (Lazy contextual equivalence) Let M and N be terms of type
p. Define M -<1*"zy N whenever, for all type o and for all closed contexts (C[]°)°,
if C[M] and C[N] are closed terms, then C[M] | implies C[N] J. The relation <32
is the lazy contextual preorder and the equivalence induced by <laz3 denoted by

~lazy

~ oY, is the lazy observational equivalence.

It is immediate to see that, M ~2% N implies M 25'&2 N. The reverse is

obs
not true. For instance as previously shown Ay™.fix 2™ .z ~8pd fix 2=t 5 while
Ayt fix itz ;élalfsy fix 2"t 5 gsince Ayt fix 2"tz | and fix Zint=int 5 4. This ex-
ample shows that property 1 above does not hold for Nob Properties 2., 3., and

4., instead, holds also for ~3%.

2.3 Closed term models of PCFP

In this section we introduce the term models induced by the ground and lazy
equivalences. We also introduce a richer term model containing a “convergence to
w.h.n.f.” test, isdef. The entailment relation between non-standard types presented
in Section 6.2 is complete w.r.t. this extended model.

2.3.1 The models M8 and M'2%Y

The closed term model M8 of PCFP is defined by interpreting each type p as the
set of the equivalence classes of the relation :5';): on the closed terms of type p in
AS.. Let I(p)™** denote the interpretation of type p in this model, and let [M M

denote the equivalence class of the closed term M. The preorder <&} nd

—obs

is naturally
extended to a partial order between equivalence classes by defining [M]Mg"cl -<§ES
[NV]Mgnd if M jggg N. For every type p, [fixz” .:E]Mgnd (the equivalence class of the
canonical divergent element, which represents the notion of endless computation),
is the least element, w.r.t. <§§d, of I(p)Mg"d. An environment is a mapping e :
V = Uer I(,o)Mgnd which respects types, i.e. a mapping such that, for all z?,
e(z?f) € I(p)Mg"d. The interpretation of a term Al in an environment e is defined
in a standard way by:

[MIM™ = [Mzy = Ny, ..., 20 i= NP,

INFERENCE BASED ANALYSES OF FUNCTIONAL PROGRAMS 153

where {z),...,2,} = FV(M) and [NJM*" = e(z;) (1 < 1 < n). It is worth

nd n
mentioning that for all environment e, if Fp M : p then [[M]]é\/1g € I(p)M*™.
The closed term model M'** of PCFP is defined similarly by interpreting each
type p as the set of the equivalence classes of the relation :L‘fsy on the closed terms

of type p in A%. Note that M8"d is an extensional model, while M!2%¥ is not.

1
2.3.2 The model M.

To define this model of PCFP, we will refer to a set of terms extended by a new
program constructor for testing whether a term has a w.h.n.f. (isdef). The resulting
set of terms is denoted by Alsdef.

Extended terms. The term formation rule for the new constructor is the follow-
ing:
‘ FM:p
(Isdef) F isdef (M) : bool

and the evaluation rule is as follows:

N

(ISDEF) isdef(N) | true

The constructor isdef is just the extension of the isfn constructor of [42] page 280
to consider ground types and pairs. Note that (for non-ground types) isdef is not
internally definable in PCFP, but it could be easily added.

The extended term model. The closed term model M}:dzj; of PCFP is defined in
the obvious way by interpreting each type p as the set of the equivalence classes of
the relation ~2% on the closed terms of type p in AlS%f. Note that for the language
of extended terms, Akdef, ~** coincides with ~. The constructor isdef is just
a tool to make termination at higher types observable at the ground level.

3 A framework for non-standard type inference

In this section we present a simple framework for “non-standard type inference
based” analyses of typed functional programs. The framework exploits common
features of various static analyses by providing a “core” for non-standard type
syntax, entailment, and assignment rules. A key feature of this framework is that
it is based directly on operational semantics.

3.1 Non-standard types

For every PCFP type p € T we consider a finite non-empty set L(p) of non-standard
types (ns-types for short) expressing properties of terms of type p. Like “standard”
types, ns-types are build from a set of basic ns-types (expressing “primitive” prop-
erties of values of type p). The properties expressed by basic ns-types are lifted at

154 M. COPPO, F. DAMIANI, P. GIANNINI

¢ €B ¢ €L Y € L(o ¢ € L(px ¢2 € L(p2
® SELE O S es g BENE

Figure 4: “Core” non-standard types formation rules

higher types, following the type structure of the language, by the “—” and “x”
constructors. For simplicity we do not do any formal distinction between type and
ns-type constructors.

3.1.1 Syntax

For every type p € T, let B(p) be a finite set of basic ns-types (or basic properties)
for type p. The sets B(p) depend on the particular analysis considered, however,
in any case we require that

e for every PCFP ground type ¢ (i.e. for the ground types int and bool) there
is a basic property T* in B(¢).

The set of ns-types for p L(p) is defined by adding to the set B(p) of basic ns-types
for p the structural ns-types defined according to the structure of p as shown in
Fig. 4. Note that owing to the above condition L(p) is not empty, for every type
p. Let L = UyerL(p).

Definition 3.1 For every ns-type ¢ € L(p), p is called the underlying type of ¢
and it will be denoted by €(¢).

The underlying type of a given ns-type ¢ is often understood. To simplify notations
we will omit explicit mentions of underlying types (for instance the decorations of
T) except when these are not immediately clear from the context.

3.1.2 Semantics

For all the analyses considered in this paper the semantics of ns-types will be given
according to the following principles.

Take a model M of the basic language (see e.g. [32] Section 4.5, for a general
definition of model) which associates to any type p a suitable domain A°. Non-
standard types in L(p) are intended to represent properties of elements of A?. This
naturally suggests the interpretation of ns-types as subsets of A?. We take however
a more general approach (we will see soon a justification for that) and interpret
ns-types in L(p) as partial equivalence relations (p.e.r.s) over A”.

A partial equivalence relation B over a set A is a binary relation which is
symmetric and transitive. The domain of B is {z | (z,y) € B for some y}. (Note
that B is reflexive on its domain.)

Considering p.e.r.s instead of subsets makes possible to say, in addition to which
elements have a given property (the elements that are in the domain of the p.e.r.),

INFERENCE BASED ANALYSES OF FUNCTIONAL PROGRAMS 155

[o]™ = Py(p)M, if ¢ € B(p)

[6 = 9]™ = {(MM[N]M) |
V([PIM, [QIM) € [o1M.(IMPIM, INQIM) € [}

[f1 x @] = (MM, [N]M) |
Vi e {1,2}. ([proj; MM, [proj; N]M) € [¢:]™}

Figure 5: P.e.r. semantics of “core” non-standard types

also which elements are indistinguishable w.r.t. the property (the elements in the
same equivalence class). The interpretation of ns-types as subsets of the underlying
domain will be considered as a particular case of the p.e.r. interpretation in which
we are only interested in the elements satisfying a given property.

Since in this paper we are interested in the investigation of program properties
in an operational settings, we will consider only closed term models induced by an
operational equivalence between terms (which varies according to the considered
properties). So in the following definition we assume that M is a term model,
whose elements are equivalence classes of terms w.r.t. the considered operational
equivalence.

Given a set A let p.e.r.(A) = {B| BC A x A and B is a p.er.}. The interpre-
tation of the basic ns-types of underlying type p is given by a family of functions
(indexed over types):

P,(-)™:B(p) = p.er.(I(p)™)

which associates to each basic type in B(p) a non-empty p.e.r. over I(p)™, the
interpretation of type p in the model M. For all ground type ¢ we require that

P (THOM =1()M x I()™,

i.e. the ns-type T* is always interpreted as the trivial p.e.r. over I(¢)™, representing
the property that is true for all values of type ¢.

The interpretation of ns-types is inductively defined from the interpretation of
the basic ns-types in B(p) according to the set of clauses given in Fig. 5, which
specify the semantics of the basic ns-types and of the ns-type constructors “—”
and “x”. The interpretations of the “—” and “x” ns-type constructors are as in
standard type inference systems ([47]). In particular the interpretation of the “—”
ns-type constructor exhibits the well known monotonic-antimonotonic behaviour.

It is easy to see by induction on types that the interpretation [¢]™ of each
ns-type ¢ is still a non empty p.e.r. over its underlying domain.

Definition 3.2 Let Lt be the subset of the ns-types defined by the following clauses:

o T* € L, for all ground types ¢

156 M. COPPO, F. DAMIANI, P. GIANNINI

e p oY €Ly, forpeL and Y € Lt
o ¢1 X ¢2 € L, for ¢1,¢2 € L.

We can easily prove that the interpretation of all ns-types ¢ belonging to Lt is
I(e(p))M x I(e())M (i.e. is trivial). Also the reverse implication is true, provided
that to no other basic ns-type is explicitly given the trivial interpretation.

Proposition 3.3 1. If ¢ € L1 then [¢]™ = I(e(¢))™ x I(e())M.

2. Assume that, for all basic ns-types ¢ different from T¢, [¢]M # I(e(¢))M x
I(e(¢))™. Then [¢]M = I(e(¢))M x L(e(#))™ implies ¢ € L.

Proof. 1. Immediate from the semantics.

2. Let [o]™ = I(e(¢))M x I(e(¢))™. The proof is by structural induction on
¢ € L. The case ¢ € B(p), for some p € T, is immediate.

For ¢ = ¢, — ¢o, assume that ¢; — ¢ € Lv. Then ¢2 ¢ Lt and so, by
induction hypothesis there are ([P]™,[Q]™) € I(e(¢2))™M x I(e(¢2))™ such that
([PIM, [Q™) & [#2]™'. But then, since [¢1]* # 0, we have that

(A<D PIM 220 QIM) & [¢1 — 2]

where z does not occur free in either P or @), contradicting the hypothesis.
For ¢ = ¢1 X ¢, the proof is similar. O

Non-standard types in Lt represent then properties true for all terms of their
underlying types. Such types are very useful from a technical point of view.

In some analysis all the basic properties are interpreted as p.e.r.s consisting of
exactly one equivalence class. In this case we have that every non-standard type
is interpreted as a p.e.r. consisting of exactly one equivalence class. We can then
replace each p.e.r. by the subset corresponding to its equivalence class and switch
to the (simpler) set semantics defined according to the clauses in Fig. 6, where the
interpretation of each basic ns-type ¢ € B(p), is given by a family of functions
S(—)Mp (indexed over types p) such that:

Sp()™ = {[MIM | (MM, [M]M) € P(9)M) C T(p)™

Note that, in this case, we have that, for all ground type ¢, [T'JM = S(TH)M =
I(t)™. It is easy to see that a property similar to that stated in Proposition 3.3
holds for the set semantics of ns-types as well.

3.2 Entailment rules

The entailment relation between non-standard types (which represents a logical
implication between properties) models the set-theoretic inclusion between their
interpretations.

For each type p we define a formal relation <, between ns-types in L(p) which
represent inclusion between ns-types of underlying type p. The formal judgements,

INFERENCE BASED ANALYSES OF FUNCTIONAL PROGRAMS 157

[#]M = S,()M, if ¢ € B(p)
[¢ = wI™ = {[MM|V[PIM € [¢]M.[MPIM € [v]M}
[61 x 2]M = {[MIM|Vie {1,2}. [proj; MM € [¢:]M}

Figure 6: Set semantics of “core” non-standard types

< < < <
) BSPLESE 0SSR Res

Figure 7: “Core” entailment rules for non-standard types

of the shape ¢ < v, are derivable by a set of entailment rules. We will always
omit the subscript p in <,, since only ns-types of the same underlying type can
be compared and then p is always understood. The basic rules for entailment are
given in Fig. 7. These rules include reflectivity, transitivity, the basic rules for the
“—=” and “x” PCFP type constructors and a rule to represent the properties of
the “trivial” basic ns-types in L+. The intuition behind the entailment relation <
is that it corresponds to loss of information, i.e., it represents a logical implication
between properties: ¢; < ¢ means that ¢, is implied by ¢;, so it cannot contain
more information than ¢,. Note the monotonic-antimonotonic behaviour of the
arrow, typical of type inference systems. To these rules can be added other axiom
schemes to reflect the meaning of specific basic properties. By = we denote the
equivalence relation induced by <.

As usual we say that the non-standard type entailment relation < is sound
w.r.t. the interpretation [-]J™ if, for every ¢,v € L,

¢ < ¢ implies [¢]" C [¢]",
and complete w.r.t. the interpretation [-]™ if, for every ¢, € L,
[¢1™ C [¥]" implies ¢ < 3.

It is just routine to prove a general soundness result for the core inclusion rela-
tion, saying that if ¢ < ¢ holds then [¢]™ C [¢]M™ for all models and for all
possible interpretations of basic ns-types. We do not do that since we are inter-
ested in soundness and completeness for the specific domains and inclusion axioms
introduced in the next sections.

158 M. COPPO, F. DAMIANI, P. GIANNINI

S :?}S s
(Var) S,z: ¢ F z: ¢ (Con) gf—f(a
D sy (~ B) BT SRl
) Bt g e B Srpenire t€ 12

Figure 8: “Core” non-standard type assignment rules

3.3 Assignment rules

Non-standard types are assigned to terms by a set of inference rules.

If z# is a term variable of type p an assumption for z” is an expression of the
shape z? : ¢ , or x : ¢ for short, where €¢(¢) = p. A basis is a set £ of non-standard
type assumptions for term variables. X,z : ¢ denotes the basis ¥ U {z : 1} where
it is assumed that z does not appear in X.

For each constant c it is specified a finite non empty set L(c) of non-standard
types for c. The set L(c) is such that every property that we want to derive for ¢
is entailed by a property in L(c). That is, if ¢ is a property of ¢ for some 3 € L(c),
Y < ¢. Of course, for each ¢ € L(c), €(¢) = T(c). The set L(c) is called the set of
minimal non-standard types for c.

A non-standard typing statement is an expression ¥ - M : ¢ where M is a
term of type €(¢) and ¥ is a basis containing an assumption for each free variable
of M. We write ¥ - M : ¢ to mean that this judgement can be derived by a set of
assignment rules including the ones in Fig. 8, which represent the “core” ns-type
assignment rules which are common to all analyses. They include

e rules for the basic program constructs variable, constant, A-abstraction, ap-
plication, pair and projection,

e a rule allowing the use of the entailment relation.

In a particular analysis other rules are added to those of Fig. 8 to take into
account more specific properties. In any system there are, for instance, rules for
the if and fix program constructors. General rules for if and fix constructors could
be given but they would be too weak to be interesting. More interesting rules for
these constructors can be given under specific interpretations.

Definition 3.4 1. Two environments e, es are X-related if and only if, for all

z:9 €L, (e1(z),ex(x)) € [¥]M.

INFERENCE BASED ANALYSES OF FUNCTIONAL PROGRAMS 159

2. The ns-type assignment b is sound w.r.t. the interpretation [-J™ if, for all
e1, €2, if e and ey are X-related, then

Sk M : ¢ implies ([M], [M]) € [¢]™.

It is easy to prove that the assignment relation defined by the rules in Fig. 8 is
sound with respect to any model M and for any interpretation of the basic ns-
types. We do not state this result formally here since we are more interested in
proving them for particular systems which include specific rules.

4 Instantiating the framework

To instantiate the framework described in Section 3 to a particular analysis we
have to provide the following.

1. A specific term model defined via some operational program equivalence
which include obviously B-convertibility (like M#&2d AM!22Y in Section 2.3).

2. For every PCFP type p € T, the set of basic ns-types B(p) of underlying
type p. Since T* € B(¢), for ¢ € {int,bool} we will specify only the other
ns-types in B(¢).

3. The interpretation of the basic ns-types, given via the function P,(-)* map-
ping the basic ns-types in B(p) to p.e.r.s over I{p)™.

4. The entailment rules for the basic properties (to be added to the rules in
Fig. 7). These rules must obviously be sound with respect to the given
semantics.

5. For each PCFP constant c¢ the set of minimal non-standard types for ¢, L(c).

6. The additional assignment rules (to be added to the rules in Fig. 8) to take
into account specific properties of the considered interpretation. Also in this
case the new rules must be sound with respect to the considered semantics.

In the rest of this paper we show how the framework can be instantiated to dead-
code and strictness analyses.

5 Dead-code analysis

We now consider a dead-code analysis w.r.t. ground contextual equivalence, i.e.
an analysis such that, if a subterm N of a PCFP term M is proved to be useless
(according to the analysis), then M is ground observational equivalent to the term
obtained from M by replacing the useless subterm N with any term N’ of the same
type.

Considering the lazy contextual equivalence leads to the same entailment rules
for properties and the inference rules for terms.

160 M. COPPO, F. DAMIANI, P. GIANNINI

5.1 Dead-code types
5.1.1 Syntax

For every ground type ¢ € {int, bool}, the set of the basic properties is B(:) = {6*},
while, for every non-ground type p € T — {int,bool}, we have B4(p) = 0. The
corresponding set of non-standard types, called dead-code types (d-types for short),
is denoted by L9.

5.1.2 Semantics

Notation 5.1 For every type p € T, let A, be the diagonal p.e.r. over I(p)Mgnd,

i.e.

A, = (MM, M) | MM € 1(p) M)

For every ¢ € {int,bool}, let P((S‘)Mg'nd =A,.

This semantics says that, for every ¢ € {int,bool}, §* characterizes terms whose
values have a precise identity (“useful” terms), since their interpretation codifies
the fact that an occurrence of a term having this non-standard type is allowed to
be replaced only with an observational equivalent term. In the context of dead-
code analysis T* characterizes terms whose values do not have a precise identity
(“useless” terms), since their interpretation codifies the fact that an occurrence of
a term having this non-standard type is allowed to be replaced with any term of
the same type. These properties are propagated to higher types. For instance a
function F of type int — int which has the ns-types 6™ — T'" or T'"* — Ti" (which
are indeed equivalent) yields a useless result whenever applied to any argument,
and is so itself dead-code. To detect the dead code in a given term M we will
assume that M is a useful term and try to assign the maximum amount of T’s to
its subterms (i.e. to detect as many useless subterms as possible).

Definition 5.2 1. For every type p, let 6(p) be the d-type obtained by replacing
each occurrence of any ground type ¢ by 6*, and similarly let T (p) be the d-type
obtained by replacing each occurrence of any ground type ¢ by T*.

2. Let LY = {8(p) | p € T} be the subset of the d-types containing only §’s.
Proposition 5.3 For all p € T, [6(p)] = A,.

Proof. By induction on p € T. The case p € {int,bool} is trivial.
Let p = p; = p2. By induction hypothesis both [6(p1)] = A,, and [§(p2)] =
A,,. By definition of §(p1 — p2) = 6(p1) = d(p2) we have that

() {[P],[Q]) € [6(p1 — p2)] if and only if, for all M and N such that ([M], [N]) €
[6(p1)], ([P M],[Q N]) € [6(p2)]-

We prove the result by showing that

P ~8? Q <= ([P],[Q]) € [6(pr — p2)].

INFERENCE BASED ANALYSES OF FUNCTIONAL PROGRAMS 161

Let P ~89 Q. For all M and N such that ([M],[N]) € [6(p1)], by induction
hypothesis M :ggg N, and so PM ziﬁg @ N. Again by induction hypothesis

([P M],[Q NT]) € [6(p2)], and by (%) ([P],[Q]) € [6(p1 — p2)]-
Let P;égndQ then (by Theorem 2.7 of Section 2) P # @), so there would be an

obs

M such that PM % Q M and therefore P M ;ﬁﬁggQM (again by Theorem 2.7).
So (by induction hypothesis) ([P M],[Q N]) & [6(p2)] and therefore (from (x))
([P],[Q]) & [6(p1 = p2)]- The case p = p; X ps is similar. a

Also the reverse implication holds, i.e. we have that [¢] = A.4) implies that

¢ € LY. This can be be proved using Theorem 5.5.

5.2 Entailment rules

In the case of dead-code analysis the ns-type entailment relation is completely
represented by the rules of Fig. 7. In fact we can always take any piece of code
(also a useful one) and mark it as useless (rule (T)). No other specific axiom is
required, in this case, except the basic rules.

Definition 5.4 (Entailment relation for dead-code types) Let¢,1 € L4, We
write ¢ <q Y to mean that ¢ < ¢ is derivable by using the rules in Fig. 7. By =4
we denote the equivalence relation induced by <g4.

The <4 entailment relation between d-types is sound and complete w.r.t. the p.e.r.
interpretation in M8,

Theorem 5.5 (Soundness and completeness of <4) ¢ <4 ¥ if and only if

[o] < [¥].

Proof. The proof of soundness is by induction on the derivation of the judgement
¢ <4 ¥. The proof of the completeness result, instead, is not straightforward. It
can be found in [17] Chapter 7. 0O

5.3 Assignment rules

To give the assignment rules we define for each PCFP constant the set of minimal
d-types as follows: for every c € K, L4(c) = {6(T(c))}, i.e. the minimal d-type of
a PCFP constant c of type p, is the é-d-type &(p). This says that if the output is
useful then all the inputs are useful. Moreover since every PCFP constant c has a
type that is either ¢1, or ¢; — t2, or ¢; X 13 — 3, for ¢1,t2,t3 € {int,bool}, we have
that, for every d-type ¢, §(T(c)) <a ¢ implies either ¢ = §(T(c)) or ¢ € LE, where
L4 is the subset of the d-types ¢ identifying useless terms, inductively defined as
in Definition 3.2.

Definition 5.6 (D-type assignment system F4) We write ¥ b4 M : ¢ to mean
that ¥+ M : ¢ can be derived by the rules in Fig.s 8 and 9, where in the rule (<)
of Fig. 8 it is used the entailment relation <4.

162 M. COPPO, F. DAMIANI, P. GIANNINI

S,z:oF M:g

(Fix) YEfixz.x: ¢

(If)ZI—N:(Sb“' SFEM ¢ YXFMy:¢
J Y Fif Nthen M, else M, : ¢

ey EFN:T SEM:T() SEMy:T(p)
T Y F if N then M else M, : T(p)

Figure 9: Rules for d-type assignment (system Fq)

To simplify the presentation of the soundness of the d-type assignment system and
of the dead-code elimination procedure (in Section 5.4) w.r.t. the semantics AM&"d
we introduce the following notation.

Notation 5.7 Let X Fq M : ¢ and ¥ 4 N : ¢. We write M ~§ N to mean that
for all ey, ez, if e; and ey are L-related, then ([M], ,[N].,) € [¢]-

Soundness of the d-type assignment system H4 is stated by the following theorem.
Theorem 5.8 (Soundness of Fg) Let X g M : ¢. Then M ~§ M.

Proof. By induction on the derivation of ¥ 4 M : ¢. a
In using d-type informations to optimize programs we need to examine not only
the final type of a term but also the types assigned to its subtypes.

Example 5.9 Take the term
P = Az (™),

of type p = int — int. By using the assignment rules in Fig. 8 it is possible to
assign to P d-type

ot 5 &'t (useful term of type int — int),
by a derivation which assigns d-type
Tint (useless term of type int)

to the second occurrence of z in the body of the A-abstraction P. In fact, for
Y={x:8y: T} and &' = {z : 6"}, we have the following derivation.

(Var) ¥ k4 z : 6™ (<) (Var) &/ kg z : 6™ 4§t < Tint
DI o)\y'"t.z . TNty gt - Sbhqx:T™
Y g (Ay'ttz)T 6™
(_) I) @ t—d A.’Bmt.()\ymt.l')x . 5int — oM

(=1
(= E)

This means that the value of the second occurrence of x is not relevant in any
computation involving the evaluation of P.

INFERENCE BASED ANALYSES OF FUNCTIONAL PROGRAMS 163

Since we are interested in finding the subterms to which T-d-types are assigned,
in the following we will consider a compact representation of a deduction of the
form

M?,
where M? is a decorated term, i.e. a term in which each subterm is decorated by the
d-type assigned to it in the considered deduction. Using this notation (and writing,
for short, § instead of 6™ and T instead of T") the derivation of Example 5.9 is
represented by the decorated term

()\IL‘(S.((AyT.xé)T_)s.’L'T)J)é—)J.
When the (<) rule is applied, as in

(XFM: 9 o<
<) XMy ’

N is decorated with the greatest d-type, i.e. 9. Observe that the use of decorated
terms allows us to see that the second occurrence of z in the body of the \-
abstraction P is dead-code just by inspecting the associated d-type. We write
Y Fax M? to mean that M? is a representation of a deduction of ¥ k4 M : ¢.
Note that the same terms can have different decorations. Let A;f’* be the set of
Fax-decorated PCFP terms, i.e.,

A = {M? | ¢ is a d-type and ¥ g, M? for some basis T}

Notation 5.10 We extend the notations €(-), §(-), and T(-) to terms. For every
decorated term M9, e(M?®) is simply the term obtained from M? by erasing all
the d-type decorations. For every term M, 6(M) (T(M)) is the decorated term
obtained from M by decorating each subterm of M of type o by §(c) (resp. T(o)).

The proof of the following fact is immediate.

Fact 5.11 1. ¥ bq4, M? implies bp e(M?) : e(¢) and {z¢) | z¢(¥) : p € £} D
FV(A]).

2. Fr M : p implies {zf : 8(p) | x* € FV(M)} Fax 6(M), and for all basis ¥
such that ¥ = {z¥) : ¢y | z¥) € FV(M) and ¢y € L4}, T Fq, T(M).
5.4 A dead-code elimination

In this section we introduce a dead-code elimination mapping O that, given an
Fax-decorated term M?, defines an optimized version of it.

5.4.1 Dummy variables

For each type p, define d?, d7, d%, ..., be dummy variables of type p. We remark that
dummy variables are not present in the original programs: they are introduced by

164 M. COPPO, F. DAMIANI, P. GIANNINI

the dead-code elimination mapping O as placeholders for the dead-code removed?® .
So in the following we assume that all the occurrences of the dummy variables in
a program are free (i.e. there are no bound dummy variables) and distinct (i.e.
each dummy variable occurs at most once in a program). For every term M define
DV (M) to be the set of dummy variables of M.

5.4.2 The simplification mapping

Given (Az?.((A\yT.z%)T%xT7)%)%~? that is the decorated version of the term P =
Az (Ay™.z)z of Example 5.9, we can produce a simplified version of P by remov-
ing the dead-code showed by the decoration, i.e. the second occurrence of z in the
body of the A-abstraction. In particular we can replace this dead-code with some
placeholder d and obtain

P = /\xint.(/\yint.x)dint’

which is ground observationally equivalent to P.

Definition 5.12 (Simplification mapping O) 1. The function O : A;.d‘ —
A;“' takes a decorated term M and replaces every largest subterm decorated
by a d-type ¢ € LY with a (fresh) dummy variable d®.

2. If T is a basis then O(X) = {z: x |z : x € T and x € L$}.

We have immediately that if £ Fq, M? then O(Z) C ¥ and ¥/ b4, O(M?), where
¥ = O(Z)U{d’ : T(o) | d° € DV(e(O(M?))}. Moreover we we have that the
simplification mapping is correct w.r.t. the d-type semantics.

Proposition 5.13 (Correctness of O w.r.t. the d-types semantics) If¥ Fq.
M? then e(M?) Ni: e(O(M?)), where &' = ZU{d” : T(c) | d° € DV(e(O(M?)))}.

Proof. By induction on the derivation ¥ tg, M?. a
In order to use the simplification mapping O to simplify terms while preserving
their meaning (w.r.t. M#&"d) we identify a subset of F4-typings for which the ~§

relations implies the 25:;: relation.

Definition 5.14 (Faithful F,4-typing) X Fg M : ¢ is a faithful Fq-type assign-
ment statement if € LY, and forallz 1 € X, ¢ € Ld UL§.

The proof that the simplification performed by the mapping O on faithful dec-

orated terms preserve :gﬁ‘: rely on the following lemma.

Lemma 5.15 Let ¥ Fq M : ¢ and ¥ Fq N : ¢ be faithful F4-typings. Then
M ~% N implies M ~%¢ N.

—obs

3 Dummy variables are just a tool for proving the soundness of the simplification mapping.
In a real implementation we can can replace dummy variables by some polymorphic “dummy
constant” d.

INFERENCE BASED ANALYSES OF FUNCTIONAL PROGRAMS 165

Proof. Let ¥’ be the restriction of ¥ to the variables {z;,...,z,} = FV(M) U
FV(N) (observe that X' contains exactly the free variables of M and N). It is
easy to see that, for any environment e, the fact that S Fq M : ¢ and T Fq N : ¢
are faithful, implies that e is X’ related with e. Let now M ~§ N, then (by
Notation 5.7) ([M].,[N],) € [¢]-

We conclude the proof by observing that, from Proposition 5.3 and Theorem 2.7,
we have that (since ¢ € L§): if, for all environments e, ([M],,[N],) € [¢] then
M ~84N. a

We can now show how to use the system 4, and the simplification mapping
O to simplify terms in observationally equivalent ones. In particular we show
that all the dummy variables introduced by applying the mapping O on a faithful
F4«-typing are dead-code.

Theorem 5.16 (O on faithful g4,-typings preserves :52:) Let ¥ 4, M? be
a faithful b4, -typing. Then e(M?) ~829 ¢(O(M?)).

Proof. Let X' = X U{d” : T(o) | d° € DV(e(M?))}. It easy to see that if
Y k4« M? is a faithful F4.-typing then also &' k4, M? and %' kg, O(M?) are
faithful Fq,-typings. So the result follows immediately from Proposition 5.13 and
Lemma 5.15. 0

In [17] Chapter 7 it is proved that for every PCFP term M there is a faithful
Fa«-typing showing all the dead-code that can be proved by the d-type assign-
ment system. This result is proved by giving an algorithm which computes such
“optimal” Fq4.-typing.

Remark 5.17 It is not difficult to define a clean-up operation which eliminates
(some of) the place-holders d introduced by the simplification process. In this way
the term P' = Az™™.(Ay'™.z)d"™, considered at the beginning of this section, will
be simplified to the equivalent (but simpler) term z'™. This final clean-up oper-
ation is important from a practical point of view, and should be considered when
implementing program simplification tools based on the techniques described in this
paper. For more details we refer to [17] Chapter 7, where an incremental dead-code
detection and elimination algorithm based on the dead-code analysis presented in
this section is given.

5.5 An example from program extraction

In this section we show a non-trivial example of dead-code detection and elimina-
tion. This example, due to C. Mohring and further developed by S. Berardi and
L. Boerio (see [8] and [10]), is based on an instance of dead-code that can arise in
programs extracted from proofs (see [39, 38| for an introduction to the subject).

1. The term

rec, = Am” Af™ 7777 fix riM 27T A if n = 0 then m else fn(r(predn))

166 M. COPPO, F. DAMIANI, P. GIANNINI

of type 7 — (int > 7 — 7) — int = 7 represents the primitive recursor
operator from natural numbers to 7 since, for every Af, F' and N of the

proper types:
e recMFO :igg M, and
e if N | c and c 3 0 then recM FN ~8¢ FN(recM F(predN)) .

2. The term
it, = Am™ . \g" ™7 fix ™7 An™ if n = 0then m else g(r(predn))

of type 7 = (r = 7) — int — 7 instead represent a simplified form of
the operator represented by rec,: it represents an “iterator” which allows to
iterate n times a function g on an input m. In fact, for every M, G and N
of the proper types:

e itMGO :ﬁﬁg M, and
e if N |l c and ¢ # 0 then itMGN ~58¢ G(itMG(predN)) .

Consider now the types p = int = int, o = int — (intXxint) — (intXint), 7 = intXint.
We will show how to use the system Fq4, to detect and remove the dead-code in the

term, of type p, '
P = M\zr'™.proj,(rec, (M, M;) F x)

where
o F = An™ Am™>i"t (h, (proj,m), ha(proj; m)(proj,m)) is a term of type o, and
e M;, M5 are closed terms of type int,

(note that FV(P) = FV(F) = {hipt—int pint=int=int}) We have that ¥ g, P'? is
a faithful Fq,-typing, where (writing, for short, 4 and T instead of 4" and T'™,
and omitting the d-type decoration which are clear from the context):

Ez{h15—+5,h2T—)T——)T})

P'¢ = (Az.proj, (rec’. (My, M)3*7 F'¥ z8))¢ |

p=6—>0,

rec. = AmAffixré>8*T An.if n = Othenmelse fn' (r(predn?®)®)°xT |
F'% = (An.Am.(hy (proj,m®* T)®, hy(proj,m) ™ (projym) "))¥ ,
Y=To>@xT)=>GxT).

Let Q, ri-, and G be the terms obtained from P'¢, rec/, and F'¥ by applying
the O mapping and erasing all the d-type decorations, i.e. @ = e(O(P'?)) , ri, =
€(O(rec’)) , and G = ¢(O(F'¥)) . It is not difficult to see that

Q = Mz™.proj, (ri, (M;,dP),Gx)), where

o ri, = AmTAfIMOTOT fix pint=T Apint if n = 0 then m else fdi'(r(predn)) , and

INFERENCE BASED ANALYSES OF FUNCTIONAL PROGRAMS 167

o G =)\ni"t./\mi"t’“"t.(hl(proj2m),dg"t) .

Then, by eliminating the dummy placeholders (see Remark 5.17 above), we obtain
as final result of the simplification the term:

R = X&™it.wM, Hz ,

where
e it is as defined at the beginning of this section, and

o H =\ mM fm; .

6 Strictness analysis

In this section we consider strictness analysis, i.e. the problem of determining
whether a function diverges whenever its input diverges. If a PCFP term F is
proved to be strict (according to the analysis) then, for every possible argument
M, the (value obtained from the) evaluation of FM by making the application of F
to M with a call-by-need is observationally equivalent to the (value obtained from
the) evaluation of FM by making the application of F' to M with a call-by-value.

We first analyze the rules required to make the two applications equivalent
w.r.t. the lazy observational equivalence, and then the ones required to make them
equivalent w.r.t. the ground observational equivalence (but not necessarily w.r.t.
the lazy one). ‘

6.1 Strictness types
6.1.1 Syntax

For every p € T, the set of the basic properties is BS(p) = { L”}. The corresponding
set of non-standard types, called strictness types (s-types for short), is be denoted
by Ls.

6.1.2 Semantics

For every p € T, let P(L?)M"*™ = {([fixz?.z]M"™™ , [fixz*.z]M"™™)}.

Since every basic property is interpreted as a p.e.r. consisting of exactly one
class, we can switch to the set semantics described at the end of Section 3.1.2
and define, for every p € T, S(L°)M"™™ = {[fixz?.z]M"*}. Tt is easy to see that
[fix:v".a:]ﬂ”lazy € {[qﬁ]]Mluy for all s-types ¢ such that €(¢) = p. So [[_L”]]Mlazy is
included in the interpretation of all s-types in L%(p).

This semantics says that, for every p € T, L? (which is interpreted as the
p.e.r. consisting of one class whose unique element is the :Lafsy -class of the PCFP
terms of type p without w.h.n.f.) is the property of being a divergent term of type
p, characterizing the PCFP terms of type p without w.h.n.f. (lazy observational

168 M. COPPO, F. DAMIANI, P. GIANNINI

equivalent to fixz?.z). Using s-types we can express strictness properties of func-
tions. For instance the s-type L™ — T — 1™ ¢ L(int — int — int) represent
the property of a function of two arguments which is strict in its first argument. In
fact the functions having this s-type give a result belonging to (the interpretation
of) L™ (i.e. undefined) whenever their first argument is undefined, independently
of the value of the second argument (which can be anything in the proper type).
Similarly a function of s-type Tt — 1™ — 1™ ¢ L*(int — int — int) is strict in
its second argument.

6.2 Entailment rules
Let L¥ denote the subset of “trivial” s-types of Definition 3.2.

Definition 6.1 (Entailment relation for strictness types) Let¢,y € L°. We
write ¢ <, Y to mean that ¢ < 1 is derivable by using the rules in Fig. 7 and the
following aziom capturing the semantics of the basic s-types 17 :

(L) L9 <.

By =, we denote the equivalence relation induced by <.

Soundness of entailment <, (for both M"Y and M%) is stated by the following

theorem.
Theorem 6.2 (Soundness of <;) Let ¢,9 € L®. ¢ <, ¢ implies [¢] C [¢¥].

Proof. By induction on the derivation of the entailment judgment. O
The entailment rules of Definition 6.1 are not complete w.r.t. the semantics
M!'22Y | as the following example shows.

Example 6.3 (Incompleteness of <, w.r.t. M'"?%) In M'2?Y the functional terms
with w.h.n.f. cannot be discriminated. For instance even though

LM g [Ty LA

(in particular [T" — _Lint]]Mlazy = [[lint_“m]]Mlazy U {[A yi"t.fixmi"t.w]me})y we
have that
[I—Lint—nnt N J_int]]./\/("‘” :ﬂ(—rint — lint) N _Lint]]M'“-"

This is because there is no PCFP context of ground type with a “hole” of type
p — o that converges if and only if filled with a term having a w.h.n.f., and, in
particular, that converges when filled by Ay .fixx?.x and diverges when filled by
fix 2,77 .2. However

J_int—-)int N _Lint £ (Tint N _Lint) __)_Lint)

At the moment we do not know whether a sound (and decidable) extension of the
<, relation which is complete w.r.t. the model M!2?Y exists. The entailment < is
indeed complete w.r.t. the term model M2 of Section 2.3.2.

INFERENCE BASED ANALYSES OF FUNCTIONAL PROGRAMS 169

Ls(n) = {T"} _ Ls(true) = L*(false) = {Tboo!}
L#(succ) = L*(pred) = {1"™ — 1™} L#(not) = {15 — | boel}
LS(+) — Ls(_) — {_Lmt X —I—int — J_mt’ Tint o _Lmt - _Llnt}

Le(and) = L*(or) = {1° x Tbool _, | bool ‘Tbool ,) bool _, | booly

Ls(:) — {_Lint x Tint _y _LbOOI,TiM x _Lint - _Lbool}

Figure 10: Strictness types for the PCFP constants

(Fix 1) R AL A AJZ):F—Q&?IX.:I.::]\E’:IB(Z); o LM : 1<:<k

SEN:1™ b Miip Fr Ms:ip

(IfL) Y+ if NthenMelse My : 17
(If)EI‘-N:Tb“' XFEFM ¢ YFHMs:o¢
T > Fif N then M, else M5 : ¢

Figure 11: Rules for strictness type assignment (system k)

Theorem 6.4 (Completeness of <, w.r.t. M:Sadzg}) Let ¢,y € Ls.
lazy

[[¢]]Misdef C ([f(p]]M.l::{ implies ¢ <g .

The proof of this result is quite long, it can be found in [17] Chapter 4.

6.3 Assignment rules

For each constant c € K the set of minimal s-types L*(c) is defined as in Fig. 10.
The minimal types given to the unary and binary constants says that such constants
are strict in their arguments. In particular for binary constants this is expressed
by having two types in the set, the first says that the constants is strict in the first
argument and the second that is strict in the second argument.

Definition 6.5 (Strictness type assignment system) We write ¥ -, M : ¢
to mean that ¥ = M : ¢ can be derived by the rules in Fig.s 8 and 11, where in the
rule (<) of Fig. 8 it is used the entailment relation <,.

Note that the same terms can have different s-types.

Example 6.6 Take the term app = Af™>M Azi" fz of type p = (int — int) —
int — int. By using the system b5 it is possible to assign to app both the s-types

o ¢ = (L™ = 1™) o 1™ 5 1" (strict function to strict function), and

o ¢p = (T — 1My 5 Tint 5 it (function divergent on every argument to
function divergent on every argument),

170 M. COPPO, F. DAMIANI, P. GIANNINI

as the following derivations show.

1. LetS; = {f: L™ 5 1™ z: 1™} and) = {f: L™ — 1'™}.

(5 E) (Var) &y F f: L — 1" (Var) &) Fz : L™
(_) I) 21 ‘_ fCE . _L'nt
(= 1) T E ™ fo qmt oy g
@+ app : ¢

2 LetTo = {f:TM o 1M z: T} and &) = {f: T" o 1'"}.
2

(o p) Ve Tak /o Tint " (Var) E, F z: T
(_) I) 22 l—- f.'B . _Lint‘
(= 1) ¥, E Az fr o Tt L™
OF app : ¢

The proof of the following fact is immediate.

Fact 6.7 1. X+, M : ¢ implies bt M : €(¢) and {z<(¥) | z(¥) : ¢ € £} D
FV(M).

2. b M : p implies, for all basis ¥ such that & = {z¢¥) : ¢ | z¢(¥) € FV(M)
and i € L8}, for all ¢ € LHp), E s M : ¢.

The previous fact says that we can always derive a non-informative s-type.

The language L® is a subset of the language of properties of the conjunctive
strictness logic introduced in [25] and (independently) in [7]. This subset is obtained
from the formulas of the conjunctive strictness logic, as presented in [7] page 36, by
forbidding the use of the conjunction operator. This restriction greatly reduces the
power of the logic. However, our rule (Fix,) introduces an implicit (and limited)
use of conjunction, by allowing (in its antecedent) the derivation of more than one
s-type for M.

The following example shows an application of the (Fix) rule.

Example 6.8 The function F = fix fP.M, where p = int = int — int — int and
M = Az Ayimt Azt if 2 = O then £ + y else fyz(z —1) ,

was used in [29] to show the limitation of a type system without conjunction.
Using s we are able to prove that F' is strict in each of its 3 arguments, t.e.
Drs F:¢py,Dbs F: o, and O s F : ¢p3, where

o ¢y = LM — Tint Tint _y i
o o= Tint LMty ity it gnd

® ¢3 :Tint __)Tint __)_Lint N _Lint.

INFERENCE BASED ANALYSES OF FUNCTIONAL PROGRAMS 171

Note that to assign ¢3 to F' one premise is sufficient, in fact {f : ¢3} Fs M : ¢3,
and so it is possible to apply the rule (Fix,) as follows:

. : o M
(Fixy) {(z)fkﬁfj 700 - is

To assign ¢1 or ¢o to F, instead two premises are required. In fact, {f : ¢1} ks
M : ¢ and {f : ¢2} Fs M : ¢1, and so two premises are sufficient, since (for

i€ {1,2}):
(Fix,) {(f:d1} b M: ¢y {f:¢o}bs M: ¢y
0+ fix fP. M : ¢, ’

but (as it is easy to check) they are also needed. So with the rule for fizpoint of [29]
(that allows just one premise) neither ¢; nor ¢, can be assigned to F.

Soundness of the s-types assignment system (for both M!2%Y and M Il:deyf) is stated
by the following theorem.

Theorem 6.9 (Soundness of ;) Let X ' M : ¢. Then [M], € [¢] for all e
such that, for allz : ¢ € X, e(z) € [¢].

Proof. By induction on the derivation of X, M : ¢. a

6.4 Strictness analysis and ground contextual equivalence

The entailment relation presented in Section 6.2 can be modified to fit better the

ground contextual equivalence, ~0b:, instead of the lazy contextual equivalence,
:g}fsy. In this perspective an s-type ¢ is interpreted as a subset of the interpretation
of the type e(¢) in the model M8"d of Section 2.3.1. For every s-type ¢ € LS,
let [¢]**™" be the interpretation of ¢ in the model M#" (defined according to
the clauses in Fig. 5). The ground observational equivalence, :52:, is such that
fixxP—%.x Nigg Ay? fix 7.z, so the associated entailment relation between s-types
will identify all the s-types corresponding to functions that diverge for all inputs.

The choice of the ground semantics would be justified, as explained in [7]

page 19, by taking a view in which

(*) programs are closed terms of basic type (int or bool) and the only behaviours
that a program can exhibit are to diverge or to converge to an integer or
boolean value.

So the only way in which we can observe terms of higher types is to plug them into
a complete program. The semantics M'@#Y, instead, does not identify fix z'" "t ¢
and Ay, fix zi". 2. ; :
Since M ijfg' N implies M ~ ~g"d N, all optimizations preserving 2::3 preserve
also ~§,';d The vice versa is not true. For instance, consider the term M =

AgMtint Ayint gy, We can assign to M the s-type (T — 1").— Tint 5 10t (the
assignment does not require the use of < so it can be done both for the ground

172 M. COPPO, F. DAMIANI, P. GIANNINI

and the lazy system). Now if we consider the entailment for the ground semantics
Tint _y | " is equivalent to L™ ™. So M, seen as a function of one argument, is
strict in its argument and the application of A to P can be done “by value” (first
evaluating P and then doing the replacement) preserving the ground observational
equivalence. W.r.t. M!'2?Y this is not the case, since observing M P at the type
int — int, when P = fixz™ " z we have that M P || whereas the evaluation
of the application M P “by value” leads to a divergent computation, i.e. the lazy
observational equivalence is not preserved. However M P is still a function and
it will result in a non terminating term whenever applied to any term. If P is
undefined the whole program will produce a non-terminating computation. So if
our ultimate goal is to obtain a result of ground type there is no harm in considering
M as strict and to apply it by value.

The above considerations suggest that, under the assumption (), M8 ig
indeed a more convenient model (rather than M!22Y¥) for proving the soundness of
strictness analysis.

Remark 6.10 Soundness of (a small variant of) system -, w.r.t. the model M8™
is proved in [18] (see also [17] Chapter 6), where a sound and complete inference
algorithm for this strictness type assignment system is given.

7 Final remarks

The research on program analysis is very active. In this paper we have focused on
a specific approach to the problem (non-standard type inference) and on a specific
class of languages (functional programming languages). A number of approaches to
program analysis have been proposed and extensively studied in the literature. In
Section 1 we have partially quoted the literature on non-standard type inference and
abstract interpretation. An overview of some of the main approaches to program
analysis can be found, for instance, in the forthcoming book [37].

References

[1] H. Abelson and G. J. Susman. Structure and Interpretation of Computer
Programs. MIT Press, 1985.

[2] S. Abramsky. Abstract interpretation, logical relations and Kan extensions.
Journal of Logic and Computation, 1(1):5-39, 1990.

[3] H. P. Barendregt. The Lambda Calculus, its Syntax and Semantics. North-
Holland, Amsterdam, 1984.

[4] H. P. Barendregt. Lambda calculi with types. In S. Abramsky et al, editor,
Handbook of Logic in Computer Science, volume 2, pages 117-309. Claredon
Press, UK, 1992.

INFERENCE BASED ANALYSES OF FUNCTIONAL PROGRAMS 173

[5]

[6]

[9]
[10]
[11]

(12]

[13]

[14]

[17]

[18]

E. Barendsen and S. Smetsers. A Derivation System for Uniqueness Typing . In
SEGRAGRA’95. Elsevier, Electronic Notes in Theoretical Computer Science,
1995.

B. Barras, S. Boutin, C. Cornes, J. Courant, Y. Coscoy, D. Delahaye,
D. de Rauglaudre, J.-C. Fillidstre, E. Giménez, H. Herbelin, G. Huet,
H. Laulhere, C. Mufioz, C. Murthy, C. Parent-Vigouroux, P. Loiseleur,
C. Paulin-Mohring, A. Saibi, and B. Werner. The Coq Proof Assistant Refer-
ence Manual Version 6.2. INRIA-Rocquencourt-CNRS-ENS Lyon, May 1998.

P. N. Benton. Strictness Analysis of Lazy Functional Programs. PhD thesis,
University of Cambridge, Pembroke College, 1992.

S. Berardi. Pruning Simply Typed Lambda Terms. Journal of Logic and
Computation, 6(5):663-681, 1996.

S. Berardi and L. Boerio. Minimum Information Code in a Pure Functional
Language with Data Types. In TLCA’97, LNCS 1210. Springer—Verlag, 1997.

L. Boerio. Optimizing Programs Extracted from Proofs. PhD thesis, Universita
di Torino, 1995.

G. L. Burn, C. Hankin, and S. Abramsky. Strictness Analysis for Higher-Order
Functions. Science of Computer Programming, 7:249-278, 1986.

F. Cardone and M. Coppo. Two Extensions of Curry’s Inference System. In
P. Odifreddi, editor, Logic and Computer Science, pages 19-75. Accademic
Press, 1990.

M. Coppo and A. Ferrari. Type inference, abstract interpretation and strict-
ness analysis. Theoretical Computer Science, 121:113-145, 1993.

P. Cousot. Types as Abstract Interpretations. Invited paper. In POPL’97,
pages 316-331. ACM, 1997.

P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction of Approximations of Fixedpoints
. In POPL’77, pages 238-252. ACM, 1977.

P. Cousot and R. Cousot. Higher-Order Abstract Interpretation (and Applica-
tion to Comportment Analysis Generalizing Strictness, Termination, Projec-
tion and PER Analysis of Functional Languages). Invited paper. In ICCL’94,
pages 95-112. IEEE, 1994.

F. Damiani. Non-standard type inference for functional programs.
PhD thesis, Universita di Torino, February 1998. Available from
http://www.di.unito.it/~damiani.

F. Damiani and P. Giannini. An Inference Algorithm for Strictness. In
TLCA’97, LNCS 1210, pages 129-146. Springer—Verlag, 1997.

174 M. COPPO, F. DAMIANI, P. GIANNINI

[19] F. Damiani and F. Prost. Detecting and Removing Dead Code using Rank 2
Intersection. In International Workshop TYPES’96, Selected Papers, LNCS,
pages 66-87. Springer—Verlag, 1998.

[20] P. de Mast, J.-M. Jansen, D. Bruin, J. Fokker, P. Koopman, S. Smetsers,
M. van Eekelen, and R. Plasmeijer. Functional Programming in Clean - draft,
1997. Available from http://www.cs.kun.nl/~clean.

[21] C. Hankin and D. Le Métayer. Lazy type inference and program analysis.
Science of Computer Programming, 25:219-249, 1995.

[22] R. Hindley. Basic Simple Type Theory. Number 42 in Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, London, 1997.

[23] P. Hudak. Conception, Evolution, and Application of Functional Programming
Languages. ACM Computing Surveys, 21(3):359-411, 1989.

[24] L.S. Hunt and D. Sands. Binding Time Analysis: A New PERspective. In
Partial Evaluation and Semantics-based Program Manipulation. ACM, 1991.

[25] T. P. Jensen. Abstract Interpretation in Logical Form. PhD thesis, University
of London, Imperial College, 1992.

[26] T. P. Jensen. Abstract Interpretation over Algebraic Datatypes. In ICCL’94.
IEEE, 1994.

[27] T. P. Jensen. Conjunctive Type Systems and Abstract Interpretation of
Higher-order Functional Programs. Journal of Logic and Computation,
5(4):397-421, 1995.

[28] G. Kahn. Natural semantics. In K. Fuchi and M. Nivat, editors, Program-
ming Of Future Generation Computer. Elsevier Sciences B.V. (North-Holland),
1988.

[29] T. M. Kuo and P. Mishra. Strictness analysis: a new perspective based on type
inference. In Functional Programming Languages and Computer Architecture,
pages 260-272. ACM, 1989.

[30] X. Leroy. The Caml Light System, documentation and users’s guide, 1997.
Available from http://paulliac.inria.fr/caml.

[31] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard
ML - Revised. MIT press, 1997.

[32] J. C. Mitchell. Foundations for Programming Languages. MIT Press, 1996.

[33] C. Mossin. Flow analysis of Typed Higher-Order Programs. PhD thesis, DIKU,
University of Copenhagen, 1997. Revised version.

INFERENCE BASED ANALYSES OF FUNCTIONAL PROGRAMS 175

[34]

[35]

136]

[37]

[38]

[39]

[40]

[41]

[42]

A. Mycroft. The theory and practice of transforming call-by-need into call-by-
value. In International Symposium on Programming, LNCS 83, pages 269-281.
Springer—Verlag, 1980.

A. Mycroft. Abstract Interpretation and Optimizing Transforming for Applica-
tive programs. PhD thesis, University of Edinburgh, Scotland, 1981.

F. Nielson. Strictness Analysis and Denotational Abstract Interpretation. In-
formation and Computation, 76(1):29-92, 1988.

F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. In
preparation, http://www.daimi.au.dk/~hrn/PPA /ppa.html, 1999.

C. Paulin-Mohring. Extracting F,,’s Programs from Proofs in the Calculus of
Constructions. In POPL’89. ACM, 1989. '

C. Paulin-Mohring. Exzxtraction de Programme dans le Calcul des Construc-
tions. PhD thesis, Université Paris VII, 1989.

J. Peterson, K. Hammond, L. Agustsson, B. Boutel, W. Burton, J. Fasel, A. D.
Gordon, J. Hughes, P. Hudak, T. Johnsson, M. Jones, E. Meijer, S. Pejton
Jones, A. Reis, and P. Wadler. Report on the Programming Language Haskell
(version 1.4) - draft, 1997. Available from http://www-i2.informatik.rwth-
aaken.de/Forshung/FP /Haskell.

Frank Pfenning. The practice of logical frameworks. In Héléne Kirchner,

~editor, Proceedings of the Colloguium on Trees in Algebra and Programming,

pages 119-134, Linkoping, Sweden, April 1996. Springer-Verlag LNCS 1059.
Invited talk.

A. M. Pitts. Operationally-based theories of program equivalence. In A. M.
Pitts and P. Dybjer, editors, Semantics and Logics of Computation, pages
241-298. Cambridge University Press, 1997.

R. Plasmeijer and M. van Eekelen. The Cuncurrent Clean Language Report
(version 1.2) - draft, 1997. Available from http://www.cs.kun.nl/~clean.

G. D. Plotkin. LCF considered as a programming language. Theoretical Com-
puter Science, 5(3):223-255, 1977.

G. D. Plotkin. A structural approach to operational semantics. Technical
Report DAIMI FN-19, Aarhus University, 1981.

F. Prost. Marking techniques for extraction. Technical Report RR95-47, Ecole
Normale Supérieure de Lyon, Lyon, December 1995.

D. S. Scott. Data Types as Lattices. Siam J. Computing, 5(3):522-587, 1976.

K. L. Solberg. Annotated Type Systems for Program Analysis. PhD thesis,
Aarhus University, Denmark, 1995. Revised version.

176 M. COPPO, F. DAMIANI, P. GIANNINI

[49] Y. Takayama. Extraction of Redundancy-free Programs from Constructive
Natural Deduction Proofs. Journal of Symbolic Computation, 12:29-69, 1991.

[50] D. A. Turner. Miranda: a non-strict functional language with polymorphic
types. In Proceedings of the IFIP International Conference on Functional
Programming Languages and Computer Architecture, LNCS 201, pages 1-16.
Springer—Verlag, 1985.

[51] D. A. Wright. Reduction Types and Intensionality in the Lambda-Calculus.
PhD thesis, University of Tasmania, 1992.

