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0. INTRODUCTION

Random matrices, log-gases and the Calogero-Sutherland model are inter-related
topics in Mathematical Physics. They are also topics of independent interest and
significance. In particular, random matrices were first studied in Mathematical
Statistics as long ago as the 1920’s because of their relevance to the theory of
error distributions in the theory of multicomponent data sampling (see e.g. [1]).
In the 1950’s E.P. Wigner introduced random symmetric matrices as a model of
the Hamiltonian of complex nuclei: it was hypothesized that the eigenvalues of
these random matrices have the same statistical properties as the energy spectra
of complex nuclei. This was soon confirmed experimentally by comparing a his-
togram of the spacing between consecutive energy levels in complex nuclei with the
theoretical p.d.f. for this statistic given by Wigner (see e.g. [2]).

In the early 1960’s F.J. Dyson undertook a detailed study of random matrices
as they apply to the statistical properties of the energy levels of complex systems
(see e.g. [3]). One of the many new ideas to come out of this work was the log-
gas analogy. For the random matrices under consideration, Dyson found that the
eigenvalue p.d.f. could be expressed in the form

$\frac{1}{C_{\beta}}\exp[-\beta(\sum_{j=1}^{N}U_{1}(x_{j})+\sum_{j<k}U_{2}(x_{j}, x_{k}))]$ (0.1)

with the parameter $\beta$ related to the symmetry of the matrix (e.g. $\beta=1$ for symmet-
ric matrices). Now this can be interpreted as the Boltzmann factor for a classical
gas with potential energy

$\sum_{j=1}^{N}U_{1}(x_{j})+\sum_{j<k}U_{2}(x_{j},x_{k})$ ,



RANDOM MATRICES 99

in equilibrium at inverse temperature $\beta$ . Furthermore, by a suitable change of
variables $y_{j}=f(x_{j})$ , it turns out that the two-body potential $U_{2}$ is such that

$U_{2}(y_{j}, y_{k})=-\log|y_{j}-y_{k}|$ .
The classical gas is therefore the log-gas. This is a special potential because it is the
potential between two charges in two-dimensional electrostatics. All the charges
in this log-gas are of the same magnitude and sign. For the cases in which the
domain is unbounded (i.e. the possible values of the eigenvalues is unbounded),
the one-body potential $U_{1}$ acts so as to stop the particles repelling to infinity by
attracting them towards the origin.

The p.d. $f$. $(0.1)$ also occurs as the square of the ground state wavefunction for
some quantum many body systems. The Schr\"odinger operators for these systems
contain one and two body potentials only (see (1.1) below). The coupling constant
for the two-body potential is a function of the quantity $\beta$ in (0.1) and can take any
positive real value. Furthermore, in some asymptotic limit at least, the two-body
potential is proportional to $1/|x_{j}-x_{k}|^{2}$ . Quantum many body systems with these
properties are said to belong to the Calogero-Sutherland type.

In Section 1 four random matrix ensembles will be considered: Gaussian, cir-
cular, Laguerre (Wishart) and Jacobi. Matrices from these ensembles are defined
in terms of the p.d. $f$. for the elements of the matrix itself, or some decomposition
of the matrix. Furthermore, for each of the ensembles there are three symmetry
classes: orthogonal $(\beta=1)$ , unitary $(\beta=2)$ and symplectic $(\beta=4)$ to consider.

We address the problem of calculating the eigenvalue p.d. $f$. from knowledge of
the p.d. $f$. for the elements. The main technical task is to calculate the Jacobian
for the change of variables from the elements of the matrix to its eigenvalues and
variables associated with the eigenvectors. In all cases the Jacobian factorizes into
a function of the eigenvalues, which can be given explicitly, and a function of the
variables associated with the eigenvectors. Since the eigenvalue p.d. $f$. is obtained
by integrating over these latter variables, their contribution can be absorbed into
the normalization constant.

In all four cases the eigenvalue p.d. $f$. is found to be of the form (0.1), and this
p.d. $f$. can be identified both with the Boltzmann factor of a log-gas and the absolute
value squared of the ground state of a Calogero-Sutherland type quantum system.
Since the analogies are at the level of the p.d. $f.$ , it follows that the distribution
functions- which are integrals over the p.d. $f$. (see (1.36) below) – are identical for
the three systems. Thus the distribution functions for the eigenvalues of a partic-
ular random matrix ensemble is the same as for the corresponding log-gas, which
in turn is the same as the static ground state distribution of the corresponding
quantum system. This holds true for $\beta=1,2$ and 4. For all $\beta\geq 0$ the distribution
functions for the log-gas are identical to the static ground state distributions for
the corresponding quantum system. A significant feature of the log-gas system
is that the electrostatic origin of the two-body potential allows predictions to be
made for the behaviour of the one and two body distribution functions in certain
long-wavelength ‘macroscopic limits’. Thus in Section 1.8 we note some analytic
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predictions for the behaviour of these distributions, which due to the analogies
must hold true for the corresponding random matrix and quantum system also.

Dyson noted not only an analogy between the eigenvalue p.d. $f$ . $s$ of random ma-
trices and the Boltzmann factor of log-gas systems, but also an analogy between
dynamical theories of random matrices and the log-gas. A dynamical theory of
random matrices is constructed by introducing a parameter in the definition of the
ensembles, which plays the role of a time-like variable. Section 2 begins by consid-
ering parameter-dependent Gaussian random matrices. As the parameter $\tau$ tends
to infinity, these random matrices coincide with the Gaussian random matrices of
Section 1. At $\tau=0$ the random matrix is prescribed–its eigenvalue p.d. $f$. is the
initial condition. Thus in parameter-dependent random matrices there is an evolu-
tion from the prescribed eigenvalue p.d. $f$. to the eigenvalue p.d. $f$. for the Gaussian
random matrices of Section 1 (the equilibrium state) as $\tau$ increases. Parameter-
dependent Gaussian random matrices are defined so that the joint distribution of
their elements satisfies the Fokker-Planck equation for overdamped Brownian mo-
tion in a harmonic potential. By changing variables from the elements of the matrix
to the eigenvalues and variables associated with the eigenvectors, the eigenvalue
p.d. $f$. can also be specified as the solution of a Fokker-Planck equation for over-
damped Brownian motion. However, in addition to the one-body harmonic term,
the Fokker-Planck equation also contains a two-body logarithmic potential which
is precisely $U_{2}$ in (0.1). Thus, in the sense that parameter-dependent Gaussian ran-
dom matrices represents Brownian dynamics of the Gaussian random matrices of
Section 1, the analogy between Gaussian random matrices and the log-gas extends
beyond the equilibrium description to the full Brownian dynamics.

Parameter-dependent theories can also be formulated for the other random ma-
trix ensembles introduced in Section 1. In each case the eigenvalue p.d. $f$. satisfies a
Fokker-Planck equation which can also be interpreted as describing the overdamped
Brownian dynamics of the corresponding classical log-gas. The dynamical analogy
also extends to the quantum Calogero-Sutherland systems. In general the Fokker-
Planck operator (see (2.2) below) can be transformed into a Schrodinger operator
and the Fokker-Planck equation becomes the Schr\"odinger equation in imaginary
time. For the particular Fokker-Planck operators describing the Brownian dynam-
ics of random matrices, the corresponding Schr\"odinger operators are precisely those
noted in Section 1, for which the square of the ground state is given by (0.1).

Correlations fundamental to many-body dynamical problems are the dynamic
density-density correlation, and the current-current correlation. The dynamical
density-density correlation for the Brownian motion problem is defined in terms
of the Green function for the Fokker-Planck equation by (2.17)-(2.19) below. The
Green function solution of the Fokker-Planck equation is simply related to the
Green function solution of the Schr\"odinger equation for the corresponding Calogero-
Sutherland model (see (2.11)). This implies that the dynamical density-density
correlation in the log-gas and the Calogero-Sutherland model are also related: in
fact they are identical if the initial distribution in the Brownian motion problem is
chosen to be the equilibrium distribution.
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One use of the dynamical density-density correlation $S(x, t)$ in the theory of
parameter-dependent random matrices relates to linear statistics [4]:

$A(x, t)=\sum_{j=1}^{N}a(x_{j}(t))$ .

Properties of the distribution of such quantities can be empirically determined from
experimental data, one example being the integrated correlator

$\xi_{a}=\int_{0}^{\infty}((A(x_{1},t)-(A))(A(x_{2}, t)-(A\rangle))dt$

Here the average over positions (\rangle is directly related to $S(x, t)$ :

$((A(x_{1}, t)-\langle A\rangle)(A(x_{2}, t)-\{A)))=\int_{-\infty}^{\infty}dx_{1}a(x_{1})\int_{-\infty}^{\infty}dx_{2}a(x_{2})S(x_{1}-x_{2}, t)$ .

In the Calogero-Sutherland quantum many body systems, $S(x, t)$ is of interest
because it probes the excitation spectrum. Indeed $S(x, t)$ can be rewritten as an
infinite sum involving the eigenstates (see (4.13)).

The dynamical density-density correlation and the current-current correlation
are related by (2.22) as a consequence of the continuity equation (2.25) which relates
the microscopic density and current for both classical and quantum systems. We
will show that the density-density correlation must satisfy a generalization of the
$f$-sum rule (Proposition 2.3), which constrains its small-time behaviour. Also, for
Fokker-Planck operators with only one and two body potentials, we will show that
the static density-density distribution and current-current distribution are simply
related (Proposition 2.4).

The dynamical density-density correlation can be expanded as an infinite series
involving the eigenfunctions of the appropriate Schr\"odinger operator (or equiva-
lently, the Fokker-Planck operator). In Section 3 the mathematical theory of these
eigenfunctions is outlined. For the four Schr\"odinger operators corresponding to the
four random matrix ensembles introduced in Section 1, the eigenfunctions can be
written as a product of the ground state and an N-variable symmetric polynomial.
In the circular case, these polynomials are known as Jack polynomials, and their
theory is developed to a stage which allows the dynamical density-density function
in this case to be computed exactly. As is seen from the formula (4.13), this re-
quires developing a theory of integration formulas involving the Jack polynomials
and the square of the ground state wavefunction.

The Jack polynomials are a fairly new construction in Pure Mathematics, with
the first substantial works being due to Macdonald [5] and Stanley [6] less than
ten years ago. One of the reasons that their properties can be developed to such
a detailed level is that they can be defined not only as the eigenfunctions of the
transformed Schr\"odinger operator, but also as orthogonal polynomials associated
with a power sum inner product (see $(3.14a)$ ). This is a generalization of an inner
product well known from the theory of Schur polynomials (the Jack polynomials
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reduce to Schur polynomials for the coupling $\beta=2$ , which corresponds to the free
fermion system in the language of the Calogero-Sutherland model).

The polynomial eigenfunctions in the Hermite, Laguerre and Jacobi cases are
all multi-dimensional generalizations of their classical, single-variable counterparts.
They are most naturally written as finite series of Jack polynomials. In the Her-
mite and Laguerre cases multi-dimensional generalizations of the classical gener-
ating functions are presented. The method of derivation suggests a family of $N$

independent differential operators which have the generalized Hermite (Laguerre)
polynomials as eigenfunctions. These operators have the feature that their corre-
sponding eigenvalues can also be specified and that they remove the degeneracy of
the spectrum.

The exact calculation of correlation functions is presented in Section 4. The first
correlation considered is the static one-body density in the Jacobi ensemble. For
even values of $\beta$ this density, which is by definition an N-dimensional integral, is
written as a $\beta$-dimensional integral. The large-N asymptotics of the $\beta$-dimensional
integral can be calculated and the electrostatic prediction (1.38b) established. A
similar study is presented for the static two-particle distribution function in the cir-
cular ensemble. Again a $\beta$-dimensional integral formula is obtained, and the large-
$N$ asymptotics computed to verify the prediction (1.43). In the thermodynamic
limit the $\beta$-dimensional integral formula remains well defined. The large-distance
asymptotics have the expected leading order non-oscillatory behaviour (1.40).

The main application of Jack polynomial theory relates to the calculation of the
dynamical density-density correlation $\rho_{2}^{(T)}((0,0),$ $(x, \tau))$ for the Dyson Brownian
motion model of the log-gas on a circle, when the initial state is equal to the equilib-
rium state (or equivalently, for the ground state of the Calogero-Sutherland model
on a circle). In the thermodynamic limit it is possible to calculate $\rho_{(2)}^{T}((0,0),$ $(x, \tau))$

for all rational values of the coupling. Thus in Proposition 4.3, for $\beta/2=p/q(p$

and $q$ relatively prime integers), $\rho_{(2)}^{T}$ is expressed as a multiple integral over $p$ vari-
ables $x_{i}(0\leq x_{i}<\infty)$ and $q$ variables $y_{j}(0\leq y_{j}\leq 1)$ . These variables can be
interpreted as being associated with quasi-particles and quasi-holes respectively,
and the particular coupling between the variables is consistent with an interpre-
tation of fractional statistics associated with the hole excitations. It is pointed
out that the integrand is of a functional form first obtained by Dotsenko and Fa-
teev in conformal field theory. This knowledge is put to use in the calculation
of the small-k behaviour of the structure factor $\tilde{S}(k, \tau)$ , where a limiting case of
the Dotsenko-Fateev integral is used in the verification of the expected behaviour
(2.36).

In the final Section, the Calogero-Sutherland model with exchange terms [7] is
introduced. For certain prescribed symmetries of the allowed states the absolute
value squared of the ground state is identical to the Boltzmann factor for a gener-
alized plasma system. The Calogero-Sutherland model with exchange terms pro-
vides the natural setting for the study of the integrability of the original Calogero-
Sutherland models. Furthermore, it opens the way for future research opportunities
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in the study of the polynomial part of the eigenfunctions and the calculation of
correlation functions.

In this article the central theme will be the CalogerQSutherland quantum many
body problem, with the pathway to these systems provided by parameter-dependent
random matrices. In a monograph in preparation, the author is producing a work
in which the central theme is the log-gas. Although a small amount of repetition is
necessary to make both this work and the monograph self contained, their emphasis
and main body of content is distinct.
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1. CLASSICAL RANDOM MATRIX ENSEMBLES

1.1. Calogero-Sutherland model and the log-gas analogy. The Calogero-
Sutherland model refers to a class of exactly solvable quantum many body systems
in one dimension. In this exposition we will be concerned with the subclass of such
models which can be characterized as the Schrodinger operators in one dimension
with one and two body potentials only:

H $=-\sum_{j=1}^{N}\frac{\partial^{2}}{\partial x_{j}^{2}}+\sum_{j=1}^{N}V_{1}(x_{j})+\sum_{1\leq j<k\leq N}V_{2}(x_{j}, x_{k})$ (1.1)

which possess exact BDJ-type ground states:

$\psi_{0}=\prod_{j=1}^{N}f_{1}(x_{j})\prod_{1\leq j<k\leq N}f_{2}(x_{j}, x_{k})$ . (1.2)

Two particular Schr\"odinger operators of this type are

$H^{(H)}=-\sum_{j=1}^{N}\frac{\partial^{2}}{\partial x_{j}^{2}}+\frac{\beta^{2}}{4}\sum_{j=1}^{N}x_{j}^{2}+\beta(\beta/2-1)\sum_{1\leq j<k\leq N}\frac{1}{(x_{j}-x_{k})^{2}}$ (1.3)

and

$H^{(C)}=-\sum_{j=1}^{N}\frac{\partial^{2}}{\partial x_{j}^{2}}+\beta(\beta/2-1)\sum_{1\leq j<k\leq N}(\frac{\pi}{L})^{2}\frac{1}{\sin^{2}\pi(x_{j}-x_{k})/L}$ (1.4)
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where in (1.4) $0\leq x_{j}\leq L$ . Here the superscript $(H)$ refers to Hermite (there is
a connection with the Hermite polynomials, while $(C)$ refers to circular. Notice
that in both cases the pair potentials are proportional to $1/r^{2}$ (in the circular case
the distance function is the chord length on a circle of circumference length $L$). It
turns out that all Schr\"odinger operators of the Calogero-Sutherland type are such
that $V_{2}(x_{j}, x_{k})$ is proportional to $1/(x_{k}-x_{j})^{2}$ , in some asymptotic limit at least.

A direct calculation shows that both (1.3) and (1.4) have eigenfunctions of the
form $Ae^{-\beta W/2}$ (A is fixed for each ordering of the particles, but may differ by a
phase for different orderings) with

$W^{(H)}=\frac{1}{2}\sum_{j=1}^{N}x_{j}^{2}-\sum_{1\leq j<k\leq N}\log|x_{k}-x_{j}|$ (1.5)

and
$W^{(C)}=-\sum_{1\leq j<k\leq N}\log|e^{2\pi ix_{k}/L}-e^{2\pi ix_{j}/L}|$

(1.6)

respectively. The verifications are straightforward provided one is aware of the
identities

$\frac{1}{xy}+\frac{1}{xz}+\frac{1}{yz}=0$ (1.7)

and
$\cot x\cot y+\cot x\cot z+\cot y\cot z=1$ (1.8)

for $x+y+z=0$ . Since these eigenfunctions do not change sign for any partic-
ular ordering of the particles, they correspond to the ground state wave function
(i.e. they are the eigenfunctions with the most negative eigenvalue $E_{0}$ ). Notice that
in both cases $\psi_{0}$ is indeed of the type (1.2).

Already an analogy with another class of physical systems is evident: $|\psi_{0}|^{2}=$

$|A|^{2}e^{-\beta W}$ is proportional to the Boltzmann factor for the classical gas with total
potential energy $W+C$ , where $C$ is a constant. The pair potential for the classical
gases are logarithmic, which is very significant for in two dimensions

$\phi(\vec{r},\vec{r})=-\log(|r\rightarrow-\vec{r}^{\prime}|/l)$ (1.9)

( $l$ is some length scale which we can set equal to unity) is the solution of the Poisson
equation

$\nabla_{r}^{2_{\sim}}\phi(\vec{r},\vec{r})=-2\pi\delta(r\rightarrow-\vec{r})$ where $\nabla_{r}^{2}\rightarrow:=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$ (1.10)

Thus $\phi(\vec{r}, r^{\prime}\rightarrow)$ represents the Coulombic pair potential for two-dimensional unit
charges. The log-potential Coulomb systems with energies (up to an additive con-
stant) given by (1.5) and (1.6) have the particles confined to a line and circle
respectively. In (1.5) there is a one-body harmonic potential. This attracts the
particles towards the origin and stops them repelling to infinity. We will make use
of the log-potential Coulomb system (log-gas) analogy to make analytic predictions
for the behaviour of certain correlation functions later.
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For now we will redirect attention to an analogy between the ground state and
random matrices, which for the Schr\"odinger operators (1.3) and (1.4) was noticed
in one of the original papers on the subject by Sutherland [1].

1.2. Gaussian random matrices as a model of a quantum Hamiltonian.
Random matrices have been studied in physics since the late $1950’ s$ when E. P.
Wigner applied them to the study of the statistical properties of the energy levels of
complex nuclei (see e.g. [2]). There are now four known random matrix ensembles
which have analogies with the Calogero-Sutherland model. The first of these,
studied in some detail by F.J. Dyson [3], is referred to as the Gaussian random
matrix ensemble. Gaussian random matrices are used to model the Hamiltonian
of the quantum system under consideration.

The general hypothesis is that for a sufficiently complicated quantum system,
the individual matrix elements of the Hamiltonian are unimportant for determining
the statistical properties of the energy levels, rather these properties are determined
by the global time reversal symmetry. (This statement refers to the eigenvalues
within a block of specific angular momentum, parity etc..) Furthermore, since the
discrete portion of the spectrum is of interest, a reasonable approximation is to
use an $N\times N$ Hermitian matrix $X$ in place of the in general infinite dimensional
Hamiltonian operator. The detail of the matrix elements being unimportant, they
may be chosen as completely random, subject only to the constraint imposed by
time reversal symmetry.

As with all the random matrix ensembles we will consider, there are three sub-
classes of Gaussian random matrices, called the Gaussian Orthogonal Ensemble
(GOE), Gaussian Unitary Ensemble (GUE) and Gaussian Symplectic Ensemble
(GSE). They are used to model systems with time reversal symmetry and an even
number of $spin-\frac{1}{2}$ particles, no time reversal symmetry, and time reversal symmetry
with an odd number of $spin-\frac{1}{2}$ particles respectively.

These ensembles are defined by the statement that the joint probability density
function (p.d. $f.$ ) for the elements, $P(X)$ say, for a member of the ensemble $X$ , is
given by

$P(X)=A_{\beta,N}\exp(-\beta Tr(X^{2})/2)$ (1.11)

where $\beta=1,2$ and 4 for the GOE, GUE and GSE respectively, and $A_{\beta,N}$ is the
normalization. For the GOE $X$ is real symmetric while for the GUE $X$ is Hermitian
and for the GSE $X$ is self-dual real quaternion. A self dual real quaternion matrix
is an Hermitian matrix which has each element itself a $2\times 2$ matrix of the form

$\left(\begin{array}{ll}z & w\\-w^{*} & z^{*}\end{array}\right)$ (1.12)

(this is the matrix representation of a real quaternion). The p.d. $f$. $(1.11)$ is clearly
unchanged if $X$ undergoes the similarity transformation

$X\rightarrow U^{-1}XU$ . (1.13)
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This is a fundamental requirement of the model since a general property of quantum
mechanics is that two operators related by a similarity transformation of unitary
operators are equally valid physical descriptions.

An equivalent way to specify the p.d. $f$. $(1.11)$ is in terms of the p.d. $f$. of each
element.

Definition 1.1
(1) A random real symmetric $N\times N$ matrix $X$ is said to belong to the GOE if
the diagonal and upper triangular elements are independently chosen with p.d. $f$. $s$

$\frac{1}{\sqrt{2\pi}}e^{-x_{jj}^{2}/2}$ and $\frac{1}{\sqrt{\pi}}e^{-x_{jk}^{2}}$

respectively.
(2) A random Hermitian $N\times N$ matrix $X$ is said to belong to the GUE if
the diagonal elements (which must be real) and the upper triangular elements
$x_{jk}=u_{jk}+iv_{jk}$ are independently chosen with p.d. $f$. $s$

$\frac{1}{\sqrt{\pi}}e^{-x_{jj}^{2}}$ and $\frac{2}{\pi}e^{-2(u_{jk}^{2}+v_{jk}^{2})}=\frac{2}{\pi}e^{-2|x_{gk}|^{2}}$

(3) A random Hermitian $N\times N$ matrix $X$ with real quaternion elements is said
to belong to the GSE if the elements $z_{jj}$ of each diagonal quaternion real block,
which must be real, are independently chosen with p.d. $f$.

$\sqrt{\frac{2}{\pi}}e^{-2z_{jj}^{2}}$ ,

while the upper triangular off diagonal elements $z_{jk}=u_{jk}+iv_{jk}$ and $w_{jk}=$

$u_{jk}+iv_{jk}^{\prime}$ are independently chosen with real and imaginary parts having p.d. $f$.

$\frac{4}{\pi}e^{-4|z_{jk}|^{2}}$ and $\frac{4}{\pi}e^{-4|w_{jk}|^{2}}$

The advantage of using Definition 1.1 is that it is a simple matter to construct
computer generated matrices belonging to any of the particular Gaussian ensem-
bles. Note from Definition 1.1 that $P(X)$ has the factorization property

$P(X)=A_{\beta,N}\prod_{\nu j}\prod_{k=1}^{N}f(x_{jk}^{(\nu)})$ with $f(x)=e^{-\beta x^{2}/2}$ (1.14)

where the sum over $\nu$ applies for the off-diagonal elements and is from 1 up to $\beta$ , cor-
responding to the independent real and imaginary parts of the element in position
$(jk)$ . A well known result (see e.g. [4]) is that (1.11) is the unique p.d. $f$. which has
the factorization property (1.14) and invariance under the transformation (1.13).

It remains to explain the origin of the constraints on the random matrices for
a system with time reversal symmetry: real symmetric for a system with an even
number (or no) $spin-\frac{1}{2}$ particles and self dual real quaternion for a system with
an odd number of $spin-\frac{1}{2}$ particles, and their relationship to real orthogonal and
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symplectic matrices. For this purpose we recall that a quantum system has a time
reversal symmetry if the Hamiltonian commutes with an anti-unitary operator i.e. a
unitary operator, $T$ say, which has the property

$T(a|\psi_{1}\}+b|\psi_{2}\})=a^{*}T|\psi_{1}\}+b^{*}T|\psi_{2})$ . (1.15)

Study of time reversal operators in the context of physical systems (see e.g. [5,6])
further restricts their form. For systems with an even number of (or no) $spin-\frac{1}{2}$

particles it is required that $T^{2}=1$ , while for a finite dimensional system with an
odd number of $spin-\frac{1}{2}$ particles one must have $T^{2}=-1$ with $T=ZK$ , where $Z$ is
a $2N\times 2N$ block diagonal matrix, with $2\times 2$ blocks

$\left(\begin{array}{ll}0 & -1\\1 & 0\end{array}\right)$ (1.16)

and $K$ is the complex conjugation operator.

The case $T^{2}=1$ . For any quantum Hamiltonian $H$ which is invariant with
respect to a time reversal symmetry $T$ , where $T$ has the additional property $T^{2}=1$ ,
$H$ can always be given a $T$-invariant basis, and with respect to this basis the (in
general infinite) matrix representation of $H$ is real. To see this, let $\{\phi_{n}^{\prime}\}$ be a
complete set. Let $\psi_{1}=\alpha_{1}\phi_{1}+T(\alpha_{1}\phi_{1})$ where $\phi_{1}=\phi_{1}^{\prime}$ . Construct from $\phi_{1}^{\prime}$ and
$\phi_{2}^{\prime}$ a vector orthogonal to $\psi_{1},$ $\phi_{2}$ say, and let $\psi_{2}=\alpha_{2}\phi_{2}+T(\alpha_{2}\phi_{2})$ . Then $\psi_{2}$ is $T$

invariant and

$(\psi_{2}|\psi_{1}\rangle=\alpha_{2}^{*}(\phi_{2}|\psi_{1})+\alpha_{2}(T\phi_{2}|\psi_{1}\rangle=0+\alpha_{2}(T^{2}\phi_{2}|\psi_{1}\rangle^{*}=\alpha_{2}(\phi_{2}|\psi_{1})^{*}=0$

Here we have used the anti-unitary property of $T$ which implies in general that
( $ u|Tv\rangle$ $=\langle T^{\uparrow}u|v\rangle^{*}$ so that with $T^{2}=1,$ ( $ u|v\rangle$ $=(Tu$ 1 $Tv\}^{*}$ . Proceeding in this
fashion gives a $T$-invariant orthogonal basis $\{\psi_{n}\}$ (the constants $\alpha_{1},$ $\alpha_{2},$ $\ldots$ can be
chosen to normalize the basis). One then sees that

$\langle\psi_{m}|H\psi_{n}\rangle=(T\psi_{m}|T(H\psi_{n})\rangle^{*}=\langle T\psi_{m}|HT\psi_{n})^{*}=(\psi_{m}|H\psi_{n})^{*}$

which says the matrix elements are real, as required.
Furthermore, the subgroup of unitary matrices for which the similarity transfor-

mation (1.13) maps real symmetric matrices to real symmetric matrices is the real
orthogonal group of matrices (or $i$ times these matrices). To verify this statement,
let $X^{\prime}=U^{-1}XU$ where $U$ is unitary and $X,$ $X^{\prime}$ are real symmetric, and suppose
that the only symmetry of $X$ and $X^{\prime}$ in general (other than some constant times
the identity) is the time reversal operator $T$ with $T^{2}=1$ . Now, by assumption of
the time reversal symmetry $X^{\prime}=T^{-1}X^{\prime}T$ and $X=T^{-1}XT$ . Substituting into
the equation relating $X$ and $X$ we see that

$TUT^{-1}U^{-1}XU=XTUT^{-1}$ (1.17)

and so $TUT^{-1}U^{-1}$ commutes with $X$ . But by assumption, the only operators
which commute with $X$ are $T$ and some multiple of the identity. The first possibility
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implies $T=1$ , which is not allowed since $T$ is then not anti-unitary, so we must
have

$TU=cUT$ (1.18)

for some constant $c$ . Taking the inverse of this equation implies $c=1/c$ and thus
$c=\pm 1$ . Using this property, we see that the elements of $U$ with respect to the $T$

invariant basis $\{\psi_{n}\}$ obey the equation

$\langle\psi_{n}|U\psi_{m}\rangle=(T\psi_{n}|TU\psi_{m}\rangle^{*}=c\langle\psi_{n}|U\psi_{m}\rangle^{*}$ .

Hence the elements of $U$ are either all real $(c=1)$ or all pure imaginary $(c=-1)$ ,
which is the required result.

The case $T^{2}=-1$ . In this case $T=ZK$ , and $T$ commutes with the $2N\times 2N$

matrix $X$ approximating the Hamiltonian. Thus

$X=TXT^{-1}=ZKXK^{-1}Z^{-1}=ZKXKZ^{-1}=ZX^{*}Z^{-1}$

which from the definition of $Z$ implies $X$ consists of $2\times 2$ blocks of the form (1.12).
The subgroup of unitary matrices which maps self dual real quaternion matrices
into themselves under the similarity transformation (1.13) is determined in the
same way as for the symmetric matrices case detailed above. We find that the
matrices must have the property $Z=\pm UZU^{T}$ . In the case of the plus sign, this
is the condition for $U$ to be symplectic.

Another feature of a self-dual real quaternion matrix $X$ is that its eigenvalues
are doubly degenerate. To see this we use the fact that $X$ commutes with $T=ZK$ ,
so that if $|\phi\rangle$ is an eigenvector of $X$ with eigenvalue $\lambda$ , then $ T|\phi$} is also. It remains
to check that $|\phi\rangle$ and $ T|\phi$} are linearly independent. We have

$(\phi|T\phi\rangle=(T\phi|T^{2}\phi\rangle^{*}=-(T\phi|\phi\}^{*}=-(\phi|T\phi\rangle$

and thus $(\phi|T\phi)=0$ , which establishes the linearly independence.

1.3. Calculation of the eigenvalue p.d. $f$. The p.d. $f$. for the elements of the
three Gaussian ensembles is given by (1.11). We seek to change variables in terms of
the eigenvalues of $X,$ $\lambda_{1},$

$\ldots,$
$\lambda_{N}$ say, and variables associated with the eigenvectors,

denoted $p_{1},$ $\ldots,p_{\beta N(N-1)/2}$ say:

$\exp^{-\beta Tr(X)^{2}}\prod_{j=1}^{N}dx_{jj}\prod_{\nu=1}^{\beta}\prod_{1\leq j<k\underline{<}N}dx_{jk}^{(\nu)}=\exp^{-\beta\sum_{l=1}^{N}\lambda_{l}^{2}/2}|J|\prod_{i=1}^{N}d\lambda_{i^{\frac{\beta N\langle N-1)}{\prod_{j=1}^{2}}}}dp_{j}$

where the Jacobian is given by

$J:=\det\left(\begin{array}{llll}\frac{\partial x}{}\lambda_{1}\Delta 1\frac{\partial\partial}{\partial}x_{\lambda_{2}}11 & \frac{\frac\partial x\lrcorner\partial x\partial\lambda}{\partial\lambda}1a12l & & \frac{\underline\partial x\partial x\partial}{\partial}\lambda_{2}\Delta\Delta AL\lambda_{1}\\| & | & \ddots & |\\\frac{\partial x_{11}}{\partial p_{N\langle N-1)/2}} & \ovalbox{\tt\small REJECT}\partial p_{N\langle N-1)/2}\partial x & & \frac{\partial x_{NN}}{\partial p_{N(N-1)/2}}\end{array}\right)$
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Thus we must evaluate the Jacobian and then integrate over the variables $p_{1},$ $\ldots$ ,
$p_{\beta N(N-1)/2}$ to obtain the eigenvalue p.d. $f.$ .

In fact, as we will show below explicitly in the Hermitian case, for each ensemble
$J$ factorizes:

$J=\prod_{1\leq j<k\leq N}(\lambda_{k}-\lambda_{j})^{\beta}f(p_{1}, \ldots,p_{\beta N(N-1)/2})$
(1.19)

so the integration over the variables $p_{1},$ $\ldots,p_{\beta N(N-1)/2}$ only alters the normaliza-
tion constant. Hence the final expression for the eigenvalue p.d. $f$. in the Gaussian
ensembles is

$\frac{1}{C_{\beta N}}e^{-\beta\sum_{j=1}^{N}\lambda_{j}^{2}/2}\prod_{1\leq j<k\leq N}|\lambda_{k}-\lambda_{j}|^{\beta}$ (1.20)

where $C_{\beta N}$ is the normalization constant. With $\lambda_{j}=x_{j}$ this expression is precisely
the absolute value squared of the ground state wave function of the Schr\"odinger
operator (1.3).

Consider now the derivation of (1.19). The calculation of $J$ in the Hermitian
case was first given by Goodman [7], in the context of multivariable statistics. We
will adapt the more recent treatment of Muirhead [8], who derives $J$ in the real
symmetric case, also in the context of studies in multivariate statistics. This is
based on exterior products.

Deflnition 1.2 Let the differential $du_{j}$ of the function $u_{j}=u_{j}(v_{1}, \ldots, v_{m})$ be
given by

$du_{j}$ $:=\frac{\partial u_{j}}{\partial v_{1}}dv_{1}+\cdots+\frac{\partial u_{j}}{\partial v_{m}}dv_{m}$

and define the exterior (also known as wedge) product $operator\wedge by$

$du_{j}\wedge du_{k}=du_{j}du_{k}j<k$ $du_{j}$ A $du_{j}=0$ and $du_{j}\wedge du_{k}=-du_{k}\wedge du_{j},$ $j>k$

with these operations extended by linearity, where the product $du_{j}du_{k}$ is inter-
preted as in the theory of integration.

The possibility of using exterior products to calculate Jacobians is apparent from
the formula

$\bigwedge_{j=1}^{m}du_{j}$ $:=du_{1}\wedge du_{2}\wedge\cdots\Lambda du_{m}=\det(\frac{\partial u_{j}}{\partial v_{k}})_{j,k=1,\ldots,m}dv_{1}\wedge dv_{2}\cdots\wedge dv_{m}(1.21)$

which is a direct consequence of the above definition and the definition of a deter-
minant. Two further definitions help streamline the working in the calculation.
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Definition 1.3 For any $N\times N$ matrix $X=[x_{jk}^{(1)}+ix_{jk}^{(2)}]$ , the matrix of differ-
entials is defined as

$dX=\left(\begin{array}{llll}dx_{11}^{(1)}+idx_{11}^{(2)}dx_{2l}^{(l)}+idx_{2l}^{(2)} & dx_{12}^{(1)}+idx_{12}^{(2)}dx_{22}^{(1)}+idx_{22}^{(2)} & & dx_{2N}^{(l)}+idx_{2N}^{(2)}dx_{1N}^{(1)}+idv_{1N}^{(2)}\\| & & .. \ddots & |\\dx_{N1}^{(l)}+idx_{Nl}^{(2)} & & dx_{N2}^{(1)}+idx_{N2}^{(2)} & dx_{NN}^{(1)}+idx_{NN}^{(2)}\end{array}\right)$

With this definition the usual product rule for differentiation holds:

$d(XY)=dXY+XdY$ . (1.22)

Definition 1.4 The symbol $(dX)$ denotes the exterior product of all the in-
dependent elements of $dX$ . In particular, if $X$ is an Hermitian matrix with off
diagonal elements $x_{jk}=x_{jk}^{(1)}+ix_{jk}^{(2)}$ , then

$(dX)=\bigwedge_{i=1}^{N}dx_{jj}^{(1)}\bigwedge_{1\leq j<k\leq N}dx_{jk}^{(1)}dx_{jk}^{(2)}$ . (1.23)

Calculation of $J$ in the Hermitian case. From Definition 1.4 and (1.21) we
see that for $X$ Hermitian

$J\prod_{i=1}^{N}d\lambda_{i}\prod_{j=1}^{N(N-1)}dp_{j}=(dX)$

To calculate $(dX)$ in terms of the eigenvalues and eigenvectors we use the formula
$X=ULU^{-1}$

where $L$ is a diagonal matrix consisting of the $N$ eigenvalues of $X$ and the columns
of the unitary matrix $U$ consist of the corresponding normalized eigenvectors. By
using this formula we are implicitly assuming that $X$ has no repeated eigenvalues.
This is justified because such an event occurs with zero probability, because then
$\det X$ must take on a specific value (zero). Using the notation of Definition 1.3,
the product rule for differentiation (1.22) gives

$dX=dULU^{-1}+UdLU^{-1}+ULdU^{-1}$ .

Rather than take the exterior product of both sides of this equation, it is simpler
to first premultiply by $U^{-1}$ and postmultiply by $U$ to obtain

$U^{-1}dXU$ $=$ $U^{-1}dUL+LdU^{-1}U+dL$

$=$ $U^{-1}dUL-LU^{-1}dU+dL$ , (1.24)

where to obtain the last line the formula $dU^{-1}U=-U^{-1}dU$ has been used (this
follows from $U^{-1}U=1$ ).
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According to Definition 1.4, the exterior product of the l.h. $s$ . of (1.24) is related
to $(dX)$ by

$(U^{-1}dXU)=p(U, U^{*})(dX)$

for some polynomial $p$ in the elements of $U$ and $U^{*}$ . In fact this polynomial is
identically equal to 1. To derive this result, first note that for a general matrix
$A,$ $(dA)$ must be real according to its definition, and so $p(U, U^{*})$ must be real.
Furthermore, we have

$((U_{1}U_{2})\dagger dXU_{1}U_{2})=p(U_{1}U_{2}, U_{1}^{*}U_{2}^{*})(dX)$ .

On the other hand

$((U_{\dot{1}}U_{2})\dagger dXU_{1}U_{2})=U_{2}^{\dagger}U_{1}^{t}dXU_{1}U_{2}=p(U_{1}, U_{1}^{*})p(U_{2}, U_{2}^{*})$

so that
$p(U_{1}U_{2}, U_{1}^{*}U_{2}^{*})=p(U_{1}, U_{1}^{*})p(U_{2}, U_{2}^{*})$ .

But it is known [9] that the only polynomial in the elements satisfying this equation
is

$p(U, U^{*})=(\det U)^{k_{1}}(\det U^{*})^{k_{2}}$ ,
and $p$ is real so we must have $k_{1}=k_{2}$ . Recalling $U$ is unitary, the result now
follows.

A small amount of additional working establishes the sought result.

Proposition 1.1. For X Hermitian we have

$(dX)=\prod_{1\leq j<k\leq N}(\lambda_{k}-\lambda_{j})^{2}\bigwedge_{j=1}^{N}d\lambda_{j}(U^{\dagger}dU)$ .

Proof. From the working so far, $(dX)$ is given by the wedge product of the r.h. $s$ . of
(1.24). To compute this wedge product, we expand out the matrix products on the
r.h. $s$ . of (1.24) and simplify using the fact that $\vec{u}_{j}^{\uparrow}\cdot d\vec{u}_{k}=-\vec{u}_{k}\cdot d\vec{u}_{j}^{\uparrow}$ (which follows
from $UU^{\uparrow}=1$ , and where we have set $U=[u_{jk}]$ and $\vec{u}_{j}=[u_{jk}]_{k=1,\ldots,N}$ ) to obtain

$((\lambda_{N}-\lambda_{1})\vec{u}_{1}d\vec{u}_{N}^{\uparrow}(\lambda_{2}-\lambda_{1}.\cdot.)\vec{u}_{1}.\cdot d\vec{u}_{2}^{\uparrow}d\lambda_{1}$
$(\lambda_{N}-\lambda_{2})\vec{u}_{2}\cdot d\vec{u}_{N}^{\dagger}(\lambda_{2}-\lambda_{1}..\cdot)\vec{u}_{1}^{\uparrow}\cdot d\vec{u}_{2}d\lambda_{2}$

$..$ .
$(\lambda_{N}-\lambda_{2}.\cdot.)\vec{u}_{2}^{\uparrow}d\vec{u}_{N}(\lambda_{N}-\lambda_{1})\vec{u}_{1}^{\uparrow}.\cdot d\vec{u}_{N}d\lambda_{N})$

The facts that each $\vec{u}_{j}^{\dagger}\cdot d\vec{u}_{k}$ has an independent real and imaginary part, and that
only the elements on and above the diagonal are independent we see that taking
the wedge product gives the stated result. $\square $

Substituting Proposition 1.1 in (1.22) shows that $J$ factorizes according to (1.19)
and thus establishes (1.20) in the Hermitian case.
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1.4. Random unitary matrices and Floquet operators. In the study of time
dependent problems in quantum mechanics, a fundamental quantity is the evolution
operator

$U(t)$ $:=\mathcal{T}\exp(-\frac{i}{\hslash}\int_{0}^{t}dt^{\prime}H(t^{\prime}))$ (1.25)

where $\mathcal{T}$ denotes the usual time ordering. When the Hamiltonian is periodic of pe-
riod $\tau$ (i.e. $H(t)=H(t+\tau)$ ) we have $U(n\tau)=F^{n}(n\in Z)$ where $F:=U(\tau)$ . The
operator $F$ is called the Floquet operator, and is unitary since $U$ is unitary. For
classical chaotic time dependent systems, analogous to the situation with Hamil-
tonians of complex systems, one hypothesizes that the feature determining the
statistical properties of the eigenvalues of $F$ is the global time reversal symmetry.
This suggests modelling $F$ by a random unitary matrix.

Let us now investigate the constraint on $F$ imposed by a time reversal symme-
try. In the static case (Section 1.2), the system was said to have a time reversal
symmetry $T$ if $T$ was antiunitary and commuted with the Hamiltonian. For a time
dependent Hamiltonian an appropriate definition of a time reversal symmetry $T$ is
that $T$ is antiunitary, and

$T^{-1}H(t)T=H(-t)$ (1.26)

(see e.g. [5]). From (1.25) it is not hard to deduce that (1.26) holds with $H(t)$

replaced by $U(t)$ –one approach is to use the integral equation

$U(t)=1+\frac{1}{i\hslash}\int_{0}^{t}dt^{\prime}H(t)U(t’)$

which is equivalent to (1.25). We thus have
$ T^{-1}FT=F^{-1}=F\dagger$ , (1.27)

where the final equality follows since $F$ is unitary.
Consider first the case $T^{2}=1$ , and let $\{\psi_{n}\}$ be a $T$ invariant basis. Then

$(\psi_{m}|F\psi_{n}\}=(T\psi_{m}|TF\psi_{n}\rangle^{*}=(T\psi_{m}|F^{\uparrow}T\psi_{n}\}^{*}$

$=(\psi_{m}|F^{t}\psi_{n}\rangle^{*}=(\psi_{n}|F\psi_{m})$ .
Thus in this case $F$ is a symmetric unitary matrix.

Consider next the case $T^{2}=-1$ with $T=ZK$ . Then (1.27) gives
$F=TF^{t}T^{-1}=ZKF^{\uparrow}K^{-1}Z^{-1}=ZKF^{\uparrow}KZ^{-1}=ZF^{T}Z^{-1}$

This constraint is said to specify $F$ as a self dual quaternion matrix. In terms of
$2\times 2$ blocks in position $(jk)$ and $(kj)$ of $F$ it says

( $z_{jk}^{(3)}z_{jk}^{(1)}$ $z_{jk}^{(2)}z_{jk}^{(4)})=(-z_{kj}z_{k}^{(4)}i_{3)}$ $-z_{k}^{(2)}z_{kj}^{(1}f)$

Consideration of Floquet operators thus indicates that a theory of random sym-
metric unitary matrices, random unitary matrices, and random self-dual quaternion
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unitary matrices is required. These three classes of random unitary matrices have
been defined and studied by Dyson [3]. We will content ourselves with presenting
the definition, and calculating the eigenvalue p.d. $f.$ , in the symmetric case. The
random symmetric unitary matrices are said to form the Circular Orthogonal En-
semble (COE) (as in the Gaussian case, the term orthogonal refers to the symmetry
of the matrices: random symmetric unitary matrices map into themselves under
similarity transformations with real orthogonal matrices).

Definition 1.5 Consider an arbitrary symmetric unitary matrix $S$ , and write $S$

as
$S=U^{T}U$

where $U$ is unitary (e.g. diagonalize $S$ by $S=R\Theta R^{T}$ where $R$ is real orthogonal
and $\Theta$ is diagonal and take $U=\Theta^{1/2}R^{T}$ ). Let $dM$ denote a real symmetric
matrix of differentials $dM_{jk}$ and define an infinitesimal neighbourhood of $S$ by

$S+dS=U^{T}(1+idM)U$

(note that $S+dS$ is unitary at $O(dM)$ ). Suppose furthermore that the elements
$dM_{jk},$ $j\leq k$ , vary independently in some intervals of length $d\mu_{jk}$ . With these
notations, the probability that a matrix from the circular orthogonal ensemble
(COE) lies between $S$ and $S+dS$ is defined to be proportional to

$\mu_{1}(dS):=\prod_{j\leq k}d\mu_{jk}$

i.e. all matrices $S$ are required to be equally probable.

The decomposition $S=U^{T}U$ is arbitrary in that $U$ can be replaced by $V=$
$R^{\prime}U$ where $R$ is any real orthogonal matrix. An essential feature of the above
definition of the measure is that it is independent of $R$ . Since with $U$ replaced by
$R^{\prime}U$

$S+dS=U^{T}(1+R^{T}dMR^{\prime})U$

the measure will be unchanged if the absolute value of the Jacobian of the change
of variables $dM\mapsto R^{T}dMR^{\prime}$ is unity. The Jacobian can be computed by taking
exterior products. We have

$(R^{T}dMR^{\prime})=J(dM)$ .

But from Definition 1.5, $(R^{\prime T}dMR^{\prime})=p(R)(dM)$ for some polynomial in the
elements of $R$ . Arguing as in Section 1.3, $p(R^{\prime})$ must be some power of $\det R^{\prime}$ and
so equal $to\pm 1$ , thus giving the required result. Note that this implies the measure
is invariant under the transformation $ S\leftarrow\rangle$ $R^{T}SR$ .

The Circular Unitary Ensemble (CUE) and Circular Symplectic Ensemble (CSE)
are defined analogously to the COE-in particular, $aU$ matrices are required to be
equally probable. The analogy with the ground state of the Schr\"odinger operator
(1.4) is for the eigenvalue p.d. $f$. $s$ of the circular ensembles. Since we are dealing
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with unitary matrices, the eigenvalues $\lambda_{j}$ lie on the unit circle in the complex plane,
and so can be written $\lambda_{j}=e^{i\theta_{j}}$ . We have the following result.

Proposition 1.2. The eigenvalue $p.d.f$. of the circular ensembles is given by

$\frac{1}{C_{\beta N}}\prod_{1\leq j<k\leq N}|e^{i\theta_{k}}-e^{i\theta_{j}}|^{\beta}$ ,

where $C_{\beta N}$ is the normalization, with $\beta=1,2$ and 4 for the $COE$, CUE and $CSE$

respectively.

Proof. Only the COE will be considered here. The starting point is to express
the measure of Definition 1.5 for the CUE in terms of the eigenvalues of $S$ in
the diagonalization formula $S=R\Theta R^{T}$ , where $\Theta$ is a diagonal matrix consisting
of the eigenvalues $e^{i\theta_{j}}(j=1, \ldots, N)$ of $S$ , and the columns of $R$ consist of the
corresponding normalized eigenvectors which are real so that $R$ is real orthogonal.
Analogous to (1.3), differentiation and minor manipulation gives

$ R^{T}dSR=R^{T}dR\Theta-\Theta R^{T}dR+i\Theta d\theta$ ,

where $\theta$ is the diagonal matrix with entries $\theta_{j}$ $(j=1, \ldots , N)$ . But from Definition
1.5

$R^{T}dSR=i(UR)^{T}dM(UR)$

where $U$ is any unitary matrix such that $S=U^{T}U$ . In particular, with $U=$
$\Theta^{1/2}R^{T}$ where $\Theta^{1/2}$ is the diagonal matrix with entries $e^{i\theta_{j}/2}(j=1, \ldots, N)$ ,
comparison of the two equations for $R^{T}dSR$ gives

$dM$ $=$ $\Theta d\theta-i\Theta^{-1/2}R^{T}dR\Theta^{1/2}+i\Theta^{1/2}R^{T}dR\Theta^{-1/2}$

$=$ $(d\theta_{1}**$

2

$\sin(\theta_{2}-\theta_{1})..\cdot/2\vec{r}_{1}\cdot d\vec{r}_{2}d\theta_{2}*$

$\cdot.$ .
$2\sin(\theta_{N}-\theta_{2})/2\vec{r}_{2}\cdot d\vec{r}_{N}2\sin(\theta_{N}-\theta_{1})/2\vec{r}_{1}\cdot d\vec{r}_{N}d\theta_{N})$

where the elements $are$ chosen so that the matrix is symmetric. Taking the wedge
product of the independent elements, and noting that

2 $\sin(\theta_{k}-\theta_{j})/2=|e^{i\theta_{k}}-e^{i\theta_{j}}|$ for $\theta_{k}>\theta_{j}$

gives the result of the proposition for the COE. $\square $

The p.d. $f$. in Proposition 1.2 is precisely the absolute value squared of the ground
state wave function of the Schr\"odinger operator (1.4).

The definitions of the circular ensembles presented above give no information
on the construction of the matrix elements. Nonetheless, an explicit construction
in the unitary case is possible [10], and the method is in fact implicit in a classical
result of Hurwitz [11]. Having generated a member of the CUE, it follows from
the definition above that a member of the COE can then be generated (the same
is true for a member of the CSE).
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Hurwitz’s result is the following.

Proposition 1.3. Almost all $N\times N$ unitary matrices $U$ have the unique decom-
position

$U=e^{i\alpha_{0}}E_{1}E_{2}\ldots E_{N-1}$

with

$E_{k-1}$ $=$ $E^{(k-1,k)}(\phi_{k-1,k}, \psi_{k-1,k}, 0)E^{(k-2,k)}(\phi_{k-2,k},\psi_{k-2,k}, 0)$

$\times\cdots\times E^{(2,k)}(\phi_{2,k}, \psi_{2,k}, 0)E^{(1,k)}(\phi_{1,k}, \psi_{1,k}, \alpha_{k})$ ,

$-\pi\leq\alpha_{k}<\pi$ , $-\pi\leq\psi_{jk}<\pi$ , $0\leq\phi_{jk}\leq\pi/2$ ,

where the $N\times N$ unimodular matrices $E^{(jk)}$)
$(\phi, \psi, \alpha)$ are defined so that all diagonal

elements are 1 excepts for the $jth$ and $kth$ which are equal to $\cos\phi e^{i\psi}$ and $\cos\phi e^{-i\psi}$

respectively, and all off diagonal elements are zero except for the element in the $jth$

row and $kth$ column which is equal to $\sin\phi e^{i\alpha}$ , and the element in the $kth$ row and
$jth$ column which is equal $to-\sin\phi e^{-i\alpha}$ (the quantities $\phi$ and $\psi$ are referred to as
Euler angles). Furthermore

$\mu_{2}(dU)=C\prod_{1\leq j<k\leq N}d[(\sin\phi_{jk})^{2j}]d\psi_{jk}\prod_{j=1}^{N}d\alpha_{j}$

From Proposition 1.3, we see that with $\phi_{jk}=(arsin\xi_{jk}^{1/2j})$ , $0\leq\xi_{jk}\leq 1,$ $(dU)$

gives the uniform measure (in $\alpha_{j},$ $\psi_{jk}$ and $\xi_{jk}$ ) so that all matrices are equally
probable, which is what is required for the CUE. Thus with $\alpha_{j},$

$\psi_{jk}$ and $\xi_{jk}$ chosen
at random with uniform density from their respective intervals, the unitary matrix
$U$ formed according to the decomposition in Proposition 1.3 will be a member of
the CUE.

1.5. Wishart matrices. We have seen how the modelling of a quantum Hamil-
tonian and Floquet operator leads to the Gaussian and circular ensembles respec-
tively. In this section we will show how the modelling of quantum transport prob-
lems leads to Wishart matrices or equivalently the Laguerre ensemble of random
matrices.

For the physical setting (following Stone et. al. [12]) we consider a quasi one-
dimensional conductor containing scattering impurities and having $N$ available
scattering channels (i.e. allowed plane wave states). A current is passed through
the wire and we are interested in the statistical properties of the corresponding
conductance.

For the theoretical description, one introduces the electron fluxes at the left
and right hand edges of the conductor, which are specified by the $2N$ component
vectors

$\left(\begin{array}{l}\vec{I}\\\vec{O}\end{array}\right)$ and $\left(\begin{array}{l}\vec{I^{\prime}}\\\vec{O}’\end{array}\right)$ ,
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where $\vec{I}(\vec{O})$ and $\vec{I}(\vec{O}^{\prime})$ denote the amplitude of the plane wave states travelling into
(out of) the left and right sides of the conductor respectively. The flux conservation
condition is

$|\vec{I|}^{2}+|\vec{I}|^{2}=|\vec{O}|^{2}+|\vec{O}’|^{2}$ .
By definition, the $2N\times 2N$ scattering matrix $S$ relates the flux travelling into

the conductor to that travelling out:

$S\left(\begin{array}{l}\tilde{I}\\\tilde{I}\end{array}\right)$ $;=\left(\begin{array}{l}\vec{O}\\\vec{O}’\end{array}\right)$ . $(1.28a)$

It follows from the flux conservation condition that $S$ is unitary:

$\langle S\left(\begin{array}{l}\vec{I}\\\vec{I^{\prime}}\end{array}\right)S\left(\begin{array}{l}\vec{I}\\\tilde{I^{\prime}}\end{array}\right)\rangle=\{\left(\begin{array}{l}\vec{O}\\\vec{O}\end{array}\right),$ $\left(\begin{array}{l}\vec{O}\\\vec{O}^{\prime}\end{array}\right)\rangle=\{\left(\begin{array}{l}\vec{I}\\\vec{I}\end{array}\right),$ $\left(\begin{array}{l}\vec{I}\\\vec{I}\end{array}\right)\}$ .

The scattering matrix is further decomposed in terms of $N\times N$ reflection and
transmission matrices by

$S=\left(\begin{array}{ll}r & t^{\prime}\\t & r^{\prime}\end{array}\right)$ . $(1.28b)$

The so called two-probe Landauer formula expresses the conductance $G$ in terms
of the transmission matrix $t$ (or $t^{\prime}$ ) by

$G/G_{0}=Tr(t^{\uparrow}t)=Tr(t^{\prime\dagger}t^{\prime})$

where $G_{0}=2e^{2}/h$ is twice the fundamental quantum unit of conductance.
The $2N\times 2N$ transfer matrix $M$ is defined to relate the fluxes at each end:

$M\left(\begin{array}{l}\vec{I}\\\vec{O}\end{array}\right)$ $;=\left(\begin{array}{l}\vec{O}’\\\vec{I}\end{array}\right)$

and is decomposed into $N\times N$ blocks by

$M=\left(\begin{array}{ll}m_{l} & m_{2}\\m_{3} & m_{4}\end{array}\right)$ .

A similar argument used to show that $S$ is unitary gives
$M^{\uparrow}\Sigma_{z}M=\Sigma_{z}$ $(1.28c)$

where
$\Sigma_{z};=\left(\begin{array}{ll}1 & 0\\0 & -1\end{array}\right)$ .

From this formula, and the unitarity of $S$ , we find

$t^{\dagger}=m_{1}^{-1},$ $m_{1}^{\uparrow}m_{1}=1+m_{3}^{1}m_{3}$ and $t^{\dagger}=m_{4}^{-1},$ $m_{4}^{\dagger}m_{4}=1+m_{2}^{1}m_{2}$

Thus the two-probe Landauer formula can be rewritten as
$G/G_{0}=Tr(1+m_{3}^{\uparrow}m_{3})^{-1}=Tr(1+m_{2}^{\uparrow}m_{2})^{-1}$ (1.29)
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which is our final formula for $G$ .
We now introduce a random matrix hypothesis for the products $m_{3}^{\dagger}m_{3}$ and

$m_{2}^{\uparrow}m_{2}$ . Such products of random matrices first occurred in mathematical statistics,
and can be defined in an analogous way to the Gaussian ensemble. They are known
as Wishart matrices.

Definition 1.6

(1) Let $X$ be a random $n\times m(n\geq m)$ matrix of real elements $x_{jk}$ with each
element independently distributed according to the Gaussian density

$\frac{1}{\sqrt{2\pi}}e^{-x_{jk}^{2}/2}$ .

The random non-negative $m\times m$ matrix $A$ $:=X^{T}X$ is called a real Wishart
matrix.

(2) Let $X$ be a $n\times m(n\geq m)$ matrix of complex elements $z_{jk}$ with each
element independent and distributed according to the Gaussian density $\frac{1}{\pi}e^{-|z_{jk}|^{2}}$

The random non-negative $m\times m$ matrix $A:=x\dagger x$ is called a complex Wishart
matrix.
(3) Let $X$ be a random $n\times m(n\geq m)$ matrix of real quaternion elements (as
an ordinary matrix $X$ is thus $2n\times 2m$ )

$\left(\begin{array}{ll}z_{jk} & w_{jk}\\-w_{jk}^{*} & z_{jk}^{*}\end{array}\right)$

where $z_{jk}$ and $w_{jk}$ are complex numbers distributed according to the Gaussian
densities

$\frac{2}{\pi}e^{-2|z_{jk}|^{2}}$ and $\frac{2}{\pi}e^{-2|w_{jk}|^{2}}$

The random non-negative $m\times m$ matrix $A=x\dagger x$ of real quaternion elements is
said to be a real quaternion Wishart matrix.

Real Wishart matrices apply when there is a time reversal symmetry with $T^{2}=$

$1$ , while real quaternion Wishart matrices apply when $T^{2}=-1$ and $T=ZK$ .
When there is no time reversal symmetry there is no constraint on the elements of
$m_{3}$ and $m_{2}$ and so complex Wishart matrices are applicable.

Let us show how time reversal symmetry with $T^{2}=-1$ and $T=ZK$ implies
that the elements of $m_{2}$ and $m_{3}$ must be real quaternion. Here it is appropriate to
take $Z$ as having dimension $4N\times 4N$ . Reading off from (1.28), this time reversal
symmetry implies $S$ is a $4N\times 4N$ symplectic matrix:

$S=ZS^{T}Z^{-1}$ .



118 PETER J. FORRESTER

Using this relation and the definition of $S$ we see that

$SZ\left(\begin{array}{l}\vec{o}*\\O^{\vec{\prime}}*\end{array}\right)=Z\left(\begin{array}{l}I^{*}\rightarrow\\ I^{\prime}\vec{*}\end{array}\right)$ .

Comparing with the original definition of $S$ , we see that the time reversal symmetry
implies the states

$\left(\begin{array}{l}\vec{I}\\\vec{I}\end{array}\right)$ and $\left(\begin{array}{l}\vec{O}\\\vec{O}’\end{array}\right)$

can be replaced by

$Z\left(\begin{array}{l}\vec{o}*\\O^{\vec{\prime}}*\end{array}\right)$ and $Z\left(\begin{array}{l}\vec{I^{*}}\\I^{\vec{*}}\end{array}\right)$

respectively. Hence, from the defining property, in addition to (1.28c) $M$ must
satisfy

$MZ\left(\begin{array}{l}\vec{o}*\\I^{\prime}\vec{*}\end{array}\right)=Z\left(\begin{array}{l}I^{\rightarrow}*\\O^{\vec{\prime}}*\end{array}\right)$ ,

or equivalently, again using the defining property

$\left(\begin{array}{ll}0 & 1\\1 & 0\end{array}\right)Z^{-1}M^{*}Z\left(\begin{array}{ll}0 & 1\\1 & 0\end{array}\right)=M$ .

Writing the elements of $m_{j}(j=1, \ldots 4)$ as

( $m_{j}^{(1)}m_{j}^{(3)}$ $m_{j}^{(4)}m_{j}^{(2)}$ ) ,

this equation says

( $m_{2}^{(3)}m_{2}^{(1)}$ $m_{2}^{(4)}m_{2}^{(2)})_{kk^{\prime}}=(-m_{3}^{(2)}m_{3}^{(4)}$ $-m_{3}^{(3)}m_{3}^{(1)})_{kk^{\prime}}$

Since we are modelling the elements of $m_{2}$ and $m_{3}$ by independent Gaussian
distributions, we interpret this equation as relating the p.d. $f$. $s$ of each element. It
therefore says that the elements of $m_{2}$ and $m_{3}$ must be of the form

$\left(\begin{array}{ll}z & w\\-w^{*} & z^{*}\end{array}\right)$

and thus real quaternion.
Wishart matrices have also found recent application as model of Dirac operators

in studies of quantum chromodynamics (qcd) by Verbaarschot [13]. This theory is
analogous to the random matrix theroy of non-relativistic quantum Hamiltonians
discussed in Section 1.2.

We recall that an essential feature of the Dirac operator (see e.g [5] is that it is
Hermitian and the eigenvalues occur in $pairs\pm\lambda$ . Furthermore the application to
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qcd requires that the Dirac operator has a given number, $\nu$ say, of zero eigenvalues.
A matrix structure consistent with these requirements is given by

$X=\left(\begin{array}{ll}0 & D\\D^{\uparrow} & 0\end{array}\right)$ ,

where $D$ is an $n\times m(n\geq m)$ matrix. Thus $X$ has in general $n-m$ zero eigenvalues
and the remaining eigenvalues given by $\pm the$ positive square roots of the eigen-
values of $D^{\uparrow}D$ (this result can be deduced from the singular value decomposition
of $D$ ). Since this result holds independent of the details of $D$ a random matrix
hypothesis can be made. Choosing the elements of $D$ as independent complex
numbers with distribution as in Definition 1.6 part (2), we see that the distribu-
tion of the positive eigenvalues of $X$ above is precisely that of the eigenvalues $\lambda_{j}$

of a complex Wishart matrix, with $\lambda_{j}$ replaced by $\lambda_{j}^{2}$ .
The choice of independent complex elements for $D$ is only consistent in the

absence of time reversal symmetry. In a system with a time reversal symmetry, the
matrix $X$ modelling the Dirac operator is subject to the same constraints as those
of a non-relativistic Hamiltonian. Thus, from Section 1.2, if the Dirac operator
has a time reversal symmetry with $T^{2}=1$ , then $X$ can be chosen to have real
elements, while if the time reversal symmetry is such that $T^{2}=-1$ with $T=ZK$ ,
then $X$ and thus $D$ must be real quaternion. If in these cases the distribution of
the elements of $D$ are chosen as in the Definitions 1.6 of real and real quaternion
Wishart matrices, then the corresponding p.d. $f$. for the positive eigenvalues of $X$ is
precisely that of the eigenvalues $\lambda_{j}$ for real and quaternion real Wishart matrices,
with $\lambda$ replaced by $\lambda_{j}^{2}$ .

1.6. Eigenvalue p.d. $f$. $s$ of the Wishart matrices and analogy with Calogero
Sutherland model. We will provide some of the details of the derivation of the
eigenvalue p.d. $f$. of the complex Wishart matrices, as specified by Definition 1.6 part
(2), by following the method detailed by Muirhead [8] to calculate the p.d. $f$. of the
real Wishart matrices. The method uses exterior products, as in the calculation of
the eigenvalue p.d. $f$. for the Gaussian and circular ensembles.

Let’s first outline the overall strategy. According to Definition 1.6, we are given
that the joint probability distribution of the elements of the $n\times m$ complex matrix
$X$ is

$\frac{1}{\pi^{nm}}\prod_{j=1}^{n}\prod_{k=1}^{m}e^{-|z_{jk}|^{2}}(dX)$ .

With $A$ $:=x\dagger x$ our first task is to express $(dA)$ in terms of $(dX)$ and thus to
obtain the p.d. $f$. of the matrix $A$ . To do this we use the Gram-Schmidt orthogo-
nalization procedure to write

$X=U_{1}T$ (1.30)

where $U$ is an $n\times m$ matrix such that
$U_{1}^{\uparrow}U_{1}=1$
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and $T$ is a $m\times m$ upper triangular matrix with diagonal entries real and positive.
From (1.30) we calculate $(dX)$ in terms of $(dU_{1})$ and $(dT)$ . Noting from (1.30)
and the definition of $A$ that

$A=T^{\dagger}T$

we then calculate $(dT)$ in terms of $(dA)$ . Substituting the result of this second
calculation into the first gives $(dX)$ in terms of $(dA)$ as required.

Having calculated the p.d. $f$ of $A$ , we then use the results of Section 1.4 to express
this p.d. $f$. in terms of the eigenvalues of $A$ .

Proceeding as in the above outline, we must relate $(dT)$ and $(dA)$ . This requires
the fact that the Jacobian of the transformation $\vec{z}=A\vec{w},$ , where $\vec{w},\vec{z}$ and $A$

have complex entries, is $|\det A|^{2}$ . To see this, let $\vec{z}=[x_{j}+iy_{j}]_{j=1,\ldots,N},\vec{w}=$

$[u_{j}+iv_{j}]_{j=1,\ldots,N}$ and $A=[a_{jk}+ib_{jk}]_{j,k=1,\ldots,N}$ . Then the equation $dz=\rightarrow Ad\vec{w}$ can
be rewritten as the real matrix equation

$[(dy_{j})_{j=1,\ldots,N}(dx_{j})_{j=1,\ldots,N}]=[\{_{b_{jk})_{j,k=1,\ldots,N}}^{a_{jk})_{j,k=1,\ldots,N}}$ $-(b_{jk})_{j,k=1.’.\cdot.\cdot.,N}(a_{jk})_{j,k=1,,N}][(dv_{j})_{j=1,\ldots,N}(du_{j})_{j=1,\ldots,N}]$

The determinant of the $2N\times 2N$ matrix, and thus the Jacobian, can be evaluated
by adding $i$ times the blocks in the bottom half to the blocks in the top half, and
then subtracting $i$ times the blocks in the left half to the blocks in the right half
so that the top right block is now the zero matrix. This result is used in the proof
of the following result.

Proposition 1.4. With $U_{1}$ and $T$ defined by (1.30) we have

$(dX)=\prod_{j=1}^{m}t_{jj}^{2(n-j)+1}(dT)(U_{1}^{t}dU_{1})$ ,

where the $t_{jj}$ are the diagonal entries of the matrex $T$ .

Proof. (Outline) Since $X=U_{1}T$ we have

$dX=dU_{1}T+U_{1}dT$ .

Now extend the number of columns of $U_{1}$ from $m$ to $n$ by defining an $(n-m)\times n$

matrix $U_{2}$ such that
$U=[U_{1}U_{2}]$

and
$U^{\dagger}U=1$ .

Then

$U^{\uparrow}dZ=\left\{\begin{array}{l}U_{1}^{|}\\U_{2}^{\dagger}\end{array}\right\}dX=[_{U_{2}^{\dagger}}^{U_{1}^{\dagger}}\{ddU_{1}U_{1}TT:_{U_{1}dT)}U_{1}dT)]=\left\{\begin{array}{ll}U_{1}^{|}dU_{1} & T+dT\\U_{2}^{\uparrow}U_{1} & T\end{array}\right\}$ ,

since $U_{1}^{1}U_{1}=1$ and $U_{2}^{\dagger}U_{1}=0$ .
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Consider the above equation. On the l.h. $s.$ , from the preliminary result we have
$(U^{\uparrow}dZ)=|\det U^{\uparrow}|^{2m}(dX)=(dX)$ ,

which is the left hand side of the assertion. To take the wedge product of the
independent elements on the r.h. $s$ . is more involved. We merely remark that again
the preliminary result is used, and that the r.h. $s$ . of the assertion results. $\square $

The next result is used to express $(dA)$ in terms of $(dT)$ . It is proved by a
straightforward computation of wedge products.

Proposition 1.5. Let the $m\times m$ matrix $T$ be as in (1.30), so that $ A=\tau\dagger\tau$ . We
have

$(dA)=2^{m}\prod_{j=1}^{m}t_{jj}^{2m+1-2j}(dT)$ .

Combining Propositions 1.4 and 1.5, and noting that

$\prod_{j=1}^{m}t_{jj}^{2}=(\det T)^{2}=\det$ $A$ and $\sum_{j,k=1}^{m}|x_{jk}|^{2}=TrA$

we can write down the p.d. $f$. of $A$ . This result was first given by Goodman [7],
and is the analogue of the classical result of Wishart for the p.d. $f$. or what are now
termed real Wishart matrices.

Proposition 1.6. Let $A$ be a complex Wishart matrix as defined by Definition
1.6. Then the $p.d.f$. of $A$ is

$\frac{1}{\hat{C}_{2N}}e^{-Tr(A)}(\det A)^{n-m}$ ,

where $\hat{C}_{2N}$ is a normalization constant.

Finally, we use the results of Section 1.3 to change variables from the elements
of $A$ to the eigenvalues of $A$ (and some further variables depending on the eigen-
vectors). Integrating out the further variables gives the desired eigenvalue p.d. $f$. of
the complex Wishart matrix $A$ . The final result, together with that for real and
real quaternion Wishart matrices is as follows.

Proposition 1.7. With $\beta=1,2$ and 4, $\chi_{\beta}=-1,0,1/2$ respectively (or equiva-
lently $\chi_{\beta}=1-2/\beta$), the eigenvalue $p.d.f$. for real, complex, and real quaternion
Wishart matrices is given by

$\frac{1}{W_{a\beta m}}\prod_{j=1}^{m}\lambda_{j}^{(\beta/2)a}e^{-\beta\lambda_{j}/2}\prod_{1\leq j<k\leq m}|\lambda_{k}-\lambda_{j}|^{\beta}$ , $\lambda_{j}\geq 0$

where $a=n-m+\chi_{\beta}$ (due to the weightings of the form $\lambda^{\beta a/2}e^{-\beta\lambda_{j}/2}$ , this $p.d.f$. is
said to define the Laguerre ensemble of random $matricesf$.
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1.7. Relationship to Calogero-Sutherland model. We have seen that the
eigenvalue p.d. $f$. for the Gaussian and Circular ensembles is related to the Calogero-
Sutherland model as the modulus squared of the ground state wave function. The
same is also true of the eigenvalue p.d. $f$. for the Laguerre ensemble, provided we
first change variables to the positive square roots $x_{j}^{2}=\lambda_{j}$ of the eigenvalues of the
Wishart matrices. In terms of these variables the eigenvalue p.d. $f$. is proportional
to

$\prod_{j=1}^{m}x_{j}^{\beta a^{\prime}}e^{-\beta x_{j}^{2}/2}\prod_{1\leq j<k\leq m}|x_{j}^{2}-x_{k}^{2}|^{\beta}$ (1.31)

where $ a^{\prime}=a+1/\beta$ with $a$ as specified in Proposition 1.7. This is of the form
$e^{-\beta W^{\langle L)}}$ (the superscript $(L)$ denotes Laguerre) where

$W^{(L)}=\frac{1}{2}\sum_{j=1}^{m}x_{j}^{2}-\frac{a’}{2}\sum_{j=1}^{m}\log x_{j}^{2}-\sum_{1\leq j<k\leq m}\log|x_{k}^{2}-x_{j}^{2}|$ $(1.32a)$

One can check by explicit calculation that $e^{-\beta W^{(L)}/2}$ is the ground state wave
function of the Schr\"odinger operator

$H^{(L)}=-\sum_{j=1}^{m}\frac{\partial^{2}}{\partial x_{j}^{2}}+\sum_{j=1}^{m}(\frac{\beta a^{\prime}}{2}(\frac{\beta a}{2}-1)\frac{1}{x_{j}^{2}}+\frac{\beta^{2}}{4}x_{j}^{2})+2\beta(\beta/2-1)\sum_{j,k=1,j\neq k}^{m}\frac{x_{j}^{2}}{(x_{k}^{2}-x_{j}^{2})^{2}}$

$(1.32b)$

Since the ground state has the factorization property (1.2), this is the Schr\"odinger
operator for a particular Calogero-Sutherland model. Note also that the double
sum in (1.32b) can be rewritten as

$\frac{1}{2}\sum_{j<k}(\frac{1}{(x_{k}-x_{j})^{2}}+\frac{1}{(x_{k}+x_{j})^{2}})$ . $(1.32c)$

With the substitution (1.32c) $H^{(L)}$ is closely related to the $B$ type reflection group,
and for this reason is referred to as the B-type Calogero-Sutherland model in a
harmonic potential.

1.8. The Jacobi ensemble. The Jacobi random matrix ensemble refers to the
eigenvalue p.d. $f$.

$C_{ab\beta N}^{-1}\prod_{j=1}^{N}x_{j^{a\beta/2}}(1-x_{j})^{b\beta/2}\prod_{1\leq j<k\leq N}|x_{k}-x_{j}|^{\beta}$ $x_{j}\in[0,1]$ . (1.33)

It turns out [14] that the eigenvalues of $r\dagger r$ in the scattering matrix (1.28b) con-
tribute a factor of the form (1.33) to the Jacobian implied by the singular value
decomposition of $r$ . Furthermore, we have the following theorem, well known in
mathematical statistics in the real case [8].
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Proposition 1.8. Let $A=a^{\uparrow}a,$ $B=b^{\uparrow}b$ , where $a$ and $b$ are $n_{1}\times m$ and $n_{2}\times m$

random real $(\beta=1)$ , complex $(\beta=2)$ or real quatemion $(\beta=4)$ Gaussian random
matrices. Then the eigenvalues of $A(A+B)^{-1}$ are given by (1.33) with $N=m$ ,
$a=n_{1}-m+\chi_{\beta}$ and $b=n_{2}-m+\chi_{\beta}$ .

To relate (1.33) to the ground state wave function of a Calogero-Sutherland
system, we write $x_{j}=\sin^{2}\phi_{j},$ $0\leq\phi_{j}\leq\pi/2$ . Now writing (1.33) in the form
$Ce-\beta W$ we have

$W=W^{(J)}=-\frac{a}{2}\sum_{j=1}^{N}\log\sin^{2}\phi_{j}-\frac{b^{\prime}}{2}\sum_{j=1}^{N}\log\cos^{2}\phi_{j}-\sum_{1\leq j<k\leq N}\log|\sin^{2}\phi_{j}-\sin^{2}\phi_{k}|$

where $a^{\prime}=a+1/\beta,$ $ b=b+1/\beta$ (the superscript $(J)$ denotes Jacobi). By
$explicit(l34)$

calculation we can show that $e^{-\beta W^{(J)}/2}$ is the ground state wave function of the
Schr\"odinger operator

$H^{(J)}$ $=$ $-\sum_{j=1}^{N}\frac{\partial^{2}}{\partial\phi_{j}^{2}}+\sum_{j=1}^{N}(\frac{a^{\prime}\beta}{2}(\frac{a^{\prime}\beta}{2}-1)\frac{1}{\sin^{2}\phi_{j}}+\frac{b^{\prime}\beta}{2}(\frac{b^{\prime}\beta}{2}-1)\frac{1}{\cos^{2}\phi_{j}})$

$+2\beta(\beta/2-1)\sum_{j,k=1,j\neq k}^{N}\frac{\sin^{2}\phi_{j}\cos^{2}\phi_{j}}{(\sin^{2}\phi_{j}-\sin^{2}\phi_{k})^{2}}$ (1.35)

We note that the double sum can be rewritten as

$\frac{1}{2}\sum_{j<k}(\frac{1}{\sin^{2}(\phi_{j}-\phi_{k})}+\frac{1}{\sin^{2}(\phi_{j}+\phi_{k})})$ .

The Hamiltonian (1.35) is then referred to as the BC-type Calogero-Sutherland
model, due to its relation to the reflection group of the same name.

In the next Section, the relationship between random matrices and the Calogero-
Sutherland model is further developed, as are the properties of the corresponding
Schr\"odinger operators. In the course of these studies, a systematic way of deducing
(1.32b) from (1.32a), and (1.35) from (1.34), will be presented. Before proceeding
to this topic, let us define the n-particle distribution functions, which characterize
the statistical properties of the ground state, and note some of their expected
asymptotic properties.

1.9. The static n-particle distribution functions. For a general classical gas
of $N$ indistinguishable particles with Boltzmann factor $e^{-\beta W}$ , the n-particle dis-
tribution is given by

$\rho_{(n)}(x_{1}, \ldots,x_{n})=\frac{N(N-1)\ldots(N-n)}{\hat{Z}_{N}}\int_{I}dx_{n+1}\cdots\int_{I}dx_{N}e^{-\beta W}$ (1.36)

where
$\hat{Z}_{N}=\int_{I}dx_{1}\cdots\int_{I}dx_{N}e^{-\beta W}$ .
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We note that $\rho_{(n)}(x_{1}, \ldots, x_{n})/\rho_{(n-1)}(x_{1}, \ldots, x_{n-1})$ can be interpreted as the den-
sity at the point $x_{n}$ given that there are particles at the points $x_{1},$

$\ldots,$ $x_{n-1}$ . With
$e^{-\beta W}$ interpreted as the modulus squared of the ground state wave function, (1.36)
also holds for the n-particle distribution of the quantum system in the ground state.

In the $n=1$ case the distribution (1.36) corresponds to the particle density. For
$W$ given by (1.6) and $I=[0, L]$ , the system can be interpreted as being confined
to a circle of circumference length $L$ . The particle density must then be uniform
and so given by $\rho_{1}(x)==N/L$ . However for $W$ given by (1.5), (1.32a) and (1.34)
the particle density is not uniform. In these cases, predictions can be made for the
limiting behaviour of the density by making use of the fact that the classical gas is a
log-gas, and interpreting the one-body terms in $W$ as potentials in two-dimensional
electrostatics (see e.g. [15]).

For $W=W^{(H)}$ as given by (1.5), this calculation predicts that

$\lim_{N\rightarrow\infty}\sqrt{\frac{2}{N}}\rho_{(1)}(\sqrt{2N}x)=\left\{\begin{array}{ll}\frac{2}{\pi}\sqrt{1-x^{2}}, & |x|<1\\0, & |x|\geq 1\end{array}\right.$ (1.37)

independent of $\beta$ . This limit gives the so-called global density, and the result is
known as the Wigner semi-circle law. For $W=W^{(L)}$ as given by (1.32) and with
$x_{j}^{2}=y_{j}$ , the electrostatic calculation gives

$\lim_{N\rightarrow\infty}\rho_{(1)}(4Ny)=\left\{\begin{array}{ll}\frac{1}{2\pi y^{1/2}}\sqrt{1-y}, & 0<y<1\\0, & y\geq 1\end{array}\right.$ $(1.38a)$

independent of $\beta$ and $a$ , while for $W=W^{(J)}$ as given by (1.33) the electrostatic
calculation gives

$\lim_{N\rightarrow\infty}\rho_{(1)}(x)=\frac{1}{\pi}\frac{1}{\sqrt{x(1-x)}}$ $(1.38b)$

$0<x<1$ , again independent of all the parameters. The log-gas interpretation
also gives predictions for the asymptotic behaviour of the truncated two-particle
distribution

$\rho_{(2)}^{T}(x_{1}, x_{2}):=\rho_{(2)}(x_{1}, x_{2})-\rho_{(1)}(x_{1})\rho_{(1)}(x_{2})$ . (1.39)

Firstly, suppose the thermodynamic limit has been taken and the log-gas is of in-
finite extent. The system is then translationally invariant so that $\rho_{(2)}^{T}(x_{1}, x_{2})=$

$\rho_{(2)}^{T}(x)$ , where $x$ $:=|x_{1}-x_{2}|$ . For this situation, macroscopic electrostatic argu-
ments, together with linear response theory [16] predict that

$\rho_{(2)}^{T}(x)\sim-\frac{1}{\beta\pi^{2}x^{2}}$ (1.40)

for the leading order large-x behaviour of the non-oscillatory term. For the log-gas
confined to the half-line $x>0$ the same type of argument predicts [17]

$\rho_{(2)}^{T}(x_{1}, x_{2})\sim-\frac{1}{\beta 2\pi^{2}\sqrt{x_{1}x_{2}}}\frac{x_{1}+x_{2}}{(x_{1}-x_{2})^{2}}$ (1.41)
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for the leading non-oscillatory behaviour. (In (1.40) and (1.41) $\rho_{(2)}^{T}$ refers to the
quantity (1.39) after the thermodynamic limit has been computed.)

In addition to the properties of infinite and semi-infinite states, states in which
the particle density is taken to infinity but the interval containing the particles
remains fixed are also of interest (the limiting procedure in (1.37) and (1.38) pro-
duces examples of such states). If the log-gas is confined to the interval $(a, b)$ , then
we expect [18-21]

$\lim_{N\rightarrow\infty}\frac{N}{b-a}\int_{x}^{x^{\prime}+(b-a)/N}ds\rho_{(2)}^{T}(x, s)$

$=$ $-\frac{1}{\beta\pi^{2}(x-x)^{2}}\frac{(a+b)(x+x)/2-ab-xx^{\prime}}{[(x-a)(b-x)(x-a)(b-x]^{1/2}}x\neq x^{\prime}$ (1.42)

while for a log-gas confined to a circle of unit radius we expect $[20,21]$

$\lim_{N\rightarrow\infty}\frac{N}{2\pi}\int_{\theta}^{\theta^{\prime}+2\pi/N}d\phi\rho_{(2)}^{T}(\theta, \phi)=-\frac{1}{\beta(2\pi)^{2}\sin^{2}((\theta-\theta)/2)},$ $\theta\neq\theta^{\prime}$ . (1.43)
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2. PARAMETER-DEPENDENT RANDOM MATRICES

2.1. Parameter-dependent Gaussian random matrices. The connection be-
tween random matrices and the Calogero-Sutherland model goes much deeper than
the correspondence between the eigenvalue p.d.f. s and the ground state wave func-
tions. In fact by generalizing the joint p.d.f. for the elements defining Gaussian
and Wishart random matrices to include a parameter, we find that the corre-
sponding eigenvalue p.d.f. s satisfy a Fokker-Planck equation, which is just a trans-
formed version of the Schr\"odinger equation for the Calogero-Sutherland models
with Schr\"odinger operators (1.3) and (1.32b).

Let us first consider Gaussian random matrices and reveal the connection with
the Fokker-Planck equation. The parameter-dependent random matrices generalize
(1.11) (or equivalently Definition 1.1) in such a way that the Gaussian p.d.f. s of
the individual elements can have a general mean and standard deviation.

Definition 2.1

For H real orthogonal, Hermitian or self-dual real quaternion, and $\beta=$ 1,2 and
4 respectively, the parameter-dependent Gaussian ensembles are defined so that
their joint p.d.f. for the elements is

$P(H^{(0)} $;$ $H; $\tau)$ $=$ $A_{\beta,\tau}\prod_{j,k=1}^{N}\exp(-\beta|H_{jk}-e^{-\tau}H_{jk}^{(0)}|^{2}/2|1-e^{-2\tau}|)$

$=$ $A_{\beta,\tau}\exp(-\beta Tr\{(H-e^{-\tau}H^{(0)})^{2}\}/2|1-e^{-2\tau}|)$ ,

where $A_{\beta,\tau}$ is the normalization.

The precise choice of the mean and standard deviation in Definition 2.1 has
been made so that the joint p.d. $f$. satisfies the Fokker-Planck equation describing
Brownian motion in a harmonic potential:

$\frac{\partial P}{\partial\tau}=\sum_{\mu}(\frac{\partial}{\partial H_{\mu}}(H_{\mu}P)+\frac{1}{\beta}D_{\mu}\frac{\partial^{2}P}{\partial H_{\mu}^{2}})$ , (2.1)

where the label $\mu$ ranges over the independent elements, including both the real
and imaginary parts of the off diagonal elements if they are complex, and $D_{\mu}=1$

for the diagonal elements and $D_{\mu}=1/2$ for the off diagonal elements.
By averaging over the distribution of $H^{(0)}$ , we find that the eigenvalue p.d. $f$. of

$H$ satisfies a certain Fokker-Planck equation. In general this is given by

$P(H;\tau)=\int dH^{(0)}P(H^{(0)})P(H^{(0)}; H;\tau)$
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As a specific example, let $\beta=2$ and suppose the joint p.d. $f$. at $\tau=0$ is that of the
GOE:

$P(H^{(0)})=\prod_{j=1}^{N}(\frac{1}{2\pi})^{1/2}e^{-H_{jj}^{(0)2}/2}\prod_{j<k}\frac{1}{\pi^{1/2}}e^{-H_{jk}^{(0)2}}$

We then have

$P(H;\tau)$ $=$ $\prod_{j=1}^{N}\frac{e^{-H_{jj}^{2}/(1+e^{-2\tau})}}{\sqrt{\pi(1+e^{-2\tau})}}\prod_{j<k}\frac{2}{\pi\sqrt{1-e^{-4\tau}}}$

$\times e^{-2(ReH_{jk})^{2}/(1+e^{-2\tau})-2(ImH_{jk})^{2}/(1-e^{-2\tau})}$

Thus the standard deviation of the real part of each element differs from the
standard deviation of the imaginary part. Returning now to the eigenvalue p.d. $f.$ ,
we have the following result [1].

Proposition 2.1. Let

$L^{(0)}=diag[\nu_{j}]=U^{(0)-1}H^{(0)}U^{(0)}$ and $L=diag[\lambda_{j}]=U^{-1}HU$

be the diagonalization of $H^{(0)}$ and $H$ respectively, and suppose the eigenvalue
$p.d.f$. of $H^{(0)}$ is given by $f(\nu_{1}, \ldots , \nu_{N})$ . The eigenvalue $p.d.f$. of $H$ after aver-
aging over $f$ and $U^{(0)},$ $F$ say, is independent of $U$ and is given by

$F(\lambda_{1}, \ldots, \lambda_{N}; \tau)$ $;=\frac{1}{\hat{G}_{N\beta}}\prod_{1\leq j<k\leq N}|\lambda_{k}-\lambda_{j}|^{\beta}F_{1}(\lambda_{1}, \ldots, \lambda_{N};\tau)$

where $\beta=1,2$ or 4 as in Definition 4.1, $\hat{G}_{N\beta}$ is a normalization and

$F_{1}(\lambda_{1}, \ldots, \lambda_{N};\tau)$ $;=$ $\int d\nu_{1}\ldots d\nu_{N}f(\nu_{1}, \ldots, \nu_{N})$

$\times\int[U^{(0)^{\uparrow}}dU^{(0)}]P(U^{(0)}L^{(0)}U^{(0)^{-1}} ; ULU^{-1} ; \tau)$ ,

( $[U^{(0)}dU^{(0)}]\dagger$ denotes the normalized measure associated with the eigenvectors of
$H^{(0)}$ ; recall Section 1.4). Furthermore $F$ satisfies the $p.d.e$ .

$\frac{\partial F}{\partial\tau}=\mathcal{L}F$ where $\mathcal{L}$

$:=\frac{1}{\beta}\sum_{j=1}^{N}\frac{\partial^{2}}{\partial\lambda_{j}^{2}}+\sum_{j=1}^{N}\frac{\partial}{\partial\lambda_{j}}(\lambda_{j}-\sum_{k=1,k\neq j}^{N}\frac{1}{\lambda_{j}-\lambda_{k}})$ ,

subject to the initial condition

$F(\lambda_{1}, \ldots, \lambda_{N};0)=f(\lambda_{1}, \ldots, \lambda_{N})$ .



128 PETER J. FORRESTER

We won’t give the proof of this proposition here, however in the next section
we will give the proof of the analogous result for parameter dependent Wishart
matrices. Proposition 2.1 can be proved in a similar way.

The Fokker-Planck equation in Proposition 2.1 also describes the overdamped
Brownian motion dynamics of the classical log-gas with potential energy (1.5).
This follows because for any interacting $N$ particle system with a general potential
energy $W$ , executing overdamped Brownian motion in a fictitious viscous fluid with
friction coefficient $\gamma$ at temperature $\beta^{-1}$ , the evolution of the p.d. $f$. $p(x_{1}, \ldots , x_{N}; \tau)$

for the location of the $N$ particles at the points $x_{1},$ $\ldots$ , $x_{N}$ is given by the Fokker-
Planck equation

$\gamma\frac{\partial p}{\partial\tau}=\mathcal{L}p$ where $\mathcal{L}=\sum_{j=1}^{N}\frac{\partial}{\partial x_{j}}(\frac{\partial W}{\partial x_{j}}+\beta^{-1}\frac{\partial}{\partial x_{j}})$ . (2.2)

The Fokker-Planck operator in Proposition 2.1 is of this form with $W$ given by
(1.5).

2.2. Parameter-dependent Wishart matrices. With parameter-dependent
Gaussian random matrices of dimension $n\times m$ , defined according to the second
formula in Definition 2.1, let us take up the problem of calculating the eigenvalues
of the corresponding Wishart matrices $A=x\dagger x$ .

To do this we decompose $X$ as in Section 1.6, and thus write

$X=U_{1}T$ and $T=VLV^{\uparrow}$ , $(2.3a)$

$(L=diag(x_{1}, \ldots, x_{m}))$ so that

$(dX)=J(dL)(U_{1}^{1}U_{1})(V^{\uparrow}V)$ $(2.3b)$

where

$J=\prod_{j=1}^{m}x_{j}^{\beta a+1}\prod_{1\leq j<k\leq m}|x_{k}^{2}-x_{j}^{2}|^{\beta}$ $(2.3c)$

Analogous formulas hold for the decomposition of $X^{(0)}$ : we can simply replace all
the variables above by the same variables with a superscript (0).

Now suppose that the p.d. $f$. of the positive square roots $x_{1}^{(0)},$

$\ldots,$

$x_{m}^{(0)}$ of the
eigenvalues of $x^{(0)\uparrow}x^{(0)}$ is given by $f(x_{1}, \ldots, x_{m})$ , and let us average the p.d. $f$.

$P(X^{(0)}; X;\tau)$

over $f$ and the variables associated with $U_{1}^{(0)}$ and $V^{(0)}$ . From (2.3) we obtain

$F(x_{1}, \ldots, x_{m}; \tau)=JF_{1}$ $(2.4a)$
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where

$F_{1}$ $:=$ $C\int_{0}^{\infty}dx_{1}^{(0)}\cdots\int_{0}^{\infty}dx_{m}^{(0)}f(x_{1}^{(0)}, \ldots,x_{m}^{(0)})$

$\times\int[U_{1}(dU_{1}][VdV]P(X^{(0)}; X;\tau)$ (2.4b)

Integrating over the variables associated with the measures $[U_{1}^{\dagger}dU_{1}]$ and $[V^{\uparrow}dV]$

gives the p.d. $f$. for the positive square roots of the eigenvalues of $A$ . In fact (2.4b)
is independent of $U_{1}$ and $V$ . This is seen by changing variables

$U_{1}^{(0)}-\prime U_{1}VU_{1}^{(0)}$ $V^{(0)}\leftrightarrow VV^{(0)}$ ,

for then, due to the cyclic property of the trace, $P$ becomes $P(X^{(0)}; L;\tau)$ while
the measures $[U_{1}^{(0)^{\dagger}}dU_{1}^{(0)}]$ and $[V^{(0)\uparrow}dV^{(0)}]$ are unaltered.

Thus the p.d. $f$. for the positive square roots of the eigenvalues of a parameter-
dependent Wishart matrix $A=x\dagger x$ , after averaging over the positive square
roots of the eigenvalues of $x^{(0)\uparrow}x^{(0)}(=X^{\uparrow}X|_{\tau=0})$ , and the other quantities. as-
sociated with the change of variables (2.3), is equal to (2.4a). Analogous to the
result of Proposition 2.1, this p.d. $f$. can be characterised as the solution of a certain
Fokker-Planck equation.

Proposition 2.2. The $p.d.f$. $(2.4a)$ satisfies the Fokker-Planck equation (2.2) with
$N=m$ and $W$ given by $(1.32a)$ , subject to the initial condition

$F(x_{1}, \ldots, x_{m}; \tau)|_{\tau=0}=f(x_{1}, \ldots, x_{m})$ .

Proof. Since $P(X^{(0)} ; X;\tau)$ satisfies the Fokker-Planck equation (2.2), it follows
immediately from (2.4b) that $F_{1}$ satisfies the same equation. We want to change
variables from the elements of $X$ to the variables in the decomposition (2.3a),
which can be accomplished by using the formulas from tensor calculus (the first
formula gives the so called Laplace-Beltrami operator for the respective space of
matrices)

$\sum_{\mu}D_{\mu}\frac{\partial^{2}}{\partial X_{\mu}^{2}}=\frac{1}{J}\sum_{j=1}^{m}\frac{\partial}{\partial x_{j}}(J\frac{\partial}{\partial x_{j}})+O_{U_{1},V}$ ,

and

$\sum_{\mu}X_{\mu}\frac{\partial}{\partial X_{\mu}}=\sum_{j=1}^{m}x_{j}\frac{\partial}{\partial x_{j}}+O_{U_{1},V}^{\prime}$

where $J$ is given by (2.3c), and the operators $o_{U_{1},V}$ and $O_{U_{1},V}^{\prime}$ involve deriva-
tives with respect to the variables associated with $U_{1}$ and $V$ . But $F_{1}$ is independent
of $U_{1}$ and $V$ , and furthermore

$\sum_{\mu}\frac{\partial}{\partial X_{\mu}}(X_{\mu}P)=\sum_{\mu}X_{\mu}\frac{\partial P}{\partial X_{\mu}}+P\sum_{j=1}^{m}\frac{\partial}{\partial x_{j}}x_{j}+P(\beta m(m-1)+\beta ma+m)$
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($\beta m(m-1)+\beta ma^{\prime}+m$ is the total number of independent variables associated
with $U_{1}$ and $V$). Thus (2.1) becomes

$\frac{\partial F_{1}}{\partial\tau}=\mathcal{L}_{0}F_{1}+(\beta m(m-1)+\beta ma^{\prime}+m)F_{1}$

where

$\mathcal{L}_{0}$

$;=\frac{1}{\beta J}\sum_{j=1}^{m}\frac{\partial}{\partial x_{j}}(J\frac{\partial}{\partial x_{j}})+\sum_{j=1}^{m}\frac{\partial}{\partial x_{j}}x_{j}$ .

Substituting $F_{1}=J^{-1}F$ and expanding the derivatives using the product rule
gives

$\frac{\partial F}{\partial\tau}=\frac{1}{\beta}\sum_{j=1}^{m}(\frac{\partial^{2}F}{\partial x_{j}^{2}}+F\frac{\partial J}{\partial x_{j}}\frac{\partial J^{-1}}{\partial x_{j}}+J\frac{\partial F}{\partial x_{j}}\frac{\partial J^{-1}}{\partial x_{j}}+FJ\frac{\partial^{2}J^{-1}}{\partial x_{j}^{2}})$

$+JF\sum_{j=1}^{m}\lambda_{j}\frac{\partial}{\partial x_{j}}J^{-1}+\sum_{j=1}^{m}\frac{\partial}{\partial x_{j}}x_{j}F+(\beta m(m-1)+\beta ma+m)F$.

This can be simplified by noting

$J\frac{\partial J^{-1}}{\partial x_{j}}=-\frac{\partial}{\partial x_{j}}\log J$

and

$\sum_{j=1}^{m}x_{j}\frac{\partial}{\partial x_{j}}\log J=\beta\sum_{j,k--1,j\neq k}^{m}\frac{2x_{j}^{2}}{x_{j}^{2}-x_{k}^{2}}+(\beta a+1)m=\beta m(m-1)+\beta ma^{\prime}+m$ .

Thus

$\frac{\partial F}{\partial\tau}=\frac{1}{\beta}\sum_{j=1}^{N}(\frac{\partial^{2}F}{\partial x_{j}^{2}}-F\frac{\partial^{2}}{\partial x_{j}^{2}}\log J-\frac{\partial F}{\partial x_{j}}\frac{\partial}{\partial x_{j}}\log J+\frac{\partial}{\partial x_{j}}x_{j}F)$

which, after computation of $\partial\log J/\partial x_{j}$ , is seen to be precisely the Fokker-Planck
equation (2.2) with $W$ given by (1.32a). $\square $

Analogous to the Gaussian case, we can interpret the Fokker-Planck equa-
tion specifying the p.d. $f$. for the square root of the eigenvalues of the parameter-
dependent Wishart matrices as describing the Brownian evolution of the classical
gas with potential energy (1.32a).
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2.3. Relationship to the Calogero-Sutherland model. In general the Fokker-
Planck operator (2.2) can be rewritten as [2]

$\mathcal{L}=\frac{1}{\beta}\sum_{j=1}^{N}\frac{\partial}{\partial x_{j}}e^{-\beta W}\frac{\partial}{\partial x_{j}}e^{\beta W}$ (2.5)

From this formula, and the general property of adjoints (AB)\dagger $=B^{\uparrow}A^{\uparrow}$ , we see
that $e^{\beta W/2}\mathcal{L}e^{-\beta W/2}$ is an Hermitian operator. Explicitly, we have

$e^{\beta W/2}\mathcal{L}e^{-\beta W/2}=\sum_{j=1}^{N}(\frac{1}{\beta}\frac{\partial^{2}}{\partial x_{j}^{2}}-\frac{\beta}{4}(\frac{\partial W}{\partial x_{j}})^{2}+\frac{1}{2}\frac{\partial^{2}W}{\partial x_{j}^{2}})$ . (2.6)

which can be interpreted $as-\beta^{-1}$ times a Schr\"odinger operator.
For $W$ given by (1.5), and thus the Fokker-Planck equation of Proposition 2.1

we find (after using the identity (1.7))

$-e^{\beta W/2}\mathcal{L}e^{-\beta W/2}=(H-E_{0})/\beta$ (2.7)

where $H$ is given by (1.3) and $E_{0}=N\beta/2+\beta^{2}N(N-1)/4$ . For $W$ given by (1.32a),
and $N=m$ , which corresponds to the Fokker-Planck equation of Proposition 2.2,
the operator identity (2.7) holds with $H$ now given by (1.32b) (the precise value of
$E_{0}$ is unimportant). In the study of the circular ensembles we encounted the po-
tential (1.6). Dyson [3] has developed an abstract theory of parameter-dependent
unitary random matrices from the circular ensemble (the theory is abstract in the
sense that there is no known explicit construction of the matrices). The eigen-
value p.d. $f$. is specified by a Fokker-Planck equation with $W$ given by (1.6). By
substituting (1.6) in (2.6), and using the identity (1.8), we find that the oper-
ator identity (2.7) holds with $H$ now given by (1.4). Also, a similar theory of
parameter-dependent random matrices from the Jacobi ensemble has been given
[4], in which the eigenvalue p.d. $f$. is specified by the Fokker-Planck equation (2.2)
with $x_{j}$ replaced by $\phi_{j}$ and $W$ given by (1.34).

In general, writing $\tau=i\beta\gamma t$ and $ p=e^{iE_{0}}{}^{t}e^{-\beta W/2}\psi$ , the operator identity (2.7)
shows that the Fokker-Planck equatiori in (2.2) transforms to the Schr\"odinger equa-
tion

$i\frac{\partial}{\partial t}\psi(\{x_{j}\};t)=H\psi(\{x_{j}\};t)$ (2.8)

Thus the study of the eigenvalue p.d. $f$. $s$ of the parameter-dependent random ma-
trices as characterized by Fokker-Planck equations, leads us to consider the full
Schrdinger equation for the corresponding Calogero-Sutherland models.

There are some simple general properties of the Fokker-Planck operator (2.2)
with $\gamma=1$ of relevance to the Calogero-Sutherland model. In particular, it is
evident from (2.5) that $\mathcal{L}e^{-\beta W}=0$ . Thus the Boltzmann factor is the equilibrium
state of the Fokker-Planck equation, and so from (2.7) $e^{-\beta W/2}$ is an eigenstate of
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$H$ with eigenvalue $E_{0}$ . In fact $e^{-\beta W/2}$ is the ground state of $H$ . To see this we
note that [2]

$e^{\beta W/2}\mathcal{L}e^{-\beta W/2}=-\beta^{-1}\sum_{j=1}^{N}\Pi_{j}^{\dagger}\Pi_{j}$ where $\Pi_{j}$ $:=\frac{1}{i}\frac{\partial}{\partial\lambda_{j}}-\frac{i\beta}{2}\frac{\partial W}{\partial\lambda_{j}}$ (2.9)

and thus the eigenvalues of $\mathcal{L}$ are $\leq 0$ , so from (2.7) the eigenvalues of $H-E_{0}$ are
$\geq 0$ .

2.4. The Green function. A key quantity in the description of dynamical corre-
lations is the Green function solution of the Fokker-Planck and Schr\"odinger equa-
tions. Consider first the Schr\"odinger equation (2.8), and write $ t=\tau/i\beta$ to give the
so-called imaginary time Schr\"odinger equation

$-\beta\frac{\partial}{\partial\tau}\psi(\{x_{j}\};\tau)=H\psi(\{x_{j}\};\tau)$ $(2.10a)$

We say that $\psi=\tilde{G}(x_{1}^{(0)}, \ldots , x_{N}^{(0)} ; x_{1}, \ldots, x_{N}; \tau)$ is the Green function solution of
this equation if it is the solution which satisfies the initial condition

$\psi(x_{1}, \ldots , x_{N}; \tau)|_{\tau=0}=\prod_{l=1}^{N}\delta(x_{l}-x_{l}^{(0)})$ , $(x_{1}^{(0)}<\cdots<x_{N}^{(0)})$ , $(2.10b)$

It follows from the formula (2.7) that

$G(x_{1}^{(0)}, \ldots,x_{N}^{(0)} ; x_{1}, \ldots,x_{N}; \tau)$

$=$ $e^{\tau E_{0}/\beta}\frac{e^{-\beta W(x_{1},\ldots,x_{N})/2}}{e^{-\beta W(x_{1}^{(0)},\ldots,x_{N}^{\langle 0)})/2}}\tilde{G}(x_{1}^{(0)}, \ldots, x_{N}^{(0)};x_{1}, \ldots, x_{N};\tau)$ (2.11)

is the Green function solution of the Fokker-Planck equation (2.2) with $\gamma=1$

(i.e. that $G$ satisfies this equation subject to the initial condition that $G$ is given
by the r.h. $s$ . of (2.10b) for $\tau=0$).

In general the Green function may be written in terms of the eigenvalues and
eigenfunctions of the corresponding operator. Consider in particular the Schr\"odinger
operator $H$ . Suppose that $\{\psi_{\kappa}\}_{\kappa}$ is a complete set of orthogonal eigenfunctions
with corresponding eigenvalues $\{E_{\kappa}\}_{\kappa}$ (for an N-particle system the label $\kappa$ will
typically be an N-tuple of integers). Then the Green function solution is given by

$\tilde{G}(x_{1}^{(0)}, \ldots, x_{N}^{(0)} ; x_{1}, \ldots, x_{N}; \tau)=\sum_{\kappa}\frac{\psi_{\kappa}(x_{1}^{(0)},\ldots,x_{N}^{(0)})\psi_{\kappa}(x_{1},\ldots,x_{N})}{\{\psi_{\kappa}1\psi_{\kappa})}e^{-\tau E_{\kappa}/\beta}$

(2.12)
with $\langle\psi_{\kappa}|\psi_{\kappa}\rangle$ $:=\int_{I}dx_{1}\cdots\int_{I}dx_{N}|\psi_{\kappa}|^{2}$ .

As an example of the computation of a Green function, let us consider the
Fokker-Planck operator in (2.2) with $W$ given by (1.32a). According to (2.7) we
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can first consider the corresponding Schr\"odinger operator, which is given by (1.32b)
and in the $m=1,$ $\beta=2$ case reads

$H^{(L)}=-\frac{d^{2}}{dx^{2}}+\frac{a^{\prime}(a^{\prime}-1)}{x^{2}}+x^{2}$ (2.13)

Using the fact [5] that $z=e^{-x/2}x^{\alpha/2}L_{n}^{\alpha}(x)$ , where $L_{n}^{\alpha}(x)$ denotes the Laguerre
polynomial, satisfies the equation

$[(x\frac{d}{dx})^{\prime}+(n+\frac{\alpha+1}{2}-\frac{x}{4}-\frac{a^{2}}{4x})]z=0$ ,

we can readily check that the eigenvalues and eigenfunctions of (2.13) are given by

$E_{n}=4(n+\frac{a^{\prime}+1/2}{2})$ , $\psi_{n}=e^{-x^{2}/2}|x|^{a^{\prime}}L_{n}^{a^{\prime}-1/2}(x^{2})$

Using (2.11) this implies that in terms of the variable $y=x^{2}$ the Green function
for the Fokker-Planck operator in Proposition 2.2 is

$G(y^{(0)}, y;\tau)$ $=$ $y^{a}e^{-y}\sum_{n=0}^{\infty}\frac{n!L_{n}^{a}(y^{(0)})L_{n}^{a}(y)}{\Gamma(a+n+1)}e^{-2n\tau}$

$=$ $(\frac{y}{y^{(0)}})^{a/2}e^{-y}\frac{e^{\tau a}}{1-e^{-2\tau}}\exp(-\frac{y+y^{(0)}}{e^{2\tau}-1})I_{a}(\frac{(y^{(0)}y)^{1/2}}{\sinh\tau})$

(2.14)

where we have put $a:=a^{\prime}-1/2$ and to obtain the first line we have used the fact
that

$\int_{0}^{\infty}e^{-y}y^{\alpha}(L_{n}^{\alpha}(y))^{2}dy=\frac{\Gamma(\alpha+n+1)}{n!}$

and to obtain the second line the summation formula [5]

$\sum_{n=0}^{\infty}\frac{n!}{\Gamma(n+\alpha+1)}L_{n}^{\alpha}(x)L_{n}^{\alpha}(y)z^{n}=\frac{(xyz)^{-\alpha/2}}{1-z}\exp(-z\frac{x+y}{1-z})I_{\alpha}(2\frac{(xyz)^{1/2}}{1-z})$

(2.15)
( $I_{\alpha}(x)$ denotes the Bessel function of pure imaginary argument) has been used.
Note from Section 2.2 that we can interpret (2.14) as giving the p.d. $f$. for the
distribution of $y=\sum_{j=1}^{a+1}X_{j}^{2}+Y_{j}^{2}$ where each $X_{j}$ is chosen with p.d. $f$.

$(\frac{1}{\pi(1-e^{-2\tau})})^{1/2}\exp[-(X-e^{-\tau}X^{(0)})^{2}/(1-e^{-2\tau})]$

and similarly for the p.d. $f$. of each $Y_{j}$ , except that $x^{(0)}$ is to be replaced by $Y^{(0)}$ .
The quantity $y_{0}$ in (2.14) is given by $y^{(0)}=x^{(0)2}+Y^{(0)2}$ .
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2.5. The dynamical correlations. In this section, we study the density-density
correlation function and the current-current distribution.

The density-density correlation. The dynamical density-density correlation
$\rho_{(2)}^{T}((x_{a}, 0),$ $(x_{b}, \tau_{b}))$ for a system described by the Fokker-Planck equation (2.2)
measures the correlation between the density at the point $x_{a}$ initially, and the
density at the point $x_{b}$ after time $\tau_{b}$ . It is specified in terms of the Green function
$G$ and the initial position p.d. $f$. $f$ by

$\rho_{(2)}^{T}((x_{a}, 0),$ $(x_{b}, \tau_{b}))=\rho(2)((x_{a}, \tau_{a}),$ $(x_{bb}\tau))-\rho(1)(x_{a}, 0)\rho_{(1)}(x_{b}, \tau_{b})$ (2.16)

where

$\rho((x_{a}, 0),$ $(x_{b}, \tau_{b}))$ $:=l^{dx_{1}^{(0)}}\cdots l^{dx_{N}^{(0)}f(x_{1}^{(0)},\ldots,x_{N}^{(0)})\sum_{l=1}^{N}\delta(x_{l}^{(0)}-x_{a})}$

$\times ldx_{1}\cdots ldx_{N}\sum_{l=1}^{N}\delta(x_{l}-x_{b})G(x_{1}^{(0)}, \ldots, x_{N}^{(0)} ; x_{1}, \ldots, x_{N}; \tau_{b})$ (2.17)

$\rho_{(1)}(x_{a}, 0)$ $:=\int_{I}dx_{1}^{(0)}\cdots\int_{I}dx_{N}^{(0)}f(x_{1}^{(0)}, \ldots , x_{N}^{(0)})\sum_{l=1}^{N}\delta(x_{l}^{(0)}-x_{a})$ (2.18)

$\rho_{(1)}(x_{b}, \tau_{b}):=\int_{I}dx_{1}^{(0)}\cdots ldx_{N}^{(0)}f(x_{1}^{(0)}, \ldots, x_{N}^{(0)})$

$\times\int_{I}dx_{1}\cdots\int_{I}dx_{N}\sum_{l=1}^{N}\delta(x_{l}-x_{b})G(x_{1}^{(0)}, \ldots, x_{N}^{(0)} ; x_{1}, \ldots, x_{N}; \tau_{b})$ (2.19)

On the other hand, for a quantum mechanical system described by the imaginary-
time Schr\"odinger equation (2.10a), the ground-state dynamical density-density cor-
relation is defined in terms of the density operator $n(x)$ $:=\sum_{l=1}^{N}\delta(x_{l}-x)$ , the
evolution operator $e^{-\tau_{b}(H-E_{0})/\beta}$ and the ground state $\psi_{0}$ by

$\rho_{(2)}^{T}((x_{a}, 0),$ $(x_{b}, \tau_{b})=\langle\psi_{0}|n(x_{b})e^{-\tau_{b}(H-E_{0})/\beta}n(x_{a})|\psi_{0}\rangle-(\psi_{0}|n(x_{a})|\psi_{0}\rangle(\psi_{0}|n(x_{b})\{\psi_{0})$

(2.20)
In fact the quantum mechanical formula (2.20) is the special case

$f=e^{-\beta W}/\int_{I}dx_{1}\cdots\int_{I}dx_{N}e^{-\beta W}$

of the classical formula (2.16)-(2.19), which corresponds to the situation when the
initial state equals the final state [6].
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To see this, we note from (2.11) and (2.12) that

$fG$ $=$ $\frac{\psi_{0}(x_{1}^{(0)},\ldots,x_{N}^{(0)})\psi_{0}(x_{1},\ldots,x_{N})}{\{\psi_{0}1\psi_{0})}$

$\times\sum_{\kappa}\frac{\psi_{\kappa}(x_{1}^{(0)},\ldots,x_{N}^{(0)})\psi_{\kappa}(x_{1},\ldots,x_{N})}{\langle\psi_{\kappa}1\psi_{\kappa}\}}e^{-\tau(E_{\kappa}-E_{0})/\beta}$

which when substituted in (2.17)-(2.19) gives

$\rho_{(2)}((x_{a}, 0),$ $(x_{b}, \tau_{b}))$

$=\sum_{\kappa}\frac{(\psi_{0}|n(x_{b})|\psi_{\kappa}\rangle(\psi_{\kappa}|n(x_{a})|\psi_{0}\}}{(\psi_{0}|\psi_{0})(\psi_{\kappa}|\psi_{\kappa}\rangle}e^{-\tau(E_{\kappa}-E_{0})/\beta}$

$=(\psi_{0}|n(x_{b})e^{-\tau_{b}(H-E_{0})/\beta}n(x_{a})|\psi_{0}\rangle$

and

$\rho_{(1)}(x_{a}, 0)=(\psi_{0}|n(x_{a})$ I $\psi_{0}\rangle$ , $\rho_{(1)}(x_{b}, \tau_{b})=\langle\psi_{0}|n(x_{b})|\psi_{0}\rangle$

as required.

The current-current distribution. In general the current-current distribu-
tion $C((x_{a}, \tau_{a}),$ $(x_{b}, \tau_{b}))$ for a classical one-dimensional dynamical model measures
the correlation between velocities at two points $(x_{a}, \tau_{a})$ and $(x_{b}, \tau_{b})$ . For systems
described by the Fokker-Planck equation, this definition is only formal as the ve-
locities of the individual particles are not defined.

For the formal definition, define the average (\rangle by

$(u_{a}(x_{1}^{(1)}, \ldots, x_{N}^{(1)})u_{b}(x_{1}^{(2)}, \ldots, x_{N}^{(2)})\}=\int_{I}dx_{1}^{(0)}\cdots\int_{I}dx_{N}^{(0)}f(x_{1}^{(0)}, \ldots, x_{N}^{(0)})$

$\times\int_{I}dx_{1}^{(1)}\cdots\int_{I}dx_{N}^{(1)}u_{a}(x_{1}^{(1)}, \ldots, x_{N}^{(1)})G(x_{1}^{(0)}, \ldots, x_{N}^{(0)} ; x_{1}^{(1)}, \ldots, x_{N}^{(1)}; \tau_{a})$

$\times\int_{I}dx_{1}^{(2)}\cdots\int_{I}dx_{N}^{(2)}u_{b}(x_{1}^{(2)}, \ldots, x_{N}^{(2)})G(x_{1}^{(1)}, \ldots,x_{N}^{(1)} ; x_{1}^{(2)}, \ldots, x_{N}^{(2)} ; \tau_{b}-\tau_{a})$

The current-current distribution is defined in terms of this average by

$C((x_{a}, \tau_{a}),$ $(x_{b}, \tau_{b})$ } $:=\langle\sum_{j=1}^{N}\frac{dx_{j}^{(1)}}{d\tau_{a}}\delta(x_{a}-x_{j}^{(1)})\sum_{j=1}^{N}\frac{dx_{j}^{(2)}}{d\tau_{b}}\delta(x_{b}-x_{j}^{(2)})\rangle$ . (2.21)

The current-current and density-density distribution functions are related by a
type of continuity equation, which for translationally invariant systems allows the
current-current distribution to be calculated in the Brownian motion model. To
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derive this equation, consider the partial derivatives of the current-current distri-
bution with respect to $x_{a}$ and $x_{b}$ :

$\frac{\partial^{2}}{\partial x_{a}\partial x_{b}}C((x_{a}, \tau_{a}),$ $(x_{b}, \tau_{b}))$

$=$ $\langle\sum_{j=1}^{N}\frac{dx_{j}^{(1)}}{d\tau_{a}}\frac{\partial}{\partial x_{a}}\delta(x_{a}-x_{j}^{(1)})\sum_{j=1}^{N}\frac{dx_{j}^{(2)}}{d\tau_{b}}\frac{\partial}{\partial x_{b}}\delta(x_{b}-x_{j}^{(2)})\rangle$

$=$ $\langle\sum_{j=1}^{N}\frac{dx_{j}^{(1)}}{d\tau_{a}}\frac{\partial}{\partial x_{j}^{(1)}}\delta(x_{a}-x_{j}^{(1)})\sum_{(j=1}^{N}\frac{dx_{j}^{(2)}}{d\tau_{b}}\frac{\partial}{\partial x_{j}^{(2)}}\delta(x_{b}-x_{j}^{(2)})\}$

$=$ $\frac{\partial^{2}}{\partial\tau_{a}\partial\tau_{b}}\langle\sum_{j=1}^{N}\delta(x_{a}-x_{j}^{(1)})\sum_{j=1}^{N}\delta(x_{b}-x_{j}^{(2)})\rangle$

since in general $\partial/\partial\tau=(\partial x/\partial\tau)(\partial/\partial x)$ . Thus we have

$\frac{\partial^{2}}{\partial\tau_{a}\partial\tau_{b}}\rho_{(2)}((x_{a}, \tau_{a}),$ $(x_{b}, \tau_{b}))=\frac{\partial^{2}}{\partial x_{a}\partial x_{b}}C((x_{a}, \tau_{a}),$ $(x_{b}, \tau_{b}))$ . (2.22)

which is the desired equation. This further simplifies in translationally invariant
systems, since then

$\rho_{(2)}((x_{a}, \tau_{a}),$ $(x_{b}, \tau_{b}))=\rho_{(2)}(x_{b}-x_{a}; \tau_{a}, \tau_{b})$

and
$C((x_{a}, \tau_{a}),$ $(x_{b}, \tau_{b}))=C(x_{b}-x_{a}; \tau_{a}, \tau_{b})$

and so by taking the Fourier transform and integrating by parts we obtain

$\tilde{C}(k;\tau_{a}, \tau_{b})=\frac{1}{k^{2}}\frac{\partial^{2}}{\partial\tau_{a}\partial\tau_{b}}\tilde{\rho}_{(2)}(k;\tau_{a}, \tau_{b})$ , (2.23)

where the tilde refers to the Fourier transform:

$\tilde{F}(k;\tau)$ $:=\int_{-\infty}^{\infty}F(x;\tau)e^{ikx}dx$ .

For a one-dimensional quantum system the current operator is defined by

$j(x)=\sum_{j=1}^{N}(\frac{1}{i}\frac{\partial}{\partial x_{j}}\delta(x-x_{j})+\delta(x-x_{j})\frac{1}{i}\frac{\partial}{\partial x_{j}})$ (2.24)

and the corresponding dynamical operator is $j(x, t)=e^{itH}j(x)e^{-itH}$ (here we have
set $\hslash=1$ ). The quantity $j(x, t)$ is related to the dynamical density operator

$\rho(x, t)=e^{itH}\sum_{j=1}^{N}\delta(x-x_{j})e^{-itH}$
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by the continuity equation

$\frac{\partial}{\partial t}\rho(x, t)=-\frac{\partial}{\partial x}j(x, t)$ (2.25)

To see this, we can use Heisenberg’s equation of motion

$\frac{d}{dt}(e^{itH}Ae^{-itH})=-ie^{itH}[A, H]e^{-itH}$ .

to show that

$\frac{d}{dt}(e^{itH}\rho_{k}e^{-itH})=-ike^{itH}j_{k}e^{-itH}$

where $\rho_{k}$ denotes the Fourier transform of $n(x)$ $:=\sum_{j=1}^{N}\delta(x-x_{j})$ and $j_{k}$ denotes
the Fourier transform of $j(x)$ . Taking the inverse transform gives (2.25). From
(2.25) we have

$\frac{\partial^{2}}{\partial t_{a}\partial t_{b}}(\psi_{0}|\rho(x_{a}, t_{a})\rho(x_{b}, t_{b})|\psi_{0}\}=\frac{\partial^{2}}{\partial x_{a}\partial x_{b}}(\psi_{0}|j(x_{a},t_{a})j(x_{b}, t_{b})|\psi_{0}\rangle$ (2.26)

which is the quantum mechanical version of (2.22).
We know that the density-density distribution in (2.26) is identical to that of

the corresponding Fokker-Planck system with the initial distribution $f$ given by the
equilibrium distribution. It can also be shown directly [7] that the current-current
distribution for the quantum system is the same as that in the Fokker-Planck
system (after multiplication of the former by $(1/\beta i)^{2}$ to account for going from $t$

to $\tau$), as comparison of (2.22) and (2.26) suggests.

2.6. Sum rules and asymptotic behaviour. We will show that the density-
density correlation satisfies a $f$-sum rule. We also show that the static density-
density distribution and current-current distribution are related.

The $f$-sum rule. When the initial state $f$ corresponds to the equilibrium
state, and thus the quantum mechanical formula (2.20) holds, a number of special
formulas for the density-density and current-current correlations hold [7]. The first
such formula we shall present is a generalization of the so-called $f$-sum rule [8].

Proposition 2.3. Let $S((x_{a}, 0),$ $(x_{b}, \tau))$ $:=\rho_{(2)}^{T}((x_{a}, 0),$ $(x_{b}, \tau)$ as given by (2.20),
and define

$\tilde{S}((x_{a}, 0),$ $(k, \tau))=\int_{-\infty}^{\infty}S((x_{a}, 0),$ $(xb, \tau))e^{ikx_{b}}dxb$ .

We have
$\frac{\partial}{\partial\tau}\tilde{S}((x_{a}, 0),$

$(k, \tau))|_{\tau=0}=\frac{ik}{\beta}\frac{\partial}{\partial x_{a}}(e^{ikx_{a}}\rho(x_{a}))$ .
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Proof. From (2.20) and (2.25) with $ t=\tau/i\beta$ we have

$\frac{\partial}{\partial\tau}S((x_{a}, 0),$ $(x_{b}, \tau))|_{\tau=0}=\frac{i}{\beta}\{\psi_{0}|\frac{\partial}{\partial x_{b}}j(x_{b}, 0)\rho(x_{a}, 0)|\psi_{0})$ .

where $j(x_{b}, 0)$ is defined by (2.24). Taking the Fourier transform of both sides with
respect to $x_{b}$ this reads

$\frac{\partial}{\partial\tau}\tilde{S}((x_{a}, 0),$ $(k, \tau))|_{\tau=0}=\frac{k}{\beta}(\psi_{0}|\tilde{j}(k, 0)\rho(x_{a}, 0)|\psi_{0}\rangle$ . (2.27)

Now from (2.24)

$\tilde{j}(k, 0)=\sum_{j=1}^{N}(\frac{1}{i}\frac{\partial}{\partial x_{j}}e^{ikx_{j}}+e^{ikx_{j}}\frac{1}{i}\frac{\partial}{\partial x_{j}})$

which after use of the definition (2.9) of $\Pi_{j}$ can be written

$\tilde{j}(k, 0)=\sum_{j=1}^{N}(\Pi_{j}^{1}e^{ikx_{j}}+e^{ikx_{j}}\Pi_{j})$ . (2.28)

Substituting (2.28) in (2.27) and using the fact that \langle $\psi_{0}|\Pi_{j}^{1}=0$ gives

$\frac{\partial}{\partial\tau}\tilde{S}((x_{a},0),$ $(k, \tau))|_{\tau=0}=\frac{k}{\beta}\sum_{j,l=1}^{N}(\psi_{0}|e^{ikx}\Pi_{l}\delta(x_{a}-x_{j})|\psi_{0}$ } (2.29)

Note that for $j\neq l,$ $\Pi_{l}\delta(x_{a}-x_{j})=\delta(x_{a}-x_{j})\Pi_{l}$ , which since
$\Pi_{l}|\psi_{0})=0$ (2.30)

shows that only the diagonal term in (2.29) is non-zero. Furthermore, since $\psi_{0}$ is
proportional to $e^{-\beta W/2}$ we have

\langle $\psi_{0}|e^{ikx_{l}}\Pi_{l}=-\langle\psi_{0}|(k+i\beta\frac{\partial W}{\partial x_{l}})e^{ikx_{l}}$ (2.31)

Substituting (2.31) in the diagonal term of (2.29) and noting that

$\frac{\partial W}{\partial x_{l}}\psi_{0}^{2}=-\frac{1}{\beta}\frac{\partial}{\partial x_{l}}\psi_{0}^{2}$ ,

the stated result follows after minor manipulation. $\square $

In the case of a uniform background density $\rho(x)=\rho$ the formula of Proposition
2.3 gives

$\frac{\partial}{\partial\tau}\tilde{S}((0,0),$ $(k,\tau))|_{\tau=0}=-\frac{k^{2}\rho}{\beta}$ (2.32)

which is equivalent to the $f$-sum rule for quantum fluids [8].

Static current-current distribution. The static current-current distribu-
tion can be written in terms of the static density-density distribution according
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to a result [7] which was first obtained for the Calogero-Sutherland system with
Schr\"odinger operator (1.3) by Taniguchi et al. [9].

Proposition 2.4. For $x_{a}\neq x_{b}$ we have

$(\psi_{0}|j(x_{a}, 0)j(x_{b}, 0)|\psi_{0}\rangle=\beta(\frac{\partial W}{\partial x_{1}\partial x_{2}})|_{x_{2}=x_{b}}x_{1}=x_{a}\{\psi_{0}|\rho(x_{a}, 0)\rho(x_{b}, 0)|\psi_{0}\rangle$ .

Proof. Analogous to (2.28) we have

$j(x, 0)=\sum_{j=1}^{N}(\Pi_{j}^{\dagger}\delta(x-x_{j})+\delta(x-x_{j})\Pi_{j})$ .

From this formula and (2.30) we have

{ $\psi_{0}|j(x_{a}, 0)j(x_{b}, 0)|\psi_{0}\rangle$ $=\sum_{j,k=1}^{N}\{\psi_{0}|\delta(x_{b}-x_{j})\Pi_{j}\Pi_{k}^{\dagger}\delta(x-x_{k})|\psi_{0}\}$ (2.33)

Assuming $x_{a}\neq x_{b}$ , we see that the $j=k$ term vanishes. For $j\neq k$ we have

$[\Pi_{j},\Pi_{k}^{\dagger}]=\beta\frac{\partial W}{\partial x_{j}\partial x_{k}}$ ,

which together with the fact that $\Pi_{j}\delta(x-x_{k})=\delta(x-x_{k})\Pi_{j}$ for $j\neq k$ and the use
of (2.30) allows the r.h. $s$ . of (2.33) to be written in the required form. $\square $

Compressibility sum rule. For translationally invariant systems $\rho_{(2)}^{T}((x_{a}, 0),$ $(x_{b}, \tau_{b}))$

depends on $x_{b}-x_{a}$ so we can define the Fourier transform by

$\tilde{S}(k, \tau):=\int_{-\infty}^{\infty}\rho_{(2)}^{T}((0,0),$ $(x, \tau))e^{ikx}dx$

(here and throughout this section we are referring to the quantities in the thermo-
dynamic limit). In general for a quantum system the value of

$\lim_{k\rightarrow 0}\int_{0}^{\infty}\tilde{S}(k, \tau)d\tau=\int_{-\infty}^{\infty}dx\int_{0}^{\infty}d\tau\rho_{(2)}^{T}((0,0),$ $(x, \tau)$ (2.34)

is known to be related to the ground state compressibility [9]. For the particular
quantum system (1.4) the value of the integral (2.34) can be deduced from the
expected small-k behaviour [6]

$\tilde{S}(k, \tau)\sim\frac{|k|}{\pi\beta}e^{-\pi\rho|k|\tau}$ (2.35)

valid for $\tau$ fixed. This formula is deduced from a hydrodynamic approximation to
the Fokker-Planck equation, first formulated by Dyson [3]. Integrating (2.35) with
respect to $\tau$ gives

$\lim_{k\rightarrow 0}\int_{0}^{\infty}\tilde{S}(k, \tau)d\tau=\frac{1}{\pi^{2}\beta\rho}$
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For the quantum system (1.4) the next term as a function of $k$ in the expansion
(2.35) has also been predicted [7]:

$\tilde{S}(k, \tau)\sim\frac{|k|}{\pi\beta}(1+\frac{1}{2\pi\rho}(\frac{\beta-2}{\beta})|k|)\exp\{-\frac{\pi\rho|k|\tau}{\gamma(1+(\beta-2)|k|/(2\pi\rho\beta)}\}$ (2.36)

This follows by modifying the hydrodynamic approximation to include a force due
to the pressure gradient, and so this extra term is related to the compressibility in
the classical log-gas.
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3. POLYNOMIAL EIGENFUNCTIONS

3.1. The case $\beta=2$ . From (2.12) we know that the Green function can be ex-
panded in terms of eigenfunctions of the corresponding Fokker-Planck or Schr\"odinger
operator. For the Schr\"odinger operators (1.3), (1.4), (1.32b) and (1.35) the calcula-
tion of the eigenfunctions is a simple task at $\beta=2$ , since then the coefficient of the
two-body term vanishes and the system corresponds to free fermions in an external
field (the free fermion condition means that we seek anti-symmetric eigenfunc-
tions). The eigenfunctions are Slater determinants constructed from the solution
of the single particle problem. Thus, in general the anti-symmetric eigenfunctions
of the Schr\"odinger operator

$H_{N}=-\sum_{j=1}^{N}\frac{\partial^{2}}{\partial x_{j}^{2}}+\sum_{j=1}^{N}V(x_{j})$

are given by
$\psi_{(n_{1},\ldots,n_{N})(x_{1},\ldots,x_{N})=\det[\phi_{n_{k}}(x_{j})]_{j,k=1,\ldots,N}}$ (3.1)

where $\{\phi_{k}\}_{k\in Z}$ is the complete set of eigenfunctions of $H_{1}$ and $n_{1}>n_{2}>\cdots>n_{N}$ .
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For example, consider the Schr\"odinger operator (1.3). We seek the eigenfunc-
tions of the $N=1$ operator which are periodic for $N$ odd and antiperiodic for $N$

even. These are given by

$\{e^{2\pi inx/L}\}_{n\in Z}$ and $\{e^{2\pi i(n-1/2)x/L}\}_{n\in Z}$

respectively. From (3.1) we see that instead of labelling the N-particle eigenstates
by $(n_{1}, \ldots, n_{N})$ we can introduce a single non-negative integer $l$ together with a
partition $\kappa=(\kappa_{1}, \ldots, \kappa_{N}),$ $\kappa_{1}\geq\kappa_{2}\cdots\geq\kappa_{N}\geq 0$ , and write

$\psi_{l,\kappa}=\prod_{j=1}^{N}z_{j}^{-l-(N-1)/2}\det[z_{j}^{k-1+\kappa_{N-k+1}}]_{j,k=1,\ldots,N}$ (3.2)

where $z_{j}=e^{2\pi ix_{j}/L}$ . The general eigenstate (3.2) has the property that it can be
factored into a product of the simple factor $\prod_{j=1}^{N}z_{j}^{-l}$ , the ground state, and the
Schur polynomial, which is a symmetric polynomial defined by

$s_{\kappa}(z_{1}, \ldots, z_{N}):=\frac{\det[z_{j}^{k-1+\kappa_{N-k+1}}]_{j,k=1,\ldots,N}}{\det[z_{j}^{k-1}]_{j,k=1,\ldots,N}}$ (3.3)

This follows from the Vandermonde determinant identity

$\det[z_{j}^{k-1}]_{j,k=1,\ldots,N}=\prod_{1\leq j<k\leq N}(z_{k}-z_{j})$
(3.4)

and the fact that

$\prod_{j=1}^{N}z_{j}^{-(N-1)/2}\prod_{1\leq j<k\leq N}(z_{k}-z_{j})=\prod_{1\leq j<k\leq N}2i\sin\pi(x_{k}-x_{j})/L=C\psi_{0}$

where $\psi_{0}$ is the ground state.
More generally, if we use (2.6) to factor the ground state in the operator identity

(2.7) we obtain

$-e^{\beta W/2}(H-E_{0})e^{-\beta W/2}=\beta e^{\beta W}\mathcal{L}e^{-\beta W}=\sum_{j=1}^{N}(\frac{\partial^{2}}{\partial x_{j}^{2}}-\beta\frac{\partial W}{\partial x_{j}}\frac{\partial}{\partial x_{j}})$ . (3.5)

For each of the choices of $W(1.5),$ $(1.6),$ $(1.32a)$ and (1.34), the operator (3.5) has a
complete set of polynomial eigenfunctions. We will first consider the eigenfunctions
of (3.5) for $W$ given by (1.6).
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3.2. The Jack polynomials. In the case of $W$ given by (1.6), by making the
change of variables $z_{j}=e^{2\pi ix_{j}/L}$ and performing some straightforward manipula-
tion, we find from (3.5) that

$(\frac{L}{2\pi})^{2}e^{\beta W}\mathcal{L}e^{-\beta W}=D_{2}(2/\beta)+(-\beta(N-1)/2+1)E_{1}$ $(3.6a)$

where

$D_{2}(\alpha)$
$:=\sum_{j=1}^{N}z_{j}^{2}\frac{\partial^{2}}{\partial z_{j}^{2}}+\frac{2}{\alpha}\sum_{j\neq k}^{N}j,k=1\frac{z_{j}^{2}}{z_{j}-z_{k}}\frac{\partial}{\partial z_{j}}$ and $E_{1}$ $:=\sum_{j=1}^{N}z_{j}\frac{\partial}{\partial z_{j}}$ $(3.6b)$

From the result of the above section we know that for $\beta=2$ the symmetric
polynomial eigenfunctions of (3.6) are the Schur polynomials. For general $\beta$ , the
symmetric polynomial eigenfunctions of (3.6) are known as the Jack polynomials.
Although the Schur polynomials are classical, going back to Jacobi at least, the
Jack polynomials have not been studied in any detail until the past decade [1-5].
To revise some of the properties of the Jack polynomials, we need some notation
and definitions associated with partitions.

The modulus of the partition, denoted $|\kappa|$ , is defined as $|\kappa|$ $:=\sum_{j=1}^{N}\kappa_{j}$ and
the number of non-zero parts is called the length of the partition and is de-
noted $l(\kappa)$ . A partition $\kappa$ which has $f_{j}$ parts equal to $j$ is sometimes written
$\kappa=(\kappa_{1}^{f_{\kappa_{1}}}(\kappa_{1}-1)^{f_{\kappa_{1}-1}}\ldots 2^{f_{2}}1^{f_{1}})$ . We adopt reverse lexicographical (i.e. reverse
dictionary) ordering of partitions of the same modulus, so that assuming $|\kappa|=|\mu|$

we write

$\kappa>^{R}\mu$ if $\kappa_{j}=\mu_{j}(j=1, \ldots,p-1)$ and $\kappa_{p}>\mu_{p}$ for some $p=1,$ $\ldots$ , $N$ .

For example, (4) $>^{R}(31)>^{R}(2^{2})>^{R}(21^{2})>^{R}(1^{4})$ . If $|\kappa|=|\mu|(|\kappa|\neq|\mu|)$

and $\sum_{j=1}^{p}\kappa_{j}\geq\sum_{j=1}^{p}\mu_{j}$ for all $p=1,$ $\ldots,$
$N$ we remove the superscript $R$ and

write $\kappa>\mu$ . This is called the natural or dominance ordering (unlike reverse
lexicographical ordering, it is only a partial ordering; for example (411) and (33)
are incomparable using the ordering $>$ ).

Sometimes we refer to the diagram of a partition:

$\kappa=\{(i,j) : 1\leq i\leq l(\kappa), 1\leq j\leq\kappa_{i}\}$

(the points $(i,j)$ are conventionally ordered as in the entries of a matrix and rep-
resented as dots or squares). The conjugate partition $\kappa^{\prime}$ is defined as a diagram
by interchanging the rows and columns of the diagram of $\kappa$ . Furthermore, let
$n(\kappa)$ $:=\sum_{i=1}^{N}(i-1)\kappa_{i}=\sum_{i=1}^{N}\kappa_{i}^{\prime}(\kappa_{i}^{\prime}-1)/2$ .

We are now in a position to discuss some of the properties of the eigenfunctions
of (3.6). A direct calculation shows

$D_{2}(\alpha)m_{\kappa}=e(\kappa, \alpha)m_{\kappa}+\sum_{\nu<\kappa}a_{\nu\kappa}m_{\nu}$
$(3.7a)$
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where the $a_{\nu\kappa}$ are independent of $z_{1},$
$\ldots,$ $z_{N},$ $m_{\kappa}$ denotes the monomial symmetric

function in the variables $z_{1},$ $\ldots$ , $z_{N}$ indexed by the partition $\kappa$ and

$e(\kappa,\alpha)=2(n(\kappa^{\prime})-\frac{1}{\alpha}n(\kappa))+\frac{2}{\alpha}(N-1)|\kappa|$ . $(3.7b)$

It follows immediately that in the Taylor polynomial basis of monomial symmet-
ric functions {$m_{\kappa}$ : $|\kappa$ I $=k,$ $k=0,1,$ $\ldots$ }, ordered with reverse lexicographical
ordering, the operator $D_{2}(\alpha)$ has polynomial eigenfunctions of the form

$J_{\kappa}^{(\alpha)}(z_{1}, \ldots, z_{N})$

$:=b_{\kappa\kappa}m_{\kappa}+\sum_{\mu<\kappa}b_{\mu\kappa}m_{\mu}$ (3.8)

with eigenvalue $e(\kappa, \alpha)$ . These polynomials are unique up to normalization. We
adopt the normalization of Stanley, which is to fix $b_{1^{1\kappa\}}\kappa}=|\kappa|!$ .

Although the Jack polynomials form a Taylor polynomial basis we require that
the complete set of eigenfunctions form a Laurent polynomial basis (positive and
negative powers). This is achieved by noting that, analogous to (3.2),

$\prod_{j=1}^{N}z_{j}^{-lJ_{\kappa}^{(\alpha)}(z_{1},\ldots,z_{N})}$ , $l>0$

is an eigenfunction of $D_{2}(\alpha)$ with eigenvalue $e(\kappa-l, \alpha)$ . A complete set of eigenfunc-
tions with respect to the space of Laurent expandable functions for the operators
(3.6) is therefore given by [6]

$\{-l(\alpha)$ (3.9)

(to prevent double counting, for $l>0$ we require $\kappa_{N}=0$).
Furthermore we have that

$\{z_{j}^{-l(2/\beta)}$ (3.10)

is an orthogonal set with respect to the inner product

$\{f|g\}_{I}$ $:=\prod_{l=1}^{N}\int_{0}^{L}dx_{l}f^{*}g$ , $($ 3.11 $a)$

or equivalently the set (3.9) is an orthogonal set with respect to the inner product

$\langle f|g\rangle_{I}$
$:=\prod_{l=1}^{N}\int_{0}^{L}dx_{l}\prod_{1\leq j<k\leq N}|z_{k}-z_{j}|^{\beta}f^{*}g$ , $($3.11 $b)$

in all cases except possibly when the two members of the sets (3.9) or (3.10),
labelled by $(p, \kappa)$ and $(q, \sigma)$ say, are such that $|\kappa|=|\sigma|,$ $p=q$ and $e(\kappa)=e(\sigma)$

(e.g. $\kappa=(31^{3})$ and $\sigma=2^{3}$ ). This follows because for $\kappa\neq\sigma$ the integrand
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is homogeneous of a non-zero degree and thus must integrate to zero, while for
$|\kappa|=|\sigma|,$ $e(\kappa)\neq e(\sigma)$ we note that the set (3.9) gives the eigenfunctions of the
Hermitian operator $e^{-\beta W/2}\mathcal{L}e^{-\beta W/2}$ , and it is a general property of Hermitian
operators that eigenfunctions with distinct eigenvalues are orthogonal.

To establish the orthogonality in the case $|\kappa|=|\sigma|,$ $e(\kappa)=e(\sigma)$ (it suffices to
assume $p=p=0$) is a difficult task. It follows according to the following result
of Macdonald [2].

Proposition 3.1. With $\Delta+;=\prod_{1\leq j<k\leq N}(z_{k}-z_{j})$ and $z_{j}$

$:=e^{2\pi ix_{j}/L}$ , define the

family of operators $\{D_{N}^{p}\}_{p=1,\ldots,N}$ depending on the parameter $ 2/\beta$ by

$D_{N}^{p}$ $;=$ $\sum_{l=0}^{p}(2/\beta)^{p-l}\sum_{1\leq i_{1}<i_{2}<\cdots<i}\frac{1}{\Delta+}(z_{i_{1}}\frac{\partial}{\partial z_{i_{1}}}\ldots z_{i\iota}\frac{\partial}{\partial z_{i}})\Delta+$

$\times 1\leq i,+1<..\cdot.\cdot<\dot{\cdot}\leq N\sum_{\neq:_{1}\neq:_{l}^{p}}(z_{i,+1}\frac{\partial}{\partial z_{i,+1}}\ldots z_{i_{p}}\frac{\partial}{\partial z_{i_{p}}})$

,

and define the corresponding generating function by

$D_{N}(X;2/\beta)$ $:=\sum_{k=0}^{N}X^{N-k}D_{N}^{k}$

We have that the operator $e^{-\beta W/2}D_{N}(X;2/\beta)e^{\beta W/2}$ is Hermitian with respect to

the inner product $(3.11a)$ and the Jack polynomials $J_{\kappa}^{(2/\beta)}$ are eigenfunctions of
$D_{N}(X;2/\beta)$ (and thus each $D_{N}^{p}$ separately) with corresponding eigenvalue

$e(\kappa, 2/\beta;X)$ $:=\prod_{j=1}^{N}(X+N-j+(2/\beta)\kappa_{j})$ . (3.12)

Since $e(\kappa, 2/\beta;X)\neq e(\sigma, 2/\beta;X)$ for $\kappa\neq\sigma$ the operators $\{D_{N}^{p}\}$ , which are
called the Sekiguchi-Debiard operators, resolve the degeneracy in the spectrum.
The orthogonality of the set (3.10) in general then follows from the fact that
$e^{-\beta W/2}D_{N}^{p}e^{\beta W/2}$ is Hermitian.

An understanding of the operator $D_{N}(X;2/\beta)$ is provided by the work of Bernard
et al. [7], who introduced a decomposition of (3.6a) in terms of a commuting set of
operators known as the Cherednik operators. Using these operators, an operator
equivalent to $D_{N}(X;2/\beta)$ can be constructed (see e.g. [8] and Section 5 below).

A fundamental property of the Jack polynomials is the so called Cauchy formula

$\prod_{j,k=1}^{N}(1-x_{j}y_{k})^{-1/\alpha}=\sum_{\kappa}j_{\kappa}^{-1}J_{\kappa}^{(\alpha)}(x_{1}, \ldots, x_{N})J_{\kappa}^{(\alpha)}(y_{1}, \ldots,y_{N})$ . $(3.13a)$

It is straightforward to show [2] that this identity is equivalent to the statement
that

$\langle J_{\kappa}^{(\alpha)}, J_{\sigma}^{(\alpha)}\rangle_{p}=j_{\kappa}\delta_{\kappa,\sigma}$ $(3.13b)$
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where $j_{\kappa}$ is a normalization and {, $\rangle_{p}$ is the power sum inner product

\langle $p_{\kappa},p_{\sigma}\}_{p}=\alpha^{\sum_{j=1}^{\kappa_{1}}f_{j}}\prod_{k=1}^{\kappa_{1}}k^{f_{k}}f_{k}$ ! $(3.14a)$

with

$p_{\kappa}$ $:=p_{\kappa_{1}}p_{\kappa_{2}}\ldots p_{\kappa_{N}}=p_{1}^{f_{1}}p_{2}^{f_{2}}\ldots p_{N}^{f_{N}}$ where $p_{j}$
$:=\sum_{k=1}^{N}z_{k}^{j}$ $(3.14b)$

The coefficients of the Jack polynomials are independent of $N$ (this can be shown
directly from the eigenoperator $D_{2}(\alpha)$ in (3.6)) so they can be given a unique
decomposition in terms of power sums and the value of the inner product is thus
unambiguous. Macdonald [2] has proved the validity of (3.13) (the proof involves
showing that the family of operators $D_{N}^{p}$ are Hermitian with respect to the inner
product $(3.14a))$ .

An alternative formulation of (3.13a) is possible. Define the operator $\omega_{\alpha}$ by
$\omega_{\alpha}p_{\kappa}=\alpha^{l(\kappa)}p_{\kappa}$ (3.15)

Macdonald [2] has proved that

$\omega_{-\alpha}J_{\kappa}^{(\alpha)}=(-1)^{|\kappa|}\alpha^{-|\kappa|}J_{\kappa}^{(1/\alpha)}$ (3.16)
Furthermore, it is straightforward to show that

$\omega_{-\alpha}\prod_{j,k=1}^{N}(1-x_{j}y_{k})^{-1/\alpha}=\prod_{j,k=1}^{N}(1-x_{j}y_{k})$ (3.17)

where for definiteness we suppose $\omega_{-\alpha}$ acts on the variables $\{x_{j}\}$ . Hence, applying
$\omega_{-\alpha}$ to the Cauchy formula (3.13a) gives

$\prod_{j,k=1}^{N}(1-x_{j}y_{k})=\sum_{\kappa}j_{\kappa}^{-1}(-1)^{\kappa}\alpha^{-|\kappa|}J_{\kappa}^{(1/\alpha)}(x_{1}, \ldots , x_{N})J_{\kappa}^{(\alpha)}(y_{1}, \ldots, y_{N})$ (3.18)

From the Cauchy formula (3.13a) a useful formula for $p_{1}^{n}$ $:=(\sum_{1}^{N}x_{j})^{n}$ can
be derived. Thus we consider the coefficient of $y_{1}\ldots y_{n},$ $n\leq N$ , on $both=$ sides of
(3.13a). On the l.h. $s$ . the coefficient is

$\alpha^{-n}(x_{1}+\cdots+x_{N})^{n}$ (3.19)

On the r.h. $s.$ , recalling that $J_{\kappa}^{(\alpha)}$ is homogeneous of order $|\kappa|$ , the only terms involv-
ing $y_{1}\ldots y_{n}$ must have $|\kappa|=n$ . Furthermore, the normalization of $J_{\kappa}^{(\alpha)}(y_{1}, \ldots, y_{n})$ ,
$|\kappa|=n$ , is such that the coefficient of $y_{1}\ldots y_{n}$ in $J_{\kappa}^{(\alpha)}(y_{1}, \ldots, y_{n})$ is $|\kappa|!$ , so that
the total coefficient is

$\sum_{|\kappa|=n}|\kappa|!j_{\kappa}^{-1}J_{\kappa}^{(\alpha)}(x_{1}, \ldots, x_{n})$ (3.20)



146 PETER J. FORRESTER

Equating (3.19) and (3.20) gives

$(x_{1}+\cdots+x_{N})^{n}=\sum_{|\kappa|=n}\alpha^{|\kappa|}|\kappa|!j_{\kappa}^{-1}J_{\kappa}^{(\alpha)}(x_{1}, \ldots , x_{N})$
(3.21)

It is convenient to define a Jack polynomial $0_{\kappa}^{(\alpha)}$ with normalization absorbing
the prefactors of $J_{\kappa}^{(\alpha)}$ in (3.21):

$C_{\kappa}^{(\alpha)}(x_{1}, \ldots, x_{N})=\alpha^{|\kappa|}|\kappa|!j_{\kappa}^{-1}J_{\kappa}^{(\alpha)}(x_{1}, \ldots, x_{N})$ . (3.22)

From (3.21) we then have

$(x_{1}+\cdots+x_{N})^{n}=\sum_{|\kappa|=n}C_{\kappa}^{(\alpha)}(x_{1}, \ldots, x_{N})$
(3.23)

which implies the useful identity

$\exp(x_{1}+\cdots+x_{N})=\sum_{n=0}^{\infty}\sum_{|\kappa|=n}C_{\kappa}(x_{1}, \ldots, x_{N})/n!$ . (3.24)

We will conclude this section by stating two formulas for quantities associated
with Jack polynomials. These formulas are for the coefficient $b_{\kappa\kappa}$ in (3.8) and the
normalization $j_{\kappa}$ in (3.13). They read [1]

$b_{\kappa\kappa}=\prod_{(i,j)\in\kappa}h_{*}^{\kappa}(i,j)$
and

where

$j_{\kappa}=\prod_{(i,j)\in\kappa}h_{*}^{\kappa}(i,j)h_{\kappa}^{*}(i,j)$
(3.25)

$h_{*}^{\kappa}(i,j)=\kappa_{j}-i+1+\alpha(\kappa_{i}-j)$ and $h_{\kappa}^{*}(i,j)=\kappa_{j}^{\prime}-i+\alpha(\kappa_{i}-j+1)$ .
An equivalent, more convenient form for the above products follows from the work
of Kadell [5]:

$\prod_{(i,j)\in\kappa}h_{*}^{\kappa}(i,j)=\frac{J_{\kappa}^{(\alpha)}(1^{n})}{f_{n}^{1/\alpha}(\kappa)}$ $(3.26a)$

where
$f_{n}^{\lambda}(\kappa)$

$:=\prod_{1\leq i<j\leq n}\frac{((j-i)\lambda+\kappa_{i}-\kappa_{j})_{\lambda}}{((j-i)\lambda)_{\lambda}}$

and

$\prod_{(i,j)\in\kappa}h_{\kappa}^{*}(i,j)=\alpha^{|\kappa|}\frac{[(n-1)/\alpha+1]_{\kappa}^{(\alpha)}}{\overline{f}_{n}^{1/\alpha}(\kappa)}$ $(3.26b)$

where
$\overline{f}_{n}^{\lambda}(\kappa)$

$:=\prod_{1\leq i<j\leq n}\frac{(1-\lambda+(j-i)\lambda+\kappa_{i}-\kappa_{j})_{\lambda}}{(1-\lambda+(j-i)\lambda)_{\lambda}}$ ,

(the quantity $[(n-1)/\alpha+1]_{\kappa}^{(\alpha)}$ is defined by (3.32b) below and $(x)_{\lambda}$ $:=\Gamma(x+$

$\lambda)/\Gamma(x))$ .
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3.3. Generalized Jacobi polynomials. Further development in the theory of
Jack polynomials can be made by considering eigenfunctions associated with the
operator (3.5) in the case $W$ given by (1.35) and with $x_{j}$ replaced by $\phi_{j}$ . Changing
variables $\sin^{2}\phi_{j}=x_{j}$ we find that

$-\frac{1}{4}e^{\beta W^{(J)}/2}(H^{(J)}-E_{0})e^{-\beta W^{(J)}/2}$ $:=\tilde{H}^{(J)}$

$=\sum_{j=1}^{N}(x_{j}(1-x_{j})\frac{\partial^{2}}{\partial x_{j}^{2}}+[\tilde{a}+1-x_{j}(\tilde{a}+\tilde{b}+2)]\frac{\partial}{\partial x_{j}}+\beta\sum_{k=1,k\neq j}^{N}\frac{x_{j}(1-x_{j})}{x_{j}-x_{k}}\frac{\partial}{\partial x_{j}})$

(3.27)

where $\tilde{a}$ $:=(\beta a^{\prime}-1)/2,\tilde{b}$ $:=(\beta b-1)/2$ . In the $N=1$ case the unique polynomial
eigenfunctions of this operator are the Jacobi polynomials $P_{n}^{(\tilde{b},\overline{a})}(2x-1)$ . For
general $N$ , by direct substitution, it is easy to see that for each partition $\kappa$ there
is a unique symmetric polynomial eigenfunction with heighest weight $m_{\kappa}$ . In fact
all other monomials in the expansion of the eigenfunction are of the form $m_{\sigma}$ with
$\sigma<\kappa$ (dominance ordering) or $|\sigma|<|\kappa|$ . For the partitions $\kappa=(p^{N})(p=1,2, \ldots)$

two different types of formulas for the eigenfunctions, termed generalized Jacobi
polynomials and to be denoted

$G_{\kappa}^{(\tilde{a},\tilde{b})}(x_{1}, \ldots, x_{N}; 2/\beta)$ ,

have been obtained by Kaneko [4].
To motivate the first formula, which is an integral representation, consider the

problem of evaluating the density (1.36) (for convenience in a system of $N+1$
particles), with the Boltzmann factor given by the eigenvalue p.d. $f$. $(1.33)$ for the
Jacobi ensemble (with $N$ replaced by $N+1$ ). The density is given by

$\rho_{1}(y)=\frac{N+1}{Z_{N+1}}y^{\beta a/2}(1-y)^{\beta b/2}\prod_{l=1}^{N}\int_{0}^{1}dy_{l}|y-y_{l}|^{\beta}y_{l}^{\beta a/2}(1-y_{l})^{\beta b/2}\prod_{1\leq j<k\leq N}|y_{k}-y_{j}|^{\beta}$

$(3.28a)$

where

$Z_{N+1}$ $:=\prod_{l=1}^{N+1}\int_{0}^{1}dy_{l}y_{l}^{\beta a/2}(1-y_{l})^{\beta b/2}\prod_{1\leq j<k\leq N+1}|y_{k}-y_{j}|^{\beta}$ . $(3.28b)$

Suppose we now introduce the integrals

$S_{n,m}(\lambda_{1}, \lambda_{2}, \lambda;t_{1}, \ldots, t_{m})$
$:=\int_{[0,1]^{n}}dx_{1}\ldots dx_{n}\prod_{j=1}^{n}\prod_{k=1}^{m}(x_{j}-t_{k})D_{\lambda_{1},\lambda_{2},\lambda}(x_{1}, \ldots,x_{n})$

(3.29)
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where

$D_{\lambda_{1},\lambda_{2},\lambda}(x_{1}, \ldots, x_{n})=\prod_{j=1}^{n}x_{j}^{\lambda_{1}}(1-x_{j})^{\lambda_{2}}\prod_{1\leq j<k\leq n}|x_{k}-x_{j}|^{2\lambda}$ (3.30)

Then for $\beta$ even $\rho_{(1)}(y)$ can be written in terms of these integrals according to

$\rho_{1}(y)=\frac{N+1}{Z_{N+1}}y^{\beta a/2}(1-y)^{\beta b/2}S_{N,\beta}(\beta a/2, \beta b/2,\beta/2;t_{1}, \ldots, t_{\beta})|_{t_{1}=\cdots=t_{\beta}=y}$ . $(3.31)$

Kaneko [4] has shown that the integrals (3.29) are eigenfunctions of the operator
(3.27) and are thus examples of generalized Jacobi polynomials.

To derive this result, we first require some equations satisfied by integrals related
to $S_{n,m}$ .

Proposition 3.2. Let

$S_{n,m}[f]$ $:=\int_{[0,1]^{\mathfrak{n}}}dx_{1}\ldots dx_{n}f\prod_{j=1}^{n}\prod_{k=1}^{m}(x_{j}-t_{k})D_{\lambda_{1},\lambda_{2},\lambda}(x_{1}, \ldots, x_{n})$ ,

where $f$ may be an operator acting on all terms to the right. For $\lambda_{1},$ $\lambda_{2}>0$ the
following equations hold:

$0=\lambda_{1}S_{n,m}[\sum_{j=1}^{n}\frac{1}{x_{j}}]-\lambda_{2}S_{n,m}[\sum_{j=1}^{n}\frac{1}{1-x_{j}}]+S_{n,m}[\sum_{j=1}^{n}\sum_{k=1}^{m}\frac{1}{x_{j}-t_{k}}]$

$0=n(1+\lambda_{1}+\lambda_{2}+m+(n-1)\lambda)S_{n,m}[1]-\lambda_{2}S_{n,m}[\sum_{j=1}^{n}\frac{1}{1-x_{j}}]+S_{n,m}[\sum_{j=1}^{n}\sum_{k=1}^{m}\frac{t_{k}}{x_{j}-t_{k}}]$

and

$0=-2\lambda S_{n,m}[\sum_{1\leq j<k\leq n}\frac{1}{(x_{j}-t_{p})(x_{k}-t_{p})}]+\frac{\lambda_{1}}{t_{p}}S_{n,m}[\sum_{j=1}^{n}(\frac{1}{x_{j}-t_{p}}-\frac{1}{x_{j}})]$

$-\frac{\lambda_{2}}{1-t_{p}}S_{n,m}[\sum_{j=1}^{n}(\frac{1}{x_{j}-t_{p}}+\frac{1}{1-x_{j}})]+\sum_{=1,l\neq p}^{m}\frac{1}{t_{p}-t_{l}}S_{n,m}[\sum_{j=1}^{n}(\frac{1}{x_{j}-t_{p}}-\frac{1}{x_{j}-t_{l}})]$

for each $p=1,$ $\ldots,$
$m$ .

Proof. These equations are derived from the three equations

$0=S_{n,m}[\sum_{j=1}^{n}\frac{\partial}{\partial x_{j}}],$ $0=S_{n,m}[\sum_{j=1}^{n}\frac{\partial}{\partial x_{j}}x_{j}],$ $0=S_{n,m}[\sum_{j=1}^{n}\frac{\partial}{\partial x_{j}}\frac{1}{x_{j}-t_{p}}]$

$(p=1, \ldots, m)$ respectively, which follow from the fundamental theorem of calculus
(the integrand vanishes at both endpoints). The explicit form of the r.h. $s$ . $s$ follow
by explicitly calculating the partial derivatives, and using the symmetry properties
of the integrand to further simplify the resulting expressions. $\square $
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The main result regarding these integrals can now be derived.

Proposition 3.3. $S_{n,m}$ satisfies the partial differential equations

$t_{p}(1-t_{p})\frac{\partial^{2}F}{\partial t_{p}^{2}}+[c-\frac{1}{\alpha}(m-1)-(a+b+1-\frac{1}{\alpha}(m-1))t_{p}]\frac{\partial F}{\partial t_{p}}-abF$

$+\frac{1}{\alpha}\sum_{j=1,j\neq p}^{m}\frac{1}{t_{p}-t_{j}}(t_{p}(1-t_{p})\frac{\partial F}{\partial t_{p}}-t_{j}(1-t_{j})\frac{\partial F}{\partial t_{j}})=0$ , $p=1,$
$\ldots,$ $m$ ,

with

$\alpha=\lambda$ , $a=-n$ , $b=\frac{1}{\lambda}(\lambda_{1}+\lambda_{2}+m+1)+n-1$ , $c=\frac{1}{\lambda}(\lambda_{1}+m)$

Proof. Regarding

$\lambda_{1}S_{n,m}[\sum_{j=1}^{n}\frac{1}{x_{j}}]$ and $\lambda_{2}S_{n,m}[\sum_{j=1}^{n}\frac{1}{1-x_{j}}]$

as unknowns in the first two equations of Proposition 3.2 and solving for them gives

$\lambda_{1}S_{n,m}[\sum_{j=1}^{n}\frac{1}{x_{j}}]=n(1+\lambda_{1}+\lambda_{2}+m+(n-1)\lambda)S_{n,m}[1]-S_{n,m}[\sum_{j=1}^{n}\sum_{k=1}^{m}\frac{1-t_{k}}{x_{j}-t_{k}}]$

and

$\lambda_{2}S_{n,m}[\sum_{j=1}^{n}\frac{1}{1-x_{j}}]=n(1+\lambda_{1}+\lambda_{2}+m+(n-1)\lambda)S_{n,m}[1]+S_{n,m}[\sum_{j=1}^{n}\sum_{k=1}^{m}\frac{t_{k}}{x_{j}-t_{k}}]$ .

Substituting these equations into tbe third equation of Proposition 3.2 gives

$0=-2\lambda S_{n,m}[\sum_{1\leq j<k\leq n}\frac{1}{(x_{j}-t_{p})(x_{k}-t_{p})}]+(\frac{\lambda_{1}}{t_{p}}-\frac{\lambda_{2}}{1-t_{p}})S_{n,m}[\sum_{j=1}^{n}\frac{1}{x_{j}-t_{p}}]$

$-\frac{1}{t_{p}}(n(1+\lambda_{1}+\lambda_{2}+m+(n-1)\lambda)S_{n,m}[1]-S_{n,m}[\sum_{j=1}^{n}\sum_{k=1}^{m}\frac{1-t_{k}}{x_{j}-t_{k}}])$

$-\frac{1}{1-t_{p}}(n(1+\lambda_{1}+\lambda_{2}+m+(n-1)\lambda)S_{n,m}[1]+S_{n,m}[\sum_{j=1}^{n}\sum_{k=1}^{m}\frac{t_{k}}{x_{j}-t_{k}}])$

$+S_{n,m}[\sum_{=1,\neq p}^{m}\frac{1}{t_{p}-t_{l}}\sum_{j=1}^{n}\frac{1}{x_{j}-t_{p}}-\frac{1}{x_{j}-t_{l}}]$

But from the definition (3.29) of $S_{n,m}$ we see

$\frac{\partial S_{n,m}}{\partial t_{p}}=-S_{n,m}[\sum_{j=1}^{n}\frac{1}{x_{j}-t_{p}}]$
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and

$\frac{\partial^{2}S_{n,m}}{\partial t_{p}^{2}}=2S_{n,m}[\sum_{1\leq j<k\leq n}\frac{1}{(x_{j}-t_{p})(x_{k}-t_{p})}]$

These equations allow all terms involving $x_{1},$
$\ldots,$

$x_{n}$ to be eliminated. The partial
differential equations of the proposition result (to obtain the very last term the
manipulation $t_{j}(1-t_{j})=t_{p}(1-t_{p})+(t_{j}-t_{p})$

$\times(1-t_{j}-t_{p})$ is required). $\square $

Summing over $p$ in the equation of Proposition 3.3 gives the eigenvalue equation
for the eigenoperator (3.27), with

$N=m$ , $\beta=\frac{\lambda}{2}$ , $\tilde{a}+1=\frac{1}{\lambda}(\lambda_{1}+1)-1$ $\tilde{b}+1=\frac{1}{\lambda}(\lambda_{2}+1)-1$

and $eigenvalue-nm[(\lambda_{1}+\lambda_{2}+m+1)/\lambda+n-1]$ . Hence $S_{n,m}(\lambda_{1}, \lambda_{2}, \lambda;t_{1}, \ldots, t_{m})$

is proportional to
$G^{((\lambda_{1}+1)/\lambda-1,(\lambda_{2}+1)/\lambda-1)}(t_{1}, \ldots, t_{m}; \lambda)$

$(n^{m})$

On the other hand, the summed up form of the equations in Proposition 3.3
permit a solution as a series of Jack polynomials. In fact the polynomial solution
of the summed up equations is given by the generalized hypergeometric function

$2F_{1}^{(\alpha)}(a, b;c;t_{1}, \ldots, t_{m})=\sum_{d=0}^{\infty}\frac{1}{d!}\sum_{|\kappa|=d}\frac{[a]_{\kappa}^{(\alpha)}[b]_{\kappa}^{(\alpha)}}{[c]_{\kappa}^{(\alpha)}}C_{\kappa}^{(\alpha)}(t_{1}, \ldots, t_{m})$ , $(3.32a)$

with $a=-n$ , where the generalized factorial function is defined by

$[u]_{\kappa}^{(\alpha)}$ $:=$ $\prod_{j=1}^{l(\kappa)}(u-\frac{1}{\alpha}(j-1))_{\kappa_{j}}$ with $(x)_{n}$ $:=x(x+1)\ldots(x+n-1)$

$=$ $\prod_{j=1}^{m}\frac{\Gamma(u-\frac{1}{\alpha}(j-1)+\kappa_{j})}{\Gamma(u-\frac{1}{\alpha}(j-1))}$ (3.32b)

and $C_{\kappa}^{(\alpha)}(t_{1}, \ldots, t_{m})$ is the Jack polynomial (3.22).
To show this fact, it is convenient to introduce the operators

$E_{k}$ $=$ $\sum_{i=1}^{m}x_{i}^{k}\frac{\partial}{\partial x_{i}}$

$D_{k}(\alpha)$ $=$ $\sum_{i=1}^{m}x_{i}^{k}\frac{\partial^{2}}{\partial x_{i}^{2}}+\frac{2}{\alpha}\sum_{i\neq j}\frac{x_{i}^{k}}{x_{i}-x_{j}}\frac{\partial}{\partial x_{i}}$

The summed up equations can then be written as

$(D_{2}(\alpha)-D_{1}(\alpha)+(c-\frac{1}{\alpha}(m-1))E_{0}-(a+b+1-\frac{1}{\alpha}(m-1))E_{1})F=mabF(3.33)$
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It is therefore necessary to compute the action of the operators $E_{0},$ $E_{1},$ $D_{1}(\alpha),$ $D_{2}(\alpha)$

on $c_{\kappa}^{(\alpha)}$ . From Section 3.2 we know that
$E_{1}C_{\kappa}^{(\alpha)}=|\kappa|C_{\kappa}^{(\alpha)}$ $(3.34a)$

and

$D_{2}(\alpha)C_{\kappa}^{(\alpha)}=\sum_{i=1}^{m}(\kappa_{i}(\kappa_{i}-1)/2-\frac{1}{\alpha}(i-1)\kappa_{i})C_{\kappa}^{(\alpha)}$ $(3.34b)$

To compute the action of $E_{0}$ , it is necessary to introduce the generalized binomial
coefficients $(_{\sigma}^{\kappa})$ defined by the expansion

$\frac{C_{\kappa}^{(\alpha)}(1+t_{1},\ldots,1+t_{m})}{C_{\kappa}^{(\alpha)}(1^{m})}=\sum_{s=0}^{|\kappa|}\sum_{|\sigma|=s}\left(\begin{array}{l}\kappa\\\sigma\end{array}\right)\frac{C_{\sigma}^{(\alpha)}(t_{1},\ldots,t_{m})}{C_{\sigma}^{(\alpha)}(1^{m})}$ (3.35)

where $C_{\kappa}^{(\alpha)}(1^{m}):=C_{\kappa}^{(\alpha)}(t_{1}, \ldots, t_{m})|_{t_{1}=\cdots=t_{m}=1}$ . Now

$E_{0}\frac{C_{\kappa}^{(\alpha)}(t_{1},\ldots,t_{m})}{C_{\kappa}^{(\alpha)}(1^{m})}$ $=$ $\lim_{\epsilon\rightarrow 0}\ovalbox{\tt\small REJECT} C_{\kappa}^{(\alpha)}(\epsilon+t_{1}, \ldots,\epsilon+t_{m})-C_{\kappa}^{(\alpha)}(t_{1}, \ldots, t_{m})\epsilon C_{\kappa}^{(\alpha)}(1^{m})$

$=$ $\lim_{\epsilon\rightarrow 0}\frac{1}{\epsilon}\sum_{s=0}^{|\kappa|}\epsilon^{|\kappa|-s}\sum_{|\sigma|=s}\left(\begin{array}{l}\kappa\\\sigma\end{array}\right)\frac{C_{\sigma}^{(\alpha)}(t_{1},\ldots,t_{m})}{C_{\sigma}^{(\alpha)}(1^{m})}$

$=$ $\sum_{i}\left(\begin{array}{l}\kappa\\\kappa_{(i)}\end{array}\right)\frac{C_{\kappa_{(\cdot)}}^{(\alpha)}(t_{1},\ldots,t_{m})}{C_{\kappa_{(\cdot)}}^{(\alpha.)}(1^{m})}$ (3.36a)

where $\kappa_{(i)}$
$:=(\kappa_{1}, \ldots, \kappa_{i-1}, \kappa_{i}-1, \kappa_{i+1}, \ldots, \kappa_{N})$ and it is assumed $\kappa_{(i)}$ forms a

partition. For the action of $D_{1}$ we observe that $D_{1}=\frac{1}{2}[E_{0}, D_{2}]$ , which gives

$D_{1}\frac{C_{\kappa}^{(\alpha)}(t_{1},\ldots,t_{m})}{C_{\kappa}^{(\alpha)}(1^{m})}=\sum_{i}\left(\begin{array}{l}\kappa\\\kappa_{(i)}\end{array}\right)(\kappa_{i}-1+\frac{1}{\alpha}(m-i))\frac{C_{\kappa_{(\cdot)}}^{(\alpha)}(t_{1}\ldots,t_{m})}{C_{\kappa_{\langle\cdot)}}^{(\alpha.)}’(1^{m})}$ $(3.36b)$

We can now substitute the series (3.32) in the summed up equations of Propo-
sition 3.3 and equate coefficients of $C_{\kappa}^{(\alpha)}$ by using (3.34) to (3.36). We find that
the series satisfies the equation provided

$\sum_{i=1}^{m}$

’
$\left(\begin{array}{l}\kappa^{(i)}\\\kappa\end{array}\right)(a+\kappa_{i}-\alpha(i-1))(b+\kappa_{i}-\alpha(i-1))C_{\kappa^{(\cdot)}}^{(\alpha.)}(1^{m})$

$=(|\kappa|+1)(mab+2\alpha\rho_{\kappa}+(a+b)|\kappa|+\alpha(m+1)|\kappa|)C_{\kappa}^{(\alpha)}(1^{m})$ , (3.37)

where

$\kappa^{(i)}$

$:=(\kappa_{1}, \ldots, \kappa_{i-1}, \kappa_{i}+1, \kappa_{i+1}\ldots, \kappa_{m})$ , $\rho_{\kappa}$ $:=\sum_{j=1}^{m}(\kappa_{j}^{2}-\frac{2}{\alpha}j\kappa_{j})$
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To verify the equation (3.37), summation formulas for

$\sum_{i=1}^{m}(\kappa_{i}-\alpha(i-1))^{s}\left(\begin{array}{l}\kappa_{(i)}\\\kappa\end{array}\right)C_{\kappa_{1\cdot)}}(1^{m})$ , $s=0,1$ and 2

are required. These summation formulas can be derived from some generalizations
of the identity (3.24), which give the explicit Jack polynomial expansions of

$p_{1}^{s_{1}}p_{2}^{s_{2}}\exp(t_{1}+\cdots+t_{m})$ , $s_{1},$ $s_{2}=0,1$ .

The result is that

$\sum_{i=1}^{m}(\kappa_{i}-\alpha(i-1))^{s}\left(\begin{array}{l}\kappa_{(i)}\\\kappa\end{array}\right)C_{\kappa_{(i)}}(1^{m})$

$=$ $\left\{\begin{array}{ll}m(|\kappa|+1)C_{\kappa}(1^{m}) & if s=0;\\|\kappa|(|\kappa|+1)C_{\kappa}(1^{m}) & if s=1;\\2\alpha(|\kappa|+1)(\rho_{\kappa}+\frac{1}{2}(m+1)|\kappa|)C_{\kappa}(1^{m}) & if s=2.\end{array}\right.$ (3.38)

The equation (3.37) can be immediately verified by using the summations (3.38).
In the case $a=-n$ , the series (3.32) is a polynomial with leading weight monomial
$m_{(n^{m})}$ . Hence for a suitable choice of $b$ and $c$ it is proportional to $S_{n,m}$ and thus,
according to (3.31), provides an expression for the particle density. Explicitly, we
have

$\rho_{(1)}(y)$ $=$ $(N+1)\frac{S_{N}(\beta a/2+\beta N,\beta b/2,\beta/2)}{Z_{N+1}}y^{\beta a/2}(1-y)^{\beta b/2}$

$\times 2F_{1}^{(\beta/2)}(-N, a+b+1+\frac{2}{\beta}+N;a+2;t_{1}, \ldots, t_{\beta})|_{t_{1}=\ldots t_{\beta}=}\downarrow 3.39)$

where

$S_{N}(\lambda_{1}, \lambda_{2}, \lambda)$ $:=\prod_{l=1}^{N}\int_{0}^{1}dt_{l}D_{\lambda_{1},\lambda_{2},\lambda}(t_{1}, \ldots, t_{N})$ (3.40)

We recall that the integral (3.40) has been evaluated by Selberg (see e.g. [7]) as

$S_{N}(\lambda_{1}, \lambda_{2}, \lambda)=\prod_{j=0}^{N-1}\ovalbox{\tt\small REJECT}\Gamma(\lambda_{1}+1+j\lambda)\Gamma(\lambda_{2}+1+j\lambda)\Gamma(1+(j+1)\lambda)$ . (3.41)

3.4. An integration formula. By comparing the integral and series polynomial
solutions of the summed up p.d. $e$ . $s$ in Proposition 3.3, a fundamental integration
formula for the Jack polynomials can be deduced, which is of application in the
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calculation of correlation functions. The comparison will be done by using the
Cauchy expansion (3.18). To use this expansion, we consider

$\tilde{S}_{n,m}(\lambda_{1}, \lambda_{2}, \lambda;t_{1}, \ldots, t_{m}):=(-1)^{nm\mu}\prod_{j=1}^{m}t_{j}^{n\mu}S_{n,m}(\lambda_{1}, \lambda_{2}, \lambda;1/t_{1}, \ldots, 1/t_{m})$

$=\int_{[0,1]^{n}}dx_{1}\ldots dx_{n}\prod_{j=1}^{n}\prod_{k=1}^{m}(1-s_{j}t_{k})^{\mu}D_{\lambda_{1},\lambda_{2},\lambda}(x_{1}, \ldots , x_{n})$ (3.42)

Now, we can check by direct substitution that in general by writing the solution
of the p.d. $e$ . $s$ in Proposition 3.3 as $F=\prod_{j=1}^{m}t_{j}^{-a}\tilde{F}(1/t_{1}, \ldots , 1/t_{m}),\tilde{F}(t_{1}, \ldots, t_{m})$

satisfies the same p.d. $e$ . $s$ with $b\leftrightarrow a-c+1+(m-1)/\alpha,$ $ c\leftrightarrow a-b+1+(m-1)/\alpha$ .
Hence $\tilde{S}_{n,m}$ satisfies the p.d. $e$ . $s$ of Proposition 3.3 with

$\alpha=\lambda,$ $a=-n,$ $b=-n-\frac{1}{\lambda}(\lambda_{1}+1)+1,$ $c=-\frac{1}{\lambda}(\lambda_{1}+\lambda_{2}+2)-2n+2$ , (3.43)

and so

$\frac{\tilde{S}_{n,m}(\lambda_{1},\lambda_{2},\lambda;t_{1},\ldots,t_{m})}{S_{n}(\lambda_{1},\lambda_{2},\lambda)}$

$=_{2}F_{1}^{(\lambda)}(-n, -n-\frac{1}{\lambda}(\lambda_{1}+1)+1;-\frac{1}{\lambda}(\lambda_{1}+\lambda_{2}+2)-2n+2;t_{1},$
$\ldots,$

$t_{m}$ )

(3.44)

From (3.44) we can derive the sought integration formula. Thus by using (3.18)
with $\alpha=\lambda,$ $\{y_{j}\}=\{t_{j}\}$ in the definition (3.42) of $\tilde{S}_{n,m}$ and equating coefficients
of $J_{\kappa}^{(\lambda)}(t_{1}, \ldots, t_{n})$ we obtain

$\int_{[0,1]^{n}}dx_{1}\ldots dx_{n}J_{\kappa}^{(1/\lambda)}(x_{1}, \ldots,x_{n})D_{\lambda_{1},\lambda_{2},\lambda}(x_{1}, \ldots, x_{n})$

$=$ $(-1)^{|\kappa|}S_{n}(\lambda_{1}, \lambda_{2}, \lambda)\frac{[-n]_{\kappa}^{(\lambda)}[-n-\frac{1}{\lambda}(\lambda_{1})+1]_{\kappa}^{(\lambda)}}{[-2(n-1)-\frac{1}{\lambda}(\lambda_{1}+\lambda_{2}+2)]_{\kappa}^{(\lambda)}}$ (3.45)

In general $[u]_{\kappa}^{(\alpha)}=(-1)^{|\kappa|}\alpha^{-|\kappa|}[-\alpha u]_{\kappa}^{(1/\alpha)}$ , so by replacing $\kappa^{\prime}$ by $\kappa$ this can be
rewritten as

$\int_{[0,1]^{n}}dx_{1}\ldots dx_{n}J_{\kappa}^{(1/\lambda)}(x_{1}, \ldots, x_{n})D_{\lambda_{1},\lambda_{2},\lambda}(x_{1}, \ldots,x_{n})$

$=S_{n}(\lambda_{1}, \lambda_{2}, \lambda)(1/\lambda)^{|\kappa|}\frac{[\lambda n\}_{\kappa}^{(1/\lambda)}[\lambda(n-1)+\lambda_{1}+1]_{\kappa}^{(1/\lambda)}}{[2\lambda(n-1)+\lambda_{1}+\lambda_{2}+2]_{\kappa}^{(1/\lambda)}}$ (3.46)

Note that by changing variables $x_{j}\mapsto 1-x_{j}/L$ in (3.46), setting $\lambda_{1}=L$ , then
taking the $ L\rightarrow\infty$ limit we obtain

$J_{\kappa}^{(1/\lambda)}(1^{n})=\lambda^{-|\kappa|}[\lambda n]_{\kappa}^{(1/\lambda)}$ (3.47)
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Thus (3.46) can be written as

$\int_{[0,1]^{\mathfrak{n}}}dx_{1}\ldots dx_{n}\frac{C_{\kappa}^{(1/\lambda)}(x_{1},\ldots,x_{n})}{C_{\kappa}^{(1/\lambda)}(1^{n})}D_{\lambda_{1},\lambda_{2},\lambda}(x_{1}, \ldots,x_{n})$

$=S_{n}(\lambda_{1}, \lambda_{2}, \lambda)\frac{[\lambda(n-1)+\lambda_{1}+1]_{\kappa}^{(1/\lambda)}}{[2\lambda(n-1)+\lambda_{1}+\lambda_{2}+2]_{\kappa}^{(1/\lambda)}}$ (3.48)

The integration formula (3.48) implies an integral representation for $21F^{(1/\lambda)}$ ,
distinct from that implied by (3.44). By multiplying both sides by

$[a]_{\kappa}^{(1/\lambda)}C_{\kappa}^{(1/\lambda)}(t_{1}, \ldots, t_{n})/|\kappa$ I !

and summing over $|\kappa|$ we obtain the formula [18]

$2F_{1}^{(1/\lambda)}(a, \lambda(n-1)+\lambda_{1}+1;2\lambda(n-1)+\lambda_{1}+\lambda_{2}+2;t_{1},$
$\ldots,$

$t_{n}$ )

$=\frac{1}{S_{n}(\lambda_{1},\lambda_{2},\lambda)}\int_{[0,1]^{n}}dx_{1}\ldots dx_{n}$

$\times 1\mathcal{F}^{(1/\lambda)}0$ $(a^{\prime};\lambda t_{1}/2, \ldots, \lambda t_{n}/2;x_{1}, \ldots , x_{n})D_{\lambda_{1},\lambda_{2},\lambda}(x_{1}, \ldots,x_{n})$ ,

(3.49)

where

$1\mathcal{F}_{0}^{(\alpha)}(a^{\prime};r_{1}, \ldots, r_{n};s_{1}, \ldots, s_{n}):=\sum_{d=0}^{\infty}\frac{1}{d!}\sum_{|\kappa|=d}[a^{\prime}]_{\kappa}^{(\alpha)}\frac{C_{\kappa}^{(\alpha)}(r_{1},\ldots,r_{n})C_{\kappa}^{(\alpha)}(s_{1},\ldots,s_{n})}{C_{\kappa}^{(\alpha)}(1^{n})}$ .

(3.50)
The function $1\mathcal{F}_{0}^{(1/\lambda)}$ can be written explicitly in terms of an elementary function

in the case $t_{1}=\cdots=t_{n}=t$ . From the definition (3.50), and the fact that $c_{\kappa}^{(\alpha)}$ is
homogeneous of order I $\kappa|$ we have

$1\mathcal{F}_{0}^{(\alpha)}(a^{\prime};r_{1}, \ldots, r_{n};s_{1}, \ldots, s_{n})|_{r_{1}=\cdots=r_{n}=r}=10F^{(\alpha)}(a ; rs_{1}, \ldots, rs_{n})$ . (3.51)

On the other hand, by the Cauchy identity (3.18)

$\prod_{j=1}^{n}(1-rs_{j})^{p}=\sum_{\kappa}\frac{(-1)^{|\kappa|}}{|\kappa|!}r^{p}J_{\kappa}^{(1/\alpha)}(1^{p})C_{\kappa}^{(\alpha)}(s_{1}, \ldots, s_{n})$ $(3.52a)$

for any integer $p\in Z\geq 0$ . Using (3.47) and the formula below (3.45) we can identify
the r.h. $s$ . of (3.52) as

$10F^{(\alpha)}(-p;rs_{1}, \ldots,rs_{n})$ , $(3.52b)$

so we have the explicit formula

$1\mathcal{F}_{0}^{(\alpha)}$

$(a^{\prime}; r_{1}, \ldots, r_{n};s_{1}, \ldots, s_{n})|_{r_{1}=\cdots=r_{\mathfrak{n}}=r}=\prod_{j=1}^{n}(1-rs_{j})^{-a^{\prime}}$ (3.53)
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Substituting this in (3.49) we obtain [9]

$2F_{1}^{(1/\lambda)}(a^{\prime}, \lambda(n-1)+\lambda_{1}+1;2\lambda(n-1)+\lambda_{1}+\lambda_{2}+2;t_{1},$
$\ldots,$

$t_{n}$ ) $|_{t_{j}=t}$

$=\frac{1}{S_{n}(\lambda_{1},\lambda_{2},\lambda)}\int_{[0,1]^{n}}dx_{1}\ldots dx_{n}\prod_{j=1}^{n}(1-tx_{j})^{-a^{\prime}}D_{\lambda_{1},\lambda_{2},\lambda}(x_{1}, \ldots,x_{n})$ .

(3.54)

An immediate application of (3.54) is that it provides a $\beta$-dimensional integral
formula for $2F^{(\beta/2)}1$ in (3.39), and thus for $\rho^{(1)}(y)$ . To obtain the generalized
hypergeometric function in (3.39) we must choose

$\lambda=2/\beta$ , $a^{\prime}=-N,$ $\lambda_{1}=\frac{4}{\beta}+a+b+N-2$ , $\lambda_{2}=-2-b-n$ . (3.55)

But we see that $\lambda_{2}$ is then negative so that the integral (3.54) is not defined.
However we can readily analytically continue the integral (3.54) so that it is valid
for $\lambda_{2}$ negative by following the procedure detailed in [10]. Thus we deform the
contours $[0,1]^{m}$ to the contours $C^{m}$ , where $C$ is any simple closed contour which
starts at the origin and encircles the point $x=1$ (this is first done under the
assumption that $\lambda_{2}$ is not an integer, and $\lambda$ is an integer; it is extended to all
$\lambda_{2}$ by analytic continuation and to all $\lambda$ by noting that the r.h. $s$ . is analytic in $\lambda$

when it is defined, while the l.h. $s$ . is a rational function of $\lambda$ in the case of interest
$(a^{\prime}=-N)$ . Thus we can replace $21F^{(\beta/2)}$ in (3.39) by the integral

$\frac{1}{C}\int_{C^{\beta}}dx_{1}\ldots dx_{\beta}\prod_{l=1}^{\beta}(1-yx_{l})^{N}x_{l}^{4/\beta+a+b+N-2}(1-x_{l})^{-2-b-N}\prod_{1\leq j<k\leq\beta}|x_{k}-x_{j}|^{4/\beta}$

(3.56)
where $C$ is chosen so that at $y=0$ , the expression is unity.

3.5. A trigonometric version of the integration formula. In general, inte-
grals of the form (3.46) can be transformed into trigonometric integrals according
to the following result [7], which follows by term-by-term integration.

Proposition 3.4. Let $f(t_{1}, \ldots , t_{N}; \{p\})$ be a Laurent polynomial in $t_{1},$
$\ldots,$

$t_{N}$ ,
with $\{p\}$ as pammeters. For $Re(\epsilon)$ large enough so that the $r.h.s$ . exists

$(\frac{\pi}{\sin\pi\epsilon})^{N}\prod_{l=1}^{N}\int_{-1/2}^{1/2}d\theta_{l}e^{2\pi i\theta,\epsilon}f(-e^{2\pi i\theta_{1}}, \ldots, -e^{2\pi i\theta_{N}} ; \{p\})$

$=\prod_{l=1}^{N}\int_{0}^{1}dt_{l}t_{l}^{-1+\epsilon}f(t_{1}, \ldots, t_{N}; \{p\})$ .
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For notational simplicity we set

$\iota_{n}(\theta;\lambda)=\prod_{1\leq j<k\leq n}|e^{2\pi i\theta_{k}}-e^{2\pi i\theta_{j}}|^{2\lambda}$
.

By $putting-1-b-\lambda(N-1)=\lambda_{1}$ and $a+b=\lambda_{2}$ in (3.46), we can use this result
with $\epsilon=(a-b)/2$ to deduce the equivalent trigonometric integral $[5,6]$

$(\prod_{l=1}^{n}\int_{-1/2}^{1/2}d\theta_{l}e^{\pi i\theta,(a-b)}|1+e^{2\pi i\theta}|^{a+b})\iota_{n}(\theta;\lambda)J_{\kappa}^{(1/\lambda)}(e^{2\pi i\theta_{1}}, \ldots, e^{2\pi i\theta_{\mathfrak{n}}})$

$=M_{n}(a, b, \lambda)(-1)^{|\kappa|}J_{\kappa}^{(1/\lambda)}(1^{n})\frac{[-b]_{\kappa}^{(1/\lambda)}}{[\lambda(n-1)+a+1]_{\kappa}^{(1/\lambda)}}$

$=J_{\kappa}^{(1/\lambda)}(1^{n})\prod_{j=1}^{n}\frac{\Gamma(1+a+b+\lambda(j-1))\Gamma(\lambda j+1)}{\Gamma(1+a+\lambda(n-j)+\kappa_{j})\Gamma(1+b+\lambda(j-1)-\kappa_{j})\Gamma(1+\lambda)}$

(3.57)

where

$M_{n}(a, b, \lambda)$ $;=$ $(\prod_{l=1}^{n}\int_{-1/2}^{1/2}d\theta_{l}e^{\pi i\theta_{l}(a-b)}|1+e^{2\pi i\theta}|^{a+b})\iota_{n}(\theta;\lambda)$

$=$ $\prod_{j=0}^{n-1}\frac{\Gamma(\lambda j+a+b+1)\Gamma(\lambda(j+1)+1)}{\Gamma(\lambda j+a+1)\Gamma(\lambda j+b+1)\Gamma(1+\lambda)}$ (3.58)

This latter equality follows by applying Proposition 3.4 to the Selberg integral
(3.40); the resulting trigonometric integral written as a constant term identity was
first considered by Morris [11]. The second equality in (3.57) follows from the
expression (3.58) for $M_{n}$ , and the functional property of the gamma function.

Although the use of Proposition 3.4 in the derivation of (3.57) requires $a+b,$ $\lambda\in$

$Z\geq 0$ , these restrictions can be relaxed to $Re(a+b),$ $Re(\lambda)\geq 0$ (at least) by applying
Carlson’s theorem [15]. Suppose $f(z)=g(z)$ for $z\in Z_{>0}$ and $f(z),$ $g(z)$ are analytic
and bounded by $e^{(\mu|z|)}(\mu<\pi)$ for $Re(z)\geq 0$ , then Carlson’s theorem says that
$f(z)=g(z)$ identically.

For $a,$ $b\in Z\geq 0$ , the l.h. $s$ . of (3.57) can be rewritten as

$(-1)^{|\kappa|}(\prod_{l=1}^{n}\int_{0}^{1}d\theta_{l}(1-e^{2\pi i\theta})^{a}(1-e^{-2\pi i\theta})^{b})\iota_{n}(\theta;\lambda)J_{\kappa}^{(1/\lambda)}(e^{2\pi i\theta_{1}}, \ldots, e^{2\pi i\theta_{n}})$ .

In the case $a=0$ , this can be interpreted as the Fourier coefficient in the
$eigen-(359)$

function expansion of the symmetric polynomial $\prod_{l=1}^{n}(1-z_{l})^{b}$ in terms of Jack
polynomials. Thus, since the set (3.9) is a complete set for symmetric functions
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and is orthogonal with respect to the inner product (3.11b), we have that

$\prod_{l=1}^{n}(1-z_{l})^{b}=\sum_{\kappa}\frac{L^{N}c_{\kappa}}{\{J_{\kappa}^{(1/\lambda)}|J_{\kappa}^{(1/\lambda)})_{I}^{\prime}}J_{\kappa}^{(1/\lambda)}(z_{1}, \ldots, z_{n})$ $(3.60a)$

where

$c_{\kappa}=(\prod_{l=1}^{n}\int_{0}^{1}d\theta_{l}(1-e^{-2\pi i\theta_{l}})^{b})\iota_{n}(\theta;\lambda)J_{\kappa}^{(1/\lambda)}(e^{2\pi i\theta_{1}}, \ldots, e^{2\pi i\theta_{n}})$ . $(3.60b)$

On the other hand we know from the result (3.52) that

$\prod_{l=1}^{n}(1-z_{l})^{b}=\sum_{\kappa}\frac{[-b]_{\kappa}^{(1/\lambda)}}{\lambda^{|\kappa|}j_{\kappa}}J_{\kappa}^{(1/\lambda)}(z_{1}, \ldots, z_{n})$ (3.61)

Since (3.59) and (3.57) give the value of $c_{\kappa}$ in (3.60), comparison of (3.60a) and
(3.61) gives the value of the normalization integral in (3.60a) as

$\langle\psi_{0}J_{\kappa}^{1/\lambda}|\psi_{0}J_{\kappa}^{1/\lambda}\}_{I}$ $=$ $L^{n}\frac{\Gamma(\lambda n+1)}{(\Gamma(\lambda+1))^{n}}\frac{j_{\kappa}J_{\kappa}^{(1/\lambda)}(1^{n})}{[\lambda(n-1)+1]_{\kappa}^{(1/\lambda)}}$

$=$ $L^{n}\frac{\Gamma(\lambda n+1)}{(\Gamma(\lambda+1))^{n}}\frac{(J_{\kappa}^{(1/\lambda)}(1^{n}))^{2}}{\overline{f}_{n}^{\lambda}(\kappa)f_{n}^{\lambda}(\kappa)}$ (3.62)

where the last equality follows upon using (3.26).

3.6. Generalized Laguerre polynomials. Consider now the eigenfunctions as-
sociated with the operator (3.5) in the case $W$ given by (1.32b). Making the change
of variables $y=\beta x^{2}/2$ gives

$\tilde{H}^{(L)}$

$;=$ $-\frac{1}{2\beta}e^{\beta W^{\langle L)}/2}(H^{(L)}-E_{0})e^{-\beta W^{(L)}/2}$

$=$
$\sum_{j=1}^{N}(y_{j}\frac{\partial^{2}}{\partial y_{j}^{2}}+(a-y_{j}+1)\frac{\partial}{\partial y_{j}}+\beta\sum_{k=1,\neq j}\frac{y_{j}}{y_{j}-y_{k}}\frac{\partial}{\partial y_{j}})$ , (3.63)

where
$a:=(\beta a^{\prime}-1)/2$ . (3.64)

In the case $N=1$ the unique (up to normalization) polynomial eigenfunction of
degree $n$ of $\tilde{H}^{(L)}$ is the Laguerre polynomial

$L_{n}^{a}(y);=(a+1)_{n}\sum_{j=0}^{n}\left(\begin{array}{l}n\\j\end{array}\right)\frac{(-y)^{j}}{(a+1)_{j}}$ (3.65)
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For general $N$ , direct computation shows that $\tilde{H}^{(L)}$ acting on the monomial sym-
metric function $m_{\kappa}$ gives a series of the form

$-2|\kappa|m_{\kappa}+\sum_{|\sigma|<|\kappa|}u_{\kappa\sigma}m_{\sigma}$
.

Thus for each $m_{\kappa}$ we see that by constructing the corresponding eigenfunction in
order $|\kappa|=0,1,$ $\ldots$ , there is a unique symmetric polynomial eigenfunction of the
form

$L_{\kappa}^{a}(x_{1}, \ldots, x_{N}; \alpha)=v_{\kappa\kappa}C_{\kappa}^{(\alpha)}(y_{1}, \ldots, y_{N})+\sum_{|\sigma|<|\kappa|}v_{\kappa\sigma}C_{\kappa}^{(\sigma)}(y_{1}, \ldots , y_{N})$
(3.66)

where $\alpha$ $:=2/\beta$ , which is termed the generalized Laguerre polynomial (for consis-
tency with (3.65) the normalization is chosen so that $v_{\kappa\kappa}=(-1)^{\kappa}/C_{\kappa}^{(\alpha)}(1^{N})|\kappa|!)$ .

By comparing the operators $\tilde{H}^{(J)}$ and $\tilde{H}^{(L)}$ , and using the fact that $G_{\kappa}^{(a,b)}$ has
an expansion in terms of Jack polynomials with leading term as in (3.66), we see
that the generalized Laguerre polynomials are a limiting case of the generalized
Jacobi polynomials:

$\lim_{b\rightarrow\infty}((-1)^{|\kappa|}b^{|\kappa|}/C_{\kappa}^{(\alpha)}(1^{N})|\kappa|!)\tilde{G}_{\kappa}^{(a,b)}(y_{1}/b, \ldots,y_{N}/b;\alpha)=L_{\kappa}^{a}(x_{1}, \ldots, x_{N}; \alpha)$

(3.67)

where $\tilde{G}_{\kappa}^{(a,b)}$ is normalized so that the coefficient of $c_{\kappa}^{(\alpha)}$ is unity. Since it has been
proved [16] that the generalized Jacobi polynomials are orthogonal with respect to
the inner product

$\{f|g\rangle^{(J)}\ddagger=\prod_{l=1}^{N}\int_{0}^{1}dy_{l}y_{l}^{a}(1-y_{l})^{b}\prod_{1\leq j<k\leq N}|y_{k}-y_{j}|^{2/\alpha}f(y_{1}, \ldots, y_{N})g(y_{1}, \ldots, y_{N})$

(3.68)
it follows that the Laguerre polynomials are orthogonal with respect to

$\langle f|g\rangle^{(L)}$ $:=\prod_{l=1}^{N}\int_{0}^{\infty}\iota^{a-y\iota}$

It is possible to derive a family of independent mutually commuting differ
$entia1(369)$

operators which include $\tilde{H}^{(L)}$ , which all have $L_{\kappa}^{a}$ as eigenfunctions, and for which
the eigenvalues can explicitly be given [17]. This is done by first characterising
the polynomials $L_{\kappa}^{a}$ in terms of a generating function. This in turn requires a
preliminary result, which is derived from the formulas (3.34) and (3.36) for the
action of the operators $E_{0},$ $D_{0}$ etc. on $C_{\kappa}^{(\alpha)}$ , as well as the formula [4]

$(x_{1}+\cdots+x_{N})C_{\kappa}^{(\alpha)}(x_{1}, \ldots , x_{N})=\frac{1}{1+|\kappa|}\sum_{i=1}^{N}\left(\begin{array}{l}\kappa^{(i)}\\\kappa\end{array}\right)C_{\kappa^{(:)}}^{(\alpha)}(x_{1}, \ldots, x_{N})$ (3.70)
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For ease of notation we will present the results using the abbreviations $x$ $:=$

$(x_{1}, \ldots, x_{N})$ (and similarly the meaning of $y,$ $z$ ) and $p_{j}$ as defined in (3.14b).

Proposition 3.5. We have

$(-D_{1}^{(y)}-(a+1)E_{0}^{(y)})_{0}\mathcal{F}_{1}^{(\alpha)}(a+q;y;-z)=p_{1}(z)_{0}\mathcal{F}_{1}(a+q;y;-z)$

Now we can establish the generating function.

Proposition 3.6. We have

$e_{0}^{p_{1}(z)}\mathcal{F}_{1}^{(\alpha)}(a+q;x;-z)=\sum_{k=0}^{\infty}\sum_{|\kappa|=k}\frac{L_{\kappa}^{a}(x;\alpha)C_{\kappa}^{(\alpha)}(z)}{[a+q]_{\kappa}^{(\alpha)}}$

where $ q:=1+(N-1)/\alpha$ and

$L_{\kappa}^{a}(x;\alpha)=\frac{[a+q]_{\kappa}^{(\alpha)}}{|\kappa|!}\sum_{s=0}^{|\kappa|}\sum_{|\sigma|=s}\left(\begin{array}{l}\kappa\\\sigma\end{array}\right)\frac{(-1)^{|\sigma|}C_{\sigma}^{(\alpha)}(t)}{[a+q]_{\sigma}^{(\alpha)}C_{\sigma}^{(\alpha)}(1^{N})}$

$P_{\sim}roof$. We need to check that $L_{\kappa}^{a}$ as defined by this formula is an eigenfunction of
$H^{(L)}$ with eigenvalue $-|\kappa|$ . The second stated formula, which is a consequence of
the first, establishes that $L_{\kappa}^{a}$ is of the form (3.66) with the correct normalization.

Now

$E_{10}^{(z)}\mathcal{F}_{1}^{(\alpha)}(a+q;x;-z)e^{p_{1}(z)}=e^{p_{1}(z)}(E_{1}^{(z)}+p_{1}(z))_{0}\mathcal{F}_{1}^{(\alpha)}(a+q;x;-z)$ (3.71)

Using Proposition 3.5, and the fact that $E_{1}^{(z)}$ is an eigenoperator of the Jack poly-
nomials so that its action on $0\mathcal{F}_{1}^{(\alpha)}$ is the same as the action of $E_{1}^{(y)}$ , the r.h. $s$ . can
be rewritten as

$(E_{1}^{(y)}-D_{1}^{(y)}-(a+1)E_{0}^{(y)})_{0}\mathcal{F}_{1}^{(\alpha)}(a+q;x;-z)e^{p_{1}(z)}$ (3.72)

The required eigenvalue equation now follows by substituting the generating func-
tion on the l.h. $s$ . and computing the action of $E_{1}^{(z)}$ on the Jack polynomials.

The second stated formula follows from the generating function by applying the
identity [4]

$e^{z_{1}+\cdots+z_{N}}C_{\lambda}^{(\alpha)}(z_{1}, \ldots, z_{N})=\sum_{\mu}\left(\begin{array}{l}\mu\\\lambda\end{array}\right)\frac{|\lambda|}{|\mu|}!C_{\mu}^{(\alpha)}(z_{1}, \ldots, z_{N})$

and equating coefficients of $C_{\kappa}^{(\alpha)}(z_{1}, \ldots, z_{N})$ . $\square $

The operator $E_{1}$ is related to the Macdonald operator $D_{N}^{1}$ (recall Proposition
3.1) by $D_{N}^{1}=\alpha E_{1}+N(N-1)/2$ . By considering the analogue of (3.71) with $E_{1}^{(z)}$

replaced by $D_{N}^{p}(p=1,2, \ldots, N)$ , a family of differential operators which have the
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generalized Laguerre polynomials as eigenfunctions can be given [17]. The r.h. $s$ . of
(3.71) is then computed according to the Baker-Campbell-Hausdorff formula

$D_{N}^{p}fe^{p_{1}(z)}=e^{p_{1}(z)}(D_{N}^{p}+[D_{N}^{p},p_{1}(z)]$

$+\frac{1}{2!}[[D_{N}^{p},p_{1}(z)],p_{1}(z)]+\cdots\frac{1}{p!}[\cdots[D_{N}^{p},p_{1}(z)], \cdots p_{1}(z)])f$

where $p_{1}(z)$ $:=z_{1}+\cdots+z_{N}$ and $f=0\mathcal{F}_{1}^{(\alpha)}$ with arguments as in (3.71). Note
that the sum on the RHS terminates after the p-th nested commutator since the
highest derivative in $D_{N}^{p}$ has degree $p$ .

We now want to rewrite the r.h. $s$ . as in (3.72). To do this, we note that in
general, if $A^{(y)}F=\hat{A}^{(z)}F$ and $B^{(y)}F=\hat{B}^{(z)}F$ , where the superscript denotes the
set of variables the operator is acting on, then

$A^{(y)}B^{(y)}F=A^{(y)}\hat{B}^{(z)}F=\hat{B}^{(z)}A^{(y)}F=\hat{B}^{(z)}\hat{A}^{(z)}F$

where the second equality follows because operators acting on different sets of
variables always commute.

Analogous to the derivation of the eigenoperator given in the proof of Propo-
sition 3.6, we can now deduce a family of eigenoperators of the $L_{\kappa}^{a}$ , together the
corresponding eigenvalues.

Proposition 3.7. Let

$\tilde{H}_{p}^{(L)(y)}$ $;=(D_{N}^{p(y)}-[D_{1}^{(y)}+(a+1)E_{0}^{(y)},$ $ D_{N}^{p(y)}]+\cdots$

$+\frac{(-1)^{p}}{p!}[D_{1}^{(y)}+(a+1)E_{0}^{(y)},$ $[\cdots[D_{1}^{(y)}+(a+1)E_{0}^{(y)},$ $D_{N}^{p(y)}]\cdots]])$

Then, $L_{\kappa}^{a}(y_{1}, \ldots, y_{N}; \alpha)$ is an eigenfunction of $\tilde{H}_{p}^{(L)(y)}$ for each $p=1,$ $\ldots$ , $N$ , with
eigenvalue $e_{p}(\kappa;\alpha)$ given by the coefficient of $X^{N-p}$ in the equation for $e(\kappa, \alpha;X)$

given by (3.12).

Although the operators $\tilde{H}_{p}^{(L)(y)}$ separate the eigenvalues, there does not appear
to be any direct way to establish that the operators are self-adjoint with respect
to the inner product (3.69), and thus the orthogonality of $\{L_{\kappa}^{a}\}$ . Instead, these
features can be deduced [9] by developing a theory of non-symmetric Laguerre
polynomials and associated operators, similar to the theory of the Cherednik op-
erators used in the study of Jack polynomials (recall the second paragraph below
Proposition 3.1).
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3.7. Generalized Hermite polynomials. A similar development to that just
given is possible for the polynomial eigenfunctions of the operator (3.5) with $W$

given by (1.5). The change of variables $y_{j}$
$:=\sqrt{\beta}/2x_{j}$ gives

$\tilde{H}^{(H)}$
$:=-\frac{2}{\beta}e^{\beta W^{(H)}/2}(H^{(H)}-E_{0})e^{-\beta W^{(H)}/2}$

$=\sum_{j=1}^{N}(y_{j}\frac{\partial^{2}}{\partial y_{j}^{2}}-2y_{j}\frac{\partial}{\partial y_{j}}+\frac{2}{\alpha}\sum_{k=1,\neq j}\frac{1}{y_{j}-y_{k}}\frac{\partial}{\partial y_{j}})$ , (3.73)

( $\alpha$ $:=2/\beta$ as in the previous section), which for $N=1$ has the Hermite polynomials
as its eigenfunctions. Notice that this operator can be derived as a limit of $\tilde{H}^{(L)}$

as given by (3.63) [15]. We have

$\lim_{a\rightarrow\infty}\tilde{H}^{(L)}|_{y_{j}\leftrightarrow a+\sqrt{2a}yj}=\overline{H}^{(H)}$ (3.74)

Also, computation of the action of the operator (3.73) on the monomial symmetric
function $m_{\kappa}$ shows that the eigenfunctions can be expanded in the form of the
r.h. $s$ . of (3.66). Denoting this eigenfunction by $H_{\kappa}(y_{1}, \ldots, y_{n};\alpha)$ , which is known as
a generalized Hermite polynomial (see [14] and references therein), we we therefore
have from (3.74) that

$\lim_{a\rightarrow\infty}(-1)^{|\kappa|}|\kappa|!2^{|\kappa|/2}a^{-|\kappa|/2}L_{\kappa}^{a}(a+\sqrt{2a}x_{1}, \ldots, a+\sqrt{2a}x_{N}; \alpha)=H_{\kappa}(x_{1}, \ldots,x_{n};\alpha)$

(3.75)
where $H_{\kappa}$ is normalized so that the coefficient of $C_{\kappa}$ is $2^{|\kappa|}/C_{\kappa}^{(\alpha)}(1^{N})$ , which is
consistent with the $N=1$ case. Taking this limit in the inner product (3.69) gives
that the generalized Hermite polynomials are orthogonal with respect to the inner
product

$\{f|g\}^{(H)}$ $:=\prod_{l=1}^{N}\int_{-\infty}^{\infty}dy_{l}e^{-y_{l}^{2}}\prod_{1\leq j<k\leq N}|y_{k}-y_{j}|^{2/\alpha}f(y_{1}, \ldots, y_{N})g(y_{1}, \ldots, y_{N})$

Analogous to Proposition 3.6 for the generalized Laguerre polynomials, the gen-
eralized Hermite polynomials can be specified by a generating function [17].

Proposition 3.8. We have

$e_{0}^{-p_{2}(z)}\mathcal{F}_{0}^{(\alpha)}(2y;z)=\sum_{k=0}^{\infty}\frac{1}{k!}\sum_{|\kappa|=k}H_{\kappa}(y;\alpha)C_{\kappa}^{(\alpha)}(z)$

Proof. Note that in terms of the operators $E_{k},$ $D_{k}(\alpha)$ defined above (3.33) we have
$\tilde{H}_{\kappa}^{(H)}=D_{0}(\alpha)-2E_{1}$ . To compute the action of $D_{0}(\alpha)$ on $0\mathcal{F}_{0}^{(\alpha)}$ , we first compute
the action of $E_{0}^{(y)}$ and $D_{1}^{(y)}$ . Now it follows from (3.36a) and (3.70) that

$E_{00}^{(y)}\mathcal{F}_{0}^{(\alpha)}(2y;z)=2p_{1}(z)_{0}\mathcal{F}_{0}^{(\alpha)}(2y;z)$ (3.76)
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Since $D_{1}^{(y)}=\frac{1}{2}[E_{0}^{(y)}, D_{2}^{(y)}]$ , using (3.76), the fact that $D_{2}^{(y)}$ is an eigenoperator for
the Jack polynomials, and (3.73) gives

$D_{10}^{(y)}\mathcal{F}_{0}^{(\alpha)}(2y;z)$ $=$ $[D_{2}^{(z)},p_{1}(z)]_{0}\mathcal{F}_{0}^{(\alpha)}(2y;z)$

$=$ $(\frac{2}{\alpha}(N-1)p_{1}(z)+2E_{2}^{(z)})_{0}\mathcal{F}_{0}^{(\alpha)}(2y;z)$ (3.77)

where the second equality follows by computing the commutator. Finally, since
$D_{0}^{(y)}=[E_{0}^{(y)}, D_{1}^{(y)}]$ , from (3.76), (3.77) and (3.73) we have

$D_{00}^{(y)}\mathcal{F}_{0}^{(\alpha)}(2y;z)$ $=$ $[\frac{2}{\alpha}(N-1)p_{1}(z)+2E_{2}^{(z)}, 2p_{1}(z)]_{0}\mathcal{F}_{0}^{(\alpha)}(2y;z)$

$=$ $4p_{2}(z)_{0}\mathcal{F}_{0}^{(\alpha)}(2y;z)$ (3.78)

To compute the action of $E_{1}^{(y)}$ on $0\mathcal{F}_{0}^{(\alpha)}$ we note that $E_{1}^{(y)}$ is an eigenoperator
of the Jack polynomials, so that

$E_{10}^{(y)}\mathcal{F}_{0}^{(\alpha)}(2y;z)=E_{10}^{(z)}\mathcal{F}_{0}^{(\alpha)}(2y;z)$ (3.79)

We will now use (3.78) and (3.79) to show that $H_{\kappa}$ as defined by the gener-
ating function is an eigenfunction of $H^{(H)}$ with $eigenvalue-2|\kappa|$ . The method is
analogous to the proof of Proposition 3.6. Using (3.78) and (3.79) we have

$E_{10}^{(z)}\mathcal{F}_{0}^{(\alpha)}(2y;z)e^{-p_{2}(z)}$ $=$ $e^{-p_{2}(z)}E_{10}^{(z)}\mathcal{F}_{0}^{(\alpha)}(2y;z)-2p_{2}(z)_{0}\mathcal{F}_{0}^{(\alpha)}(2y;z)e^{-p_{2}(z)}$

$=$ $e^{-p_{2}(z)}E_{10}^{(y)}\mathcal{F}_{0}^{(\alpha)}(2y;z)-\frac{1}{2}e^{-p_{2}(z)}D_{00}^{(y)}\mathcal{F}_{0}^{(\alpha)}(2y;z)$

The required eigenvalue equation now follows from the action of $E_{1}^{(z)}$ on the l.h. $s$ . of
the generating function.

Furthermore, $H_{\kappa}$ has an expansion of the form of the r.h. $s$ . of (3.66) with $v_{\kappa\kappa}=$

$2^{|\kappa|}/C_{\kappa}^{(\alpha)}(1^{N})$ . This follows from the expansion

$0\mathcal{F}_{0}^{(\alpha)}(2y;z)=\sum_{k=0}^{\infty}\frac{2^{k}}{k!}\sum_{|\sigma|=k}\frac{C_{\sigma}^{(\alpha)}(y)C_{\sigma}^{(\alpha)}(z)}{C_{\kappa}^{(\alpha)}(1^{N})}$ (3.80)

and the fact that to compute the coefficient of $C_{\kappa}^{(\alpha)}(z)$ in $0\mathcal{F}_{0}^{(\alpha)}(2y;z)e^{-p_{2}(z)}$ the
sum over $k$ in (3.80) can be terminated at $k=|\kappa|$ . $\square $

The method used to show that the polynomials $H_{\kappa}$ defined by the generating
function are eigenfunctions of (3.73) can be used in conjunction with the Baker-
Campbell-Hausdorff formula of the previous section, and the Macdonald operators,
to deduce the family of eigenoperators for the $H_{\kappa}$ which are the analogues of
Proposition 3.7.
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Proposition 3.9. Let

$\tilde{H}_{j}^{(H)}$ $;=$ $D_{N}^{j}-\frac{1}{4}[D_{0},$ $D_{N}^{j}]+\frac{1}{4^{2}2!}[D_{0},$ $[D_{0},$ $ D_{N}^{j}]]-\cdots$

$+\frac{(-1)^{j}}{4^{j}j!}[D_{0},$ $[D_{0}$ , $\cdots$ $[D_{0},$ $D_{N}^{j}]]\cdots]$

We have that $H_{\kappa}(y_{1}, \ldots, y_{N}; \alpha)$ is an eigenfunction of $\tilde{H}_{j}^{(H)}$ for each $j=1,$
$\ldots,$

$N$ ,
with eigenvalue $e_{j}(\kappa;\alpha)$ given by the coefficient of $X^{N-j}$ in (3.12).

In the next Section we will discuss the calculation of correlation functions. For
the Hermite case this requires an integral representation of $H_{\kappa}$ , which can be
deduced from the generating function and the orthogonality of the generalized
Hermite polynomials with respect to the inner product (3.76) [17].

Proposition 3.10. We have

$e^{-p_{2}(z)}H_{\kappa}(z;\alpha)=\frac{2^{|\kappa|}}{\mathcal{N}_{0}^{(H)}C_{\kappa}^{(\alpha)}(1^{N})}\int_{(-\infty,\infty)^{N}}0^{\mathcal{F}_{0}^{(\alpha)}(2y;-iz)C_{\kappa}^{(\alpha)}(iy)d\mu^{(H)}(y)}$

where

$d\mu^{(H)}(y)$
$:=\prod_{j=1}^{N}e^{-y_{j}^{2}}\prod_{1\leq j<k\leq N}|y_{j}-y_{k}|^{2/\alpha}dy_{1}\ldots dy_{N}$

and

$\mathcal{N}_{0}^{(H)}=2^{-N(N-1)/2\alpha}\pi^{N/2}\prod_{j=0}^{N-1}\frac{\Gamma(1+(j+1)/\alpha)}{\Gamma(1+1/\alpha)}$ .
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4. CORRELATION FUNCTIONS

4.1. The density. The density is defined by (1.36) with n $=$ 1. For $e^{-\beta W}$ cor-
responding to the eigenvalue probability density function of the classical random
matrix ensembles (we exclude the circular ensemble where the density is just the
constant $N/L$) and $\beta$ even, it is possible to express the density as a $\beta$-dimensional
integral [1]. Furthermore, asymptotic analysis of the integrals gives the global
limit as that predicted by electrostatics (recall (1.37), (1.38a) and (1.38b)). We
will present the details in the Jacobi case (in [1] the details were presented in the
Hermite case, where the integral representation follows from (3.56)).

From the discussion of Section 3.4 (in particular equations (3.39) and (3.56))
we know that in the Jacobi case the $\beta$-dimensional integral representation of the
density is given by

$\rho_{(1)}(y)$ $=$ $A_{N}(\beta, $a,$ b)y^{\beta a/2}(1-y)^{\beta b/2}\int_{C^{\beta}}dx_{1}\ldots dx_{\beta}\prod_{l=1}^{\beta}(1-yx_{l})^{N}$

$\times x_{l}^{4/\beta+a+b+N-2}(1-x_{l})^{-2-b-N}\prod_{1\leq j<k\leq\beta}|x_{k}-x_{j}|^{4/\beta}$
(4.1)

where $C$ is any simple closed contour which starts at the origin and encircles the
point $x=1$ , and the coefficient $A_{N}$ is such that

$\int_{0}^{1}\rho_{1}(y)dy=N+1$ . (4.2)

For each integration variable $x_{l}$ , the N-dependent terms in the integrand are
$(1-yx_{l})^{N}x_{l}^{N}(1-x_{l})^{-N}=e^{N(\log(1-yx)+\log x’-\log(1-x_{l}))}$ . (4.3)

The exponent in (4.3) has a stationary point when

$ x_{l}=1\pm i(\frac{1}{y}(1-y))^{1/2}=:x\pm$ , (4.4)

so according to the saddle point method of asymptotic analysis we should deform
each of the contours of integration in (4.1) to pass through $x+andx_{-}$ .

With the contours of integration so deformed, we must expand the integrand
in the neighbourhood of the saddle points. Due to the factor $\prod_{1\leq j<k\leq\beta}|x_{k}-$
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$x_{j}|^{4/\beta}$ the maximum contribution will be obtained by expanding $\beta/2$ integration
variables ( $x_{1},$

$\ldots,$ $x_{\beta/2}$ say) about $x+and$ the remaining $\beta/2$ integration variables
$(x_{\beta/2+1}, \ldots, x_{\beta})$ about $x_{-}$ . This specific choice is only one of the $(_{\beta/2}\beta)$ equivalent
ways of dividing the integration variables into these two classes, so after expanding
the variables with the specific choice we must multiply by the combinatorial factor.

In the neighbourhood of the saddle points we have

$e^{N(\log(1-yx’)+\log x’-\log(1-x’))}\sim\exp[N(\log(1-yx_{\pm})+\log x_{\pm}-\log(1-x_{\pm}))]$

$\times\exp[-\frac{N}{2}(x_{l}-x_{\pm})^{2}(\frac{y^{2}}{(1-yx_{\pm})^{2}}+\frac{1}{x_{\pm}^{2}}-\frac{1}{(1-x_{\pm})^{2}})]$

where on the r.h. $s$ . $x+is$ to be taken for $j=1,$
$\ldots,$

$\beta/2$ while $x_{-}$ is to be taken for
$j=\beta/2+1,$

$\ldots,$
$\beta$ . Also

$\prod_{1\leq j<k\leq\beta}|x_{k}-x_{j}|^{4/\beta}\sim|x_{+}-x_{-}|^{\beta}\prod_{1\leq j<k\leq\beta/2}|x_{k}-x_{j}|^{4/\beta}\prod_{\beta/2+1\leq j<k\leq\beta}|x_{k}-x_{j}|^{4/\beta}$

Thus we have

$\rho_{N+1}(y)\sim A_{N}(\beta, a, b)\left(\begin{array}{l}\beta\\\beta/2\end{array}\right)y^{\beta a/2}(1-y)^{\beta b/2}$

$\times|x_{+}-x_{-}|^{\beta}|x_{+}|^{\beta(4/\beta+a+b-2)}|1-x_{+}|^{\beta(-2-b)}e^{N(\beta/2)\log(|1|^{2}|x+}-yx++$

$\times|\int_{-\infty}^{\infty}dx_{1}\cdots\int_{-\infty}^{\infty}dx_{\beta/2}\prod_{l=1}^{\beta/2}\exp[-\frac{N}{2}x_{l}^{2}(\frac{y^{2}}{(1-yx_{+})^{2}}+\frac{1}{x_{+}^{2}}-\frac{1}{(1-x_{+})^{2}})]$

$\times\prod_{1\leq j<k\leq\beta/2}|x_{k}-x_{j}|^{4/\beta}|^{2}$ , (4.5)

where the fact that $x+=x_{-}*has$ been used.
To simplify (4.5) we note that a simple change of variables gives that the y-

dependence in the absolute value squared of the integral is proportional to

$|\frac{y^{2}}{(1-yx_{+})^{2}}+\frac{1}{x_{+}^{2}}-\frac{1}{(1-x_{+})^{2}}|^{-(\beta-1)}$

Also, from the explicit formula (4.4),

$|\frac{y^{2}}{(1-yx_{+})^{2}}+\frac{1}{x_{+}^{2}}-\frac{1}{(1-x_{+})^{2}}|=\frac{2y^{3/2}}{(1-y)^{1/2}}$ , $\log(|1-yx_{+}|^{2}|x_{+}|^{2}/|1-x_{+}|^{2})=0$

$|x_{+}-x_{-}|=2\frac{(1-y)^{1/2}}{y^{1/2}}$ , $|x_{+}|^{2}=\frac{1}{y}$ $|1-x_{+}|^{2}=\frac{1-y}{y}$ .
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The calculation is now complete, since making these substitutions in (4.5) shows
that in the limit $N\rightarrow\infty\rho_{(1)}(y)$ is proportional to $(y(1-y))^{-1/2}$ , which is the elec-
trostatic prediction (1.38b) (the proportionality constant is uniquely determined
by the condition (4.2)).

4.2. Two-particle distribution for $\beta$ even in the circular ensemble. In a
system of $N+2$ particles in the circular ensemble, the two-particle distribution
function is given by (1.36) with $N$ replaced by $N+2,$ $e^{-\beta W}$ given by the product
of differences of Proposition 1.2, and $Z_{N+2}$ evaluated by (3.58). Thus we have

$\rho_{(2)}(r_{1}, r_{2})=\frac{(N+2)(N+1)}{L^{2}}\frac{((\beta/2)!)^{N+2}}{(\beta(N+2)/2)!}|e^{2\pi ir_{1}/L}-e^{2\pi ir_{2}/L}|^{\beta}I_{N}(\beta;r_{1}, r_{2})$

$(4.6a)$

where

$I_{N}(\beta;r_{1}, r_{2})$ $:=\prod_{i=1}^{N}\int_{0}^{1}dx_{i}\prod_{j=1}^{N}\prod_{k=1}^{2}|1-e^{2\pi i(x_{j}-r_{k}/L)}|^{\beta}\prod_{1\leq j<k\leq N}|e^{2\pi ix_{k}}-e^{2\pi ix_{j}}|^{\beta}$ .

For $\beta$ even this integral is a special case of the integrals $S_{n,m}$ defined by
$(3.29)(46b)$

written in trigonometric form by use of Proposition 3.4. But we know that $S_{n,m}$

can be written in terms of the generalized hypergeometric function $2F^{(\lambda)}1$

’ so it is
possible to write $\rho_{(2)}(r_{1}, r_{2})$ in terms of this function [2].

Proposition 4.1. With $r:=r_{2}-r_{1}$ we have

$\rho_{(2)}(r_{1}, r_{2}):=\rho_{(2)}(r)=\frac{(N+2)(N+1)}{L^{2}}\frac{((\beta/2)!)^{N+2}}{(\beta(N+2)/2)!}|1-e^{2\pi ir/L}|^{\beta}M_{N}(\beta,\beta, \beta/2)$

$\times e_{2}^{\pi iN\beta r/L}F_{1}^{(\beta/2)}(-N, 2;4;1-t_{1}, \ldots, 1-t_{\beta})|_{t_{j}=e^{-2\pi ir/L}(j=1,\ldots,\beta)}$ ,

where $M_{N}$ is specified by (3.58).

Proof. Consider $S_{n,m}$ defined by (3.29) with

$n=N$ , $ m=\beta$ , $\lambda_{2}=\beta$ , $\lambda=\beta/2$ , $t_{1}=\cdots=t_{m}=e^{-2\pi ir/L}$ . (4.7)

Writing

$\prod_{1\leq j<k\leq N}|x_{k}-x_{j}|^{\beta}=(-1)^{\beta N(N-1)/2}\prod_{j=1}^{N}x_{j}^{\beta(N-1)/2}\prod_{1\leq j<k\leq N}(1-\frac{x_{k}}{x_{j}})^{\beta/2}(1-\frac{x_{j}}{x_{k}})^{\beta/2}$ ,

$\prod_{j=1}^{N}|1-x_{j}|^{\beta}=(-1)^{N\beta/2}\prod_{j=1}^{N}x_{j}^{\beta/2}(1-x_{j})^{\beta/2}(1-1/x_{j})^{\beta/2}$
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and

$\prod_{j=1}^{N}(1-x_{j}e^{-2\pi ir/L})^{\beta}=(-e^{-2\pi ir/L})^{\frac{N\beta}{2}}\prod_{j=1}^{N}(x_{j}(1-x_{j}e^{-2\pi ir/L})(1-\frac{e^{2\pi ir/L}}{x_{j}}))^{\ovalbox{\tt\small REJECT}}$

we see from Proposition 3.4 with $\lambda_{1}=-1-\beta(N+1)/2$ that $S_{n,m}$ is proportional
to

$e^{-\pi iN\beta r/L}I_{N}(\beta;r_{1}, r_{2})$

(the change of variables $x_{j}\rightarrow x_{j}+r_{1}$ puts $I_{N}(\beta;r_{1},$ $r_{2})$ in the sought form). But
from Proposition 3.3 and (3.32), $S_{n,m}$ with parameters (4.2) is proportional to

$2F_{1}^{(\beta/2)}(-N, 2;1-2/\beta-N;t_{1}, \ldots, t_{\beta})$ .

The stated result now follows by using the transformation formula [2]

$2F_{1}^{(\alpha)}(a, b;c;t_{1}, \ldots, t_{m})=\ovalbox{\tt\small REJECT} 2F_{1}^{(\alpha)}(a,b,\cdot a+b+1+(m-1)/\alpha-c;1-t_{1},..’ 1-t_{m})21F^{(\alpha)}(a,b;a+b+1+(m-1)/\alpha-c;1,.,1)$

valid provided $a-(i-1)/\alpha\in Z\leq 0$ for some $1\leq i\leq m$ , which is the criterion for
the series (3.32a) defining $2F_{1}^{(\alpha)}$ to terminate. $\square $

From (3.49) we can write $2F_{1}^{(\beta/2)}$ in Proposition 4.1 as a $\beta$-dimensional integral,
thus obtaining a $\beta$-dimensional integral representation of $\rho_{(2)}(r)$ . We have [2]

$\rho_{(2)}(r)=\frac{(N+2)(N+1)}{L^{2}}\frac{(\beta N/2)!((\beta/2)!)^{2}}{(\beta(N+2)/2)!}\frac{M_{N}(\beta,\beta,\beta/2)}{S_{\beta}(2/\beta,2/\beta,4/\beta)}$

$\times\int_{[0,1]^{\beta}}du_{1}\ldots du_{\beta}\prod_{j=1}^{\beta}(1-(1-e^{2\pi ir/L}u_{j})^{N}D_{2/\beta,2/\beta,4/\beta}(u_{1}, \ldots, u_{\beta}).(4.8)$

In the thermodynamic limit $(N, L\rightarrow\infty, N/L=\rho),$ $\rho_{(2)}(r)$ can be written as
the generalized hypergeometric $11F^{(\alpha)}$ , which is a confluent version of (3.32):

$1F_{1}^{(\alpha)}(b;c;t_{1}, \ldots, t_{m})$
$;=$ $\sum_{d=0}^{\infty}\frac{1}{d!}\sum_{|\kappa|=d}\frac{[b]_{\kappa}^{(\alpha)}}{[c]_{\kappa}^{(\alpha)}}C_{\kappa}^{(\alpha)}(t_{1}, \ldots, t_{m})$

$=$ $\lim_{|a|\rightarrow\infty^{2}}F_{1}^{(\alpha)}(a, b;c;t_{1}/a, \ldots, t_{m}/a)$

Thus use of this formula and Stirling’s formula in Proposition 4.1 shows [3]

$N,L\rightarrow\infty\lim_{N/L=\rho}\rho_{(2)}(r)=C_{1}F_{1}^{(\beta/2)}(2,4;-2\pi i\rho r_{1}, \ldots, -2\pi i\rho r_{\beta})|_{r_{j}=r(j=1,\ldots,\beta)}$ (4.9)
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while taking the thermodynamic limit in the integral representation (4.8) gives

$N,L\rightarrow\infty\lim_{N/L=\rho}\rho_{(2)}(r)=C^{\prime}\int_{[0,1]^{\beta}}du_{1}\ldots du_{\beta}\prod_{j=1}^{\beta}e^{-2\pi i\rho ru_{j}}D_{2/\beta,2/\beta,4/\beta}(u_{1}, \ldots, u_{\beta})$ .

(4.10)

In these formulas, the constants $C$ and $C^{\prime}$ are given by

$C=\rho^{2}\frac{((\beta/2)!)^{3}}{\beta!(3\beta/2)!}(2\pi\rho|r|)^{\beta}e^{\pi i\rho\beta r}$ , $C^{\prime}=\frac{C}{S_{\beta}(2/\beta,2/\beta,4/\beta)}$ .

4.3. Asymptotic expansions. According to (1.40) and (1.43), the exact solu-
tion for $\rho_{(2)}^{T}$ $:=\rho_{(2)}-\rho^{2}$ should exhibit some specific asymptotic properties. The
asymptotics can be studied from the integral representations (4.8) and (4.10).

Consider first (4.10). In the $ r\rightarrow\infty$ limit, the major contribution to the integral
comes from the vicinity of the endpoints $u_{j}=0,1$ . By expanding the integrand in
the neighbourhood of these points it was shown in [4] that

$\rho_{(2)}^{T}\sim\rho^{2}[-\frac{1}{\beta(\pi\rho r)^{2}}+\frac{a^{(4)}}{(\rho r)^{4}}+\cdots+\sum_{n=1}^{\beta/2}\frac{\cos 2\pi\rho rn}{(\rho r)^{4n^{2}/\beta}}(b_{n}^{(0)}+\frac{b_{n}^{(2)}}{(\rho r)^{2}}+\ldots)$

$+\sum_{n=1}^{\beta/2}\frac{\sin 2\pi\rho rn}{(\rho r)^{4n^{2}/\beta+1}}(c_{n}^{(0)}+\frac{c_{n}^{(2)}}{(\rho r)^{2}}+\ldots)$ (4.11)

for some coefficients $a^{(2j)},$ $b_{n}^{(2j)},$ $c_{n}^{(2j)}$ , which are given explicitly in terms of multiple
integrals. We see that the leading non-oscillatory term is indeed of the form (1.40).

To test (1.43), we require the large-N asymptotics of (4.8) with $ L=2\pi$ . The N-
dependent terms in the integrand take on their maximum values at the endpoints
$u_{j}=0$ and $u_{j}=1$ , where for $u_{j}\sim 0$

$[1-(1-e^{ir})u_{j}]^{N}\sim e^{-N(1-e^{*f})u_{j}}$

while for $u_{j}\sim 1$

$[1-(1-e^{ir})u_{j}]^{N}\sim e^{iNr}e^{-N(1-e^{-\cdot r})(1-u_{j})}$ .
These formulas show that the problem of computing the large-r asymptotics of
(4.8) is identical to that of computing the large-N asymptotics of (4.10) (with
$L=2\pi)$ provided we make the replacements

$\pi\rho r\leftrightarrow 2N\sin r/2$ , $\rho-\rangle$ $ N/2\pi$ .

Substituting these replacements in (4.11), and substituting the resulting expansion
in the l.h. $s$ . of (1.43) we see that the oscillatory terms all integrate to zero, and
all but the first non-oscillatory term vanish in the $ N\rightarrow\infty$ limit. The first non-
oscillatory term gives the r.h. $s$ . of (1.43) [5].
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4.4. The dynamical density-density correlation. Consider the Dyson Brow-
nian motion model of the one-component log-gas on a circle as discussed in Section
2, and suppose that the initial state is chosen to be the equilibrium state. From
the theory of Section 2.5 we know that the dynamical density-density correlation
can be written as

$\rho_{(2)}^{T}((x_{a}, 0),$

$(x_{b}, \tau_{b}))=($

”

$\kappa)\neq(0,0)\sum_{\kappa}\frac{\{\psi_{0}|n(x_{b})|\psi_{l,\kappa}\rangle\{\psi_{l,\kappa}|n(x_{a})|\psi_{0}\rangle}{\langle\psi_{0}|\psi_{0}\rangle(\psi_{l,\kappa}|\psi_{l,\kappa}\rangle}e^{-\tau(E,,-E_{0})/\beta}\kappa$

where $|\psi_{\kappa}\rangle$ denotes the eigenstates of the Schr\"odinger operator (1.4), and are there-
fore given by (3.9) (with $z_{j}$

$:=e^{2\pi ix_{j}/L}$ ) multiplied by $e^{-\beta W/2}$ (with $W$ given by
(1.6)), and $E_{l,\kappa}$ denotes the corresponding energies which are given by (recall (3.6)
and (3.7))

$E_{l,\kappa}-E_{0}$ $=$ $(\frac{2\pi}{L})^{2}(e(\kappa-l, 2/\beta)+(\frac{\beta}{2}(N-1)+1)$ I $\kappa-l|)$

$=$ $\frac{2\pi^{2}}{L^{2}}(\sum_{j=1}^{N}(\kappa_{j}-l)^{2}+\frac{\beta}{2}\sum_{j=1}^{N}(\kappa_{j}-l)(N-2j+1))$ . (4.12)

The inner products in the numerator can be simplified by using the periodicity of
the eigenstates and the fact that they are homogeneous of degree $|\kappa|$ . This allows
us to write

$\rho_{(2)}^{T}((x_{a}, 0),$
$(x_{b}, \tau))=\sum_{(\iota_{\kappa)\neq 0}^{l,\kappa}}\frac{|\langle\psi_{0}|n(0)|\psi_{l,\kappa}\}|^{2}}{(\psi_{0}|\psi_{0}\}\langle\psi_{l,\kappa}|\psi_{l,\kappa}\rangle}e^{2\pi i(x_{b}-x_{\alpha})|\kappa-l|/L}e^{-\tau(E,,-E_{0})/\beta}\kappa$

The values of the normalizations \langle $\psi_{0}|\psi_{0})$ and $\{\psi_{l,\kappa}|\psi_{l,\kappa}\rangle$ are given by (3.62),
$sothe(4l3)$

task is to compute { $\psi_{0}|n(0)|\psi_{l,\kappa}\rangle$ .
One way to do this (see [6] and [7] for alternative approaches) is to use the

integration formula (3.57) in conjuction with following lemma [8].

Proposition 4.2. Suppose $f(z_{1}, \ldots, z_{N})(z_{j} :=e^{2\pi ix_{j}/L})$ is symmetric, homoge-
neous of order $\kappa$ and periodic in $x_{j}$ of period L. We have

$\lim_{\epsilon\rightarrow 0}\frac{1}{\epsilon}\int_{-L/2}^{L/2}dx_{1}\cdots\int_{-L/2}^{L/2}dx_{N}\prod_{l=1}^{N}z_{l}^{\epsilon}f(z_{1}, \ldots,z_{N})$

$=$ $\frac{(-1)^{\kappa}N}{|\kappa|}\int_{0}^{L}dx_{2}\cdots\int_{0}^{L}dx_{N}f(1, z_{2}, \ldots, z_{N})$

Proof. This follows by first making the expansion

$\prod_{l=1}^{N}z_{t^{\epsilon}}=1+\frac{2\pi i\epsilon}{L}\sum_{l=1}^{N}x_{l}+O(\epsilon^{2})$
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in the integrand, and using the symmetry of the integrand to replace $\sum_{l=1}^{N}x_{t}$ by
$Nx_{1}$ . Next the periodicity in $x_{2},$ $\ldots,$

$x_{N}$ is used to change variables $z_{j}\mapsto z_{1}z_{j}(j=$

$2,$
$\ldots,$

$N$), which allows the dependence on $z_{1}$ to be factored since $f$ is homogeneous.
Integrating over $z_{1}$ gives the required result. $\square $

Now

$(\psi_{0}|n(0)|\psi_{l,\kappa}\rangle$ $=$ $NL^{N-1}\prod_{l=1}^{N}\int_{0}^{1}d\theta_{l}|1-e^{2\pi i\theta}|^{\beta}e^{-2\pi il\theta_{l}}$

$\times\prod_{2\leq j<k\leq N}|e^{2\pi i\theta_{k}}-e^{2\pi i\theta_{j}}|^{\beta}J_{\kappa}^{(\beta/2)}(1, e^{2\pi i\theta_{2}}, \ldots, e^{2\pi i\theta_{N}})$

so applying Proposition 4.2 to (3.57) with $b=-a,$ $ a=-l+\epsilon$ gives

( $\psi_{0}|n(0)|\psi_{l,\kappa}\rangle$ $=L^{N-1}|\kappa-l|J_{\kappa}^{(\beta/2)}(1^{N})\frac{\lim_{\epsilon\rightarrow 0}\frac{1}{\epsilon}[-l+\epsilon]_{\kappa}^{(\beta/2)}}{[\frac{2}{\beta}(N-1)+1-l]_{\kappa}^{(\beta/2)}}$ (4.14)

Consider first the case $l=0$ . Then from (3.32b)

$\lim_{\epsilon\rightarrow 0}\frac{1}{\epsilon}[-l+\epsilon]_{\kappa}^{(\beta/2)}$ $:=[0]_{\kappa}^{(\beta/2)}=(\beta/2)^{\kappa_{1}-1}(\kappa_{1}-1)!\prod_{j=2}^{l(\kappa)}(-\frac{\beta}{2}(j-1))_{\kappa_{j}}$ (4.15)

Inspection of this expression shows that for rational values of $\beta$ such that

$\beta/2=p/q$ (4.16)

where $p$ and $q$ are relatively prime positive integers, it vanishes whenever the dia-
gram of the partition $\kappa$ (recall Section 3.2) contains the point $(q,p)$ . Thus we have
the crucial result that for rational values of the $\beta(4.16)$ , the inner product (4.15)
withl $=0isnon$-zero only if the partition $\kappa$ is on the form

$\kappa=(\alpha_{1}, \ldots, \alpha_{q},p,\ldots,p\ldots,1,\ldots, 1,0, \ldots, 0)\sim’\sim\beta_{1}p^{\prime}s\beta_{p}1s$

(4.17)

In the quantum mechanical interpretation of $\rho_{(2)}^{T}$ as the ground state density-
density correlation for the CalogeroSutherland system on a circle, this result is
saying that only states with $p$ particle-like excitations and $q$ hole-like excitations
give a non-zero contribution to the matrix element (4.15).

For $l>0$ , inspection of (4.15) shows that it always vanishes unless $\kappa_{1}\leq l$ .
Assuming this condition, if we write $\mu_{j}$ $:=l-\kappa_{N-j+1}$ (note that $\mu_{1}=l$ and
$\mu_{N}\geq 0)$ we have

$\frac{(\psi_{0}|n(0)|\psi_{l,\kappa}\}}{(\psi_{l,\kappa}1\psi_{l,\kappa}\}}=\frac{(\psi_{0}|n(0)|\psi_{\mu}\rangle}{\{\psi_{\mu}1\psi_{\mu}\}}$ (4.18)
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This follows by taking the complex conjugate in the integral defining the inner
product in (4.14) and using the fact that

$\prod_{j=1}^{N}z_{j}^{l}J_{\kappa}^{(\alpha)}(\frac{1}{z_{1}},$

$\ldots,$
$\frac{1}{z_{N}})$

is proportional to $J_{\mu}^{(\alpha)}(z_{1}, \ldots, z_{N})$ , which can be verified by checking that both
polynomials have the same highest weight monomial and are eigenfunctions of the
operator $D_{2}(\alpha)$ .

From (4.18), and the further facts that

I $\kappa-l|=-|\mu|$ and $E_{l,\kappa}-E_{0}=E_{\mu}$

we have that

$\rho_{(2)}^{T}((x_{a}, 0),$
$(x_{b}, \tau))=\frac{L^{2(N-1)}}{\{\psi_{0}1\psi_{0}\rangle}\sum_{\kappa}\frac{|\kappa|^{2}}{\langle\psi_{\kappa}1\psi_{\kappa})}(\frac{J_{\kappa}^{(\beta/2)}(1^{N})[0]_{\kappa}^{\prime(\beta/2)}}{[\frac{2}{\beta}(N-1)+1]_{\kappa}^{(\beta/2)}}I^{2}$

$\times e^{-\tau(E,,-E_{0})/\beta}\kappa 2\cos(2\pi(x_{b}-x_{a})|\kappa|/L)$ (4.19)

where the inner products giving the normalizations are specified by (3.62). More-
over, in the case of rational $\beta(4.16)$ , the summation over the partitions $\kappa$ can be
restricted to partitions of the form (4.17).

The next task is to take the thermodynamic limit in (4.19). This is relatedious
but presents no essential problems. It is necessary to manipulate the products
of gamma functions which make up the summand into a form suitable for the
application of Stirling’s formula. The partitions (4.17) are regarded as functions
of $\alpha_{1},$

$\ldots,$ $\alpha_{q}$ , and the quantities $\gamma_{j}$
$:=\sum_{j=1}^{k}\beta_{j}$ ($k=1,$ $\ldots$ , q) which are the first $q$

parts of the partition $\kappa$ conjugate to $\kappa$ . For large $N,$ $L$ one finds that (4.19) is the
Riemann approximation to a multidimensional integral in the variables $x_{j}$ $:=\alpha_{j}/N$

$(x_{j}\geq 0)$ and $(y_{j} :=\gamma_{j}/N)(1\geq y_{j}\geq 0)$ . Taking the thermodynamic limit gives
the following result [6].

Proposition 4.3. For $\beta/2:=\lambda=p/q$ ($p$ and $q$ relatively prime) we have

$N,V\rightarrow\infty\lim_{N/V=\rho}\rho_{(2)}^{T}((x_{a}, 0),$
$(x_{b}, \tau))=C_{p,q}(\lambda)\prod_{i=1}^{q}\int_{0}^{\infty}dx_{i}\prod_{j=1}^{p}\int_{0}^{1}dy_{j}$

$\times Q_{p,q}^{2}F(q,p, \lambda|\{x_{i}, y_{j}\})\cos Q_{p,q}(x_{b}-x_{a})\exp(-E_{p,q^{\mathcal{T}}}/2\lambda)$

where the momentum $Q$ and the energy $E$ variables are given by

$Q_{p,q}$ $:=2\pi\rho(\sum_{i=1}^{q}x_{i}+\sum_{j=1}^{p}y_{j})$ , $E_{p,q}$ $:=(2\pi\rho)^{2}(\sum_{i=1}^{q}\epsilon_{P}(x_{j})+\sum_{j=1}^{p}\epsilon_{H}(y_{j}))$
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with $\epsilon_{P}(x)=x(x+\lambda)$ and $\epsilon_{H}(y)=\lambda y(1-y)$ , the so called form factor $F$ is given
$by$

$F(q,p, \lambda|\{x_{i}, y_{j}\})=\prod_{i=1}^{q}\prod_{j=1}^{p}(x_{i}+\lambda y_{j})^{-2}\frac{\prod_{i<i},|x_{i}-x_{i}|^{2\lambda}\prod_{j<j^{\prime}}|y_{j}-y_{j^{\prime}}|^{2/\lambda}}{\prod_{i=1}^{q}(\epsilon_{P}(x_{i}))^{1-\lambda}\prod_{j=1}^{p}(\epsilon_{H}(y_{j}))^{1-1/\lambda}}$

and the normalization is given by

$C_{p,q}(\lambda)=\frac{\lambda^{2p(q-1)}\Gamma^{2}(p)}{2\pi^{2}p!q!}\ovalbox{\tt\small REJECT}\prod_{i=1}^{q}\Gamma^{2}(p-\lambda(i-1))\prod_{j=1}^{p}^{\Gamma^{q}}\Gamma^{2}(1-(j-1)/\lambda)(\lambda)\Gamma^{p}(1/\lambda)$ .

From the viewpoint of condensed matter physics the structure of this integral
formula is significant. The $p$ integration variables $\{y_{j}\}$ are associated with hole-
like excitations and the $q$ integration variables $\{x_{j}\}$ are associated with particle-like
excitations. Furthermore the exponent for the coupling between the particle-like
excitation variables is twice $\beta/2$ while the coupling between the hole-like excitation
variables in $F$ is twice $ 2/\beta$ (i.e. the reciprocal of $\beta/2$). This feature is significant
in the interpretation of the fractional statistics associated with the hole excitations
[6]. Also, $F$ is precisely of the functional form obtained by Dotsenko and Fateev [9]
for the form factor in their calculation of correlation functions in conformal field
theory. We will make use of this observation as we proceed to verify the expected
asymptotic behaviour (2.35). But before doing so, note from the equation (2.22)
relating the current-current and particle-particle distributions that it is possible to
write down from Proposition 4.3 the corresponding current-current distribution.
Thus in the thermodynamic limit we must have

$N.V\rightarrow\infty\lim_{N/V=\rho}C((O, 0),$

$(x, \tau))=-(\frac{1}{2\lambda})^{2}C_{p,q}(\lambda)$

$\times\prod_{i=1}^{q}\int_{0}^{\infty}dx_{i}\prod_{j=1}^{p}\int_{0}^{1}dy_{j}E_{p,q}^{2}F(q,p, \lambda|\{x_{i}, y_{j}\})\cos Q_{p,q}x\exp(-E_{p,q}\tau/2\lambda\gamma)$

(4.20)

4.5. Asymptotics. To test the prediction (2.35) [10] we require the small-k ex-
pansion of the Fourier transform of $\rho_{(2)}^{T}$ as given in Proposition 4.3. First we note
that since $\rho_{(2)}^{T}$ is even in $x_{b}-x_{a}$ , the Fourier transform with respect to $x_{b}-x_{a}$ will
be even in $k$ , so it suffices to consider the case $k>0$ . Taking the Fourier transform
then replaces $\cos Q_{p,q}x$ by $\pi\delta(k-Q_{p,q})$ so we have

$\tilde{S}(k, \tau)$ $=$ $\pi C_{p,q}(\lambda)\prod_{i=1}^{q}\int_{0}^{\infty}dx_{i}\prod_{j=1}^{p}\int_{0}^{1}dy_{j}Q_{p,q}^{2}F(q,p, \lambda|\{x_{i}, y_{j}\})$

$\times\delta(k-Q_{p,q})\exp(-E_{p,q^{\mathcal{T}}}/2\lambda)$ .
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The change of variables $x_{i}\mapsto kx_{i},$
$ y_{j}-\rangle$ $ky_{j}$ shows that to leading order in $k$ , for

$k\rightarrow 0$ ,
$\tilde{S}(k, \tau)\sim A_{p,q}(\lambda)|k|e^{-|k|\pi\rho\tau}$ $(4.21a)$

where

$A_{p,q}(\lambda)$ $=$ $\pi C_{p,q}(\lambda)\prod_{i=1}^{q}\int_{0}^{\infty}dx_{i}\prod_{j=1}^{p}\int_{0}^{\infty}dy_{j}Q_{p,q}^{2}\prod_{i=1j}^{q}\prod_{=1}^{p}(x_{i}+\lambda y_{j})^{-2}$

$\times\frac{\prod_{i<i^{\prime}}|x_{i}-x_{i}|^{2\lambda}\prod_{j<j},|y_{j}-y_{j^{\prime}}|^{2/\lambda}}{\prod_{i=1}^{q}x_{i}^{1-\lambda}\prod_{j=1}^{p}y_{j}^{1-1/\lambda}}\delta(1-Q_{p,q})$ (4.21b)

We require the evaluation of $A_{p,q}(\lambda)$ . First we write

$\delta(1-Q_{p,q})=\frac{1}{2\pi}\int_{-\infty}^{\infty}due^{iu}e^{-iQ_{p,q}u}$ ,

and introduce a convergence factor $e^{-\epsilon Q_{p,q}}(\epsilon>0)$ into the integrand. Changing
variables $x_{i}\rightarrow x_{i}/(2\pi\rho(\epsilon+iu))$ and $y_{j}\rightarrow y_{j}/(2\pi\rho(\epsilon+iu))$ shows that

$A_{p,q}(\lambda)$ $=$ $\frac{1}{2}C_{p,q}(\lambda)(\lim_{\epsilon\rightarrow 0+}\int_{-\infty}^{\infty}du\frac{e^{iu}}{(\epsilon+iu)^{2}})\prod_{i=1}^{q}\int_{0}^{\infty}dx_{i}e^{-x_{i}}\prod_{j=1}^{p}\int_{0}^{\infty}dy_{j}e^{-y_{j}}$

$\times(\sum_{i}x_{i}+\sum_{j}y_{j})^{2}\frac{\prod_{i<i},|x_{i}-x_{i^{\prime}}|^{2\lambda}\prod_{j<j^{\prime}}|y_{j}-y_{j}|^{2/\lambda}}{\prod_{i=1}^{q}x_{i}^{1-\lambda}\prod_{j=1}^{p}y_{j}^{1-1/\lambda}}$ . (4.22)

The integral over $u$ equals $ 2\pi$ , while the evaluation of the multiple integral can be
obtained as a limiting case of the Dotsenko-Fateev integral [9].

To obtain the desired limiting case, we require that the Dotsenko-Fateev integral
be written in the form [8]

$J_{nm}(\alpha, \beta, \rho)$
$:=\prod_{i=1}^{n}\int_{1}^{\infty}dt_{i}\prod_{j=1}^{m}\int_{0}^{1}d\tau_{j}f_{nm}(\{t_{i}\}, \{\tau_{j}\}, \alpha, \beta;\rho)$ $(4.23a)$

where

$f_{nm}(\{t_{i}\}, \{\tau_{j}\}, \alpha, \beta;\rho)$

$:=$ $|\prod_{i=1}^{n}t_{i}^{\alpha^{\prime}}(1-t_{i})^{\beta^{\prime}}\prod_{j=1}^{m}\tau_{j}^{\alpha}(1-\tau_{j})^{\beta}\frac{\prod_{i<i^{\prime}}(t_{i}-t_{i^{\prime}})^{2\rho^{\prime}}\prod_{j<j^{\prime}}(\tau_{j}-\tau_{j^{\prime}})^{2\rho}}{\prod_{i=1}^{n}\prod_{j=1}^{m}(\tau_{j}-t_{i})^{2}}|$ ,

(4.23b)

and the parameters are subject to the relations

$\alpha^{\prime}=-\rho’\alpha$ $\beta^{\prime}=-\rho^{\prime}\beta$ $\rho=1/\rho$ . $(4.23c)$
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For notational symplicity, set

$D_{n,m}(\rho)=\prod_{l=1}^{n}\frac{\Gamma(l\rho^{\prime})}{\Gamma(\rho)}\prod_{j=1}^{m}\frac{\Gamma(j\rho-n)}{\Gamma(\rho)}$ .

Note that $f_{nm}$ reproduces the form factor $F_{p,q}$ of Proposition 4.3 by setting $\tau_{j}=$

$1-y_{j},$ $t_{i}=1+x_{i}/\lambda,$ $\rho=1/\lambda,$ $\alpha=\beta=1/\lambda-1,$ $m=p,$ $n=q$ . The Dotsenko-Fateev
integral generalizes the Selberg integral (3.40), and like the Selberg integral has a
product of gamma function evaluation:

$J_{nm}(\alpha, \beta, \rho)=\rho^{2nm}D_{n,m}(\rho)\prod_{l=0}^{n-1}\Gamma_{l}\prod_{j=0}^{m-1}\frac{\Gamma(1-n+\alpha+j\rho)\Gamma(1-n+\beta+j\rho)}{\Gamma(2-n+\alpha+\beta+(m-1+j)\rho)}$ ,

(4.24)

where
$\Gamma_{l}=\ovalbox{\tt\small REJECT}_{\Gamma(-\alpha-l\rho’)}\Gamma(1+\beta^{\prime}+l\rho^{\prime})\Gamma(-1+2m-\alpha-\beta^{\prime}-(n-1+l)\rho^{\prime})$ .

The sought limiting form is obtained by making the change of variables $t_{i}=$

$\exp(s_{i}/\alpha)$ and $\tau_{j}=\exp(-\xi_{j}/\alpha)$ , and computing the leading $large-\alpha$ asymptotics
(which is a simple exercise). Comparing this with the leading $large-\alpha$ asymptotics
of (4.24), which is obtained using Stirling’s formula, gives the integral identity [11]

$I_{nm}(z, \beta, \rho)=\prod_{i=1}^{n}\int_{0}^{\infty}dr_{i}r_{i}^{-\beta/\rho}e^{-zr_{i}}\prod_{j=1}^{m}\int_{0}^{\infty}d\eta_{j}\eta_{j}^{\beta}e^{-z\eta_{j}}$

$\times\frac{|\prod_{i<i},(r_{i}-r_{i})^{2/\rho}\prod_{j<j^{\prime}}(\eta_{j}-\eta_{j})^{2\rho}|}{\prod_{i=1}^{n}\prod jm=1(\eta_{j}+\rho r_{i})^{2}}$

$=m!n!z^{-c_{nm}(\beta,\rho)}D_{n,m}(\rho)\prod_{l=0}^{n-1}\Gamma(1-\beta/\rho+l/\rho)\prod_{j=0}^{m-1}\Gamma(1-n+\alpha+j\rho)$

(4.25)

where

$c_{nm}(\beta, \rho)$ $:=m+n+m\beta-n\beta/\rho+m(m-1)\rho+n(n-1)/\rho-2mn$

(the parameter $z$ , which can be removed by a simple change of variables, has been
included for its utility in evaluating (4.22)). Now comparing the definition of $I_{mn}$

with the multiple integral in (4.22), $\mathcal{A}_{p,q}(\lambda)$ say, shows that

$\mathcal{A}_{p,q}(\lambda=p/q)=\lim_{\epsilon\rightarrow 0}\frac{\partial^{2}}{\partial z^{2}}I_{pq}(z, \rho-1, \rho)|_{z=1}$ (4.26)

where $\rho=(p+\epsilon)/q$ . We must introduce the parameter $\epsilon$ because, as is seen from
the final equality in (4.25), $I_{\rho q}(z, \lambda-1, \lambda)$ is singular; only after the differentiations
can the required parameter values be set.
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Using the final equality in (4.25) to evaluate (4.26) gives

$\mathcal{A}_{p,q}(p/q)$ $=$ $\frac{q!p!}{(\Gamma(p/q))^{q}}\frac{q}{p}\prod_{l=1}^{p}\frac{\Gamma^{2}(ql/p)}{\Gamma(p/q)}\prod_{j=1}^{q-1}\Gamma^{2}(jp/q-p)$

$=$ $\frac{1}{2\pi^{2}\lambda}\frac{1}{C_{p,q}(\lambda)}$ (4.27)

(to obtain the last equality requires some manipulation of the expression for $C_{p,q}$

in Proposition 4.3). Substituting in (4.22), with the first integral therein replaced
by $ 2\pi$ , and then substituting the result in (4.21a) reclaims (2.35).

The term of order $k^{2}$ is obtained by changing variables as before in the integral
above (4.21a), and expanding the integrand to the next order. For $\tau=0$ this
procedure gives

$\frac{1}{2\pi\rho}(1-1/\lambda)k^{2}\pi C_{p,q}(\lambda)\prod_{i=1}^{q}\int_{0}^{\infty}dx_{i}\prod_{j=1}^{p}\int_{0}^{1}dy_{j}Q_{p,q}^{3}\prod_{i=1j}^{q}\prod_{=1}^{p}(x_{i}+\lambda y_{j})^{-2}$

$\times\frac{\prod_{i<i^{\prime}}|x_{i}-x_{i^{\prime}}|^{2\lambda}\prod_{j<j^{\prime}}|y_{j}-y_{j}|^{2/\lambda}}{\prod_{i=1}^{q}x_{i}^{1-\lambda}\prod_{j=1}^{p}y_{j}^{1-1/\lambda}}\delta(1-Q_{p,q})$

$=$ $\frac{1}{2\pi\rho}(1-1/\lambda)k^{2}A_{p,q}(\lambda)$

$=$ $\frac{1}{2\pi\rho}(\frac{\beta-2}{\beta})k^{2}\frac{\pi}{\beta}$ (4.28)

where to obtain the first equality we have used the fact that the integral with $Q_{pq}^{3}$

is the same as the integral with $Q_{p,q}^{2}$ due to the factor $\delta(1-Q_{p,q})$ in the integrand.
The term obtained in (4.28) is in agreement with the prediction (2.36) for $\tau=0$ .
For non-zero $\tau$ the task is to compute the integral in (4.28) with $Q_{p,q}^{3}$ replaced by

$-\tau Q_{p,q}^{2}\frac{(2\pi\rho)^{2}}{2\lambda}(\sum_{i=1}^{q}x_{i}^{2}-\lambda\sum_{j=1}^{p}y_{j}^{2})$ .

No direct method of evaluation is known. However, since this term is linear in $\tau$ ,
its value is constrained by the $f$-sum rule (2.32) and knowledge of the static term
result (4.28) to be as given by (2.36).
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5. THE CALOGERO-SUTHERLAND MODEL WITH EXCHANGE TERMS

All the Schr\"odinger operators for the Calogero-Sutherland models introduced in
Section 1 can be generalized to include an exchange operator. For the Schr\"odinger
operator (1.4) this generalization reads [1]

$H^{(C,Ex)}=-\sum_{j=1}^{N}\frac{\partial^{2}}{\partial x_{j}^{2}}+\beta(\frac{\pi}{L})^{2}\sum_{1\leq j<k\leq N}\frac{(\beta/2-M_{jk})}{\sin^{2}\pi(x_{j}-x_{k})/L}$ (5.1)

where the operator $M_{jk}$ exchanges coordinates $x_{j}$ and $x_{k}$ . Note that when acting on
functions symmetric in $x_{1},$

$\ldots,$
$x_{N}(5.1)$ reduces to (1.4). The operator (5.1) is fun-

damental to the construction of the Sekiguchi-Debiard operators of Proposition 3.1,
and also leads to a set of polynomials more fundamental than the symmetric Jack
polynomials introduced in Section 3. Furthermore, there is an analogy between
the absolute value squared of certain eigenfunctions of (5.1) and the Boltzmann
factor for a type of log-potential system known as the generalized plasma. The
calculation of the correlation functions for (5.1) and the generalized plasma offer
future research opportunities.

5.1. Non-symmetric Jack polynomials and the Cherednik operators. Con-
jugation of (5.1) with $e^{-\beta W^{(C)}/2}$ gives the transformed operator

$\tilde{H}^{(C,Ex)}$
$;=$ $(\frac{L}{2\pi})^{2}e^{\beta W^{(C)}/2}(H^{(C,Ex)}-E_{0}^{(C)})e^{-\beta W^{(C)}/2}$

$=$ $\sum_{j=1}^{N}(z_{j}\frac{\partial}{\partial z_{j}})^{2}+\frac{N-1}{\alpha}\sum_{j=1}^{N}z_{j}\frac{\partial}{\partial z_{j}}+\frac{2}{\alpha}\sum_{1\leq j<k\leq N}\frac{z_{j^{Z}k}}{z_{j}-z_{k}}$

$\times[(\frac{\partial}{\partial z_{j}}-\frac{\partial}{\partial z_{k}})-\frac{1-M_{jk}}{z_{j}-z_{k}}]$ (5.2)

Direct calculation shows that this operator permits non-symmetric eigenfunctions
of the form

$E_{\eta}(z, \alpha)=z^{\eta}+\sum_{\nu<\eta}b_{\nu\eta^{Z^{\nu}}}$
(5.3)

( $z^{\eta}$ will be referred to as the leading term), where $\eta$ and $\nu$ are compositions of non-
negative integers and the $b_{\nu\eta}$ are coefficients. The ordering $<is$ a partial ordering
defined by the statement that $\nu<\eta$ if $\nu^{+}<\eta^{+}$ (the superscript $+denotes$ the
partition corresponding to the composition) with dominance ordering, or in the
case $\nu^{+}=\eta^{+}$ , if the last non-vanishing difference of $\eta-\nu$ is negative.
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The eigenfunctions (5.3) are referred to as non-symmetric Jack polynomials, and
have corresponding eigenvalue

$\epsilon_{\eta}=\sum_{j=1}^{N}((\eta_{j}^{+})^{2}+\frac{1}{\alpha}(N+1-2j)\eta_{j}^{+})$ (5.4)

Since $ P\eta$ gives the same $\eta^{+}$ for any permutation $P$ we see that

$\sum_{P\in S_{N}}a_{P}E_{P^{-1}\eta+}(z, \alpha)$
, (5.5)

where $S_{N}$ denotes the symmetric group on $N$ symbols and the $a_{P}$ are arbitrary, is
also an eigenfunction of (5.2) with eigenvalue (5.4). In particular, choosing the $a_{P}$

so that the leading term of (5.5) is the monomial symmetric function $m_{\eta+}$ we see
that the symmetric Jack polynomials can be written in terms of the non-symmetric
Jack polynomials in a series of this form.

The operator (5.2) can also be decomposed in terms of more fundamental oper-
ators. Now the type $A$ Dunkl operators [2] are defined by

$T_{j}$
$;=\frac{\partial}{\partial z_{j}}+\frac{1}{\alpha}\sum_{k=1,k\neq j}^{N}\frac{1}{z_{j}-z_{k}}(1-M_{jk})$ (5.6)

and the Cherednik operators [3] by

$\hat{D}_{j}$ $;=$ $z_{j}T_{j}+\frac{1}{\alpha}\sum_{k=1}^{j-1}M_{jk}$

$=$
$z_{j}\frac{\partial}{\partial z_{j}}+\frac{1}{\alpha}(\sum_{l<j}\frac{z_{l}}{z_{j}-z_{l}}(1-M_{lj})+\sum_{l>j}\frac{z_{j}}{z_{j}-z_{l}}(1-M_{lj}))+\frac{(j-1)}{\alpha}$ ,

(5.7)

$(j=1, \ldots, N)$ . A direct calculation using the fact that

$M_{jk}M_{kl}=M_{kl}M_{lj}=M_{lj}M_{jk}$

and the identity (1.7) shows that $[T_{j}, T_{k}]=0$ , and this in turn implies that $\{\hat{D}_{j}\}$

commute. A further direct calculation shows that the Cherednik operators are
related to the operator (5.2) by $[4,5]$

$\tilde{H}^{(C,Ex)}=\sum_{j=1}^{N}(\hat{D}_{j}-\frac{N-1}{2\alpha})^{2}-(\frac{L}{2\pi})^{2}E_{0}^{(C)}$ . (5.8)
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A direct calculation also shows that each $\hat{D}_{j}$ has a unique eigenfunction of the
form of the r.h. $s$ . of (5.3) with eigenvalue

$e_{j,\eta}=\eta_{j}+\frac{1}{\alpha}(-\sum_{l<j}h(\eta_{l}-\eta_{j})+\sum_{\iota>j}h(\eta_{j}-\eta_{l}))+\frac{(j-1)}{\alpha}$ (5.9)

where

$h(x)=\left\{\begin{array}{ll}1, & x>0\\0, & otherwise.\end{array}\right.$

From the fact that $\{\hat{D}_{j}\}$ commute it follows that the same eigenfunction with
leading term $z^{\eta}$ is simultaneously an eigenfunction of each $\hat{D}_{j}(j=1, \ldots, N)$ ,
and the decomposition (5.8) implies that this eigenfunction is precisely the non-
symmetric Jack polynomial.

The decomposition (5.8) can also be used to construct the Sekiguchi-Debiard
operators. First, we note from (5.9) that for a composition $\eta^{\prime}$ related to $\eta$ by
interchanging $\eta_{i}$ and $\eta_{i^{\prime}}$ the corresponding eigenvalues of $\{\hat{D}_{j}\}$ are related by $e_{i,\eta}=$

$e_{i^{\prime},\eta},$ $e_{i^{\prime},\eta^{\prime}}=e_{i,\eta}$ and $e_{j,\eta}=e_{j,\eta}(j\neq i, i)$ . This says that $\{e_{j,\eta}\}_{j=1,\ldots,N}$ with
$\eta=P^{-1}\eta^{+}$ is independent of the permutation $P$ . Choosing the permutation
$P(j)=N+1-j(j=1, \ldots, N)$ shows that $\{e_{j,\eta}\}_{j=1,\ldots,N}=\{\eta_{N+1-j}^{+}+(j-$

$1)/\alpha\}_{j=1,\ldots,N}$ . This allows an eigenoperator of the $E_{P^{-1}\eta+}$ to be constructed for
which the eigenvalues are independent of $P$ :

$(1+u(\hat{D}_{1}-(N-1)/2\alpha))\ldots(1+u(\hat{D}_{N}-(N-1)/2\alpha))E_{P^{-1}\eta+}$

$=\prod_{j=1}^{N}(1+u(\eta_{j}^{+}+(N+1-2j)/2\alpha))E_{p-1+}\eta$ (5.10)

(the $constants-(N-1)/2\alpha$ are not essential and could have been omitted). Since
the symmetric Jack polynomial $J_{\eta+}^{(\alpha)}$ can be written in the form (5.5) it follows

immediately that $J_{\eta+}^{(\alpha)}$ satisfies the eigenvalue equation (5.10). Comparison with

Proposition 3.1 and the fact that $\{J_{\eta^{+}}^{(\alpha)}\}$ form a basis for symmetric functions then
shows that when acting on symmetnc functions

$\prod_{j=1}^{N}(X+\alpha\hat{D}_{j})=D_{N}(X;\alpha)$ . (5.11)

The essential point is that the operators given by the coefficient of $X^{p}$ on the
l.h. $s$ . of (5.11) can be systematically constructed. They separate the eigenvalues of
$J_{\eta+}^{(\alpha)}$ and are self adjoint with respect to the inner product (3.11b) (indeed a simple
direct calculation shows that each $D_{j}$ is self adjoint with respect to $(3.11b))$ , and
so provide a natural setting for the Sekiguchi-Debiard operators.
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5.2. Jack polynomials with prescribed symmetry. Jack polynomials with
prescribed symmetry have been introduced in ref. [6]. These polynomials, to be
denoted $S_{\eta}(z, \alpha)$ are linear combinations of the form (5.5) of the non-symmetric
Jack polynomials, and are thus eigenfunctions of (5.2) with eigenvalue (5.4). The
coefficients $a_{P}$ in (5.5) are chosen so that $S_{\eta}(z, \alpha)$ is symmetric with respect to
the interchange of certain sets of variables, and antisymmetric with respect to the
interchange of other sets of variables.

To be more precise, let us rewrite the coordinates $\{z_{j}\}_{j=1,\ldots,N}$ as

$(\bigcup_{\alpha=1}^{q}\{w_{j}^{(\alpha)}\}_{j=1,\ldots,N_{\alpha}^{(w)}})\cup(\bigcup_{\gamma=1}^{p}\{z_{j}^{(\gamma)}\}_{j=1,\ldots,N_{\gamma}^{\langle z)}})$

taken in order so that $w_{1}^{(1)}=z_{1},$
$\ldots,$

$z_{N_{p}}^{(p)}=z_{N}$ and $N=\sum_{\mu=1}^{q}N_{\mu}^{(w)}+\sum_{\gamma=1}^{p}N_{\gamma}^{(z)}$ .
The polynomials $S_{\eta}(z, \alpha)$ are the linear combination (5.5) which is symmetric in
$\{w_{j}^{(\alpha)}\}_{j=1,\ldots,N_{\alpha}^{(w)}}$ and antisymmetric in $\{z_{j}^{(\gamma)}\}_{j=1,\ldots,N_{\gamma}^{\{z)}}$ . They can be written as

$S_{\eta}(z, \alpha)=\mathcal{O}(E_{P^{-1}\kappa}(z, \alpha))$ (5.12)

where $\mathcal{O}$ denotes the operation of symmetrization in $\{w_{j}^{(\alpha)}\}_{j=1,\ldots,N_{\alpha}^{(w)}}$ , antisym-
metrization in $\{z_{j}^{(\gamma)}\}_{j=1,\ldots,N_{\gamma}^{(z)}}$ and normalization such that the coefficient of $z^{\eta}$

is unity. Due to the operation $\mathcal{O}$ the label $\eta$ in $S_{\eta}$ can be replaced by $q+p$
partitions $(\rho, \mu)$ $:=(\rho^{(1)}, \ldots\rho^{(q)}, \mu^{(1)}, \ldots, \mu^{(p)})$ where $\rho^{(\alpha)}$ consists of $N_{\alpha}^{(w)}$ parts
$(\alpha=1, \ldots, q)$ and $\mu^{(\gamma)}$ consists of $N_{\gamma}^{(z)}$ parts $(\alpha=1, \ldots, q)$ and $\mu^{(\gamma)}$ consists of
$N_{\gamma}^{(z)}$ parts. For the composition $\eta$ any rearrangements of

$\{\eta_{j}\}_{j=1,\ldots,N_{1}^{(w)}},$ $\{\eta_{N_{1}^{(w)}+j}\}_{j=1,\ldots,N_{2}^{(w)}},$ $\ldots,$ $\{\eta_{N^{(w)}+\sum_{\gamma=1}^{p-1}N_{\gamma}^{\langle z)}+j}\}_{j=1,\ldots,N_{p}^{\langle z)}}$ , (5.13)

where $N^{(w)}$ $:=\sum_{\alpha=1}^{q}N_{\alpha}^{(w)}$ , give the same partitions $(\rho, \mu)$ and thus the same
polynomial with prescribed symmetry.

To relate the formula (5.12) to the linear combination (5.5) we know from ref. [7]
that with $s_{i}$ $:=M_{ii+1}$ and $\delta_{i}$

$:=\overline{\eta}_{i}-\overline{\eta}_{i+1}$ , where

$\overline{\eta}_{j}=\alpha\eta_{j}-(\sum_{l<j}h(\eta_{l}+1-\eta_{j})+\sum_{l>j}h(\eta_{l}-\eta_{j}))$ ,

we have

$s_{i}E_{\eta}=\left\{\begin{array}{ll}\frac{1}{\delta_{1}}E_{\eta}+(1-\delta_{l}\tau^{1})E_{s_{i}\eta}, & \eta_{i}>\eta_{i+1}\\E_{\eta}, & \eta_{i}=\eta_{i+1}\\\frac{1}{\delta_{l}}E_{\eta}+E_{s_{i}\eta}, & \eta_{i}<\eta_{i+1}\end{array}\right.$

(in this equation the $E_{\eta}$ are the eigenfunctions of the $\hat{D}_{j}$ with the arguments
$z_{1},$

$\ldots,$
$z_{N}$ reversed). Since each permutation which makes up the operation $\mathcal{O}$ can
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be written as a product of elementary transpositions $s_{i}$ , we conclude that

$S_{\eta}(z, \alpha)=\sum_{rearrangements}b_{\nu}E_{\nu}(z, \alpha)$
(5.14)

where the sum is over rearrangements $\nu$ of $\eta$ obtained by permuting within the sets
(5.13), and the $b_{\nu}$ are some (unknown) coefficients.

Now two distinct sequences of partitions $(\rho, \mu)$ and $(\hat{\rho},\hat{\mu})$ as defined below (5.12)
cannot have any rearrangements of (5.13) in common, as they wouldn’t then be
distinct. Hence the expansion (5.14) for distinct $s_{(\rho,\mu)}$ and $s_{(\hat{\rho},\hat{\mu})}$ does not contain
any common $E_{\eta}$ . It follows immediately from the orthogonality of $\{E_{\eta}\}$ with
respect to (3.11b) that $\{S_{(\rho,\mu)}\}$ are also orthogonal with respect to (3.11b).

5.3. The generalized plasma. Consider the $q=p=1$ case in (5.13), so there
is only one symmetric and one antisymmetric component. Any antisymmetric
polynomial in $z_{1}^{(1)},$

$\ldots,$
$z_{N_{1}^{\langle z)}}^{(1)}$ can be written in the form

A $(z_{1}^{(1)}, \ldots, z_{N_{1}^{\langle z)}}^{(1)})p((z_{1}^{(1)}, \ldots, z_{N_{1}^{(z)}}^{(1)})$

where $\Delta(z_{1}^{(1)}, \ldots, z_{N_{1}^{(z)}}^{(1)})=\prod_{1\leq j<k\leq N_{1}^{(z)}}(z_{k}^{(1)}-z_{j}^{(1)})$ and $p$ is symmetric in $\{z_{j}^{(1)}\}$ .

It follows that the lowest degree antisymmetric polynomial is $\Delta(z_{1}^{(1)}, \ldots, z_{N_{1}^{(z)}}^{(1)})$ ,

and that the corresponding ground state of (5.1) with this symmetry has absolute
value squared proportional to

$\prod_{1\leq j<k\leq N}|z_{k}-z_{j}|^{\beta}|\Delta(z_{1}^{(1)}, \ldots, z_{N_{1}^{(z)}}^{(1)})|^{2}$
(5.15)

(recall that $z_{N_{0}+j}$
$:=z_{j}^{(1)},$ $j=1,$ $\ldots,$

$N_{1}^{(z)}$ ).
Now a general two-component classical log-gas system with complex exponential

coordinates $\{w_{1}, \ldots, w_{N_{0}}\}$ and { $z_{1},$
$\ldots,$ $z_{N_{1}}$ for the respective components, and

confined to a line with periodic boundary conditions has potential energy

$ U=-g_{0}\sum_{1\leq j<k\leq N_{0}}\log|w_{j}-w_{k}|-g_{1}\sum_{1\leq\alpha<\gamma\leq N_{1}}\log|z_{\alpha}-z_{\gamma}|-g_{01}\sum_{j=1}^{N_{0}}\sum_{\alpha=1}^{N_{1}}\log$ I $w_{j}-z_{\alpha}|$

(5.16)
(there may also be an additive constant in (5.16)). In the case

$g_{0}g_{1}=(g_{01})^{2}$ (5.17)

(5.16) is the potential energy for a plasma system obeying the laws of two dimen-
sional electrostatics. For general couplings the system log-potential system with
potential energy (5.16) is referred to as generalized plasma [8]. We see that for

$g_{0}=g_{01}=1,$ $g_{1}=\frac{\beta+2}{\beta}$
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which since (5.17) is not obeyed is an example of a generalized plasma, the Boltz-
mann factor $e^{-\beta U}$ is identical to (5.15).

An open problem is to develop the theory of Jack polynomials with prescribed
symmetry to a stage which allows the correlation functions for this two-component
log-gas system to be computed. More generally, one would like to use the theory of
Jack polynomials with prescribed symmetry to compute the ground state dynamical
correlations of the Calogero-Sutherland model with exchange terms, restricted to
states with a prescribed symmetry.
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