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§1. Introduction

The subject of the sub-Riemannian geometry is to study a triple
(M,D, g) of a manifold M , a distribution D on M and a bi-linear pos-
itive definite form g on D, which is called a sub-Riemannian manifold.
Here, a distribution is a sub-bundle of the tangent bundle TM of M .
The object appears naturally as a collapsing Riemannian manifold and
is a generalization of a Riemannian manifold. However properties of
sub-Riemannian manifolds are much different from those of Riemannian
manifolds. In fact, not much is known about the properties of expo-
nential maps and even about smoothness of minimizers. For example
there is a problem which is open for decades: “Are all locally minimizers
smooth on any sub-Riemannian manifold?”

In this article we give a new clue to study of minimizers on sub-
Riemannian manifolds.

For a distribution D, there is an important class of curves called
horizontal curves. A horizontal curve is an absolutely continuous curve
γ : I → M such that γ̇(t) is a measurable and bounded map which
satisfies γ̇(t) ∈ Dγ(t) for almost every t ∈ I.

According to Chow–Rashevsky’s theorem, if a distribution D on a
connected manifold M satisfies Hörmander’s condition, every two points
are connected by a horizontal curve. For a sub-Riemannian manifold
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which satisfies Hörmander’s condition, we may define a distance

dCC(p, q) := inf
γ

{
L(γ) :=

∫
[a,b]

√
g(γ̇(t), γ̇(t))dt |

γ : [a, b] → M : horizontal,γ(a) = p, γ(b) = q
}

which is called a Carnot–Carathéodory (or sub-Riemannian) distance. It
is known that the topology from Carnot–Carathéodory distance agrees
with the original one (ball-box theorem[10]).

A horizontal curve γ connecting p and q is called a minimizer if
dCC(p, q) = L(γ). A horizontal curve γ : I → M is a local minimizer if
for any t0 ∈ I, there exists ε > 0 such that for all closed sub-interval J
of [t0 − ε, t0 + ε], γ |J∩I is a minimizer between the end points. Note
that any minimizer is necessarily a local minimizer.

To consider local minimizers, we classify horizontal curves on a sub-
Riemannian manifold (M,D, g) by using the end-point mapping.

For a bounded measurable curve c : [0, T ] → D, if a curve γ :=
πD ◦ c : [0, T ] → M satisfies γ̇(t) = c(t) for almost everywhere on [0, T ],
then γ is a horizontal curve and c is called an admissible velocity. Here
πD : D → M is the canonical projection.

Expressing c(t) as c(t) = u1(t)X1(γ(t)) + · · · + uk(t)Xk(γ(t)) with
respect to a local framing {X1, . . . ,Xk} of the distribution D on an open
subset O ⊂ M , the condition is written as

γ̇(t) = u1(t)X1(γ(t)) + · · ·+ uk(t)Xk(γ(t)),

with the fibre coordinates (u1, . . . , uk).
For any point q0 on M , the set of admissible velocities

Vq0 := {c | c : [0, T ] → D : admissible velocity, γ(0) = q0}
will be a Banach manifold. The map

End(q0) : Vq0 → M, c �→ γ(T )

is called an end-point mapping and is differentiable by means of Fréchet
derivative. A singular (resp. regular) point of the end-point mapping
is called a singular (resp. regular) velocity. The trajectory corresponds
to singular velocity is called a singular (resp. regular) curve, i.e. the
differential map

dEnd(q0)c : TcVq0 → Tγ(T )M

is not surjective (resp. surjective) at singular (resp. regular) velocity c.
Since every curve is either regular or singular, every minimizer is also
either a regular curve or a singular curve.
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For a sub-Riemannian manifold, there is a geodesic equation given
as Hamiltonian formulation, not as Lagrangian. We give a function

HE(x, p) = −1

2

∑
i,j

gij(x)〈p,Xi(x)〉〈p,Xj(x)〉

on T ∗M , where gij = g(Xi,Xj) and (gij)i,j is the inverse matrix of
(gij)i,j . We may consider a Hamiltonian vector field associated to HE

with canonical symplectic form on the cotangent bundle T ∗M . An ordi-
nary differential equation related to the Hamiltonian vector field is given
by

ẋ(t) =
∂HE

∂p
(x(t), p(t)), ṗ(t) = −∂HE

∂x
(x(t), p(t))

with Darboux coordinates (x, p) of T ∗M . A solution of this equation
(which is called the geodesic equation) is called a normal bi-extremal and
its projection to M is called a normal extremal (or a normal geodesic).

It is known that regular local minimizers are normal geodesics, and
so they are smooth since they are solutions of the geodesic equation. A
singular minimizer is sometimes also a normal geodesic depending on a
metric g. A singular (local) minimizer which is not a normal geodesic is
called a strictly singular (local) minimizer. Examples of singular min-
imizers which are not normal on Martinet distribution are given by R.
Montgomery in 1994 [8].

Although the examples given by R. Montgomery guarantee the ex-
istence of strictly singular minimizers, we know few other examples. So,
we are interested in finding more examples of strictly singular minimiz-
ers. As a strategy, we divide the problem into two problems; to detect
singular horizontal curves which are not normal geodesics and to find
local minimizers among them. In this paper we concentrate on the for-
mer one and give new examples of singular horizontal curves which are
not normal geodesics.

Now, we introduce a result of foothold in the study of singular
curves. Take a function H : T ∗M ×M D → R,H(x, p, u) := 〈p, u〉 for
x ∈ M,p ∈ T ∗

xM and u ∈ Dx, here ×M is a fibre product. Let
{X1, . . . ,Xk} be a local framing of D on an open neighborhood Ux0

of x0 in M and (u1, . . . , uk) the fibre coordinates related to the local
framing. Then we have locally

H(x, p, u) =
k∑

i=1

ui〈p,Xi(x)〉.

Then singular curves are characterized by a constrained Hamiltonian
system;
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Proposition 1.1 ([6], p.567). A horizontal curve x(t) on M with
rank k distribution D is a singular curve if and only if there exist a
positive number ε > 0, a curve p(t) on T ∗

x(t)M \{0} and u(t) ∈ Dx(t) such

that the curve (x(t), p(t), u(t)) satisfies the following equation (which is
called the constrained Hamiltonian system) for almost all t ∈ [0, ε);⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ(t) =
∂H

∂p
(x(t), p(t), u(t)),

ṗ(t) = −∂H

∂x
(x(t), p(t), u(t)),

∂H

∂ui
(x(t), p(t), u(t)) = 0 (1 ≤ i ≤ k).

A solution (x(t), p(t)) on T ∗M of the constrained Hamiltonian sys-
tem in Proposition 1.1 is called an abnormal bi-extremal and the pro-
jection of an abnormal bi-extremal to M is called an abnormal extremal
(or a singular curve). It is known that a local minimizer is either a
normal extremal or an abnormal extremal; and the two possibilities are
not mutually exclusive. Abnormal extremals are not local minimizers in
general.

We may consider a constrained Hamiltonian system for any distri-
bution. However it is not known whether there exists a solution or does
not, in general. To study the existence of solutions, we intend to ap-
ply the theory of solvability of implicit differential systems. The theory,
which is introduced in §2, is given by T. Fukuda and S. Janeczko. We
give a refinement of Fukuda–Janeczko’s theory in the case of two pa-
rameters in §3. In §4, an application of the results in §3 to rank two
distribution is given. Then we have the following main result in this
paper.

Theorem 1. Let (M,D, g) be a sub-Riemannian smooth manifold
with a distribution D of rank two. Suppose that D1 := D + [D,D] is a
sub-bundle of rank three and D2 := D1 + [D,D1] is a sub-bundle of rank
four. Then for any point q in M , there exist an open neighborhood Uq of
q in M and a C∞ immersive singular curve x(t) which is not a normal
geodesic in Uq defined on a small interval.

Theorem 1 is proved in §4 as an application of the results in §3. It
is not known whether the singular curve in Theorem 1 is a minimizer or
not.
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§2. Preliminary

2.1. Implicit differential systems and their solvability

An implicit differential system is a generalization of a differential
equation defined by a vector field. We define some basic notions. Let
π : TM → M be a canonical projection and N a submanifold of M .

Definition 2.1. An implicit differential system on M is a subset S
of tangent bundle TM .

A C1 curve γ : (a, b) → N is called a solution of S over N if
(γ(t), γ̇(t)) ∈ S ∩ π−1(N) for all t ∈ (a, b).

A point (x0, ẋ0) ∈ S is a solvable point of S over N if there ex-
ist a positive number ε > 0 and a solution γ : (−ε, ε) → N such that
(γ(0), γ̇(0)) = (x0, ẋ0).

From now on we consider the case where S is a smooth submanifold
of TM . A point (x0, ẋ0) ∈ S is a smoothly solvable point of S over N
if there exist an open neighborhood W in S × R of (x0, ẋ0, 0) and C∞

map γ̄ : W → N such that γ(x,ẋ)(t) := γ̄(x, ẋ, t) is a solution of S over N
with (γ(0), γ̇(0)) = (x, ẋ) for all (x, ẋ) ∈ π1(W ), where π1 : S × R → S
is a natural projection.

An implicit differential system S over N is called a smoothly solvable
submanifold over N if S consists only of smoothly solvable points of S
over N .

When a submanifold N is M itself, definitions above are given in
Fukuda and Janeczko’s papers [4][5]. A solution of S over M is just
called a solution of S. We say, simply, an implicit differential system S
is (smoothly) solvable if S is (smoothly) solvable over M .

2.2. Implicit Hamiltonian systems

Let (M,ω) be a symplectic manifold. Then there is the induced
symplectic structure ω̇ on the tangent bundle TM : We have an bundle
isomorphism induced from interior product � : TM → T ∗M, �x(vq) =
ιvqωq for each point q ∈ M . The symplectic structure ω̇ is given by the
pullback of the Liouville form θ on T ∗M , i.e., ω̇ := �∗dθ. The induced
symplectic structure ω̇ is locally written by

ω̇ =
n∑

i=1

dṗi ∧ dxi − dẋi ∧ dpi

with the canonical coordinates (x, p, ẋ, ṗ) of tangent bundle TM related
to Darboux coordinates (x, p) = (x1, . . . , xn, p1, . . . , pn) for the standard
symplectic form ω =

∑n
i=1 dpi ∧ dxi of M .
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We will define the notion of implicit Hamiltonian systems as
Lagrangian submanifolds of (TM, ω̇). Then they are regarded as a gen-
eralization of Hamiltonian vector fields, i.e., of Hamiltonian dynamical
systems. In what follows we set M = R

2n with the standard symplectic
form ω as above.

Definition 2.2 ([4, 5]). A Lagrangian submanifold L of (TR2n, ω̇)
(i.e., dimL = 2n and ω|L = 0) is called an implicit Hamiltonian system.

There is a well-known result that a Lagrangian submanifold is locally
generated by a Morse family;

Theorem 2.3 ([1]). Let L be a Lagrangian submanifold of TR2n

and (q0, q̇0) = (x0, p0, ẋ0, ṗ0) ∈ L. Suppose

corank d(π |L)(q0, q̇0) = k > 0.

Then there exist an open neighborhood O of (q0, q̇0) in TR2n, an open
neighborhood W of (q0, 0) ∈ R

2n×R
k and a smooth function F : W → R

such that

L ∩O =
{
(x0, p0,ẋ0, ṗ0) ∈ O | ∃u ∈ R

ks.t.(x, p, u) ∈ W,
∂F

∂ul
(x, p, u) = 0,

ẋi =
∂F

∂pi
(x, p, u), ṗi = − ∂F

∂xi
(x, p, u), 1 ≤ i ≤ n, 1 ≤ l ≤ k

}
,

and that

rank

(
∂2F

∂xi∂ul
(q0, 0),

∂2F

∂pi∂ul
(q0, 0)

)
1≤i≤n,1≤l≤k

= k,
∂2F

∂ur∂us
(q0, 0) = 0

for 1 ≤ r, s ≤ k.

Recall that the family of functions F : R2n×R
k → R with 2n param-

eters (x1, . . . , xn, p1, . . . , pn) on (Rk;u1, . . . , uk) is called a Morse family
if 0 ∈ R

k is a critical point of the map F (q0, u) and the map(
∂F

∂u1
, . . . ,

∂F

∂uk

)
: R2n × R

k → R
k

is submersive at (q0, 0). We denote LF a Lagrangian submanifold gen-
erated by Morse family F : R2n × R

k → R. That is, for the catastrophe
set

C(F ) =

{
(x, p, u) ∈ R

2n × R
k | ∂F

∂ui
(x, p, u) = 0, i = 1, . . . , k

}
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of F and C∞ map φF : R2n × R
k → TR2n defined by

φ(x, p, u) =

(
x, p,

∂F

∂pi
(x, p, u),− ∂F

∂xi
(x, p, u)

)
,

we set LF = φF (C(F )).
The following propositions are given in [4] which are a necessary

condition and a sufficient condition for LF to be (smoothly) solvable in
the sense of Definition 2.1.

Proposition 2.4 ([4]). Let (x, p, ẋ, ṗ) be a solvable point of LF .
We set φF (x, p, u) = (x, p, ẋ, ṗ). Then there exists a real vector μ =
(μ1, . . . , μk) in R

k such that⎛
⎜⎜⎝

∂2F
∂u1∂u1

(x, p, u) · · · ∂2F
∂u1∂uk

(x, p, u)
...

. . .
...

∂2F
∂uk∂u1

(x, p, u) · · · ∂2F
∂uk∂uk

(x, p, u)

⎞
⎟⎟⎠

⎛
⎜⎝
μ1

...
μk

⎞
⎟⎠ =

⎛
⎜⎝
{ ∂F
∂u1

, F}(x, p, u)
...

{ ∂F
∂uk

, F}(x, p, u)

⎞
⎟⎠

.

Here the bracket {, } is the Poisson bracket associated to the symplectic
form ω.

Proposition 2.5 ([4]). A point (x, p, ẋ, ṗ) in LF is (smoothly) solv-
able if a linear equation⎛
⎜⎝

∂2F
∂u1∂u1

(x, p, u) · · · ∂2F
∂u1∂uk

(x, p, u)
...

. . .
...

∂2F
∂uk∂u1

(x, p, u) · · · ∂2F
∂uk∂uk

(x, p, u)

⎞
⎟⎠

⎛
⎝μ1(x, p, u)

...
μk(x, p, u)

⎞
⎠ =

⎛
⎜⎝
{ ∂F
∂u1

, F}(x, p, u)
...

{ ∂F
∂uk

, F}(x, p, u)

⎞
⎟⎠

has a (smooth) solution on a neighborhood of (x, p, u) = φF (x, p, ẋ, ṗ) in
C(F ).

The differences between the necessary condition and the sufficient
condition appear as those of the domain and smoothness of the solution
μ.

Now we consider a Morse family of particular type:

F : R2n × R
k → R, F (x, p, u) =

k∑
j=1

aj(x, p)uj + b(x, p).

Note that functions a1, . . . , ak are independent, i.e., differential one
forms da1(x, p), . . . , dak(x, p) are linearly independent in T ∗

(x,p)R
2n at

each point (x, p) ∈ R
2n because F is a Morse family. The catastrophe

set of F is given by C(F ) = K × R
k with

K := {(x, p) ∈ R
2n | ai(x, p) = 0, i = 1, . . . , k}.
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Applying Proposition 2.4 and Proposition 2.5, we know that LF is
smoothly solvable if and only if {ai, aj}(x, p) = 0, {b, ai}(x, p) = 0 on
K, (1 ≤ i, j ≤ k)([5]). Considering conditions in the propositions, we
set

S̃F :=
{
(x, p, u) ∈ C(F ) |

k∑
j=1

{ai, aj}(x, p)uj = {b, ai}(x, p), 1 ≤ i ≤ k
}
,

SF := φF (S̃F ).

Then we see that every smoothly solvable submanifold of LF is contained
in SF ([5]). Moreover SF itself may be smoothly solvable:

Theorem 2.6 ([5]). SF is a smoothly solvable submanifold of LF if

rank ({ai, aj}(x, p))1≤i,j≤k = r (constant) and⎛
⎜⎝
{b, a1}(x, p)

...
{b, ak}(x, p)

⎞
⎟⎠ ∈ Im ({ai, aj}(x, p))1≤i,j≤k ,

holds for every (x, p) ∈ K = {(x, p) ∈ R
2n | ∂F

∂ui
(x, p, u) = 0, 1 ≤ i ≤ k}.

§3. Main results

Now we pose a question; for which submanifold S of LF does there
exist a submanifold A of K such that S is smoothly solvable over A?
In this section, we will give an answer to this question in the case k = 2.

Let F : R2n × R
2 → R be a Morse family which is defined by

F (x, p, u) = a1(x, p)u1 + a2(x, p)u2.

We consider solvability of the Lagrangian submanifold LF which is gen-
erated by F . Moreover we consider solvability of submanifolds of LF .
In detail, we consider a map φF : R2n × R

2 → T (R2n) which is defined
by

φF (x, p, u) =

(
x, p,

∂F

∂p
(x, p, u),−∂F

∂x
(x, p, u)

)
and the catastrophe set

C(F ) = {(x, p, u) | a1(x, p) = a2(x, p) = 0} = K × R
2

of F for K = {(x, p) | a1(x, p) = a2(x, p) = 0} ⊂ R
2n, then we define

LF by the image φF (C(F )). According to Fukuda–Janeczko’s Theorem
2.6, LF is smoothly solvable if and only if {a1, a2} = 0 locally on K.
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Now we consider the cases where the assumptions of Theorem 2.6 are
not fulfilled. We consider the family of vector fields Xu : K → T (R2n)
along K with parameter u

Xu(x, p) =

(
x, p,

∂F

∂p
(x, p, u),−∂F

∂x
(x, p, u)

)
,

and detect submanifolds of K on which Xu are tangent to K. We are
going to give smoothly solvable submanifolds over submanifolds of K in
the following series of Propositions 3.1 – 3.6.

Let A0 = K. The vector field Xu is tangent to A0 if and only if

Xu(a1) = Xu(a2) = 0 i.e. u1{a1, a2} = u2{a1, a2} = 0.

Hence φF (A0 × R
2) is smoothly solvable if and only if {a1, a2} = 0 on

A0 = K. This fact is also obtained as a corollary of Theorem 2.6.
Then we consider a submanifold A1 of A0 consisting of points at

which Xu is tangent to A0;

A1 := {(x, p) | a1(x, p) = a2(x, p) = {a1, a2}(x, p) = 0}.
We assume that the functions a1, a2, {a1, a2} are independent. The vec-
tor field Xu is tangent to A1 if and only if

Xu({a1, a2}) = 0 i.e. u1{a1, {a1, a2}}(x, p)+u2{a2, {a1, a2}}(x, p) = 0

on A1. Note that we have Xu(a1) = Xu(a2) = 0 from the definition of
A1. Let ER2n,q0 be the R -algebra of C∞ function germs at q0 on R

2n.
We denote by 〈a1, a2, {a1, a2}〉E

R2n,q0
the ER2n,q0-module generated by

a1, a2 and {a1, a2}. We set

ξ1 := {a1, {a1, a2}}, ξ2 := {a2, {a1, a2}}.
Then the vector fieldXu is tangent toA1 if the functions ξ1 and ξ2 belong
to the ER2n,q0-module 〈a1, a2, {a1, a2}〉E

R2n,q0
for any point q0 ∈ A1.

Proposition 3.1. Assume that a1, a2, and {a1, a2} are independent.
Then φF (A1 × R

2) is a smoothly solvable submanifold of LF over A1 if
and only if ξ1, ξ2 ∈ 〈a1, a2, {a1, a2}〉E

R2n,q0
for any point q0 in A1.

To find smoothly solvable submanifolds of LF over submanifolds of
A1, we construct fiber bundles as follows. Let

C(x,p) := {(u1, u2) | u1{a1, {a1, a2}}(x, p) + u2{a2, {a1, a2}}(x, p) = 0}
for (x, p) ∈ K and define line bundles
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A1
2

1
:= {(x, p, u) | u ∈ C1

(x,p), (x, p) ∈ A1
2},

A1
2

2
:= {(x, p, u) | u ∈ C2

(x,p), (x, p) ∈ A1
2},

A2
2

1
:= {(x, p, u) | u ∈ C1

(x,p), (x, p) ∈ A2
2},

A2
2

2
:= {(x, p, u) | u ∈ C2

(x,p), (x, p) ∈ A2
2},

A1,1
2
:= {(x, p, u) | u ∈ C2

(x,p), (x, p) ∈ A1,1},
A1,2

1
:= {(x, p, u) | u ∈ C1

(x,p), (x, p) ∈ A1,2},
A1,(1,2)

1,2
:= {(x, p, u) | u ∈ C1,2

(x,p), (x, p) ∈ A1,(1,2)},

with

A1
2 := A1 ∩ {(x, p) | ξ1 = 0}, C1

(x,p) = {(u1, 0) ∈ C(x,p)},
A2

2 := A1 ∩ {(x, p) | ξ2 = 0}, C2
(x,p) = {(0, u2) ∈ C(x,p)},

A1,1 := A1 ∩ {(x, p) | ξ1 
= 0}, C1,2
(x,p) = C(x,p) \ {0},

A1,2 := A1 ∩ {(x, p) | ξ2 
= 0},
A1,(1,2) := A1 ∩ {(x, p) | ξ1 
= 0, ξ2 
= 0}.

Let us consider the case that one of ξ1 and ξ2 belongs to the ER2n,q0-
module 〈a1, a2, {a1, a2}〉E

R2n,q0
and the other does not.

Proposition 3.2. Assume that a1, a2 and {a1, a2} are independent.
Assume also that

ξ2 ∈ 〈a1, a2, {a1, a2}〉E
R2n,q0

and ξ1 /∈ 〈a1, a2, {a1, a2}〉E
R2n,q0

at every point q0 of A1. Then the followings hold.

(1) φF (A1,1
2
) is a smoothly solvable submanifold of LF over A1,1.

(2) Assume, furthermore, that ξ1, a1, a2, {a1, a2} are independent.

(a) φF (A1
2

2
) is a smoothly solvable submanifold of LF over

A1
2.

(b) φF (A
1
2×R

2) is a smoothly solvable submanifold of LF over
A1

2 if {a1, ξ1} ∈ 〈a1, a2, {a1, a2}, ξ1〉E
R2n,q0

for any point q0

in A1
2.

Proof. (1): A1,1 is an open submanifold of A1 from the definition.
Since there exist β1, β2 and β3 ∈ ER2n,q0 such that ξ2 = β1a1 + β2a2 +
β3{a1, a2}, the vector Xu(x, p) with u ∈ C2

(x,p) is tangent to A1,1 at each
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point (x, p) ∈ A1,1 because

Xu(a1) = u2{a2, a1} = 0,

Xu(a2) = 0 · {a1, a2} = 0,

Xu({a1, a2}) = 0 · ξ1 + u2ξ2 = u2ξ2 = β1a1 + β2a2 + β3{a1, a2} = 0

on A1,1.
(2)-(a): We check the condition that Xu(x, p) is tangent to A1

2 with
u ∈ C2

(x,p) at each point (x, p) ∈ A1
2. Note that {a1, ξ2} = {a2, ξ1} from

Jacobian identity:

{a1, {a2, {a1, a2}}} = {a2, {a1, {a1, a2}}}+ {{a1, a2}, {a1, a2}}
= {a2, {a1, {a1, a2}}}.

Then
Xu({a1, a2}) = 0 · ξ1 + u2ξ2 = 0,

Xu(ξ1) = u1{a1, ξ1}+ u2{a2, ξ1} = u1{a1, ξ1}+ u2{a1, ξ2} · · · (
)
= u2({a1, β1a1}+ {a1, β2a2}+ {a1, β3{a1, a2}})
= u2(a1{a1, β1}+ β2{a1, a2}+ a2{a1, β2}

+ β3ξ1 + {a1, a2}{a1, β3})
= 0

on A1
2.
(2)-(b): From an equality (
) we have

Xu(ξ1) = u1{a1, ξ1}+ u2{a2, ξ1} = u1{a1, ξ1}+ u2{a1, ξ2}.
Since ξ2 ∈ 〈a1, a2, {a1, a2}〉E

R2n,q0
, it holds that

{a1, ξ2} ∈ 〈a1, a2, {a1, a2}, ξ2〉E
R2n,q0

.

Consequently, by using {a1, ξ1} ∈ 〈a1, a2, {a1, a2}, ξ2〉E
R2n,q0

, we obtain

Xu(ξ1) = 0 on A1
2. Q.E.D.

In the same way we have the counterpart of Proposition 3.2.

Proposition 3.3. Assume that a1, a2 and {a1, a2} are independent.
Assume also that

ξ1 ∈ 〈a1, a2, {a1, a2}〉E
R2n,q0

and ξ2 /∈ 〈a1, a2, {a1, a2}〉E
R2n,q0

at every point q0 of A1. Then the followings hold.
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(1) φF (A1,2
1
) is a smoothly solvable submanifold of LF over A1,2.

(2) Assume, furthermore, that ξ2, a1, a2, {a1, a2} are independent.

(a) φF (A2
2

1
) is a smoothly solvable submanifold of LF over

A2
2.

(b) φF (A
2
2×R

2) is a smoothly solvable submanifold of LF over
A2

2 if {a2, ξ2} ∈ 〈a1, a2, {a1, a2}, ξ2〉E
R2n,q0

for any point q0

in A2
2.

In the case ξ1, ξ2 /∈ 〈a1, a2, {a1, a2}〉E
R2n,q0

we have

Proposition 3.4. Assume that a1, a2 and {a1, a2} are indepen-

dent. Then φF (A1,(1,2)
1,2

) is a smoothly solvable submanifold of LF over
A1,(1,2) if ξ1, ξ2 /∈ 〈a1, a2, {a1, a2}〉E

R2n,q0
for every point q0 in A1,(1,2).

Proof. A1,(1,2) is an open submanifold of A1 from the definition.

The vector Xu(x, p) with u ∈ C1,2
(x,p) is tangent to A1,(1,2) at each point

(x, p) ∈ A1,(1,2) since

Xu(a1) = u2{a2, a1} = 0,

Xu(a2) = u1{a1, a2} = 0,

Xu({a1, a2}) = u1ξ1 + u2ξ2 = 0

on A1,(1,2). Q.E.D.

In Proposition 3.1-3.4, we gave sufficient conditions for existence
of smoothly solvable submanifolds of LF over A1,1, A

1
2, A1,2, A

2
2 and

A1,(1,2) and examples of smoothly solvable submanifolds of LF over
them. The following two propositions give different sufficient conditions
for existence of smoothly solvable submanifolds of LF over A1

2 and A2
2

and examples of smoothly solvable submanifolds over them respectively.

Proposition 3.5. Assume that a1, a2, {a1, a2} and ξ1 are indepen-

dent. Then φF (A1
2

1
) is a smoothly solvable submanifold of LF over A1

2

if {a1, ξ1} ∈ 〈a1, a2, {a1, a2}, ξ1〉E
R2n,q0

for any point q0 in A1
2.

Proof. Since a1, a2, {a1, a2} and ξ1 are independent, A1
2 is a sub-

manifold of K. For the vector field Xu along A1
2 with (u1, 0),

Xu(a1) = 0 · {a1, a2} = 0,

Xu(a2) = u1{a2, a1} = 0,

Xu({a1, a2}) = u1ξ1 = 0
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hold on A1
2. Since {a1, ξ1} ∈ 〈a1, a2, {a1, a2}, ξ1〉E

R2n,q0
, there exist

β1, β2, β3 and β4 ∈ ER2n,q0 such that {a1, ξ1} = β1a1+β2a2+β3{a1, a2}+
β4ξ1. Hence we have

Xu(ξ1) = u1{a1, ξ1} = u1(β1a1 + β2a2 + β3{a1, a2}+ β4ξ1) = 0

on A1
2. Thus the vector field Xu with (u1, 0) is tangent to A1

2. Q.E.D.

In the same way we have

Proposition 3.6. Assume that a1, a2, {a1, a2} and ξ2 are indepen-

dent. Then φF (A2
2

2
) is a smoothly solvable submanifold of LF over A2

2

if {a2, ξ2} ∈ 〈a1, a2, {a1, a2}, ξ2〉E
R2n,q0

for any point q0 in A2
2.

§4. Application

We apply the results obtained in §3, to study distributions and its
singular curves and we prove Theorem 1. Now we recall some basic
notations for the study of distributions. The Lie flag of a distribution
D is the sequence D0 ⊂ D1 ⊂ · · · defined inductively by

D0 := D, Di+1 := Di + [D0,Di], i ≥ 0.

The small growth vector of a distribution D at q ∈ M is the sequence of
the dimension of Lie flags;

(dimD0(q),dimD1(q),dimD2(q), . . .).

For example a contact distribution D ⊂ TM on a manifold M of dimen-
sion 2n+1, has small growth vector (2n, 2n+1). An Engel distribution
D on 4 dimensional manifold M has small growth vector (2, 3, 4).

In this section we consider distributions with small growth vector
(2, 3, 4, . . .). The following lemma plays an essential role throughout the
section.

Lemma 4.1. Let D be a rank two distribution with small growth
vector (2, 3, 4, . . .) at any point in an open neighborhood of q ∈ M and
g a bi-linear positive definite form on D. Then there exist an open
neighborhood Uq and local orthonormal frame X1,X2 of D on Uq such
that

X1,X2, [X1,X2], [X1, [X1,X2]]

are linearly independent at q and [X2, [X1,X2]] is a functional linear
combination of X1,X2 and [X1,X2] on Uq.
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Proof. EM,q denotes the R -algebra of C∞ function germs at q on
M . Let X1,X2 be any local frame of D around q. We may suppose
that X1,X2, [X1,X2], [X1, [X1,X2]] are linearly independent at q. From
the assumption, [X2, [X1,X2]] ∈ 〈X1,X2, [X1,X2], [X1, [X1,X2]]〉EM,q .
Then there exists a λ ∈ EM,q such that

[X2, [X1,X2]] ≡ λ[X1, [X1,X2]] mod 〈X1,X2, [X1,X2]〉EM,q

Set X̃2 = X2 − λX1. Then (X1, X̃2) is a local frame of D around q.
Then

[X̃2, [X1, X̃2]] = [X̃2, [X1,X2 − λX1]]

= [X̃2, [X1,X2]]− [X̃2,X1(λ)X1]

= [X̃2, [X1,X2]]−X1(λ)[X̃2,X1]− X̃2(X1(λ))X1

≡ [X̃2, [X1,X2]] = [X2 − λX1, [X1,X2]]

≡ 0 mod 〈X1, X̃2, [X1, X̃2]〉EM,q .

For functions

g11 := g(X1,X1), g12 := g(X1, X̃2) and g22 := g(X̃2, X̃2),

we set

X ′
1 =

√
g22√

g11g22 − g212

(
X1 − g12

g22
X̃2

)
, X ′

2 =
1√
g22

X̃2.

Then (X ′
1,X

′
2) is a local orthonormal basis of D around q i.e.,

g(X ′
1,X

′
1) = 1, g(X ′

1,X
′
2) = 0, g(X ′

2,X
′
2) = 1,

and
X ′

1,X
′
2, [X

′
1,X

′
2], [X

′
1, [X

′
1,X

′
2]]

are linearly independent since X ′
1 and X ′

2 is a functional linear combi-

nation of X1 and X̃2. Moreover (X ′
1,X

′
2) satisfies

[X ′
2, [X

′
1,X

′
2]] ≡ 0 mod 〈X ′

1,X
′
2, [X

′
1,X

′
2]〉EM,q

because of the following for functions

α1 =

√
g22√

g11g22 − g212
, α2 = −

√
g22√

g11g22 − g212

g12
g22

and α3 =
1√
g22

;
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[X ′
2, [X

′
1,X

′
2]] = [α3X̃2, [α1X1, α3X̃2]]− [α3X̃2, [α2X̃2, α3X̃2]]

= [α3X̃2, α1α3[X1, X̃2]] + [α3X̃2, α1X1(α3)X̃2]

− [α3X̃2, α3X̃2(α1)X1]

≡ [α3X̃2, α1α3[X1, X̃2]] mod 〈X ′
1,X

′
2, [X

′
1,X

′
2]〉EM,q

≡ α1α
2
3[X̃2, [X1, X̃2]] mod 〈X ′

1,X
′
2, [X

′
1,X

′
2]〉EM,q

≡ 0 mod 〈X ′
1,X

′
2, [X

′
1,X

′
2]〉EM,q

Q.E.D.

Let {X1,X2} be a local frame of D on Uq for any q ∈ M with the
property of Lemma 4.1 and define a function H : T ∗Uq ×Uq D → R for
the distribution D locally by

H(x, p, u) = u1〈p,X1(x)〉+ u2〈p,X2(x)〉.
For functions a1(x, p) := 〈p,X1(x)〉 and a2(x, p) := 〈p,X2(x)〉, Proposi-
tion 3.2-(2)-(a) can be applied and we obtain the following

Proposition 4.2. For a rank 2 distribution D with small growth
vector (2, 3, 4, . . .) at each point q in M , there exist an open neighborhood
Uq of q, a frame {X1,X2} of D on Uq and an abnormal bi-extremal
(x(t), p(t)) in T ∗Uq \ {o} such that

ẋ(t) = X2(x(t)), ṗ(t) = −∂〈p,X2(x)〉
∂x

(x(t), p(t))

and

〈p(t),X1(x(t))〉 = 0, 〈p(t),X2(x(t))〉 = 0,

〈p(t), [X1,X2](x(t))〉 = 0, 〈p(t), [X1, [X1,X2]](x(t))〉 = 0.

Proof. From the property in Lemma 4.1 we take a local frame
{X1,X2} of D on an open neighborhood Uq of q in M such that

X1,X2, [X1,X2], [X1, [X1,X2]]

are linearly independent and [X2, [X1,X2]] is a functional linear combi-
nation ofX1,X2 and [X1,X2]. We take the functionH : T ∗Uq×UqD → R

as
H(x, p, u) = 〈p,X1(x)〉u1 + 〈p,X2(x)〉u2

and set a1(x, p) := 〈p,X1(x)〉 and a2(x, p) := 〈p,X2(x)〉. Then H is a
Morse family because X1 and X2 are linearly independent at each point.
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In conformity with the property of vector fields X1 and X2, functions
a1, a2, {a1, a2} and {a1, {a1, a2}} are independent and we have

a1, a2, {a1, a2}, {a2, {a1, a2}} ∈ 〈a1, a2, {a1, {a1, a2}}〉ET∗Uq,Q

for any Q ∈ T ∗Uq.
According to the proof of Proposition 3.2, Xu is a tangent vector

field to a submanifold

A1
2 = {(x, p) ∈ T ∗Uq | a1(x, p) = a2(x, p) = {a1, a2}(x, p)

= {a1, {a1, a2}}(x, p) = 0}
of T ∗Uq for u = (0, 1). Thus there exists an integral curve (x(t), p(t))
of Xu starting from a point in A1

2, that is, (x(t), p(t)) satisfies ordinary
differential equations

ẋ(t) =
∂H

∂p
(x(t), p(t), (0, 1)) =

∂〈p,X2(x)〉
∂p

(x(t), p(t)) = X2(x(t))

ṗ(t) = −∂H

∂x
(x(t), p(t), (0, 1)) = −∂〈p,X2(x)〉

∂x
(x(t), p(t))

and following conditions;

a1(x(t), p(t)) = 〈p(t),X1(x(t))〉 = 0, 〈p(t),X2(x(t))〉 = 0,

〈p(t), [X1,X2](x(t))〉 = 0, 〈p(t), [X1, [X1,X2]](x(t))〉 = 0.

Q.E.D.

Theorem 4.3. Let M be a smooth manifold and D be a rank two
distribution. Suppose that the distribution D has small growth vector
(2, 3, 4, . . .) everywhere in an open neighborhood of any point q in M .
Then for any point q in M , there exist an open neighborhood Uq of q in
M and a C∞ immersive singular curve x(t) in Uq which is defined on a
small interval.

Proof. From Proposition 4.2, for any point q in M , there exist
an open neighborhood Uq of q and an abnormal bi-extremal (x(t), p(t))
on A1

2 ⊂ T ∗Uq. Therefore the projection of (x(t), p(t)) by canonical
projection πM : T ∗M → M is a singular curve x(t) with admissible
velocity directed to X2 in πM (A1

2). Q.E.D.

We now prove Theorem 1.

Proof of Theorem 1. Let q be a point of M and let x(t) be the C∞

immersive singular horizontal curve in a neighborhood Uq of q obtained
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in Theorem 4.3. Let (x(t), p(t)) be the abnormal bi-extremal considered
in the proof of Theorem 4.3 which is obtained in Proposition 4.2. We
are going to prove that this curve x(t) is not a normal extremal. From
Lemma 4.1 we may take a local orthonormal frame {X1,X2} of D on
Uq. We consider the Hamiltonian function in terms of the orthonormal
frame {X1,X2};

HE(x, p) = −1

2

2∑
i=1

〈p,Xi(x)〉2.

Suppose that x(t) is a normal extremal. Then there must exist a normal
bi-extremal of the form (x(t), p̃(t)) which satisfies the following differen-
tial equation;

ẋ(t) =
∂HE

∂p
(x(t), p̃(t)) = −

2∑
i=1

Xi(x(t)),

˙̃p(t) = −∂HE

∂x
(x(t), p̃(t)) =

2∑
i=1

∂〈p,Xi(x)〉
∂x

(x(t), p̃(t)).

Since the abnormal extremal x(t) satisfies ẋ(t) = X2(t) by Proposition
4.2,

X2(x(t)) = ẋ(t) = −X1(x(t))−X2(x(t))

holds. Thus X1(x(t)) + 2X2(x(t)) = 0 holds. This is a contradiction to
{X1,X2} being a local frame of D. Q.E.D.

Remark 4.4 ([2], Theorem 2.8). It is known that there are no sin-
gular minimizer for a generic sub-Riemannian manifold (the genericity
is used for the distribution as map-germs) with rank greater than 2.

Remark 4.5 ([7], Proposition 11). There is a result given by Liu–
Sussmann which is similar type to Theorem 1, however the method for
the proof is different from ours.
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