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Abstract.

In this paper we consider the problem of finding a set of monomials
O and a polynomial f whose support is contained in O, such that (1) f
is almost vanishing at a set of points X whose coordinates are not known
exactly and (2) O exhibits structural stability, that is the model/design
matrix associated to O is full rank for each set of points differing only
slightly from X. We review some numerical versions of the Buchberger-
Möller (BM) algorithm for computing the set O and the polynomial f
and we present a variant, called LDP-LP, which integrates one of these
methods with a classical statistical least squares algorithm for implicit
regression from [1]. To illustrate the usefulness of these numerical BM
algorithms, we review some of their application in the analyses of data
sets for which standard techniques did not yield satisfactory results.

§1. Introduction

For n-distinct points X ⊂ R
k we consider the generic problem of find-

ing a polynomial function f which almost vanishes at X. The Buchberger-
Möller (BM) algorithm would return polynomials whose zero sets include
the zero-dimensional variety X. Nevertheless such polynomials might be
too complex, e.g. of too high degree, to be useful for some practical pur-
poses in some areas such as statistical modelling [10, 11]. For example
from the four points X = (±1,±1), the two polynomials x2

1 − 1, x2
2 − 1

are the generators of the polynomial ideal of X and the vector space
basis of the quotient space R[x1, x2]/〈x2

1 − 1, x2
2 − 1〉 returned by the

algorithm is O = {1, x2, x1, x1x2} for any term ordering. Both gener-
ators are simple and the model/design matrix (also called evaluation
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matrix) M = [s(d)]d∈X,s∈O is not only full rank, but also well condi-
tioned. Nevertheless slightly perturbing the point (1, 1) into (0.9, 1.1)
leads to a non unique nor nice choice of generators, for example a gen-
erator set with respect to the DegRevLex term ordering is given by the
three polynomials

x1x2 − 19x2
2 + x1 + x2 + 20, x2

1 +
19

21
x2
2 −

40

21
, x3

2 −
11

10
x2
2 − x2 +

11

10

with corresponding O = {1, x1, x2, x
2
2}. The model/design matrix is ill-

conditioned. In statistics this is known as collinearity of the explanatory
functions labelling the columns of M . These functions depend on the
variables representing the characteristics of the population under study
and of which X can be considered a collection of instances. Regression
models based on O would be unstable, specifically stability of algorithms
commonly used in statistics cannot be guaranteed.

To overcome this, numerical versions of the BM algorithm are avail-
able in the literature which take into account the fact that the coor-
dinates of the points in X might be effected by random error. We
discuss some of them in this paper. The general strategy is to con-
sider a sequence of embedded R-vector spaces of increasing dimension
(Vm)m=1,2,... such that Vm is a subset of polynomials. At step m the
objective is to determine a polynomial p ∈ Vm such that

∑
u∈X

p2(u)
is minimal. A variant requires to find p such that not only this sum is
minimised, but also the variety {y : p(y) = 0} admits a n-point subset,
each point of which can be paired to a point in X so that the distances
between paired points is smaller than a given threshold ε, namely for
each u ∈ X find a y in {y : p(y) = 0} such that ‖u−y‖ is smaller than ε.
In Section 6 p and the y’s are chosen so that min{‖u− y‖ | p(y) = 0} is
reached by following a classical algorithm for implicit regression analysis.

The paper is organised as follows. In Section 2 the classical BM
algorithm is recalled together with an example illustrating the issues
dealt with in the paper. In Section 3 two classical notions of numerical
independence of vectors used to avoid collinearity are outlined. The first
one is based on singular values and the second one on least squares. The
latter leads to the NBM algorithm in Section 4 and tightened into the
LDP algorithm (Section 5) which in Section 6 is integrated with the
classical Britt-Luecke method for implicit regression from Statistics.
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§2. BM algorithm for zero dimensional varieties and noisy
data

The BM algorithm [2] is a classical method for computing the Gröbner
basis of the ideal I(X) of a set of points X ⊂ R

k with respect to a term
ordering τ . It can be shortly described as follows.

The BM algorithm (BM)

• Input: a set of points X ⊂ R
k and a term ordering τ .

• Output: the τ -Gröbner basis of I(X).
• Core: stepwise construction of a monomial basis O of the
quotient space R[x1, . . . , xk]/I(X)

• Step Zero: set O = {1}.
• Generic Step: given O and t >τ s for s ∈ O, check if the vec-
tor t(X) = [t(d)]d∈X and the columns of M(X) = [s(u)]u∈X,s∈O
are linearly dependent.
If the answer is Yes, the polynomial g = t−∑

s∈O αss, where
α is s.t. M(X)α = t(X), is added to the Gröbner basis.
If the answer is No, the monomial t is added to O.

The main check of the BM algorithm is strongly effected by data per-
turbations, since small variations of the coordinates of linear dependent
vectors can turn them into linear independent vectors. For this reason
small perturbations of the points in X can correspond to a very different
Gröbner bases, as illustrated in the following example.

Example 2.1. The set X̃ = {(1, 1), (2, 3), (3, 5.1)} is obtained by
slightly changing a coordinate of a point in X = {(1, 1), (2, 3), (3, 5)}.
The DegLex-Gröbner bases G̃ and G of their vanishing ideals are very

different, since G = {x − 0.5y − 0.5, y3 − 9y2 + 23y − 15} and G̃ =
{y2 − 80x+36y+43, xy− 45x+20y+24, x2 − 26.1x+11.55y+13.55}
and the corresponding algebraic varieties are very different as well.

In order to avoid this drawback and to obtain an O set robust with
respect to small perturbations, the check of exact linear dependence of
vectors can be relaxed and substituted with that of numerical linear
dependence. In literature [4, 7, 9] there are several ways for testing
the dependence of a set of vectors from the numerical point of view.
Exploiting these ideas of numerical dependence of a set of vectors, it
is possible to design different numerical versions of the BM algorithm,
for which at each step the main check consists in testing whether
t(X) is numerically, and not exactly, dependent on the columns of
M(X) = [s(X)]s∈O.
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§3. Numerical dependence of vectors

3.1. An approach based on singular value decomposition

A classical strategy for testing the numerical dependence of a set
of vectors is based on the Singular Values Decomposition (SVD) [7].
Given a set W of vectors, let σ1 ≥ . . . σp > 0 be the singular values of
the matrix A = [v]v∈W whose columns are the elements ofW and p is the
rank of A. Given a threshold ε, if σ1 ≥ · · · ≥ σr ≥ ε > σr+1 ≥ · · · ≥ σp,
then r is called the numerical rank of A w.r.t. ε. The numerical rank
gives information about the numerical dependence of the vectors of W .
Indeed, it is well known that there exists a rank deficient matrix B such
that the rank of B is r and ‖A − B‖2 ≤ σr+1 < ε, where, for a matrix
M , ‖M‖2 is its largest singular value. In this case the columns of A can
be considered numerically dependent. Some numerical versions of the
BM algorithm exploit this notion of numerical dependence, for example
the BM Approximation algorithm in [9].

Nevertheless, the main check of the BM algorithm, which involves
the monomial t, the set of monomials O and the matrix M(X), tests
if the vector t(X) is a linear combination of the columns of M(X) in
order to compute a polynomial vanishing at X. If the points in X are
effected by data errors, then it is of interest to check if there exists a

small perturbation X̃ of X such that g(X̃) = 0, for some polynomial g
with support contained in O ∪ {t}. For this reason the generic step of

the algorithm should test if there exists a set X̃ close to X such that the

vectors {s(X̃)}s∈O∪{t} are linearly dependent. The computation of the
singular values of the matrix [M(X), t(X)] in the general case does not
give such information usually, as illustrated in the following example.

Example 3.1. For the three points set X = {1, 3, 3.1} in R, the
set of monomials O = {1, x} and the monomial t = x2, the evaluation
matrix is

M̂(X) = [M(X), t(X)] =

⎡⎣ 1 1 1
1 3 9
1 3.1 3.12

⎤⎦ .

For ε = 0.03, since {13.9931, 1.0744, 0.0279} are the singular values of

M̂(X) and since σ2 > ε > σ3, the numerical rank of M̂(X) w.r.t. ε is
equal to 2 and thus there exists a rank deficient matrix B such that

‖M̂(X) − B‖2 < ε. A possible polynomial almost vanishing at X is
f(x) = x2 − 4.0549x+ 3.0599.

Nevertheless, there does not exist any small perturbation X̃ of X

such that t(X̃) is a linear combination of the columns of M(X̃). In fact,
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for a generic perturbation X̃ = {1 + δ1, 3 + δ2, 3.1 + δ3}, the evaluation
matrix is

M̂(X̃) =

⎡⎣ 1 1 + δ1 (1 + δ1)
2

1 3 + δ2 (3 + δ2)
2

1 3.1 + δ3 (3.1 + δ3)
2

⎤⎦ .

Since det(M̂(X̃)) = (2 + δ2 − δ1)(2.1 + δ3 − δ1)(0.1 + δ3 − δ2), does not
vanish for any δi < ε, i = 1, 2, 3, it follows that there does not exist any

set close to X by less than ε such that the columns of M̂(X̃) are linearly

dependent. In conclusion there do not exist an X̃ small perturbation of

X and a polynomial f with support {1, x, x2} such that f vanishes at X̃.

3.2. An approach based on least squares method

A different definition of numerical linear dependence is presented
in [4] and [5], which formalises and exploits the concept of admissible
perturbation of X. Given a set of points X known to be effected by
experimental error and an estimation ε of the maximum componentwise

error, a set X̃ is an admissible perturbation of X if for each u ∈ X

there exists δu ∈ R
k such that ‖δu‖∞ = maxi=1,...,k |δi| < ε and X̃ =

{u+ δu |u ∈ X}.
The sets X and X̃ are indistinguishable from the numerical points

of view and so the vector t(X) can be considered linearly dependent
on the columns of the matrix M(X) with respect to ε if there exists

an admissible perturbation X̃ of X such that t(X̃) is exactly linearly

dependent on the columns of M(X̃). According to this definition, the

columns of the matrix M̂(X) in Example 3.1 are linearly independent

w.r.t. ε = 0.03, even if M̂(X) is numerically rank deficient w.r.t. ε.
Let ρ(X) = t(X)−M(X)α be the residual of the least squares prob-

lem M(X)α = t(X). Two necessary conditions for t(X) and the columns
of M(X) to be numerically dependent are

(1) |ρ(X)| ≤ ε|I −M(X)M+(X)|
k∑

i=1

∣∣∣∣ ∂g∂xi
(X)

∣∣∣∣+O(ε2) and

‖ρ(X)‖22 ≤ ε2
∑
u∈X

‖∇g(u)‖22 +O(ε3),(2)

where the absolute value is intended componentwise and M+(X) =
(M t(X)M(X))−1M t(X) is the pseudo inverse of M(X). The first up-
per bound is presented, in a slightly different formulation, in [4, Th. 3.5]
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while the second one is in [5, Prop. 4]. Thus if upper bound (1) or up-
per bound (2) are not satisfied, then there does not exist any polynomial
with support contained in O∪{t} which vanishes at any admissible per-
turbation of X. If both upper bounds (1) and (2) are satisfied, we cannot
conclude that there is a polynomial with support in O∪{t} vanishing at

some X̃. Nevertheless the polynomial g = t −∑
s∈O αss assumes small

values at X, since g(X) = ρ(X), with ‖ρ(X)‖2 ∼ O(ε).

§4. The NBM algorithm

A numerical version of the BM algorithm should check, in its generic
step, whether the vector t(X) and the columns of M(X) are linearly
dependent from a numerical point of view. Obviously, in the lucky case
when a polynomial vanishing on X is available, no check is required,
both in the cases where X is exactly known or includes noisy data.

For not noisy data, when the residual ρ(X) = t(X)−M(X)α of the
least squares problem M(X)α = t(X) is different from zero, then the
polynomial g = t − ∑

s∈O αss does not vanish at X and thus the BM
algorithm inserts t into O.

For noisy data, when neither the upper bound (1) or (2) are satisfied,
then the monomial t can be inserted in O to give a normal set for each
admissible perturbation of X. If instead (1) and (2) are both satisfied,
then, as already mentioned, a polynomial g almost vanishing at X can
be computed.

Exploiting the above, we present below a slight modification of the
Numerical BM algorithm (NBM) in [4], which is a numerical version of
the BM algorithm.

The Numerical BM algorithm

• Input: A set of points X, an error estimation ε and a term
ordering τ .

• Output: A set O of monomials and a set G of polynomials.
• Core: stepwise construction of a set O of monomials.
• Step Zero: Set O = {1}.
• Generic Step: Given O and t >τ s for s ∈ O, solve the

least squares problem M(X)α = t(X), with M(X) = [s(X)]s∈O.
Check if ρ(X) satisfies upper bound (2).
If the answer is No, the monomial t is added to O.
If the answer is Yes, then check upper bound (1) and

– if the answer is No, the monomial t is added to O;
– if the answer is Yes, g = t−∑

s∈O αss is added to G.
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Importantly, the set O computed by the NBM algorithm is a basis of

the quotient space R[x1, . . . , xn]/I(X̃) for each admissible perturbation

X̃. In fact, if at least one coordinate of ρ(X) does not satisfy the upper
bound (1) or if the 2-norm of ρ(X) does not satisfy the upper bound (2),

then there are no admissible perturbations X̃ of X such that ρ(X̃) = 0,

that is such that the vector t(X̃) and the columns of M(X̃) are depen-
dent. This implies that if M(X) is a full rank matrix then the matrix

[M(X̃), t(X̃)] is a full rank matrix too, for each admissible perturbation

X̃ and thus O is a basis of the quotient space. Furthermore, since by
construction, O is closed under taking divisors, we conclude that O is a
normal set.

Furthermore, if each point u ∈ X belongs to [−1, 1]k, each polyno-
mial g ∈ G is almost vanishing, that is ‖g(X)‖2/‖c‖2 = O(ε), where
c is the coefficient vector of g. Such result is shown in [4, Th. 5.1]
if the upper bound (1) is used, while it follows from the fact that

‖∇g(u)‖2 ≤ √
v
√∑k

j=1 D
2
j‖c‖2, where v is the cardinality of the sup-

port of g and Dj is the maximum degree of each xj in g (see Lemma 7.1),
monomials of g, if the upper bound (2) is implemented.

In the algorithm, we choose to check first upper bound (2) since it is
easier to compute than (1), because it does not require the computation
of a pseudo inverse matrix.

§5. The LDP algorithm

Example 5.1. The polynomial f = y2 + 0.01x2 − 1 has coefficient
vector c = [1, 0.01, 1] and it is almost vanishing at the point u = (12, 0)
for all ε > 0.312 since |f(u)|/‖c‖2 = 0.312. Nevertheless, the minimum
euclidean distance between u and the zero set of f is equal to 2, as shown
in Figure 1. Thus even if f is almost vanishing at u, its affine variety
does not pass close to u.

Fig. 1. The variety Z(f) = {(x, y) | y2 + 0.01x2 − 1 = 0}
does not pass close to (12, 0), w.r.t. ε = 0.4, even if
|f(u)|/‖c‖2 = 0.312 < ε.
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Given X and ε, NBM returns a normal set O such that M(X) and

M(X̃) are full rank matrices for all X̃ admissible perturbation of X.
Moreover, it returns polynomials g such that g(X) is almost zero. Now
to workaround the issue in Example 1, the LDP algorithm below seeks

an admissible perturbation X̃ and a polynomial g̃ whose coefficients are a

perturbation of those of g such that the zero set of g̃ includes X̃. LDP or
LPA stands for Low Degree Polynomial algorithm, first presented in [6].

As in NBM algorithm, the main check of LDP analyses the numerical
dependence of a set of vectors using upper bounds (1) and (2). But LDP
and NBM differ in the last step, where the g polynomials are constructed.

In theory, with LDP we want to find a set X̃ such that ρ(X̃) = 0, i.e.

t(X̃) − M(X̃)α(X̃) = 0. If such X̃ is an admissible perturbation of X

then the polynomial g̃ = t −∑
s∈O αs(X̃)s is returned and LDP stops.

Otherwise, t is added to O. The algorithm ends because in the worst
case it computes an element of the exact Gröwner basis of I(X). The
LDP algorithm can be summarised as follows.

The Low Degree Polynomial Algorithm (LDP)

• Input: As NBM.

• Output: A set O of monomials, an admissible perturbation X̃

and a low degree polynomial g̃ such that g̃(X̃) = 0.

All equal to NBM with the exception of the last row which changes to

– Key step: if the answer is Yes, compute a set X̃ such that

ρ(X̃) = 0.

* If X̃ is an admissible perturbation of X, the polynomial

g̃ = t−∑
s∈O α(X̃)ss is formed.

* Otherwise, the monomial t is added to O.

In practice, solving ρ(X̃) = 0 is a difficult task. It can be reformulated
introducing a vector of additive errors e = (eu)u∈X, where each eu is a
vector whose coordinates represent the perturbation of the point u in
X. Since each point ũ belonging to a generic admissible perturbation

X̃ of X can be expressed as ũ = u + eu, then X̃ and also ρ(X̃) can be
expressed in function of e. To keep track of this, we denote a generic
perturbation of X by X(e) and the residual of the least squares problem
M(X(e))α(X(e)) = t(X(e)) by ρ(e) = t(e)−M(e)α(e).

In this formulation, to solve ρ(X̃) = 0 is equivalent to find a vector

ẽ such that ρ(ẽ) = 0 and this gives X̃ = X(ẽ). Since the exact solution
of a nonlinear system of equations can be found in very few cases, LDP
does not compute ẽ, but an approximation of ẽ. Obviously, different
techniques can be adopted to approximate ẽ. The original version of the
LDP, presented in [6], finds an approximation ê of ẽ by means of a root
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finding method based on the Normal Flow Algorithm [14], a classical
iterative method for approximating a solution of a non linear system.
Section 6 presents an alternative method. Theorem 4.2 in [6] shows that
the polynomial ĝ computed by the LDP algorithm is almost vanishing
at X(ê) even if it does vanish at it. Furthermore, if ĝ satisfies some
simple conditions similar to the hypotheses of the Kantorovich theorem
on the convergence of Newton method, then Theorem 4.3 in [6] shows
that the zero set of ĝ lies close to X by less than ε, that is ĝ vanishes at
an admissible perturbation of X.

Example 5.2. In the left hand side plot of Figure 2, for the set of
points

X = {(0.95, 1), (5.05, 2.95), (5.05,−0.95), (9.98, 4), (10.05,−2), (17.01, 5)} ,
obtained by perturbing less than 0.1 the coordinates of six points on
f = y2 − x − 2y + 2 = 0, the dot-dashed curve is the zero set of the
minimal degree polynomial in the Gröbner basis returned by the BM
algorithm with DegRevLex ordering; the dashed curve is the zero set
of the minimal degree polynomial returned by the NBM algorithm with
ε = 0.1 and the black curve is the zero set of the polynomial returned
by the LDP algorithm with the same ε. The three polynomials with the
coefficients rounded to the first 4 decimal digits are

fBM = y3 + 0.012541x2 − 1.0439xy − 4.1372y2 + 2.0233x

+ 6.7437y − 4.5483

fNBM = y2 − 1.004x− 2.009y + 2.128

fLDP = y2 − 0.975x− 2.005y + 1.977

The right hand side plot of Figure 2 zooms around the vertex of the
parabola. The polynomials f , fNBM and fLDP have the same support
and, in this case, denoting with α, αNBM and αLDP the coefficients of
f , fNBM and fLDP , respectively, we have that

‖α− αNBM‖2
‖α‖2 =

‖[0, 0.004, 0.009,−0.128]‖2
‖[1,−1,−2, 2]‖2 = 0.0406 < ε

‖α− αLDP ‖2
‖α‖2 =

‖[0,−0.025,−0.005, 0.023]‖2
‖[1,−1,−2, 2]‖2 = 0.0109 < ε

By construction, there are six points in the zero set of fLDP which are
an admissible perturbation of X, specifically they are

X̃ = {(0.9969, 1), (5.0892, 3), (5.0688,−0.99), (9.9680, 3.96),

(10.0592,−1.97), (17.0603, 4.96)} .
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Fig. 2. The left plot shows the polynomials computed by BM
( ), NBM (– – –) and LDP (black). The right plot
shows around the point closest to the origin.

In summary, the vector ê found above is such that X(ê) is an admis-
sible perturbation of X and it is an approximation of the zero set of ρ.
By further assuming normally distributed random error with zero mean
and known covariance matrix, the algorithm could be adapted so that
ê is the solution a least squares problem as shown in Section 6 and a
maximum likelihood problem.

§6. The LDP-BL algorithm

For the long vectors z = (u+eu)u∈X, e = (eu)u∈X and a vector func-
tion f(z, θ) on the noisy data z and depending on a parameter vector
θ, the problem of finding a solution to the following constrained min-
imisation problem: mine{etR−1e} subject to f(z, θ) = 0, is the subject
of [1]. The authors assume that the measurement error e is normally
distributed with zero mean and known covariance matrix R. The solu-
tion to the constrained minimisation problem is thus the least squares
estimate of θ which can be shown to be the maximum likelihood estimate
when the model is given in implicit form (f = 0).

Under some regularity assumptions on f the authors of [1] propose
an iterative method based on Lagrange multipliers. Let z0 = (u)u∈X, zc
and θc be the current estimates of z and θ, Fθ and Fz be the Jacobian
matrix of f(z, θ) with respect to θ and to z evaluated at zc and θc,
respectively. The vectors θ and z are updated as θ+δθ and z+δz where

δθ = − (
F t
θ(FzRF t

z)
−1Fθ

)−1
F t
θ(FzRF t

z)
−1 (f(zc, θc) + Fz · (z0 − zc))

δz = −RF t
z(FzRF t

z)
−1 (f(zc, θc) + Fθ · δθ + Fz · (z0 − zc))
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A new step is performed until ‖δθ‖2 and ‖δz‖2 satisfy a smallness crite-
rion. Let us call this the Britt-Luecke algorithm.

It can be implemented inside the key step of the LDP algorithm,
where the implicit function f(z, θ) is the evaluation at an admissible
perturbation X(e) of the polynomial g = t−∑

s∈O αss, namely ρ(X(e))
and the parameter vector θ is the coefficient vector of g. At each step the
Jacobian matrix Fθ coincides with the evaluation matrix of the mono-
mials in O at the current set of points derived from z and the updating
steps are rather simple as the function is a polynomial. We call the LDP
algorithm with the strategy due to Britt and Luecke for approximating
the zeros of ρ the LDP-BL algorithm.

In general, the admissible perturbations of X computed by the LDP
and the LDP-BL algorithms are different and the set of points computed
by the LDP-BL algorithm is closer to X than the set computed by the
LDP algorithm, since the Britt-Luecke procedure minimises the 2-norm
of the vector e. Example 6.1 illustrates the different behaviour of the
LDP and of the LDP-BL algorithm.

Example 6.1. For ε = 0.55, R the identity matrix and the ten
point set

X = {(1, 2), (0.5, 1.3), (1.98, 2.05), (0, 2.08), (−0.48, 3.18),

(2.95, 5.05), (−0.95, 5.05), (−1.45, 7.2), (4, 9.98), (−2, 10.05)},

the NBM algorithm computes g = y−0.9668x2+1.9308x−2.2780, which
is almost vanishing at X, since ‖g(X)‖2/‖[1,−0.9668, 1.9308,−2.2780]‖2 =
0.2527 < ε. But g does not vanish at any admissible perturbation of the
point (1, 2), since the zero set of g does not intersect the ball with centre
in (1, 2) and radius ε (see Figure 3).

The original LDP algorithm computes g1 = y−0.9657x2+1.8292x−
2.3703 and the admissible perturbation

X1 = {(1.007, 1.508), (0.719, 1.554), (1.772, 2.162), (0.129, 2.150),
(−0.385, 3.218), (2.869, 5.070), (−0.967, 5.044), (−1.480, 7.192),

(3.913, 9.997), (−2.027, 10.045)}

while the LDP-BL algorithm computes the polynomial g2 = y−0.9467x2+
1.7542x− 2.2715 and the admissible perturbation

X2 = {(1.301, 1.592), (0.630, 1.542), (1.789, 2.163), (0.083, 2.132),
(−0.429, 3.200), (2.879, 5.069), (−1.016, 5.032), (−1.532, 7.182),

(3.929, 9.992), (−2.083, 10.03)}.
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The polynomials g1 and g2 have similar behaviour: they are almost
vanishing at X since

‖g1(X)‖2
‖[1,−0.9657, 1.8292,−2.3703]‖2 = 0.3372 < ε

‖g2(X)‖2
‖[1,−0.9467, 1.7542,−2.2715]‖2 = 0.3694 < ε,

they do not vanish at X1 and X2 exactly, nevertheless they take very
small values at X1 and X2 as ‖g1(X1)‖2 = 0.00024 and ‖g2(X2)‖2 =
0.00039 and their zero sets contain admissible perturbations of X (see
Figure 3). However note that the sum of squared euclidean distances
between associated pairs of points in X and X2 is 0.6512 which is smaller
than 0.6782, the analogue quantity for X and X1, because the LDP-BL
algorithm aims at minimising this quantity.

Fig. 3. The left plot shows the polynomials computed by
NBM (dashed curve), LDP (dot-dashed curve) and
LDP-BL (black curve). The right plot zooms the
polynomials around the vertex. The LDP algorithm
moves from the original point u to uLDP , while the
LDP-BL algorithm moves from u to uB .

§7. Properties of almost vanishing polynomials

Let f be a monic polynomial almost vanishing at X. If there exists

a monic polynomial f̃ with the same support as f and vanishing at an

admissible perturbation X̃ of X, then Theorem 7.1 shows that f and f̃
have similar coefficients.

Theorem 7.1. Let X be a set of points, ε a data error estimation, O
a finite set of monomials, t a monomial not in O, M(X) = [s(u)]u∈X,s∈O
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be full rank and t(X) = [t(u)]u∈X. Let f = t−∑
s∈O αss be a polynomial

whose coefficient vector solves the least squares problem M(X)α = t(X),

and let f̃ = t − ∑
s∈O α̃ss be a polynomial vanishing at an admissible

perturbation X̃ of X. Then

‖α− α̃‖2 ≤ 1

σ

⎛⎝‖f(X)‖2 + ε

√∑
u∈X

‖∇f̃(u)‖22 +O(ε2)

⎞⎠(3)

where σ is the smallest singular value of M(X).

Proof. Let x be a non zero vector in R
#O. By the min-max

theorem, the smallest eigenvalue λ of M(X)tM(X) is such that λ =

minx �=0
‖M(X)x‖2

2

‖x‖2
2

. Since the square roots of the eigenvalues ofM(X)tM(X)

are the singular values of M(X), the smallest singular value σ of M(X)

is equal to minx �=0
‖M(X)x‖2

‖x‖2
.

For each x = 0, we have ‖x‖2 ≤ ‖M(X)x‖2

σ and in particular

‖α− α̃‖2 ≤ 1

σ
‖M(X)(α− α̃)‖2 =

1

σ
‖M(X)α−M(X)α̃‖2

=
1

σ
‖M(X)α− t(X) + t(X)−M(X)α̃‖2

=
1

σ
‖f(X)− f̃(X)‖2 ≤ 1

σ
(‖f(X)‖2 + ‖f̃(X)‖2) .

The thesis follows since f̃ vanishes at X̃ and so, from Proposition 4 in [5],

‖f̃(X)‖22 ≤ ε2
∑

u∈X
M̃2

u , where M̃2
u = ‖∇f̃(u)‖22 +O(ε2). Q.E.D.

Sufficient conditions for the existence of f̃ vanishing at X̃ are shown
in Theorem 4.3 in [6].

Lemma 7.1 below gives a rough estimate of the sum in the square
root of Equation (3).

Lemma 7.1. Let p =
∑

s∈T βss ∈ R[x1, . . . , xk] be a polynomial
with coefficients vector β, v the cardinality of the support of p, Dj the
maximum degree of xj in p (for j = 1, . . . , k) and u = (u1, . . . , uk) ∈
[−1, 1]k, then (‖∇p(u)‖2

‖β‖2

)2

≤ v
k∑

j=1

D2
j .
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Proof. For a monomial s = xn1
1 · · ·xnk

k , it holds ∇s(u) =

[nju
n1
1 · · ·unj−1

j · · ·unk

k ]j=1,...,k and for u ∈ [−1, 1]k it holds

‖∇s(u)‖22 =
k∑

j=1

n2
ju

2n1
1 · · ·u2(nj−1)

j · · ·u2nk

k ≤
k∑

j=1

n2
j ≤

k∑
j=1

D2
j .

Since ∇p(u) =
∑

s∈T βs∇s(u), it holds

‖∇p(u)‖2 ≤
∑
s∈T

|βs| ‖∇s(u)‖2 ≤
∑
s∈T

|βs|
√√√√ k∑

j=1

D2
j

and the thesis follows since
∑

s∈T |βs| = ‖β‖1 ≤ √
v‖β‖2. Q.E.D.

Now, substituting in Equation (3) and dividing by ‖α̃‖2 yields

‖α̃− α‖2
‖α̃‖2 ≤ 1

σ

⎛⎝‖f(X)‖2
‖α‖2

‖α‖2
‖α̃‖2 + ε

√√√√n(m+ 1)
k∑

j=1

D2
j +

O(ε2)

‖α̃‖22

⎞⎠
indeed v = #O + 1 is the cardinality of O plus one. If f is almost

vanishing at X w.r.t. ε, namely ‖f(X)‖2

‖α‖2
= O(ε), for example if it has

been computed with NBM or LDP algorithms, and since ‖α̃‖2 ≥ 1

because the leading coefficient of f̃ is one, then

‖α̃− α‖2
‖α̃‖2 ≤ 1

σ

⎛⎝O(ε)

(‖α̃− α‖2
‖α̃‖2 + 1

)
+ ε

√√√√n(m+ 1)
k∑

j=1

D2
j +O(ε2)

⎞⎠
equivalently

‖α̃− α‖2
‖α̃‖2

(
1− O(ε)

σ

)
≤ O(ε)

σ
+

ε

σ

√√√√n(m+ 1)
k∑

j=1

D2
j +O(ε2)

In our typical applications σ is order of magnitude larger than ε, O does
not involve many terms and the Dj ’s are small integers, e.g. 0, 1, 2. Thus
the right hand side is small showing that the coefficients of the polyno-
mials obtained with NBM, LDP, LDP-Britt are similar. Examples 5.2
and 6.1 show this in details.
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§8. Numerical aspects

The test for numerical independence of the vector t(X) and the
columns of the matrix M(X) in the generic step of the NBM and LDP
algorithms is performed by computing the residual ρ(X) of the least
squares problem M(X)α = t(X). If t(X) is numerically independent of
the columns of M(X), then t is included into O and, at the next step,

a new monomial t̂ and a new least squares problem M̂(X)α = t̂(X) are

considered, where the coefficient matrix M̂(X) is obtained augmenting
M(X) with the column vector t(X) as the last column. In essence, the
NBM and LDP algorithms are based on a sequence of least squares
problems where, at each step, the coefficient matrix is an update of the
coefficient matrix at the previous step.

Using the QR decomposition of the coefficient matrices, the resid-
ual at the current step can be obtained exploiting the computation per-
formed at the previous step, without solving explicitly the least squares
problem. As shown in [5, Th. 3], if at the previous step M(X) is an
n × m matrix, n ≥ m, and if M(X) = QR is its QR decomposition,
where Q is an orthogonal n × n matrix and R is an upper triangular
n×m matrix with positive diagonal entries, then the QR decomposition

of M̂(X) = [M(X), t(X)] at the current step is such that the first m

columns of Q̂ coincide with the first m columns of Q, the (m + 1)-th

column of Q̂ is ρ(X)
‖ρ(X)‖2

, where ρ(X) is the residual vector at the current

step, and nothing can be said on the remaining columns of Q̂. The first

m columns of R̂ are given by R and the first m elements of the last col-

umn of R̂ are given by the first m elements of Rα, the (m+1)-th element
is given by ‖ρ(X)‖2 and the remaining positions of the last column are
filled with zeros.

Thus for evaluating the residual ρ(X) at the current step, it is suffi-
cient to update the QR decomposition of M(X) = QR for obtaining the

QR decomposition of [M(X), t(X)] = Q̂R̂. If the last diagonal element

of R̂, which is equal to ‖ρ(X)‖2, does not satisfy the upper bound (1)
or the upper bound (2), then t is added to O. Otherwise, both NBM
and LDP algorithms compute a polynomial f whose coefficient vector α
is the solution of the linear system whose coefficient matrix consists of
the first m rows of R and whose right hand side is given by the first m

elements of the last column of R̂.
A stable algorithm with low computational cost for updating the

QR decomposition of M(X) consists in the computation, at each step,
of a Householder matrix H such that the last (n −m − 1) elements of
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HQtt(X) are equal to zero. It follows that HQtt(X) is the last column

of R̂ and that HQ is the matrix Q̂ [7].

§9. Applications

The above algorithms have been employed for a number of analyses
of data sets of various complexity for which standard techniques did not
yield satisfactory results. For example they have been employed as part
of a real time statistical classifier used in colour recognition [3]; as a
tool to determine identifiable polynomial regression models from non-
standard, noisy experiments used in a thermal spraying process produc-
ing particle coatings of surfaces [11]; in marine robotics for the approx-
imation, through a polynomial curve, of the target path an unmanned
marine vehicle should follow [12, 13]; for the modelling the trajectories
of near-Earth asteroids [8]. Some of these applications have peculiarities
which make a numerical version of the BM algorithm more suitable than
another one.

9.1. Colour recognition

The first application we consider concerns the problem of colour
recognition. Training surgeons can practice by collecting little scattered
objects, i.e. coloured chickpeas, inside a laparoscopic training box, and
group them according to their colour by looking at their movements in a
monitor screen. The performance of the student is assessed in realtime
through a computer system. This requires accurate and instantaneous
colour identification of images such as the one shown in the left plot
of Figure 4. Various sources of uncertainty and subjectivity effect the
identification. For example colour is a personal interpretation of the
reflected light and are influenced by random factors (light, texture, po-
sition, temperature, humidity, etc.), also objects reflect different colours
when exposed to different sources of light.

In [3], the problem of colour recognition is addressed by applying
a semi-parametric algebraic approach to statistical classification, based
on a polynomial approximation to probability density functions. The
left plot in Figure 4 is mapped into the right one using the CIELAB
model [15] and for each colour 500 points are sampled. Out of these 500
points a subset representing the boundary is extracted, e.g. by using a
method based on the Mahalanobis distance. This subset is the X for a
colour given in input to the NBM algorithm. The output of NBM is a
polynomial p used to construct a probability density function supported
on the interior of the “chickpea”.
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Fig. 4. Image of and representation on the colour system
CIELAB.

The objective is thus to determine a smooth approximation p to
the boundary of a closed bounded two-dimensional set. To ensure that
p is a polynomial whose zero set is indeed a closed curve, only degree
two polynomials are used in NBM. As the estimation of the probability
densities supported on the clusters were robust to slight misclassification
of the cluster boundaries, the precision given by LDP was not paying
off for extra computational cost even if the algorithm was run only once
for each colour. Anyway we tried and verified that the polynomials
returned by the LDP and NBM algorithm were leading to ‘ellipses’ whose
differences were not effecting the classification.

9.2. Industrial coating of surfaces

This project was carried out under the umbrella of the collaborative
research center SFB823 of Dortmund University and published in [11].
Its objective was on determining a large set of O sets, called numerical
fan, all of which were identifiable with observations or predictions from
an experimental design. Thus, contrary to the standard set up in linear
regression where outputs Y are observed at inputs X and a linear model
f is sought in the form Y = f(X) + random error, here the data gener-
ating process is from X to Z via a third set Y of observables which are
easier to measure than Z. The interest is in determining a linear model
g either from Y to Z or from X to Z via Y .

A regular design is often chosen on the controlled variables X which
induces some canonical regression model f , but the regularity of the
design on X is not transferred into Y because either the observed Y
or the predicted f(X) are affected by random error. The instability in
the observed or predicted designs Y can naturally be dealt with some
numerical version of the BM algorithms. Varying the term-ordering in
the NBM algorithms yields a finite (possibly large depending on the
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coordinates of the Y ) collection of O sets. As the issue is in avoiding
collinearity any of NBM, LDP, LDP-BL could be safely employed.

In the specific application described in [11], related to a thermal
spraying application, the design on the control variables X was a full
factorial with central point on four variables in two levels, for a total of
17 points. An identifiable, robust to misspecification, linear regression
model f from X to Y is supported on the set of square free monomials
in four variables of degree not larger than four plus a simple quadratic
term. Either the 17 values Ŷ = f(X) or the observed values at Y of the
in-flight particles properties, are input to the NBM algorithm. In either
cases the Y sets is a seemingly random design. By varying the term-
ordering a set of 72 possible identifiable models is obtained. Each of the
72 possible identifiable models is used as maximal model in a forward
backward selection based on the AIC criterion to identify a robust model
for the coating properties Z in function of Y .

A leave-one-out cross validation analysis was performed based on the
PRESS statistics in order to compare with standard methods. It showed
the worthwhileness of the computational effort required to compute (a
part of) the numerical fan of a design for model search.

9.3. Performance assessment in marine robotics

A topic of interest in marine robotics is the evaluation of the perfor-
mance on Unmanned Marine Vehicles (UMVs) during a path-following
or a path-tracking exercise based solely on the knowledge of the posi-
tions of the vehicle in time and of the reference target. Both reference
and actual positions are give as sets of points R and V respectively, in
a two or three dimensional space according to whether the vehicle is an
Unmanned Surface Vehicle (USV) or an Unmanned Underwater Vehicle.

In [12, 13] a new criterion for evaluating the capability of an USV to
follow a desired generic curvilinear path is presented and tested based
on the LDP/LPA algorithm. By using the LDP algorithm a polynomial
approximation f to R is computed with respect to a certain tolerance ε1
and the value f(p) is used to test whether the point p ∈ V is closed to R.
This test requires that f is near to R in the L2-norm. This requirement
is the reason why the LDP algorithm (and ideally its LPD-Britt version)
is used and why the NBM algorithm, which only guarantees values of
f small in a region around R, might give misleading results. Other
norms can be used and are discussed in [13], although the Euclidean
norm seems a natural choice for the context.

The measure of closeness is quantified in two bounds called B1 and
B2 whose formulæ are provided in [13] and which depend on the Jacobian
vector and Hessian matrix of f . If |f(p)| > B1 then the curve f = 0
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does not cross an L2-ball centred in p ∈ V and of radius ε2 chosen by
the experimenter; if |f(p)| < B2 then it crosses it; otherwise it cannot
be decided. The associated performance indices are the percentage of
points in V crossing the ball and the percentage of points far from the
path. Both indices can be computed efficiently online.

In summary, the requirements of a good estimation of the error,
of high precision and of a speedy test based on close-by-ness, make
the applicative scenarios of this section a good test bed for the LPD
algorithm when used real time and online. The method proposed in [13]
to evaluate when an UMV is close to the reference path is thus

(1) computation of an algebraic curve f = 0 that approximates
the points in R within a tolerance ε1;

(2) identification of the points in V far from the reference path
f = 0 for more than a tolerance ε2.

9.4. Near-Earth asteroid modelling

In [8] the trajectories of near-Earth asteroids (NEA), that is the
whole set of heliocentric orbital elements with perihelion distance q ≤
1.3 au and eccentricity e ≤ 1, are considered with the aim of studying
their distances from the trajectory of the Earth. The authors analyse the
distribution of the NEA asteroids with respect to some of their orbital
elements. Their reconstruction is based on analytical knowledge of the
phenomenon and consists of the computation of the minimum of specific
analytic functions which at times can be hard to compute analytically.

We take a different perspective, not dissimilar to the one in Sec-
tion 9.3, and starting from the available data we construct an implicit
regression model for the distribution of the NEA asteroids. We have 300
noisy points in the two variables (q, ω) which we write as {(q, y) | y =
cosω, ω ∈ [0, 2π]} ⊂ R

2. The variable q is the perihelion distance and
ω is the perihelion argument of a set of NEAs with absolute magnitude
H ≥ 26, the measurement error is estimated to be ε = 0.002.

The NBM algorithm can be applied for obtaining information about
the distribution of NEAs directly from some measured parameters, with-
out requiring, for each selected orbital parameters, the solution of a spe-
cific different analytical problem as it is done in [8]. The 300 input points
have to be preprocessed in order to obtain a much smaller set of points
excluding those in low density areas of the (q, ω) plane and taking rep-
resentatives for high density areas (see Figure 5). This gives a set of 21
points along a curve which exhibits symmetries and singularities. Only
the seven points for which ω ∈ [0, π/2] are used as input in the NBM al-
gorithm which returns the polynomial g(q, y) = q−0.306687y−0.708222,
and thus g(q, ω) = q − 0.306687 cos(ω) − 0.708222. By reflection and
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translation of g, one obtains the red (non affine) curve in Figure 5 which
almost vanishes at the selected 21 points and is very close to the curve
γ(q, ω) = 0 presented in [8].

Fig. 5. The set of points X, the (red) curve g(q, ω) = 0 and
the (blue) curve γ(q, ω) = 0
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