
Advanced Studies in Pure Mathematics 74, 2017

Higher dimensional algebraic geometry

pp. 103–129

The dual complex of singularities

Tommaso de Fernex, János Kollár and Chenyang Xu

Dedicated to Yujiro Kawamata on the occasion of his
60th birthday

Abstract.

The dual complex of a singularity is defined, up-to homotopy, us-
ing resolutions of singularities. In many cases, for instance for iso-
lated singularities, we identify and study a “minimal” representative of
the homotopy class that is well defined up-to piecewise linear homeo-
morphism. This is derived from a more global result concerning dual
complexes of dlt pairs. As an application, we also show that the dual
complex of a log terminal singularity as well as the one of a simple nor-
mal crossing degeneration of a family of rationally connected manifolds
are contractible.

§1. Introduction

To every simple normal crossing variety E one can associate a cell
complex D(E), called the dual complex of E, that describes how the
irreducible components of E intersect; see Definition 8 for details. Over
the complex numbers, one can think of D(E) as the combinatorial part
of the topology of E.

Let (0 ∈ X) be a (not necessarily isolated) singularity and f : Y →
X a resolution such that E := Supp

(
f−1(0)

)
is a simple normal crossing

divisor. The corresponding dual complex D(E) depends on the choice
of Y but, as proved in increasingly general forms in the papers [48,
53, 49, 4, 43], the different D(E) are all homotopy equivalent, even
simple-homotopy equivalent; see Definition 18. Their simple-homotopy
equivalence class is denoted by DR(0 ∈ X).

The main result of this paper is that in many cases, for instance
for isolated singularities, one can do even better and select a “minimal”
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representative DMR(0 ∈ X) that is well defined up-to piecewise linear
homeomorphism.

For surfaces, this representative is given by D(E) of any resolution
f : Y → X such that E := Supp

(
f−1(0)

)
is a nodal curve with smooth

irreducible components and KY +E is f -nef, that is,
(
(KY +E) ·C) ≥ 0

for every f -exceptional curve C.
In higher dimensions such resolutions usually do not exist but the

Minimal Model Program tells us that such objects do exist if we allow Y
and E to be mildly singular. The relevant notion is divisorial log terminal
or dlt, see Definition 6. Every simple normal crossing pair (Y,E) is also
dlt and for general dlt pairs (Y,E) one can define the dual complex D(E)
by simply ignoring the singularities, see Definition 8. Furthermore, for
every normal variety X for which KX is Q-Cartier, there are (usually
infintely many) projective, birational morphisms p : Y → X such that
(Y,E) is dlt and KY + E is p-nef, where E is the divisorial part of the
exceptional set Ex(p); see [40]. These are called the dlt modifications of
X, see Definition 13. (Conjecturally, dlt modifications exist for any X.)

Our main theorem is the following. Here we state it for isolated
singularities; the general form is given in Section 4.

Theorem 1. Let (0 ∈ X) be an isolated singularity over C such
that KX is Q-Cartier. Let p : Y → X be a proper, birational morphism
and E ⊂ Y the divisorial part of Supp p−1(0). Assume that (Y,E) is dlt
and E �= ∅.

(1) If p is a dlt modification, that is if KY +E is p-nef, then the dual
complex D(E) is independent of p, up-to PL homeomorphism.
This defines a PL homeomorphism class associated to (0 ∈ X);
we denote it by DMR(0 ∈ X).

(2) If E = Supp p−1(0) then the dual complex D(E) is simple-
homotopy equivalent to DMR(0 ∈ X).

(3) If X is Q-factorial, p is projective and p is an isomorphism
over X \ {0} then D(E) collapses to DMR(0 ∈ X).

Here DMR stands for the “Dual complex of the Minimal divisorial
log terminal partial Resolution” and a collapse is a particularly simple
type of homotopy equivalence; see Definition 18.

The assumptions in (1.1–2) are most likely optimal.
If the minimal model conjecture holds for dlt pairs then DMR(0 ∈

X) is defined even if KX is not Q-Cartier, but it need not be homotopy
equivalent to DR(0 ∈ X). On the other hand, even in these cases, we can
apply the more general Theorem 28 to a pair (X,Δ) where Δ ∼Q −KX

is a general Q-divisor.
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Even for hypersurface singularities the various D(E) are not home-
omorphic to each other, even the number of connected components of
D(E) can change.

By contrast, the necessity of the assumptions in (1.3) is not clear
and we do not have any examples where D(E) does not collapse to
DMR(0 ∈ X). Note also that many singularities are Q-factorial (for
instance all isolated complete intersection singularities of dimension ≥
4) and many can be made Q-factorial by choosing a suitable algebraic
model [42].

If X is log terminal then its dlt modification is the identity map
X ∼= X, thus E = ∅. Nonetheless, in this case we define DMR(0 ∈ X)
to be a point, rather than the empty set. By a simple trick of introducing
an auxiliary divisor, we can apply the general version of Theorem 1 to
this case and prove the following.

Theorem 2. Let 0 ∈ X be a point on a dlt pair (X,Δ) over C.
Then DR(0 ∈ X) is contractible.

Although the connection is not immediate, we derive Theorems 1–2
from the following more global result which is the main technical theorem
of the paper. It asserts that for a given dlt pair (X,Δ), one should focus
on the sum of those divisors that appear in Δ with coefficient 1. This
divisor, denoted by Δ=1, is also the union of all log canonical centers of
(X,Δ).

Theorem 3. Let (X,Δ) be a quasi projective, dlt pair over C and
g : Y → X a projective resolution such that E := Supp g−1(Δ=1) is a
simple normal crossing divisor. Then

(1) The dual complex D(E) is simple-homotopy equivalent to D(Δ=1).
(2) If E is Q-Cartier then D(E) collapses to D(Δ=1).

For a simple normal crossing divisor E ⊂ X the intersections of the
various Ei ⊂ E are also the log canonical centers of the pair (X,E), thus
one can also view the dual complex as describing the combinatorics of
log canonical centers.

For a general log canonical pair (X,Δ) these two approaches give
different objects and it is of interest to study the cases when they are
the same. This leads to the concept of quotient-dlt pairs, see Definition
35.

Quotient-dlt pairs constitute a useful subclass of log canonical pairs
which is preserved by Fano contractions. In Section 5 this leads to a
short proof of the following, which extends earlier results of [29, 22].

Theorem 4. Let f : X → (0 ∈ C) be a flat projective morphism to
a smooth, pointed curve over C. Assume that the general fibers Xt are
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smooth, rationally connected and F0 := red f−1(0) is a simple normal
crossing divisor. Then D(F0) is contractible.

5 (Topological remarks). One should think of elementary collapses
and their inverses (see Definition 18) as the obvious homotopy equiva-
lences. A sequence of them gives simple-homotopy equivalences.

By a theorem of Whitehead, every homotopy equivalence between
simply connected simplicial complexes is homotopic to a simple-homotopy
equivalence, but this can fail when π1 �= 1; see [6].

Being collapsible is much stronger than being contractible. For in-
stance, the dunce hat or Bing’s house with two rooms are contractible,
even simple-homotopy equivalent to a point, yet they are not collapsible;
cf. [54].

We do not have any examples as in Theorems 2 or 4 where the
dual complex is not collapsible. There are some indications, for example
Theorems 32–33, that dual complexes coming from algebraic geometry
are somewhat special.

History. The dual graph of the exceptional curves of resolutions of
surface singularities has been studied for a long time. To the best of
our knowledge, higher dimensional versions first appeared in [38] for de-
generations of K3 surfaces. The members of the seminar [10] essentially
knew Theorem 2 for 3-folds and Theorem 4 for surfaces.

The connectedness conjecture of [44], proved in [27, Sec.17], was the
first indication that exceptional divisors with discrepancy ≤ −1 play a
special role. The role of the dual complex of these divisors is studied
in [14, 16], especially for lc singularities. The effect of the MMP on the
dual complex is studied in [12] which essentially leads to the proof of
Theorem 1 for log canonical X.

Much of the early work on the abundance conjecture involves un-
derstanding how a dual complex changes under birational maps. In
retrospect, versions of Proposition 11 are contained in [27, 24, 13].

Theorem 2 is obvious if dimX = 2 and the simple connectedness
of DR(0 ∈ X) follows from [28, 52]. Much of the 3-dimensional case is
proved in [49]. For quotient singularities in arbitrary dimensions Theo-
rem 2 is proved in [26]

It is interesting to connect algebraic properties of singularities with
topological properties of the dual complex. Using [47] one can show that
if (0 ∈ X) is a rational singularity then DR(0 ∈ X) is Q-acyclic, that
is, Hi

(DR(0 ∈ X),Q
)
= 0 for i > 0. If (0 ∈ S) is a rational surface

singularity then DR(0 ∈ S) is contractible. [48] asked if DR(0 ∈ X) is
contractible for higher dimensional isolated rational singularities as well,
however the opposite turned out to be true. A finite simplicial complex
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C occurs as a dual complex of a rational singularity iff C is Q-acyclic;
see [23, Thm.42], [33, Thm.8] and [35, Thm.3].

By [35, Thm.2] every finite simplicial complex occurs as a dual com-
plex of some isolated singularity.

After this, the dlt case seemed a natural candidate. It was explic-
itly asked in [33, Question 69] and in [8]. Our results also answer [33,
Question 68] and solve [33, Conjecture 70].

While we prove contractibility of various dual complexes, the con-
traction and even the end result depend on auxiliary choices. Nonethe-
less, in many examples there seems to be a canonical choice and it would
be useful to understand this situation better.

We were led to conjecturing Theorems 2–4 partly through arithmetic
considerations. If (0 ∈ X) and the resolution Y → X are defined over a
field k then the Galois group Gal(k̄/k) acts on the dual complex DR(0 ∈
Xk̄) over an algebraic closure k̄. The key results of the papers [29,
22, 39] say that this action has a fixed point. This suggests that in
these settings the dual complex has a natural retraction to a particular
point that is Galois-invariant. See Theorems 32–33 for the corresponding
generalizations.

Our methods rely on the minimal model program or MMP. In gen-
eral, the property of a pair to have simple normal crossings is not pre-
served during MMP but being dlt is preserved. Our main technical result
studies how the dual complex D(Δ=1) changes as we run MMP on a dlt
pair (X,Δ). In retrospect, the connectedness theorems [37, Thm.5.48]
and [34, Sec.4.4] appear as the simplest special cases of Theorem 3.
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under grant number DMS-0847059 and by the Simons Foundation. Par-
tial financial support to JK was provided by the NSF under grant num-
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port to CX was provided by the NSF under grant number DMS-1159175,
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ernment grant “Recruitment Program of Global Experts.”

6 (Notation and Conventions). We follow the notation and defini-
tions of the books [37, 34]. We work over an algebraically closed field of
characteristic 0.

A pair (X,Δ) consists of a normal variety X and a Q-divisor Δ on
it. If all coefficients are in [0, 1] (resp. (−∞, 1]), then we say that Δ is a
boundary (resp. sub-boundary).
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Let f : Y → X be a birational morphism. If KX + Δ is Q-Cartier
then the formulas

KY +ΔY ∼Q f∗(KX +Δ) and f∗ΔY = Δ

define the Q-divisor ΔY , called the log pull-back of Δ. (See [37, Sec.2.3]
or [34, 2.6] for details.) For a divisor E ⊂ Y its discrepancy, denoted
by a(E,X,Δ), is the negative of its coefficient in ΔY .

A pair (X,Δ) is log canonical, abbreviated as lc, if a(E,X,Δ) ≥ −1
for every divisor E and every birational morphism f : Y → X.

Let (X,Δ) be an lc pair. An irreducible subvariety Z ⊂ X is an lc
center iff there is a birational morphism f : Y → X and a divisor E ⊂ Y
such that a(E,X,Δ) = −1 and f(E) = Z.

We say that (X,Δ) is a simple normal crossing pair if X is smooth
and Δ has simple normal crossing support. Given any pair (X,Δ), there
is a largest open set Xsnc ⊂ X, called the simple normal crossing locus
or snc locus such that

(
Xsnc,Δ|Xsnc

)
is a simple normal crossing pair.

A log canonical pair (X,Δ) is divisorial log terminal, abbreviated
as dlt, if none of the lc centers of (X,Δ) is contained in X \Xsnc.

Two pairs (Xi,Δi) are called crepant birational equivalent if there
are proper, birational morphisms fi : Y → Xi such that the log pull
back of Δ1 on Y equals the log pull back of Δ2 on Y .

§2. The dual complex of a dlt pair

Definition 7. For cell complexes, we follow the terminology of [21],
see especially Section 2.1 and the Appendix.

The notion of an (unordered) Δ-complex is defined inductively. A
0-dimensional Δ-complex is a collection of points called vertices. If k-
dimensional Δ-complexes and their attaching maps are already defined,
we obtain (k + 1)-dimensional Δ-complexes as follows.

Let Ck be a k-dimensional Δ-complex and {Si : i ∈ Ik+1} a col-
lection of (k + 1)-dimensional simplices. The boundary ∂Si is a k-
dimensional cell complex. An attaching or characteristic map is a map
τi : ∂Si → Ck. Identifying the points of ∂Si with their image in Ck

for every i gives a (k + 1)-dimensional Δ-complex Ck+1. The ≤ k-
dimensional cells of Ck+1 are the cells in Ck and the images of the Si

give the (k+1)-dimensional cells. For j ≤ k the cell complex Cj is called
the j-skeleton of Ck+1.

If all the attaching maps are embeddings, then the resulting object
is a regular cell complex.

A regular cell complex is called a simplicial complex if the inter-
section of any 2 simplices S1, S2 is a single (possibly empty) simplex
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S3 which is a facet in both of them. In Figure 1 below we have 3 Δ-
complexes of dimension 1. The first is a Δ-complex that is not regular,
the second is regular but not simplicial and the third is simplicial.

v1 v1 v2 v1 v2

v3

v4

Fig. 1

Let D be a regular cell complex. For a simplex v ⊂ D let St(v) be
the (open) star of v, that is, the union of the interiors of all cells whose
closure contains v. Its closure, denoted by St(v), is the closed star.

IfD is a simplicial complex then their difference Lk(v) = St(v)\St(v)
is the link of v. Note that the stellar subdivision of the closed star St(v)
is a cone over the link Lk(v). (This fails if D is not simplicial.)

Definition 8. Let Z =
⋃

i∈I Zi be a pure dimensional scheme with
irreducible components Zi. Assume that

(1) each Zi is normal and
(2) for every J ⊂ I, if ∩i∈JZi is nonempty, then every connected

component of ∩i∈JZi is irreducible and has codimension |J |−1
in Z.

Note that assumption (2) implies the following.

(3) For every j ∈ J , every irreducible component of ∩i∈JZi is
contained in a unique irreducible component of ∩i∈J\{j}Zi.

The dual complex D(Z) of Z is the regular cell complex obtained as
follows. The vertices are the irreducible components of Z and to each
irreducible component of W ⊂ ∩i∈JZi we associate a cell of dimension
|J | − 1. This cell is usually denoted by vW .

The attaching map is given by condition (3). Note that D(Z) is a
simplicial complex iff ∩i∈JZi is irreducible (or empty) for every J ⊂ I.

Let X be a variety and E a divisor on X. If Supp(E) satisfies the
conditions (1–2), then D(E) := D(

Supp(E)
)
is called the dual complex

of E.
Note that conditions (1–2) are satisfied in three important cases:

(4) X is a smooth and E is a simple normal crossing divisor.
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(5) (X,Δ) is a dlt pair and E := Δ=1 is the set of divisors whose
coefficient in Δ equals 1.

(6) We introduce quotient-dlt pairs in Definition 35 with conditions
(1–2) in mind.

Here the claim (4) is clear and (5) is proved in [15, Sec.3.9]; see also
[34, Thm.4.16]. In the dlt case, let Xsnc ⊂ X be the simple normal
crossing locus. Then D(

Δ=1
)
= D(

(Δ|Xsnc)=1
)
, thus the dual complex

is insensitive to the singularities of (X,Δ).
In the above cases (4–6) the cells of D(E) = D(Δ=1) are identified

with the log canonical centers of (X,Δ). Frequently these are also called
the strata of E or of Δ=1.

Even if X is smooth and E =
⋃

i∈I Ei is a simple normal crossing
divisor, the dual complex D(E) need not be a simplicial complex, but
this can be achieved after some blow-ups as in Remark 10.

It is possible to define the dual complex even if Z does not satisfy
the conditions (1–2). However, there seem to be several ways to do it
and we do not know which variant is the most useful. In this paper we
only use the cases arising from (4–6).

9 (Blowing-up and the dual complex). Let X be a smooth variety
and E =

⋃
i∈I Ei a simple normal crossing divisor. Let Z ⊂ X be

a smooth, irreducible subvariety that has only simple normal crossing
with E; see [30, 3.24].

Let π : BZX → X denote the blow up of Z with exceptional divisor
E′

0 (assuming 0 �∈ I). Let E′
i := π−1

∗ (Ei) denote the birational transform
of Ei and E′ := π−1

∗ (E) =
⋃

i∈I E
′
i. Then E′

0 ∪ E′ is a simple normal
crossing divisor. By a direct computation we see the following.

(1) If Z is a stratum of E then D(
E′

0 ∪E′) is obtained from D(
E
)

by the stellar subdivision of D(
E
)
corresponding to an interior

point of the cell vZ .
(2) If Z is not a stratum of E then D(

E′) = D(
E
)
.

(3) If Z is not a stratum of E but Z ⊂ E then D(
E′

0 ∪ E′) is

obtained from D(
E
)
as follows.

Let EZ be the smallest stratum that contains Z and vZ
the corresponding simplex. Note that EZ is an irreducible
component of some intersection

⋂
i∈J Ei. Let D(Z) denote

the dual complex of
∑

i∈I\J Ei|Z . Then the dual complex

D(
E′|E′

0

)
is the join vZ ∗ D(Z) (see e.g. [21, Page 9]). There

is a natural map τL : D(Z) → Lk(vZ) hence we get a map
τS : vZ ∗ D(Z) → St(vZ). We can identify vZ ∗ D(Z) with a
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subcomplex of the cone Cone
(
vZ ∗D(Z)

)
and attach the latter

to D(
E
)
using τS to get D(

E′
0 ∪ E′).

Since the cone over the join retracts (even collapses) to
the join, we see that D(

E′
0 ∪ E′) retracts (even collapses) to

D(
E
)
. (However, they need not be PL homeomorphic; even

their dimension can be different.)

Note on terminology. Let D be a regular cell complex and p ∈ D a
point. The stellar subdivision of D with center p is obtained as follows.

i) The closed cells not containing p are unchanged.
ii) If v is a closed cell containing p, we replace it by all the cells

that are spans 〈p,w〉 where w ⊂ v is any face non containing
p.

(Some authors seem to call this a barycentric subdivision, but this goes
against standard usage in PL topology [21, 46].)

Let (X,Δ) be an snc pair where Δ is a sub-boundary and apply the
above observations to E := Δ=1. Write

KBZX +ΔZ ∼Q π∗(KX +Δ
)

and set EZ := (ΔZ)
=1. Note that EZ = E′ if Z is not a stratum of

E and EZ = E′
0 ∪ E′ if Z is a stratum of E. Thus we conclude the

following.

(4) If
(
KBZX ,ΔZ

)
is obtained from (KX ,Δ) by blowing up a sub-

variety Z ⊂ X that has simple normal crossing with Δ then
D(

Δ=1
Z

)
is PL homeomorphic to D(

Δ=1
)
.

Remark 10. The barycentric subdivision of any dual complex is
simplicial. For the dual complex of a simple normal crossing divisor, it
can be realized by blow-ups as follows.

Let X be a smooth variety and E =
⋃

i∈I Ei a simple normal cross-
ing divisor. Let Zi ⊂ X denote the union of all i-dimensional strata of
E. Consider a sequence of blow-ups

Π : X̃ := Xn−1
πn−2−→ Xn−2 → · · · → X1

π0−→ X0 := X

where πi : Xi+1 → Xi denotes the blow-up of the birational transform
(π0 ◦ · · · πi−1)

−1
∗ Zi ⊂ Xi.

Each blow-up center is smooth and Π−1E is a simple normal crossing
divisor whose dual complex D(

Π−1E
)
is the stellar subdivision of D(E).

Finally, we know that a barycentric subdivision can be written as a
sequence of stellar subdivisions.
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The following invariance result for the dual complexes of crepant-
birational dlt pairs is a considerable strengthening of [34, 4.35].

Proposition 11. Let fi : (Xi,Δi) → S be proper morphisms. As-
sume that the (Xi,Δi) are dlt and crepant-birational to each other over
S. Then the dual complexes D(

Δ=1
i

)
are PL homeomorphic to each

other.

Proof. By [51], every dlt pair (X,ΔX) has a log resolution g :
(Y,ΔY ) → (X,ΔX) such that D(

Δ=1
Y

)
is identified with D(

Δ=1
X

)
. Thus

we may assume that the (Xi,Δi) are snc pairs but now the Δi are only
sub-boundaries.

Next we use the factorization theorem of [1] which says that there
is a sequence of smooth blow-ups as in Paragraph 9 and their inverses

X1 = Y0
π0��� Y1

π1��� · · · πm−1��� Ym
πm��� Ym+1

πm+1��� · · · πr−1��� Yr = X2.

Moreover, we may assume that the induced maps π−1
0 ◦· · ·◦π−1

i−1 : Yi ���
X1 are morphisms for i ≤ m and the induced maps πr−1◦· · ·◦πi : Yi ���
X2 are morphisms for i ≥ m.

Let Θi be the log pull-back of Δ1 for i ≤ m and the log pull-back of
Δ2 for i ≥ m by the above morphisms. Note that the two definitions of
Θm agree since the (Xi,Δi) are crepant-birational to each other over S.

We use (9.4) to show that at each step D(
Θ=1

i

)
changes either by a

stellar subdivision or its inverse.
Thus the D(

Δ=1
i

)
are obtained from each other by repeatedly adding

and removing stellar subdivisions. Q.E.D.

Complement 12. Using the above notation, let Z ⊂ S be a closed
subset. Let Θ=1

i,Z ⊂ Θ=1
i be the union of those divisors that are contained

in f−1
i (Z). Assume further that every lc center of Θ=1

i contained in

f−1
i (Z) is also an lc center of Θ=1

i,Z .

Then the above proof shows that the dual complexes D(
Δ=1

i,Z

)
are

PL homeomorphic to each other.

Although we do not need this, it is worth remarking that if X1 ���
X2 is an isomorphism in codimension 1 then we can go between the Xi

by a series of flops. The topological analogs of these are the Pachner
moves or bistellar flips, see [41].

We will need several types of partial resolutions of a pair (X,Δ).

Definition 13. Let X be a normal variety and Δ a boundary on
X. Let g′ : (X ′,Δ′) → (X,Δ) be a proper, birational morphism where
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Δ′ = E + (g′)−1
∗ Δ and E is the sum of all divisors in Ex(g′). We say

that

g′ : (X ′,Δ′) → (X,Δ) is a

⎧⎨
⎩

dlt
qdlt
lc

⎫⎬
⎭ modification

if

(X ′,Δ′) is

⎧⎨
⎩

dlt
qdlt
lc

⎫⎬
⎭ and KX′ +Δ′ is

⎧⎨
⎩

f -nef.
f -nef.
f -ample.

We frequently denote a dlt modification by gdlt :
(
Xdlt,Δdlt

) → (X,Δ)

and an lc modification by glc :
(
X lc,Δlc

) → (X,Δ). For qdlt, see
Definition 35.

Every pair (X,Δ) such that KX +Δ is Q-Cartier has a unique log
canonical modification and (usually non-unique) dlt modifications by
[40]. (Conjecturally, both should exist for any (X,Δ).) We also remark
that because we require that KX +Δ is nef, this is indeed stronger than
the existence of dlt blow up proved by Hacon (see [17, 10.4]).

Note that Ex(glc) has pure codimension 1, but this need not hold for
Ex(gdlt). However, we prove in Lemma 29 that there is a dlt modification
such that Ex(gdlt) has pure codimension 1.

We can now define the most important dual complexes associated
to a pair (X,Δ).

Definition 14. Let X be a normal variety and W ⊂ X a closed
subvariety. Let p : Y → X be a resolution of singularities such that
Supp p−1(W ) is a simple normal crossing divisor. By [48, 53, 49, 4,
43], the simple-homotopy class of the dual complex D(

Supp p−1(W )
)
is

independent of the choice of p. We denote it by DR(W ⊂ X).

Definition 15. The non-klt locus of (X,Δ) is the unique smallest
subscheme W ⊂ X such that

(
X \ W,Δ|X\W

)
is klt. It is frequently

denoted by non-klt(X,Δ). It can be written as gdlt
(
(Δdlt)=1

)
for any

dlt modification.
Any two dlt modifications are crepant-birational to each other over

X. (Although not explicitly stated, this is what the proof of [37, 3.52]
gives.) Hence, by Proposition 11, the dual complex

DMR(X,Δ) := D(
(Δdlt)=1

)

is independent of the choice of gdlt : Xdlt → X, up-to PL homeomor-
phism.
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We stress that DMR(X,Δ) is a PL homeomorphism equivalence
class but DR(W ⊂ X) is a simple-homotopy equivalence class.

Note that DMR(X,Δ) does depend on Δ, not just on the pair
(W ⊂ X). This will be quite useful to us. In some cases we will be able
to compute DR(W ⊂ X) by choosing a suitable Δ and then computing
DMR(X,Δ).

§3. Running MMP

Let (X,Δ) be an lc pair and f : X ��� Y a step (a divisorial con-
traction or a flip) in an (X,Δ)-MMP. Set ΔY := f∗Δ; then (Y,ΔY ) is
also an lc pair. Furthermore, if (X,Δ) is dlt then so is (Y,ΔY ) by [37,
3.44].

Once we introduce quotient-dlt pairs in Section 5, we see that all
the proofs and results in this section hold for quotient-dlt pairs.

Let Z ⊂ X be an lc center of (X,Δ). We say that f contracts Z if
Z ⊂ Ex(f). If Z �⊂ Ex(f) then f∗(Z) is an lc center of (Y,ΔY ). Since
discrepancies strictly increase for every divisor whose center is contained
in Ex(f), we see that every lc center of (Y,ΔY ) is obtained this way from
a non-contracted lc center of (X,Δ). Using this observation repeatedly,
we conclude the following.

Lemma 16. Let (X,Δ) be a dlt pair and f : X ��� Y a birational
map obtained by running an (X,Δ)-MMP. Set ΔY := f∗Δ. Then the
dual complex D(Δ=1

Y ) is naturally a subcomplex of D(Δ=1). Q.E.D.

In general, the inclusion D(Δ=1
Y ) ⊂ D(Δ=1) is not a homotopy

equivalence, but this happens in many interesting cases. The follow-
ing examples illustrate the main possibilities.

Example 17. Let Z = (x1x2 − x3x4 = 0) ⊂ C4 be the quadric
cone. Consider the planes A1 := (x1 = x3 = 0), A2 := (x2 = x4 =
0), B1 := (x1 = x4 = 0), B2 := (x2 = x3) = 0. The two small resolutions
are Y ′ := BA1X = BA2X and Y ′′ := BB1X = BB2X. By explicit
computation we see the following.

(1) f : Y ′ ��� Y ′′ is a flip for
(
Y ′, A′

1+A′
2

)
. The corresponding dual

complexes are as in Figure 2.

vA′
1

vA′
2

vA′′
1

vA′′
2

Fig. 2

This is not a homotopy equivalence.
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(2) f : Y ′ ��� Y ′′ is a flip for
(
Y ′, A′

1+A′
2+B′

1

)
. The corresponding

dual complexes are as in Figure 3.

vB′
1

vA′
2

vA′
1

vB′′
1

vA′′
2

vA′′
1

Fig. 3

This is a homotopy equivalence, even a collapse.
(3) f : Y ′ ��� Y ′′ is a flop for

(
Y ′, A′

1 + A′
2 + B′

1 + B′
2

)
. The

corresponding dual complexes are as in Figure 4.

vB′
1

vA′
2

vA′
1

vB′
2

vB′′
1

vA′′
2

vA′′
1

vB′′
2

Fig. 4

This is a PL homeomorphism, a composite of a stellar subdivison
(whose center is the center of the square) and its inverse.

In order to describe the general case precisely, we need some concepts
from simplicial complex theory, especially the notion of collapse.

Definition 18. LetD be a regular cell complex. Let v be a cell in D
and w a face of v. We say that (v, w) is a free pair if w is not the face of
any other cell in D. The elementary collapse of (D, v,w) is the regular
complex obtained from D by removing the interiors of the cells v and
w. This is clearly a homotopy equivalence. A sequence of elementary
collapses is called a collapse. A regular complex D is collapsible if it
collapses to a point.
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A map g : C1 → C2 of regular complexes is a simple-homotopy equiv-
alence if it is homotopic to a map obtained by a sequence of elementary
collapses and their inverses. If the Ci are simply connected, then every
homotopy equivalence is a simple-homotopy equivalence. However, in
general not every homotopy equivalence is a simple-homotopy equiva-
lence; the difference is measured by the Whitehead torsion. For details
and for proofs see [6].

The following is our key result relating extremal contractions to
collapses of the dual complex.

Theorem 19. Let (X,Δ) be dlt and f : X ��� Y a divisorial con-
traction or flip corresponding to a (KX + Δ)-negative extremal ray R.
Set ΔY := f∗Δ. Assume that there is a prime divisor D0 ⊂ Δ=1 such
that (D0 ·R) > 0.

Then D(Δ=1) collapses to D(Δ=1
Y ).

Proof. We distinguish two types of contracted lc centers.
Case 1. Let Z be a contracted lc center such that Z ⊂ D0. Then

there is a subset 0 �∈ J ⊂ I such that Z is an irreducible component
of D0 ∩

⋂
i∈J Di. Thus there is a unique irreducible component Z+ of

∩i∈JDi such that Z is an irreducible component of D0 ∩ Z+. We claim
that Z+ ⊂ Ex(f).

Indeed, if Z+ �⊂ Ex(f) then f∗(Z+) ⊂ Y is an lc center which has
nonempty intersection with Ex(f−1). Since (D0 · R) > 0, we see that
f∗(D0) contains Ex(f−1). Denote by h : X → X1 the divisorial or flip
contraction morphism. Recall that Z is also a connected component
of D0 ∩ Z+. Therefore, Proposition 25 implies that if there is another
component of D0 ∩ Z+ whose image intersects h(Z), then itself must
intersect with Z which is absurd. Hence we conclude that Z is the same
as D0 ∩ Z+ over a neighborhood of h(Z). Thus over the neighborhood
of h(Z), f∗(Z+) ∩ f∗(D0) is a nonempty subset of Ex(f−1). By [2],
f∗(Z+) ∩ f∗(D0) is a union of lc centers. However, Ex(f−1) does not
contain any lc centers, a contradiction.

Case 2. Let W be a contracted lc center such that W �⊂ D0. We
claim that W− := W ∩D0 is a (nonempty, irreducible) lc center. Thus
W− is also contracted and the operations Z �→ Z+ and W �→ W− are
inverses.

To see this, let h : X → X1 denote the contraction. First apply
Proposition 25 to the generic point of the Stein factorization of the
morphism (W,W ∩ D0) → h(W ). It shows that W ∩ D0 has a unique
irreducible component W− that dominates h(W ). If W ∩ D0 has any
other irreducible component W ∗, this would give a contradiction using
Proposition 25 over the generic point of h(W ∗).
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Let M ⊂ D(Δ=1) be the union of the interiors of all cells vZ where
Z ⊂ Ex(f) is a contracted lc center. Thus

D(Δ=1
Y ) = D(Δ=1) \M.

We show that all the cells in M can be collapsed, starting with the
largest dimensional ones.

By the above considerations, the cells in M naturally come in pairs(〈vD0 , vW 〉, vW
)

where W ⊂ X is a contracted lc center not contained in D0. The other
cell 〈vD0 , vW 〉, spanned by vD0 and vW , is the same as vD0∩W . We
call vW link-type (since vW ⊂ Lk(vD0)) and 〈vD0 , vW 〉 star type (since
〈vD0 , vW 〉 ⊂ St(vD0)).

Note further that if an lc center W is contracted, then so is every lc
center contained in W . Dually, if vW ∈ M is a facet of a cell vV then
also vV ⊂ M .

Let
(〈vD0 , vW 〉, vW

)
be a maximal dimensional pair in M . If vW is

a face of a cell vV then vV is also in M . By maximality of dimension,
vV is of star-type, thus vV = 〈vD0 , vW 〉. Thus (〈vD0 , vW 〉, vW

)
is a free

pair and it can be collapsed.
Set m := dimD(Δ=1

Y ). Note that these collapses remove all star-
type cells of dimension m and all link-type cells of dimension m− 1.

Next we look at an (m − 1)-dimensional pair
(〈vD0 , vW 〉, vW

)
. As-

sume that vW is a face of a cell vV . It can not be of link-type since we
have already removed all link-type cells of dimension m− 1. Thus vV is
of star-type and so vV = 〈vD0 , vW 〉. Hence

(〈vD0 , vW 〉, vW
)
is again a

free pair and can be collapsed.
Iterating this completes the proof. Q.E.D.

Remark 20. It is interesting to see what happens in Theorem 19
if (Di ·R) < 0 for every Di ⊂ Δ=1.

Let Z be a contracted lc center that is an irreducible component
of

⋂
i∈J Di. Then Ex(f) ⊂ Di for every i, thus Ex(f) = Z. Hence

D(Δ=1
Y ) is obtained from D(Δ=1) by removing the cell vZ . This is not

a homotopy equivalence, even the Euler characteristic changes by 1.
The general case when (Di · R) ≤ 0 for every Di ⊂ Δ=1 is more

complicated.

In order to use Theorem 19 we need to find conditions that ensure
the existence of such a divisor D0 at each step of an MMP.

Lemma 21. Let (X,Δ) be dlt and g : X → S a morphism. Assume
that there is a numerically g-trivial effective divisor A whose support
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equals Δ=1. Let f : X ��� Y be a divisorial contraction or flip corre-
sponding to a KX +Δ-negative extremal ray R over S. Then

(1) either Ex(f) does not contain any lc centers
(2) or there is a prime divisor D0 ⊂ Δ=1 such that (D0 ·R) > 0.

Proof. Let Z be a contracted lc center that is an irreducible com-
ponent of ∩i∈JDi. We are done if (Di ·R) > 0 or some i.

Otherwise (Di · R) ≤ 0 for every Di ⊂ Δ=1 and so (A · R) ≤ 0
with equality holding only if (Di · R) = 0 for every Di. In particular
(Di ·R) = 0 for every i ∈ J .

If f contracts a divisor Ef then (Ef · R) < 0. Thus Ef is not one
of the Di. Set ZY := f(Z). If f = (h+)−1 ◦ h is a flip, set ZY :=
(h+)−1

(
h(Z)

)
. In both cases, as Di · R = 0, we know that ZY ⊂

∩i∈Jf∗(Di) and ZY ⊂ Ex(f−1). Thus ∩i∈Jf∗(Di) is nonempty and it is
not the f∗-image of a non-contracted lc center. However, ∩i∈Jf∗(Di) is
a union of lc centers by [2], a contradiction. Q.E.D.

Using Theorem 19 and Lemma 21 for every step of an MMP gives
the following.

Corollary 22. Let (X,Δ) be dlt and g : X → Z a morphism. Let
f : X ��� Y be a birational map obtained by running an (X,Δ)-MMP
over Z. Set ΔY := f∗Δ. Assume that there is a numerically g-trivial
effective divisor whose support equals Δ=1. Then D(Δ=1) collapses to
D(Δ=1

Y ). Q.E.D.

The next lemma gives other examples where the assumptions of
Theorem 19 are satisfied.

Lemma 23. Let X,Y be normal, Q-factorial varieties and p : Y →
X a projective, birational morphism. Let Γ be a boundary on Y such
that (Y,Γ) is lc. Let f : Y ��� Y1 be a divisorial contraction or flip
corresponding to a (KY + Γ)-negative extremal ray R over X. Then

(3) either there is an ER ⊂ Ex(p) such that (ER ·R) > 0
(4) or f contracts a divisor Ef ⊂ Ex(p) and Y1 → X is a local

isomorphism at the generic point of f(Ef ).

Proof. Let p1 : Y1 → X be the natural morphism. Since X is
Q-factorial, Ex(p1) has pure codimension 1.

Assume first that f is a divisorial contraction of a divisor Ef . We are
done if (4) holds. Otherwise f(Ef ) ⊂ Ex(p1) hence there is an irreducible
divisor E1 ⊂ Ex(p1) that contains f(Ef ). Hence its birational transform
ER := f−1

∗ E1 has positive intersection with R.
Next assume that f = (h+)−1 ◦ h is a flip. Then Ex(h+) ⊂ Ex(p1).

Since X is Q-factorial, there is an effective anti-ample divisor supported
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on Ex(p1) [37, 2.62]. So there is an irreducible divisor E1 ⊂ Ex(p1)
that has negative intersection with a flipped curve. Thus its birational
transform ER := f−1

∗ E1 has positive intersection with R. Q.E.D.

As a consequence, we get the following generalization of (1.3).

Corollary 24. Let (X,Δ) be a Q-factorial pair and (0 ∈ X) a
point such that

(
X \ {0},Δ|X\{0}

)
is klt. Let p : Y → X be a projective,

birational morphism that is an isomorphism over X \ {0}. Set E :=
Ex(p) and assume that (Y,E + p−1

∗ Δ) is dlt. Then

(1) D(E) collapses to DMR(0 ∈ X) and
(2) if (X,Δ) is klt then D(E) is collapsible.

Proof. As we note in Definition 26, we may assume that Y is Q-
factorial. We run the (Y,E + p−1

∗ Δ)-MMP over X to get

(Y,E) = (Y0, E0)
f0��� (Y1, E1)

f1��� · · · fr−1��� (Yr, Er)
q→ X.

If (X,Δ) is not klt then (Yr, Er) is a dlt modification. If (X,Δ) is klt
then we let q : (Yr, Er) → X denote the last extremal contraction.

By Lemma 23, we can use Theorem 19 to conclude that D(Ei) col-
lapses to D(Ei+1) for i < r, proving the first claim.

If (X,Δ) is klt then q contracts a single divisor Er to a point. Thus
D(Er) is a point which shows (2). Q.E.D.

During the proof of Theorem 19 we have used the following variant
of the connectedness theorem. It is a special case of [2, 6.6]. We include
a proof here for reader’s convenience.

Proposition 25. Let (X,Δ) be a dlt pair and f : X → Y a projec-
tive morphism such that f∗OX = OY and −(KX +Δ) is f -ample. Then
for any y ∈ Y there is at most one minimal lc center Z of (X,Δ) that
intersects f−1(y).

Proof. This follows from [31, Theorem 10] by adding a general
ample Q-divisor H ∼Q,f −(KX +Δ) with small coefficients.

A more direct proof is the following. By the connectedness the-
orem [37, Thm.5.48], we know that if Z1 and Z2 are two lc centers
that are minimal among all lc centers intersecting f−1(y), then we
can find a chain W1, . . . ,Wk of divisors in Δ=1 such that Z1 ⊂ W1,
Z2 ⊂ Wk, and Wi ∩ Wi+1 ∩ f−1(y) �= ∅ for all 1 ≤ i ≤ k − 1. Apply-
ing induction to f : (W1,DiffW1Δ) → f(W1), we conclude that Z1 ⊂
W1 ∩W2, which implies that Z1 ⊂ W2. Repeating the above argument
for f : (Wi,DiffWiΔ) → f(Wi), we eventually obtain that Z1 ⊂ Wk.
Then again by induction, we conclude that Z1 = Z2. Q.E.D.
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§4. Proofs of the main theorems

We prove Theorem 3 and its consequences in this section. The
strategy is to run a suitable MMP terminating with a dlt modification
of (X,Δ) and show that each step of the program corresponds to a
collapse of the dual complex. First we need to deal with divisors that
are not Q-Cartier.

Definition 26. Let X be a normal variety. A small, Q-factorial
modification is a proper, birational morphism π : Xqf → X such that π
is small, that is, there are no exceptional divisors, and Xqf is Q-factorial.

For a divisor Δ on X set Δqf := π−1
∗ Δ. Note that if (X,Δ) is dlt

then so is
(
Xqf ,Δqf

)
and D(

Δ=1
)
= D(

(Δqf)=1
)
.

A dlt pair (X,Δ) always has projective, small, Q-factorial modifi-
cations but not all lc pairs have them; see [34, 1.37].

Let π1 :
(
X1,Δ1

) → (X,Δ) be a projective, small, Q-factorial mod-

ification of a dlt pair (X,Δ). Next run an
(
X1,Δ1 −Δ=1

1

)
-MMP over

X to get π2 :
(
X2,Δ2

) → (X,Δ) such that

−Δ=1
2 ∼Q,π2 KX2 +Δ2 −Δ=1

2

is π2-nef. Thus π2 :
(
X2,Δ2

) → (X,Δ) is a projective, small, dlt,

Q-factorial modification such that SuppΔ=1
2 = π−1

2 (SuppΔ=1).

27 (Proof of Theorem 3). Let π2 :
(
X2,Δ2

) → (X,Δ) be as above.
After a suitable sequence of blow-ups we get Y2 → Y such that

the induced rational map g2 : Y2 ��� X2 is a morphism. As noted
in Paragraph 9, D(

Supp g−1
2 (Δ=1

2 )
)
is simple-homotopy equivalent to

D(E) = D(
Supp g−1(Δ=1)

)
. By replacing X by X2 and Y by Y2, we

may assume from now on that X is Q-factorial.
Consider the boundary

Γ := g−1
∗ Δ<1 + E +

∑
biFi

where the sum on the right hand side is taken over all g-exceptional
divisors Fi that are not contained in the support of E and

bi := max

{
1− a(Fi,X,Δ)

2
,
1

2

}
.

We run a (KY ,Γ)-MMP over X as in [5].
By construction, the Q-divisor

G := KY + Γ− g∗(KX +Δ)
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is effective and its support consists precisely of all the g-exceptional di-
visors with positive log discrepancy with respect to (X,Δ). As the push

forward of G to X̃ is effective, exceptional and semiample over X, it
must be trivial by negativity. This means that the map Y ��� X̃ pro-
duced by the MMP contracts all components of G. It follows therefore
that if we denote by Δ̃ the birational transform of Γ on X̃, then (X̃, Δ̃)
is a dlt modification of (X,Δ). Thus D(Δ=1) is PL homeomorphic to

D(Δ̃=1) by Proposition 11.
Furthermore, since E = Supp g∗(Δ=1) and g∗(Δ=1) is numerically

g-trivial, Corollary 22 implies that D(E) collapses to D(Δ̃=1). Q.E.D.

We can now state and prove the general form of Theorem 1

Theorem 28. Let X be a normal variety and Δ an effective bound-
ary on X such that KX + Δ is Q-Cartier. Let W �= ∅ be the non-klt
locus of (X,Δ). Let p : Y → X be a proper, birational morphism and
E the divisorial part of Supp p−1(W ). Assume that

(
Y,E + p−1

∗ Δ<1
)
is

dlt.

(1) If the divisor KY +E+p−1
∗ Δ<1 is p-nef then the dual complex

DMR(X,Δ) := D(E) is independent of p, up-to PL homeo-
morphism.

(2) If E = Supp p−1(W ) then the dual complex D(E) is simple-
homotopy equivalent to DMR(X,Δ).

(3) If X is Q-factorial and p is an isomorphism over X \W then
D(E) collapses to DMR(X,Δ).

Proof. Part (1) is noted in Definition 15.
In order to see (2) we use Lemma 29 to obtain a Q-factorial dlt mod-

ification q :
(
Xdlt,Δdlt

) → (X,Δ) such that (Δdlt)=1 = Supp q−1(W ).

After some blow-ups we get π : Y1 → Y such that q−1 ◦p◦π : Y1 → Xdlt

is a morphism and D(
Supp(p◦π)−1(W )

)
is simple-homotopy equivalent

to D(E).
By Theorem 3, D(

Supp(p ◦ π)−1(W )
)
collapses to D(

(Δdlt)=1
)
=

DMR(X,Δ).
Finally assume that X is Q-factorial and p is an isomorphism over

X \ W . Let fi : Yi → Yi+1 be an extremal contraction of a divisor
Ei ⊂ Yi in our MMP and pi+1 : Yi+1 → X the projection. Note that
pi+1

(
fi(Ei)

) ⊂ W , thus pi+1 is not a local isomorphism at the generic
point of fi(Ei). Thus the first alternative of Lemma 23 applies at each
step of the MMP, hence Theorem 19 implies that D(E) collapses to
DMR(X,Δ). Q.E.D.

The following argument is similar to [19, 3.3.1.4].
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Lemma 29. Let (X,Δ) be a pair such that KX +Δ is Q-Cartier.
Let W be the non-klt locus of (X,Δ). Then there exists a dlt modification
p : Y → X such that Supp(p−1W ) is a divisor.

Proof. Let plc : (X lc,Δlc) → (X,Δ) be the log canonical modifi-
cation as in Definition 13. As we noted, Ex(plc) has pure codimension

1 and it is contained in Supp
(
(Δlc)=1

)
. Thus W lc, the non-klt locus of

(X lc,Δlc), is equal to the preimage of W .
Since any dlt modification of (X lc,Δlc) is also a dlt modification of

(X,Δ), it suffices to show that there is a dlt modification of q : Y →
(X lc,Δlc) such that Supp(q−1(W lc)) is of pure codimension 1.

Consider an arbitrary dlt modification q1 : Y1 → (X lc,Δlc) and
write

q∗1(KXlc +Δlc) ∼Q KY1 + Γ1

then W lc = q1(Γ
=1
1 ). It follows from [5] that there is a minimal model

p2 : Y2 → X lc of (Y1,Γ
<1
1 ) over X lc. Denote the push forward of Γ1 on

Y2 to be Γ2. Thus −Γ=1
2 ∼Q,Xlc KY2 + Γ<1

2 is nef, which implies that

Supp(p−1
2 (W lc)) = Supp(p−1

2 p2(Γ
=1
2 )) = Supp(Γ=1

2 )

has the same support as Γ=1
2 .

Though (Y2,Γ2) is only log canonical, we can take any dlt modi-
fication r : Y → (Y2,Γ2) and set q = p2 ◦ r. Then Supp(q−1W lc) =
Supp(r∗Γ=1

2 ) is of pure codimension 1 since Γ=1
2 is Q-Cartier. Q.E.D.

30 (Proof of Theorem 2). Since a dlt pair is always the limit of klt
pairs (see [37, 2.43]), we can assume that 0 ∈ (X,Δ) is a point on a klt
pair. As in [18, Lem.2.5] there exists a Q-divisor H such that (X,Δ+H)
is klt on X \ {0} and there is precisely one divisor E with discrepancy
−1 over 0. Thus DMR(0 ∈ X,Δ+H) is a single point.

By (28.2) DR(0 ∈ X) is simple-homotopy equivalent to DMR(0 ∈
X,Δ+H) hence to a point. Q.E.D.

31 (Versions over nonclosed fields). Let k be a field of characteristic
0, X a normal variety defined over k and 0 ∈ X a k-point. Let f : X ′ →
X be a resolution defined over k such that E′ := Supp f−1(0) is a simple
normal crossing divisor defined over k. (See [34, Defn.1.7] for the correct
definition of a simple normal crossing divisor.) Set D(E′) := D(

E ′̄
k

)
where k̄ ⊃ k is an algebraic closure. The Galois group Gal(k̄/k) acts on
D(E′) and the usual arguments show that DR(0 ∈ X) is well defined
up-to Gal(k̄/k)-equivariant simple-homotopy equivalence.

One needs to check that the collapses in Theorem 19 can be done
equivariantly. Let D0 be a divisor defined over k such that (D0 ·R) > 0.
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Over k̄, it can break up into a collection of disjoint divisors Di
0. The

contraction h : X → X1 of the ray R becomes the contraction of a face
F over k̄, but D0 is strictly negative on F \ {0}. The proof of Theorem
19 now shows that each contracted lc center over k̄ intersects exactly
one of the Di

0. Thus the collapses prescribed by the different Di
0 occur

in disjoint sets so they can be performed simultaneously.
The proofs of Theorems 2–4 apply without changes to yield the

following generalizations.

Theorem 32. Let 0 ∈ X be a k-point on a dlt pair (X,Δ) de-
fined over k. Then DR(0 ∈ X) is Gal(k̄/k)-equivariantly contractible.

Q.E.D.

Theorem 33. Let 0 ∈ C be a k-point on a smooth curve and
f : X → (0 ∈ C) a flat, projective morphism. Assume that the gen-
eral geometric fibers Xt are smooth, rationally connected and F0 :=
red f−1(0) is a simple normal crossing divisor. Then D(F0) is Gal(k̄/k)-
equivariantly contractible. Q.E.D.

Note that a contractible space with a finite group action need not
be equivariantly contractible (cf. [11]), thus, in this respect, the dual
complexes coming from algebraic geometry behave better than arbitrary
simplicial complexes.

§5. Quotients of dlt pairs

Proposition 34. Let (x ∈ X) be the spectrum of a d-dimensional
local ring and Δ an effective divisor such that (X,Δ) is lc and x is an
lc center of (X,Δ). The following are equivalent.

(1) There are Q-Cartier divisors D1, . . . , Dd ⊂ Δ=1 such that x ∈
Di.

(2) There is a semi-local, snc pair
(
x′ ∈ X ′, D′

1+ · · ·+D′
d

)
and an

Abelian group G acting on it (preserving each of the D′
i) such

that

(x ∈ X,Δ) =
(
x ∈ X,D1 + · · ·+Dd

) ∼= (
x′ ∈ X ′, D′

1 + · · ·+D′
d

)
/G.

Proof. The implication (2) ⇒ (1) is well known; cf. [37, Prop.5.20].
To converse is outlined in [27, Sec.18]. We construct π : X ′ → X as

follows. By assumption, for every i there is an mi > 0 such that miDi ∼
0. These give degree mi cyclic covers X ′

i → X; let π : X ′ → X be their
composite. Then X ′ → X is Galois with group

∏
i Z/mi and it branches

only along the Di. Set D
′
i := redπ−1(Di). Then

(
X ′, D′

1 + · · ·+D′
d

)
is

lc by [37, Prop.5.20].
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In general x′ := π−1(x) may consist of several points. At each of
them, the D′

i are Cartier. We claim that in fact X ′ and the D′
i are

smooth. This is proved by induction on the dimension. The d = 1 case
is clear.

By adjunction,
(
D′

d, D
′
1|D′

d
+ · · ·+D′

d−1|D′
d

)
is lc, thus D′

d is smooth
by induction. Since D′

d is a Cartier divisor, this implies that X ′ is
smooth. Q.E.D.

Definition 35. A log canonical pair (X,Δ) is called quotient-dlt,
abbreviated as qdlt, if for every lc center Z ⊂ X the local scheme(

SpecOZ,X ,Δ|SpecOZ,X

)
satisfies the equivalent conditions of Proposition 34.

It is clear that being qdlt is preserved by any (X,Δ)-MMP. It follows
from Definition 8, that we can define D(Δ=1) for a qdlt pair. It seems
to us that, for dual-complex problems, qdlt pairs form the most general
class where the main results hold. We need the following lemma on
extending qdlt modifications.

Lemma 36. Let (X,Δ) be a quasi-projective, lc pair. Let U ⊂ X
be an open subset such that no lc center is contained in X \ U . Let
gU : U ′ → U be a quasi-projective, qdlt modification. Then there is a
quasi-projective, qdlt modification gX : X ′ → X extending gU .

Note that since no lc center is contained in X \U , every exceptional
divisor of gX intersects U ′.

Proof. Let X̄ be a normal compactification of U ′ that is projective
over X. Let Y be a projective resolution of X̄ such that the preimage
of SuppΔU ′ ∪ (

X̄ \ U ′) is a simple normal crossing divisor.
Denote by p : Y → X the composite morphism. For p-exceptional

divisors Ei let bi = max{ 1
2 ,

1−a(Ei,X,Δ)
2 } and set ΔY = p−1

∗ Δ+
∑

i biEi.
Applying [20], we obtain that (Y,ΔY ) has a log canonical model X ′′

over X̄ that is a compactification of U ′.
Let Δ′′ be the push forward of ΔY . Then (X ′′,Δ′′) does not have

log canonical centers contained in X ′′ \ U ′ hence (X ′′,Δ′′) is qdlt. Fur-
thermore, KX′′ + Δ′′ − h∗(KX + Δ) is effective and its support is the
same as the divisorial part of X ′′ \U ′ which we denote by

∑
i∈I Ei. We

conclude that {Ei : i ∈ I} are precisely the divisorial components in the
stable base locus

B(X ′′/X,KX′′ +Δ′′) = B−(X ′′/X,KX′′ +Δ′′).

That is, if H ′′ is an ample divisor on X ′′ there is a 0 < ε � 1 such that
all the Ei are also contained in B(X ′′/X,KX′′ +Δ′′ + εH ′′).
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By the method of [37, 2.43], there is a divisor Δ′′
ε on X ′′ such that

Δ′′
ε ∼Q KX′′ +Δ′′ + εH ′′ and (X ′′,Δ′′

ε ) is klt.
By [5] a suitable (X ′′,Δ′′

ε )-MMP over X terminates with a minimal
model X ′. Then the rational map φ : X ′′ ��� X ′ is an isomorphism on
U ′ and it contracts all the Ei. Set Δ

′ := φ∗Δ′′. Then KX′ +Δ′ ∼Q,X 0
and X ′ \ U ′ has codimension ≥ 2. Therefore gX : X ′ → X is a quasi-
projective, qdlt modification extending gU . Q.E.D.

This implies that qdlt pairs have a toroidal dlt modification.

Proposition 37. Let (X,Δ) be a quasi projective, qdlt pair. Let
U ⊂ X be an open set containing all the log canonical centers of (X,Δ)
such that Δ|U = Δ=1|U and (U,ΔU ) = (U,Δ=1|U ) is toroidal (such U
exists by definition). Then there is a dlt modification gdlt : (Xdlt,Δdlt) →
(X,Δ) such that over U , (U ′,ΔU ′) := (g−1(U),Δdlt|U ′) is snc, gdlt|U ′ :
(U ′,ΔU ′) → (U,ΔU ) is toroidal and D((Δdlt)=1) is a subdivision of
D(Δ=1).

Proof. Given the toroidal pair (U,ΔU ) by [25] there is a toroidal
log resolution gU : (U ′,ΔU ′) → (U,Δ). Since it is a toroidal morphism,
g∗U (KU + ΔU ) = KU ′ + ΔU ′ and D(ΔU ′) is subdivision of D(ΔU ). By
Lemma 36, we can extend gU : U ′ → U to gX : X ′ → X. Q.E.D.

Corollary 38. Let (X,ΔX) be a quasi projective, qdlt pair and
g :

(
Y,ΔY

) → (X,ΔX) a dlt modification. Then D(
Δ=1

X

)
is PL homeo-

morphic to D(
Δ=1

Y

)
. Q.E.D.

Another good property of quotient-dlt singularities is that the theo-
rem on extracting one divisor (cf. [34, 1.39]) that fails for dlt singularities
does hold for quotient-dlt singularities.

Lemma 39. Let (X,Δ) be a quasi-projective qdlt pair. Let E be a
divisor such that a(E;X,Δ) = −1. Then there exists a model f : Y → X
such that E is the sole exceptional divisor of f and (Y, f−1

∗ Δ+E) is qdlt.

Proof. We may assume that X is Q-factorial. We pick U as in
Proposition 37 and let gU : U ′ → U be the toroidal morphism such
that Ex(gU ) = E. By Lemma 36, we can extend gU : U ′ → U to
gX : X ′ → X. Q.E.D.

This following result is essentially in [22, Sec.5].

Proposition 40. Let (X,ΔX) be a Q-factorial dlt or qdlt pair. Let
g : (X,ΔX) → Y be a Fano contraction of an extremal ray. Assume that
Δ=1

X is g-vertical.
Then Y is Q-factorial and there is a Q-divisor ΔY such that (Y,ΔY )

is qdlt and there is a natural identification D(
Δ=1

X

) ∼= D(
Δ=1

Y

)
.



126 T. de Fernex, J. Kollár and C. Xu

Proof. It follows from [37, 3.36] that Y isQ-factorial. Since ρ(Y/X)
= 1, we know that each g-vertical component is mapped to a divisor on
Y and different g-vertical divisors are mapped to different divisors on Y
(see [22, 5.1, 5.2]). Write Δ=1

X =
∑

i∈I Ei. Then ΔY =
∑

i∈I Fi where

Fi := g(Ei) and Ei = g−1(Fi). Thus, for every J ⊂ I we have

g−1(∩i∈JFi) = ∩i∈Jg
−1(Fi) = ∩i∈JEi,

which shows that D(∑
i∈I Ei

)
= D(∑

i∈I Fi

)
.

Similar to the argument of [22, 5.5], we see that the log canonical
centers of (Y,ΔY ) are precisely the nonempty intersections ∩i∈JFi where
J ⊂ I. In particular, (Y,ΔY ) is qdlt. Q.E.D.

We can now prove the following strengthening of Theorem 4.

Theorem 41. Let f : X → (0 ∈ C) be a flat proper family. Assume
that general fibers Xt are rationally connected and (X, red f−1(0)) is
qdlt. Then D(

red f−1(0)
)
is contractible.

Proof. By Theorem 3 we may assume that X is smooth, f is pro-
jective and Δ := red f−1(0) is snc.

Then we run a (KX +Δ)-MMP over C. This is the same as running
a (KX +Δ− εf−1(0))-MMP with for 1 � ε > 0. As Xt is smooth and
rationally connected, KX is not pseudo-effective, thus by [5] a suitable
MMP terminates with a Fano contraction g : (X ′,Δ′) → Y over C where
dimX ′ > dimY .

Since f−1(0) is numerically f -trivial and its support is Δ=1 = Δ,
Corollary 22 guarantees that D(Δ) collapses to D(Δ′).

If Y = C then Δ′ = red(f ′)−1(0) is irreducible since ρ(X ′/Y ) = 1.
Thus D(Δ′) is a point and we are done.

If dimY > 1 then we look at fY : Y → C. By Proposition 40,
(Y, red f−1

Y (0)) is again qdlt and D(
red(f ′)−1(0)

)
can be identified with

D(
red f−1

Y (0)
)
. The latter is collapsible by induction, hence so is D(Δ′)

and hence D(Δ). Q.E.D.
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