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On a global estimate of the Diederich—Fornaess
index of Levi-flat real hypersurfaces

Masanori Adachi

Abstract.

In this paper, we review a recent progress of the study of the
Diederich-Fornaess index of complex domains with emphasis on the
case of domains with Levi-flat boundary. It is exhibited that for any
compact Levi-flat real hypersurface, the norm of its infinitesimal holo-
nomy must exceed the curvature of its normal bundle at a point.

§1. A perspective on Levi-flats

The study of Levi-flat real hypersurfaces has attracted both foliators
and complex analysts since 1980s. We may say that its main driving
force is the exceptional minimal set conjecture, in particular, the non-
existence conjecture of smooth Levi-flat real hypersurface in the complex
projective plane; this conjecture is still open despite many attempts.

Besides this particular problem, the Levi-flat real hypersurface itself
has been recognized as a quite attractive object within which we expect
to find very subtle interaction between the theory of foliation and sev-
eral complex variables. Around 1990, the works of Barrett and Inaba
revealed this situation (see [3], [4], [6], [11]). For example, the strik-
ing achievement in [3] is that the standard C*°-smooth Reeb foliation of
S3 cannot be realized as a C*°-smooth Levi-flat real hypersurface in any
complex surface. This result not only clarifies the difference of Levi-flat
manifolds and Levi-flat real hypersurfaces, but the method of its proof
exhibits a beautiful interaction between two research fields: once we had
a realization, the theory of Ueda [15] allows us to connect the holonomy
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around its compact leaf and the pseudoconvexity of its neighborhood,
from which we can deduce a contradiction. The aim of this expository
paper is to illustrate a similar interaction in a different situation.

Now let us start with recalling what a Levi-flat manifold is. A
CF-smooth manifold M of dimension (2n + 1) is said to be Levi-flat if
it has a non-singular C¥-smooth foliation F by n-dimensional complex
leaves. More precisely, it is equipped with a C*-smooth foliated atlas
{(Ux, (zx,tx))} of M such that

o (zx,tx): Ux — D™ x I where D" is the leaf direction and I is the
transverse direction. Here we denoted D = {z € C | |z| < 1}
and I = (—1,1).

e On any intersecting charts Uy and Uy, the coordinate changes
zx = 2x (2, 1)), ta = ta(ta) are not only C*-smooth but also
holomorphic in z).

We call F the Levi foliation of M. Note that any 3-manifold with an
oriented foliation of codimension one has a Levi-flat structure; We can
give it a leafwise Riemannian metric and induce isothermal coordinates
on the leaves.

A Levi-flat real hypersurface is a Levi-flat manifold realized in a
complex manifold as a real hypersurface. More precisely, for k > 2,
a CF-smooth closed real hypersurface M in a complex manifold X is
said to be Lewvi-flat if it is foliated by complex hypersurfaces of X. The
integrable distribution T'F of its Levi foliation F is given by the maximal
complex subbundle TM N JxT M of TM where Jx denotes the complex
structure of X. We often identify T'F C TX|M with T*OF c T*OX|M
in the standard way. When we locally express M on a neighborhood
U of p € M as a zero set of a real-valued C*-smooth function p using
the implicit function theorem, the Levi-flatness of U N M is equivalent
to the vanishing of a quadratic form called the Levi form of p along
U N M, namely,

i00p(¢,¢{) =0 forany (€ qu,o}— = Ker(dp)q, g€ UNM.

Note that Barrett and Forneess showed in [5] that the Levi foliation is
actually of C* while the Frobenius’ theorem only proves it is of C*~1.

If a possibly singular holomorphic foliation of codimension one on a
complex manifold has a saturated smooth real hypersurface, it is Levi-
flat. Conversely, if one has a real-analytic Levi-flat real hypersurface in
a complex manifold, its Levi foliation extends to a non-singular holo-
morphic foliation defined on a neighborhood of the real hypersurface
(see [14]).
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§2. A quantitative estimate on Levi-flat real hypersurfaces

Let us state the goal of this paper. It is to explain a theorem that
follows from results obtained in [7], [1], [13], [2], [9].

Theorem. Let M be an oriented compact C*-smooth Levi-flat mani-
fold of dimension (2n+ 1), n > 1. Denote its Levi foliation by F. Sup-
pose M can be realized in an (n + 1)-dimensional complex manifold X
as the boundary of a relatively compact domain Q@ € X. Then, for any
transverse measure p of F with C3-smooth positive density with respect to
transverse Lebesque measures, there exists a non-zero vector ( € TYOF
at which iA4,,(¢,¢) > ni©,(¢, ) holds.

Our main ingredients, globally defined leafwise (1, 1)-forms i4,, and
19, on M, are defined by their local expressions

iA, (=iAp) =i 8;%’1 al‘fgh dz* N dz°,
Pyl z 0z

‘ : -\~ P(=logh) . 5

'L@# (: Z@h) =1 Z Wdz N dZ

a,f=1

on each foliated chart (z,t) where h denotes the density of u with respect
to the Lebesgue measure |dt|: 1 = h(z,t)|dt| on each transversal {z} x I.
Note that we are identifying these leafwise (1,1)-forms with quadratic
forms defined on TH0F. The quadratic form iA, expresses a certain
norm of the infinitesimal holonomy of the Levi foliation with respect to p.
On the other hand, ¢{©, can be regarded as the leafwise Chern curvature
of the holomorphic normal bundle N':° of M. Here the holomorphic
normal bundle N*9 of M is defined by

N2 = (TYOX M) )T F ~Co TM/TF

and it is easily seen that h? defines a C3-smooth hermitian metric of
N0 thanks to its transition rule.

We are going to give a sketch of a proof of Theorem in the follow-
ing two sections. The key idea is to translate ¢4, and i©,, geometric
information of holonomy of F, into the Diederich-Fornaess index, a nu-
merical information of pseudoconvexity of the bounded domain €2 via
the holomorphic normal bundle N*? (see §3). This idea is based on
Brunella [7] and developed by the author in [1]. After that, we will
deduce the conclusion by relying on a global estimate of the Diederich—
Fornaess index obtained independently by the author and Brinkschulte
[2] and by Fu and Shaw [9] (see §4).
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§3. First half of the proof: Moving onto the complement

The proof is by contradiction. Let us suppose the contrary: for
any non-zero ¢ € TV0F, iA,,(¢, () < ni©,(¢, () holds. This particularly
implies that the holomorphic normal bundle N1 is positive: i© . defines
a positive-definite quadratic form on TZ}’O]-" for every p € M. We first
apply a construction originating from Brunella [7].

Proposition 3.1 (cf. [7]). There exists a C3-smooth real-valued
function § defined on a neighborhood U D M such that

(1) 0 is a C3-smooth defining function of M, i.e., 0 is a regular
value of § and M = §=1(0).

(2) There exists a hermitian metric w of X such that
i00(—log|8|) > w holds on U \ M.

We give a simplified construction in our rather restricted setting.

Proof of Proposition 3.1. First take a C?-smooth non-vanishing
section of TM/TF and normalize it using h?, the hermitian metric of
N9 induced from p, and lift it to a section of TX|M, say £. We rotate
the transversal vector field ¢ by the complex structure Jy and obtain
a normal vector field v = Jx& of M. Consider arbitrary C3-smooth
extension of v on a neighborhood of M, denoted by v again.

Now we integrate the vector field v and obtain a Cj—diffeomorphism7
say ¢: M x (—g,6) = U C X. Let § = projoo¢p=t: U — (—¢,¢). It is
clear that § is a C®-smooth defining function of M.

The remaining problem is to check the condition (2). From what
we supposed, it follows that i{©), defines a leafwise hermitian metric of
M. Using the smooth decomposition T X|M ~ THOF ¢ N0 defined
by &, we can construct a hermitian metric of 7"9X, say w, so that w =
(i), © 05 A 95)/100 on M. For this w, we will show i99(— log|d|) > w
on some smaller neighborhood U of M.

We will work locally to show this estimate, namely, show it on I',
for each p € M where I';, C U \ M is a small neighborhood of the normal
curve ¢(p,t) (0 < |t| < 1) specified later. To accomplish it, we will
exploit the distinguished parametrization in [1], which allows us to treat
M locally as if it is a real-analytic Levi-flat real hypersurface when we
compute leafwise objects. Now let us fix p € M and take a distinguished
parametrization of M C X in a local coordinate (V,z) of X around p,
say p: D" x I — V. (You may assume the real-analyticity of M and
just consider the natural inclusion ¢: D" x I < D! to understand the
essence of this proof.) We can assume that . ((0:)0,0)) = &p by a linear
transformation where we denote the transversal coordinate ¢t € I. We
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will choose a sufficiently small neighborhood T', of {(0,iy,+1) € V C
C"xC|0< |yps1|l < 1} in V' \ M later.

We start to estimate i09(—log|d|) on this T',. Let us put
i00(—log|d]) =i Yn Gl Ly 5dz® Adz® on V\ M.

Letting n = 0 in the computation in the proof of Theorem 1.1 of [1]
gives us
0%(—log h)

02207

Yn+1Lo 771(0,iYns1) — 0,

(),

L,5(0,iyn41) =

. 1
yZ+ILn+1,m(O7 Wnt1) = 1

as (0,4yn+1) — (0,0) (= p) where 1 < a, 8 < n. Here we have used the
fact that the converse of Brunella’s construction in [1] actually gives the
inverse map: the hermitian metric of N''* induced from § agrees with
the original A2 thanks to the normalization of v.

This limiting behavior shows that i0; @ i0§ A 95/4? is the main
term of the asymptotics of i00(— log|d|) along the normal line toward p.
Comparing this asymptotics with the equality w = (10, ©i05 A dF)/100
on M and using continuity of the forms, it is therefore possible to bound
i00(— log|d|) from below by w on a sufficiently small T',. Q.E.D.

Now we have passed from given transversal measure p of F to the
defining function § of M with the aid of the holomorphic normal bundle
N0 Next, we are going to find a counterpart to the geometric infor-
mation of the holonomy of F in the complement of M. Here we recall
the finding of Ohsawa and Sibony in [13].

Proposition 3.2 (cf. [13]. See also [10]). There ezists a C*-smooth
real-valued function 5 defined on a neighborhood of Q0 such that

(1) Two functions § and & agree on a neighborhood of M.

(2)  There exists an n € (0,1] such that id9(—|5]") > 0 on Q and

i99(—[8]") > 0 on W N Q where W is a neighborhood of M.

Proof. By the argument in [13] or [10], the existence of n such that
i09(—6]") > 0 on W\ M follows from i09(— log||) > w on U\ M where
W C U is a smaller neighborhood of M.

We may suppose that 6 > 0 on W N Q by changing the sign of § if
necessary. To extend § to Sona neighborhood of Q, we let

d(p) for p € W with é(p) < ¢&'/3,
0(p) = § (=9 (=b(p)"))/" for p € W with &'/3 < d(p) < ¢/,
e'/2 for other points of 2
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for sufficiently small &’ > 0 where ¢: R — R is a C3-smooth non-
decreasing convex function such that ¢(¢t) = t for ¢ > —(¢//3)" and

Y(t) = —('/2)" for t < —(¢’)7. Then, one can see that § is the de-
sired one. Q.E.D.

The supremum of 7 appearing in Proposition 3.2 is denoted by
ns and called the Diederich-Fornaess exponent of 6. The Diederich—
Fornaess index of a relatively compact domain () is defined to be the
supremum of s where we consider all the defining functions § of M = 92
satisfying the conditions in Proposition 3.1.

This numerical index, the Diederich-Fornaess exponent 75 of ¢, is
the counterpart in Q) to the ratio of ¢4, and i©,,, a geometric information
of the holonomy of F. The author showed in [1] the following formula.

Proposition 3.3 (cf. [1]). We have an equality
s = M = min 77, (p)

where 1, (p) is called the local Diederich—Fornaess exponent and de-
fined by

i) - 1A, 5) > 0},
-n

Proof. By a direct computation exploiting the same technique used

in the proof of Proposition 3.1. We refer the reader to [1] for the detail.

Q.E.D.

Nu(p) == Sup{n €(0,1)

64. Latter half of the proof: An estimate on the complement

By Proposition 3.3 and a simple computation, we now know that
what we supposed is, in fact, equivalent to n5 =1, > 1/(n+ 1). This is
absurd from the following global estimate and we complete the proof.

Proposition 4.1 (cf. [2] and [9]). The Diederich—Fornaess exponent
ns should not exceed 1/(n + 1).

We recollect an elegant argument of Fu and Shaw [9] in our setting
here. (See also Nemirovskii [12]. For another proof under a stronger
assumption, see [2].)

Proof of Proposition 4.1. Suppose that ns > 1/(n+ 1). Then, we
find » > 1/(n+1) in Proposition 3.2. We assume § > 0 on 2 by taking its
negative if necessary. Let w, = i00(—8"), O = {p € Q| d(p) >t} and

V(t):/ w%’“.
Q¢
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From the choice of 7, w;"“l defines a non-negative non-trivial measure
on . Hence, it is clear that V(¢) is non-negative and non-increasing
and, in particular, V(0) € (0, co].

On the other hand, by Stokes’ theorem, for 0 < t < 1,

V(t) = /Q d(agf(—lin) Aw:;)

9-0
= -y n
/69,, 5 (=6") Awy.

By a direct computation,

Vi(t)= /em (ncs”—l)“laQ;f(—&) A (i09(—8))"

t(n+1)n 9—0 _
— o+l _ ; s\
e /d T 9 A 00(-9)

ot 9 -9 _
_ o n+1 . . B n
=1 1 /89t % (=0) A (100(—0)| Ker 90)".

Recall that the Levi-flatness is equivalent to the vanishing of the Levi
form along M, i00(—6)|T*YF = 0 on M. We therefore have

— t(n+1)n . t(n+1)n
V(t)=n proe O(t)zO( ; >

as t N\, 0. Then, the choice of n shows that V(0) = 0. This is a
contradiction. Q.E.D.

85. An example

In this section, we illustrate our theorem by an explicit example, a
flat circle bundle over a compact Riemann surface. We will consider a
transverse measure p having positive normal bundle curvature and see
that its local Diederich—Fornaess exponent distributes around 1/2.

Let X be a compact Riemann surface of genus > 2. Fix an identifica-
tion of its universal covering with the unit disk D and express ¥ = D/T’
by a Fuchsian group I'. Let p: T' — Aut(D) be a quasi-conformal de-
formation of I'. We suspend the unit circle 0D over ¥ by p and obtain
a flat circle bundle, say M, = ¥ x, 0D — ¥. Pulling back the complex
structure of X on each leaf, we regard M, as an oriented compact real-
analytic Levi-flat 3-manifold. We can realize M, in a compact complex
surface as a real-analytic Levi-flat real hypersurface. That is because
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we can suspend CP' over ¥ by p, say X, =YX, CP' - ¥ and M, is
naturally identified with the boundary of the holomorphic disc bundle
Q,=Yx,D—=X.

Now we follow the idea of Diederich and Ohsawa [8] and construct
a transverse measure p on M,. Let s: D — DD be the p-equivariant
harmonic diffeomorphism with respect to the Poincaré metric, that is,
the p-equivariant solution to the Euler-Lagrange equation

@ =0

1= [s(z)2"*7 ~

Note that s defines a section of €2, — 3. We consider a transverse
measure 4 given by

SZ§+2

i0 1—1s(2))?
w="h(ze")do = e — (2 de.
on a foliated chart given by the covering map (z,¢e?) € D x D — M, e
The equivariance of s assures that p descends to M,. Note that the
function & is exactly the Poisson kernel.

By a direct computation using the Euler-Lagrange equation and the
harmonicity of the Poisson kernel, we have

9 oo h— 1 1_€i9%5 . 1—6’ies(z)57z

82’1 gh1_|s(z)2<ew_s(z) =(2) + 6719_% =( ))7

o —logh)= ! 1—es(2) _Li%z)s,z ’
8z8§< 1gh)_(1_|s(z)|2) g (2) 50 =(2)] -

In a fiber over z € %, if we choose its fiber coordinate so that s(z) = 0,
we have . . ‘

iAu(2,e7) = |e7s,(2) + €52 (2) % dz A dZ,

i0,(z,e") = |e7s,(2) — s(2)|%idz N dZ

and the expression of the local Diederich-Fornaess exponent 7,, of p is
given by

9, B Re(e2?s,s5)

. 1
0\ _ )
) 9, +14, 2 [s.]2 + |s=|?

(2,

We remark that when p = Id: T' < Aut(D), the harmonic diffeo-
morphism s = Id: D — D becomes biholomorphic, and i©, = iA, and
1, = 1/2 hold everywhere. It might be of interest that this 4 corresponds
to the foliated harmonic measure of Miq.
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