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On a global estimate of the Diederich–Fornaess
index of Levi-flat real hypersurfaces

Masanori Adachi

Abstract.

In this paper, we review a recent progress of the study of the
Diederich–Fornaess index of complex domains with emphasis on the
case of domains with Levi-flat boundary. It is exhibited that for any
compact Levi-flat real hypersurface, the norm of its infinitesimal holo-
nomy must exceed the curvature of its normal bundle at a point.

§1. A perspective on Levi-flats

The study of Levi-flat real hypersurfaces has attracted both foliators
and complex analysts since 1980s. We may say that its main driving
force is the exceptional minimal set conjecture, in particular, the non-
existence conjecture of smooth Levi-flat real hypersurface in the complex
projective plane; this conjecture is still open despite many attempts.

Besides this particular problem, the Levi-flat real hypersurface itself
has been recognized as a quite attractive object within which we expect
to find very subtle interaction between the theory of foliation and sev-
eral complex variables. Around 1990, the works of Barrett and Inaba
revealed this situation (see [3], [4], [6], [11]). For example, the strik-
ing achievement in [3] is that the standard C∞-smooth Reeb foliation of
S3 cannot be realized as a C∞-smooth Levi-flat real hypersurface in any
complex surface. This result not only clarifies the difference of Levi-flat
manifolds and Levi-flat real hypersurfaces, but the method of its proof
exhibits a beautiful interaction between two research fields: once we had
a realization, the theory of Ueda [15] allows us to connect the holonomy
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around its compact leaf and the pseudoconvexity of its neighborhood,
from which we can deduce a contradiction. The aim of this expository
paper is to illustrate a similar interaction in a different situation.

Now let us start with recalling what a Levi-flat manifold is. A
Ck-smooth manifold M of dimension (2n + 1) is said to be Levi-flat if
it has a non-singular Ck-smooth foliation F by n-dimensional complex
leaves. More precisely, it is equipped with a Ck-smooth foliated atlas
{(Uλ, (zλ, tλ))} of M such that

• (zλ, tλ) : Uλ → Dn×I where Dn is the leaf direction and I is the
transverse direction. Here we denoted D = {z ∈ C | |z| < 1}
and I = (−1, 1).

• On any intersecting charts Uλ and Uλ′ , the coordinate changes
zλ′ = zλ′(zλ, tλ), tλ′ = tλ′(tλ) are not only Ck-smooth but also
holomorphic in zλ.

We call F the Levi foliation of M . Note that any 3-manifold with an
oriented foliation of codimension one has a Levi-flat structure; We can
give it a leafwise Riemannian metric and induce isothermal coordinates
on the leaves.

A Levi-flat real hypersurface is a Levi-flat manifold realized in a
complex manifold as a real hypersurface. More precisely, for k ≥ 2,
a Ck-smooth closed real hypersurface M in a complex manifold X is
said to be Levi-flat if it is foliated by complex hypersurfaces of X. The
integrable distribution TF of its Levi foliation F is given by the maximal
complex subbundle TM ∩JXTM of TM where JX denotes the complex
structure of X. We often identify TF ⊂ TX|M with T 1,0F ⊂ T 1,0X|M
in the standard way. When we locally express M on a neighborhood
U of p ∈ M as a zero set of a real-valued Ck-smooth function ρ using
the implicit function theorem, the Levi-flatness of U ∩M is equivalent
to the vanishing of a quadratic form called the Levi form of ρ along
U ∩M , namely,

i∂∂ρ(ζ, ζ) = 0 for any ζ ∈ T 1,0
q F = Ker(∂ρ)q, q ∈ U ∩M.

Note that Barrett and Fornæss showed in [5] that the Levi foliation is
actually of Ck while the Frobenius’ theorem only proves it is of Ck−1.

If a possibly singular holomorphic foliation of codimension one on a
complex manifold has a saturated smooth real hypersurface, it is Levi-
flat. Conversely, if one has a real-analytic Levi-flat real hypersurface in
a complex manifold, its Levi foliation extends to a non-singular holo-
morphic foliation defined on a neighborhood of the real hypersurface
(see [14]).
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§2. A quantitative estimate on Levi-flat real hypersurfaces

Let us state the goal of this paper. It is to explain a theorem that
follows from results obtained in [7], [1], [13], [2], [9].

Theorem. Let M be an oriented compact C4-smooth Levi-flat mani-
fold of dimension (2n+ 1), n ≥ 1. Denote its Levi foliation by F . Sup-
pose M can be realized in an (n + 1)-dimensional complex manifold X
as the boundary of a relatively compact domain Ω � X. Then, for any
transverse measure μ of F with C3-smooth positive density with respect to
transverse Lebesgue measures, there exists a non-zero vector ζ ∈ T 1,0F
at which iAμ(ζ, ζ) ≥ niΘμ(ζ, ζ) holds.

Our main ingredients, globally defined leafwise (1, 1)-forms iAμ and
iΘμ on M , are defined by their local expressions

iAμ (= iAh) = i
n∑

α,β=1

∂ log h

∂zα
∂ log h

∂zβ
dzα ∧ dzβ ,

iΘμ (= iΘh) = i
n∑

α,β=1

∂2(− log h)

∂zα∂zβ
dzα ∧ dzβ

on each foliated chart (z, t) where h denotes the density of μ with respect
to the Lebesgue measure |dt|: μ = h(z, t)|dt| on each transversal {z}×I.
Note that we are identifying these leafwise (1, 1)-forms with quadratic
forms defined on T 1,0F . The quadratic form iAμ expresses a certain
norm of the infinitesimal holonomy of the Levi foliation with respect to μ.
On the other hand, iΘμ can be regarded as the leafwise Chern curvature
of the holomorphic normal bundle N1,0 of M . Here the holomorphic
normal bundle N1,0 of M is defined by

N1,0 := (T 1,0X|M)/T 1,0F � C⊗ TM/TF
and it is easily seen that h2 defines a C3-smooth hermitian metric of
N1,0 thanks to its transition rule.

We are going to give a sketch of a proof of Theorem in the follow-
ing two sections. The key idea is to translate iAμ and iΘμ, geometric
information of holonomy of F , into the Diederich–Fornaess index, a nu-
merical information of pseudoconvexity of the bounded domain Ω via
the holomorphic normal bundle N1,0 (see §3). This idea is based on
Brunella [7] and developed by the author in [1]. After that, we will
deduce the conclusion by relying on a global estimate of the Diederich–
Fornaess index obtained independently by the author and Brinkschulte
[2] and by Fu and Shaw [9] (see §4).
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§3. First half of the proof: Moving onto the complement

The proof is by contradiction. Let us suppose the contrary: for
any non-zero ζ ∈ T 1,0F , iAμ(ζ, ζ) < niΘμ(ζ, ζ) holds. This particularly
implies that the holomorphic normal bundle N1,0 is positive: iΘμ defines
a positive-definite quadratic form on T 1,0

p F for every p ∈ M . We first
apply a construction originating from Brunella [7].

Proposition 3.1 (cf. [7]). There exists a C3-smooth real-valued
function δ defined on a neighborhood U ⊃ M such that

(1) δ is a C3-smooth defining function of M , i.e., 0 is a regular
value of δ and M = δ−1(0).

(2) There exists a hermitian metric ω of X such that
i∂∂(− log|δ|) > ω holds on U \M .

We give a simplified construction in our rather restricted setting.

Proof of Proposition 3.1. First take a C3-smooth non-vanishing
section of TM/TF and normalize it using h2, the hermitian metric of
N1,0 induced from μ, and lift it to a section of TX|M , say ξ. We rotate
the transversal vector field ξ by the complex structure JX and obtain
a normal vector field ν = JXξ of M . Consider arbitrary C3-smooth
extension of ν on a neighborhood of M , denoted by ν again.

Now we integrate the vector field ν and obtain a C3-diffeomorphism,

say φ : M × (−ε, ε) → Ũ ⊂ X. Let δ = proj2 ◦φ−1 : Ũ → (−ε, ε). It is
clear that δ is a C3-smooth defining function of M .

The remaining problem is to check the condition (2). From what
we supposed, it follows that iΘh defines a leafwise hermitian metric of
M . Using the smooth decomposition T 1,0X|M � T 1,0F ⊕N1,0 defined
by ξ, we can construct a hermitian metric of T 1,0X, say ω, so that ω =
(iΘh ⊕ i∂δ ∧ ∂δ)/100 on M . For this ω, we will show i∂∂(− log|δ|) > ω
on some smaller neighborhood U of M .

We will work locally to show this estimate, namely, show it on Γp

for each p ∈ M where Γp ⊂ Ũ \M is a small neighborhood of the normal
curve φ(p, t) (0 < |t| 
 1) specified later. To accomplish it, we will
exploit the distinguished parametrization in [1], which allows us to treat
M locally as if it is a real-analytic Levi-flat real hypersurface when we
compute leafwise objects. Now let us fix p ∈ M and take a distinguished
parametrization of M ⊂ X in a local coordinate (V, z) of X around p,
say ϕ : Dn × I ↪→ V . (You may assume the real-analyticity of M and
just consider the natural inclusion ϕ : Dn×I ↪→ D

n+1 to understand the
essence of this proof.) We can assume that ϕ∗((∂t)(0,0)) = ξp by a linear
transformation where we denote the transversal coordinate t ∈ I. We
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will choose a sufficiently small neighborhood Γp of {(0, iyn+1) ∈ V ⊂
C

n × C | 0 < |yn+1| 
 1} in V \M later.
We start to estimate i∂∂(− log|δ|) on this Γp. Let us put

i∂∂(− log|δ|) = i
∑n+1

α,β=1 Lα,β dz
α ∧ dzβ on V \M .

Letting η = 0 in the computation in the proof of Theorem 1.1 of [1]
gives us

Lαβ(0, iyn+1) → ∂2(− log h)

∂zα∂zβ
(p),

yn+1Lα,n+1(0, iyn+1) → 0,

y2n+1Ln+1,n+1(0, iyn+1) → 1

4

as (0, iyn+1) → (0, 0) (= p) where 1 ≤ α, β ≤ n. Here we have used the
fact that the converse of Brunella’s construction in [1] actually gives the
inverse map: the hermitian metric of N1,0 induced from δ agrees with
the original h2 thanks to the normalization of ν.

This limiting behavior shows that iΘh ⊕ i∂δ ∧ ∂δ/δ2 is the main
term of the asymptotics of i∂∂(− log|δ|) along the normal line toward p.
Comparing this asymptotics with the equality ω = (iΘh⊕ i∂δ∧∂δ)/100
on M and using continuity of the forms, it is therefore possible to bound
i∂∂(− log|δ|) from below by ω on a sufficiently small Γp. Q.E.D.

Now we have passed from given transversal measure μ of F to the
defining function δ of M with the aid of the holomorphic normal bundle
N1,0. Next, we are going to find a counterpart to the geometric infor-
mation of the holonomy of F in the complement of M . Here we recall
the finding of Ohsawa and Sibony in [13].

Proposition 3.2 (cf. [13]. See also [10]). There exists a C3-smooth

real-valued function δ̃ defined on a neighborhood of Ω such that

(1) Two functions δ and δ̃ agree on a neighborhood of M .

(2) There exists an η ∈ (0, 1] such that i∂∂(−|δ̃|η) ≥ 0 on Ω and

i∂∂(−|δ̃|η) > 0 on W ∩ Ω where W is a neighborhood of M .

Proof. By the argument in [13] or [10], the existence of η such that
i∂∂(−|δ|η) > 0 on W \M follows from i∂∂(− log|δ|) > ω on U \M where
W ⊂ U is a smaller neighborhood of M .

We may suppose that δ > 0 on W ∩ Ω by changing the sign of δ if

necessary. To extend δ to δ̃ on a neighborhood of Ω, we let

δ̃(p) =

⎧⎪⎨
⎪⎩
δ(p) for p ∈ W with δ(p) ≤ ε′/3,
(−ψ(−δ(p)η))1/η for p ∈ W with ε′/3 ≤ δ(p) ≤ ε′,
ε′/2 for other points of Ω
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for sufficiently small ε′ > 0 where ψ : R → R is a C3-smooth non-
decreasing convex function such that ψ(t) = t for t ≥ −(ε′/3)η and

ψ(t) = −(ε′/2)η for t ≤ −(ε′)η. Then, one can see that δ̃ is the de-
sired one. Q.E.D.

The supremum of η appearing in Proposition 3.2 is denoted by
ηδ and called the Diederich–Fornaess exponent of δ. The Diederich–
Fornaess index of a relatively compact domain Ω is defined to be the
supremum of ηδ where we consider all the defining functions δ ofM = ∂Ω
satisfying the conditions in Proposition 3.1.

This numerical index, the Diederich–Fornaess exponent ηδ of δ, is
the counterpart in Ω to the ratio of iAμ and iΘμ, a geometric information
of the holonomy of F . The author showed in [1] the following formula.

Proposition 3.3 (cf. [1]). We have an equality

ηδ = ημ := min
p∈M

ημ(p)

where ημ(p) is called the local Diederich–Fornaess exponent and de-
fined by

ημ(p) := sup

{
η ∈ (0, 1)

∣∣∣∣ iΘμ(p)− η

1− η
iAμ(p) > 0

}
.

Proof. By a direct computation exploiting the same technique used
in the proof of Proposition 3.1. We refer the reader to [1] for the detail.

Q.E.D.

§4. Latter half of the proof: An estimate on the complement

By Proposition 3.3 and a simple computation, we now know that
what we supposed is, in fact, equivalent to ηδ = ημ > 1/(n+ 1). This is
absurd from the following global estimate and we complete the proof.

Proposition 4.1 (cf. [2] and [9]). The Diederich–Fornaess exponent
ηδ should not exceed 1/(n+ 1).

We recollect an elegant argument of Fu and Shaw [9] in our setting
here. (See also Nemirovskĭı [12]. For another proof under a stronger
assumption, see [2].)

Proof of Proposition 4.1. Suppose that ηδ > 1/(n+ 1). Then, we
find η > 1/(n+1) in Proposition 3.2. We assume δ > 0 on Ω by taking its

negative if necessary. Let ωη = i∂∂(−δ̃η), Ωt = {p ∈ Ω | δ̃(p) > t} and

V (t) =

∫
Ωt

ωn+1
η .
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From the choice of η, ωn+1
η defines a non-negative non-trivial measure

on Ω. Hence, it is clear that V (t) is non-negative and non-increasing
and, in particular, V (0) ∈ (0,∞].

On the other hand, by Stokes’ theorem, for 0 < t 
 1,

V (t) =

∫
Ωt

d

(
∂ − ∂

2i
(−δ̃η) ∧ ωn

η

)

=

∫
∂Ωt

∂ − ∂

2i
(−δη) ∧ ωn

η .

By a direct computation,

V (t) =

∫
∂Ωt

(ηδη−1)n+1 ∂ − ∂

2i
(−δ) ∧ (i∂∂(−δ))n

= ηn+1 t
(n+1)η

tn+1

∫
∂Ωt

∂ − ∂

2i
(−δ) ∧ (i∂∂(−δ))n

= ηn+1 t
(n+1)η

tn+1

∫
∂Ωt

∂ − ∂

2i
(−δ) ∧ (i∂∂(−δ)|Ker ∂δ)n.

Recall that the Levi-flatness is equivalent to the vanishing of the Levi
form along M , i∂∂(−δ)|T 1,0F = 0 on M . We therefore have

V (t) = ηn+1 t
(n+1)η

tn+1
O(tn) = O

(
t(n+1)η

t

)

as t ↘ 0. Then, the choice of η shows that V (0) = 0. This is a
contradiction. Q.E.D.

§5. An example

In this section, we illustrate our theorem by an explicit example, a
flat circle bundle over a compact Riemann surface. We will consider a
transverse measure μ having positive normal bundle curvature and see
that its local Diederich–Fornaess exponent distributes around 1/2.

Let Σ be a compact Riemann surface of genus ≥ 2. Fix an identifica-
tion of its universal covering with the unit disk D and express Σ = D/Γ
by a Fuchsian group Γ. Let ρ : Γ → Aut(D) be a quasi-conformal de-
formation of Γ. We suspend the unit circle ∂D over Σ by ρ and obtain
a flat circle bundle, say Mρ = Σ×ρ ∂D → Σ. Pulling back the complex
structure of Σ on each leaf, we regard Mρ as an oriented compact real-
analytic Levi-flat 3-manifold. We can realize Mρ in a compact complex
surface as a real-analytic Levi-flat real hypersurface. That is because
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we can suspend CP
1 over Σ by ρ, say Xρ = Σ ×ρ CP

1 → Σ and Mρ is
naturally identified with the boundary of the holomorphic disc bundle
Ωρ = Σ×ρ D → Σ.

Now we follow the idea of Diederich and Ohsawa [8] and construct
a transverse measure μ on Mρ. Let s : D → D be the ρ-equivariant
harmonic diffeomorphism with respect to the Poincaré metric, that is,
the ρ-equivariant solution to the Euler–Lagrange equation

szz + 2
s(z)

1− |s(z)|2 szsz = 0.

Note that s defines a section of Ωρ → Σ. We consider a transverse
measure μ given by

μ = h(z, eiθ) dθ =
1− |s(z)|2
|eiθ − s(z)|2 dθ.

on a foliated chart given by the covering map (z, eiθ) ∈ D × ∂D → Mρ.
The equivariance of s assures that μ descends to Mρ. Note that the
function h is exactly the Poisson kernel.

By a direct computation using the Euler–Lagrange equation and the
harmonicity of the Poisson kernel, we have

∂

∂z
log h=

1

1− |s(z)|2
(
1− eiθs(z)

eiθ − s(z)
sz(z)+

1− e−iθs(z)

e−iθ − s(z)
sz(z)

)
,

∂2

∂z∂z
(− log h)=

1

(1− |s(z)|2)2
∣∣∣∣1− eiθs(z)

eiθ − s(z)
sz(z)− 1− e−iθs(z)

e−iθ − s(z)
sz(z)

∣∣∣∣
2

.

In a fiber over z ∈ Σ, if we choose its fiber coordinate so that s(z) = 0,
we have

iAμ(z, e
iθ) = |e−iθsz(z) + eiθsz(z)|2i dz ∧ dz,

iΘμ(z, e
iθ) = |e−iθsz(z)− eiθsz(z)|2i dz ∧ dz

and the expression of the local Diederich–Fornaess exponent ημ of μ is
given by

ημ(z, e
iθ) =

iΘμ

iΘμ + iAμ
=

1

2
− Re(e−2iθszsz)

|sz|2 + |sz|2 .

We remark that when ρ = Id: Γ ↪→ Aut(D), the harmonic diffeo-
morphism s = Id: D → D becomes biholomorphic, and iΘμ = iAμ and
ημ = 1/2 hold everywhere. It might be of interest that this μ corresponds
to the foliated harmonic measure of MId.
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