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Abstract. 

The note discusses the motion of solitary waves on the free surface 
of a layer of water. The rigorous results for the existence of solitary­
wave solutions of exact governing equations are given. To generate 
such surface waves, a moving bump placed at the bottom or a pressure 
source on the free surface is used. A model equation, called forced 
Korteweg--de Vries (FKdV) equation, is numerically studied and multi­
solitary-wave solutions are obtained. Then, the numerical solutions are 
compared with experimental results using a water tank with a moving 
bump at the bottom. 

§1. Introduction 

Solitary waves have been studied since its discovery by Scott Russell 
in 1834. In 1895, Korteweg and de Vries [1] derived a model equation 
for the problem, which was also obtained by Boussinesq [2] earlier and is 
now called the Korteweg--de Vries (KdV) equation, and gave the solitary­
wave solutions and periodic (also called cnoidal wave) solutions of the 
KdV equation. In 1960s, the solutions of KdV equation that consist 
of several solitary-wave solutions with different amplitude and different 
traveling speeds were found using an inverse scattering method. How­
ever, it is easy to show that the KdV equation has no solutions that 
consist of several solitary-wave solutions with same amplitude. A series 
of solitary waves generated by a moving bump placed at bottom were 
first studied numerically in [3]. Then, a forced KdV (FKdV) equation 
was used to model such waves where the moving bump was considered as 
the forcing (see [4] and references therein). Recently, Choi, et al [4] gave 
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a very detailed discussion of steady and unsteady solutions of FKdV 
equation numerically as well as theoretically. 

The mathematical proof of the existence of solitary waves for ex­
act governing equations was first given by Lavrentiev [5], who showed 
that the exact governing equations have a solitary-wave solution and 
the first-order approximation of this solution is the solitary-wave solu­
tion of the KdV equation. When the surface tension is included, then the 
situation is quite different. Hunter and Vanden-Broeck [6] numerically 
found that for large surface tension there are solitary-wave solutions of 
the exact equations decaying to zero at infinity, while for small surface 
tension there are solitary waves with small oscillations at infinity. The 
rigorous proof of these existence results was also obtained for large and 
small surface tension (see [7] and references therein). However, the time­
evolution of these waves can only be studied using model equations or 
experiments. 

In this note, a brief discussion on the derivation of FKdV equation 
from the exact equations governing the fluid flows will be given in Sec­
tion 2. In addition, rigorous results on the existence of solitary-wave 
solutions for the exact equations will be provided. In Section 3, numer­
ical solutions of FKdV equation are obtained. In Section 4, the wave 
phenomena from experiments are discussed to illustrate the numerical 
results obtained in Section 3. 

§2. Mathematical theory 

We consider two-dimensional surface waves on a fluid flow of con­
stant density. The fluid is assumed to be inviscid and incompressible, 
and bounded above by a free surface and below by an obstruction of 
compact support over a rigid horizontal bottom. Moreover, there exists 
a pressure source on the free surface. 

The Cartesian coordinates ( x*, y*) are chosen such that x* -axis is 
aligned along the longitudinal direction and y* -axis is the vertical di­
rection opposite to the gravity. Let the fluid be in the region 0* = 
{(x*,y*) I x* E (-oo,+oo),y* E (-h+b*(x*,t*),TJ*(x*,t*))}. Assume 
that ( u *, v*) is the velocity vector, y* = T]* ( x*, t*) is the equation of the 
free surface, p* is the constant density of the fluid, g is the gravitational 
acceleration constant, p* is the pressure, h is the constant depth of the 
fluid at far upstream, b*(x*, t*) is the obstruction with finite support on 
the rigid horizontal bottom, P8* is a pressure function on the free surface, 
and T is the surface tension coefficient on the free surface. The following 
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dimensionless variables are used: E112 = ( h/ L), t = E3/ 2 J971i t*, 

(x,y) = (E112x*/h,y*/h), (u,v) = (u*,E- 112v*)/vgh, 

p = p* /(ghp*), ry = ry* /h, b(x, t) = b*(x*, t*)/(hE2 ), 

Ps(x, t) = P8* (x*, t*)/ (ghp* E2 ), T = T / (p*C2 ) , 

where L is the horizontal length scale and u* --+ C as x* --+ -oo. 
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The non-dimensional exact governing equations are the following: 
Ux +vy = 0, 

(1) EUt + UUx + VUy = -px, E2 Vt + EUVx + EVVy = -py- 1; 

at the free surface y = ry, 

(2) ET/t + UT/x- V = 0, p = E2 P8 (X, t)- TET/xx(1 + ET/;) 312 ; 

at the rigid bottom y = -1 + E2 b(x, t), 

(3) E3 bt + E2ubx- v = 0; as x--+ -oo, (u, v) --+ (F, 0), 

where F = Cj..Jih,. ForE= 0 there is a solution (u,v) = (F,O),p = 
-y' T/ = ( = 0. To have other solutions, we let ( u, v) = E( u, v) + 
(F, 0), p = Ep- y, ry = eij, ( = E(. Assume that P8 , b have a form 
f(x - a(t)Fc 1t) and a(t) is a smooth function of t. In dimensional 
variables, a(t) = 1 corresponds to the case that the forcing is moving 
downstream with a constant speed C in the moving frame (or is fixed in 
the laboratory frame) and a(t) = 0 corresponds to the case that the forc­
ing is fixed in the moving frame (or is moving upstream with a constant 
speed C in the laboratory frame). 

To find the solutions of (1)-(3), we assume that u, v, p, and fJ have 
the asymptotic expansions, ;fi(x, z, E) = ¢0 + E¢1 + E2¢ 2 + 0(E3 ), and 
F = F0 +EA. By substituting the asymptotic expansions into (1)-(3) 
and comparing the orders of E, a sequence of equations and boundary 
conditions for successive approximations are obtained [8] and an equa­
tion for ry0 can be derived as follows (for notational simplicity, replace 
T/O by ry), 

2ryt + 2AT/x- 3T/T/x- ((1/3)- T)T/xxx 

(4) = [(1- (a(t)t)t)bx + Ps,x](x- a(t)(l + EA)E-1t), 

where F0 = 1. The equation was studied in [4] when a(t) = 0 = P8 • 

If b = P8 = 0, (4) becomes the well-known KdV equation 

(5) 2ryt + 2AT/x - 3T/T/x - ( (1/3) - T )T/xxx = 0 



266 J. W. Choi, D. S. Lee, S. H. Oh, S.M. Sun and S. I. Whang 

which has a time-independent solution S(x) = 2Asech2 [(2A/((1/3-
T))112)x/2]. Since S(x) is a solution of the first-order model equation 
(5), it is important to know whether the exact equations (1)-(3) have 
such solitary-wave solutions. The rigorous existence results for solitary­
wave solutions of (1)-(3) can be stated as follows. The references for 
these results can be found in [7]. 

Theorem. Assume that P8 = b = 0 and F = 1 + AE. 

(1) ForT= 0 and A > 0, there is an Eo > 0 such that for 0 < E :::; 
Eo, the time independent equations (1)-(3) have a solution with 
ry(x) = ES(x) +E2 R(x, E) where R(x) E cn(R) is even, bounded 
and decays exponentially as lxl --+ oo. 

(2) For T > 1/3 and A < 0, there is an Eo > 0 such that for 
0 < E :::; Eo, the time independent equations (1)-(3) have a 
solution with ry(x) = ES(x) + E2 R(x, E) where R(x) E cn(R) is 
even, bounded and decays exponentially as lxl --+ oo. 

(3) For 0 < T < 1/3 and A > 0, there is an Eo > 0 such that for 0 < 
E:::; Eo, the time independent equations (1)-(3) have a solution 
with ry(x) = ES(x) +E2 R(x, E)+AR+(x, E) where R(x) E cn(R) 
is even, bounded, decays exponentially as lxl--+ oo, and R+(x) 
is periodic. Here, A can be of order of Em for any m > 0 or 
E-co/e for some Co > 0. Moreover, there are no solitary-wave 
solutions that decay to zero at infinity if T < 1/3 is near 1/3. 

The time dependent problem of (1)-(3) is much more difficult to 
study mathematically for the time evolution of solitary-wave solutions. 
The global well-posedness is still a very challenging open problem. There­
fore, we shall only study the time-dependent problem for the FKdV 
equation (4) numerically and then verify the numerical results with ex­
periments. Our goal is to generate the solitary or multi-solitary waves 
using a moving bump placed at the bottom by letting a(t) in (4) be zero 
and then let the bump stop moving by letting a(t) be one so that we 
can see how these waves move freely afterwards. 

§3. Numerical solutions 

For the sake of simplicity, we assume P8 = 0 and T = 0. For our 
calculation, we let b(x) be chosen as a semi-circle. Thus, the equation is 

2'flt + 2A'flx - 3'fl'flx - (1/3)'flxxx 

(6) = (1- (a(t)t)t)bx(x- a(t)(1 + EA)E- 1t), 
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where b(x) = v'1- x2 for lxl ~ 1 and b(x) = 0 for x > 1. In the 
following, we calculate the solution of (6) with >. > 0 and the function 
a(t) chosen as a(t) = 0 for 0 ~ t ~ T and a(t) = 1 fort~ T+8. ForT~ 
t ~ T+8, a(t) = sin2 ((1r /28)(t-T)), where 8 is a constant measuring the 
time period used for the moving bump to stop completely. E is chosen 
as 1/3, which is used to set up the experiments to be discussed later. 
The numerical solutions are displayed in Figs. 1-3 and the amplitude of 
solitary-wave solutions is calculated. 

1.5 

Fig. 1. The solution of (6) with A = 0.1299 and T = 20. A 
snap shoot at t = 20 

In Fig. 1, >. = 0.1299 and if the motion of the bump is stopped at 
timeT= 14 with 8 = 0.5, the solution of (6) for a zero initial condition 
is given. It can be seen that after the bump is stopped, two solitary 
waves generated by the bump are propagating freely. The amplitude 
of the solitary waves is about 1.88. Fig. 2 gives the solution of (6) for 

Tt(14,x) 
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Fig. 2. The solution of (6) with A = 0.6385 and T = 10. A 
snap shoot at t = 14 

>. = 0.6385 and T = 10. It looks that the similar phenomena happen 
although the amplitude becomes larger (around 2.75) and the time pe­
riod to generate one solitary wave becomes longer. In Fig. 3, we use 
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Fig. 3. The solution of (6) with A = 1.108 and T = 8. A 
snap shoot at t = 14 

>. = 1.108 and T = 8. If the initial profile of the wave is zero, then for 
a slightly large time, a steady state wave appears and is stable. After 
the bump stops moving at T = 8, it is seen that the steady state wave 
quickly becomes a small solitary wave moving to the right with a con­
stant speed approximately c = 0.95 and the amplitude of steady state 
is reduced to a solitary wave of amplitude 0.28. If the solitary wave is 
viewed in the laboratory frame, then the wave is moving to the left (or 
upstream) with a speed y'gh(1 + E(A- c))= 1.053..Jijh mjs. 

§4. Experiments 

The experiments were conducted in a water tank of 0.7 meter wide 
and 20 meters long, which was located at Coastal Engineering and Ocean 
Energy Research Department in Korea Ocean Research and Develop­
ment Institute. The tank was filled with water of depth 0.06 meter, 
which gives the critical speed ..Jijh = 0.7668 m/s. A moving bump with 
a uniform cross section was placed at the bottom of the tank and could 
be moved horizontally by a motor with any given speed. The shape of 
the bump was given by b*(x*) = hE2 J1- (E112x*/h) 2 for lx*l::::; hc 112 

and b*(x*) = 0 otherwise. Here, E = 1/3 is chosen, i.e, the amplitude 
of the bump is around 0.0067 meter and the width is 0.208 meter. The 
relation C / ..Jijh = 1 + EA = 1 + (.A/3) with C being the moving speed 
of the bump in laboratory frame may give the value of >. in the numer­
ical solutions of (6). Three cameras were placed at the locations L 1 at 
3.32 meters, L2 at 6.43 meters, and L 3 at 8.8 meters from the start­
ing position of the bump. The moving bump was stopped around the 
location L2 • Many experiments were conducted and three very typical 
experiments are report here, which are shown in Figs. 4 to 6. 

In Fig. 4, the bump at the bottom was moving with a constant speed 
0.8 m/s (>. = 0.1299 in (6)). At L1 , the first solitary wave appeared and 
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Fig. 4. The speed of the bump is 0.8 m/s. 

second one was about to be generated. At £ 2 , the second solitary wave 
with same amplitude was fully generated before the bump was stopped. 
Then, it was observed that these two solitary waves were continuously 
moving with a constant speed afterwards. The amplitude of the solitary 
wave was about 0.04 meter. 

Fig. 5. The speed of the bump is 0.93 m/s. 

In Fig. 5, the moving speed of the bump was 0.93 m/s (or A = 
0.6385). At Lt, no full solitary wave had been generated yet, which 
implies that the time period to generate one solitary wave became longer. 
At £ 2 , just before the time that the bump was stopped, only one solitary 
wave was about to be generated. However, its amplitude was so large 
at about 0.062 m that the maximum height of the solitary wave was 
almost reached. The wave near the maximum height was unstable and 
the top of the solitary wave broke. After the bump was stopped, the 
wave became a bore-like wave at £ 3 . Here, note that for large amplitude 
waves, (6) cannot be used. Also, it was found that there was a critical 
speed Co around 0.95 m/s such that when C was between Cb rv 0.93 
and C0 , the amplitude of the forced solitary waves always approached 
to the maximum amplitude and the waves generated were unstable. 

Fig. 6 is for the moving speed of the bump at 0.97 mjs. At the 
locations £ 1 and £ 2 , it was seen that a steady state wave appeared on 
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Fig. 6. The speed of the bump is 0.97 m/s. 

the top of the bump and was very stable, as predicted by the theory 
and numerical study [4]. At £ 3 , after the bump stopped, a single hump 
wave was continuously moving by itself with a constant speed and an 
amplitude about 0.01655 m, which was a classical solitary wave. 
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