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Self-propelled dynamics of deformable domain 
in excitable reaction diffusion systems 

Takao Ohta 

Abstract. 

The time-evolution equations for an isolated domain in an ex­
citable reaction-diffusion system are derived both in two and three 
dimensions by an interfacial approach near the drift bifurcation where 
a motionless state becomes unstable and a domain starts propagation 
at a certain velocity. The coupling between shape deformation of do­
main and the migration velocity is taken into consideration. When the 
relaxation of shape deformation is slow enough, a straight motion be­
comes unstable and several kinds of motion of domain appear depend­
ing on the parameters. The self-propelled domain dynamics under the 
external fields is also studied. 

§1. Introduction 

Self-organized dynamics of domains in reaction-diffusion media have 
attracted much attention for more than two decades [1]. Computer sim­
ulations of reaction-diffusion equations have revealed various interesting 
dynamics of domains. For example, Krischer and Mikhailov have inves­
tigated numerically domain dynamics in two dimensions in an excitable 
reaction-diffusion system with a global coupling [2] and have found that 
a motionless localized domain loses its stability and begins to propagate 
when a system parameter exceeds a certain threshold. This is called a 
drift bifurcation. They have shown that an isolated domain is deformed 
substantially from a circular shape when the propagating velocity is in­
creased. 
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In the present article, we shall describe our recent studies of dynam­
ics of deformable self-propelled domains [3]-[8]. We derive the time­
evolution equations for an isolated domain [4], [7] starting with the 
excitable reaction-diffusion equations [2]. It will be shown that there 
appears a rich variety of dynamics such as circular motion, zigzag mo­
tion, chaotic motion in two dimensions [3], [5] and a helical motion in 
three dimensions [6], [7]. Dynamics under external fields will also be 
investigated by numerical simulations and by a kind of phase dynamical 
approach [8]. 

In the next section, we introduce the reaction-diffusion equations 
and derive the time-evolution equations for a single domain. In Section 
3, we solve the set of equations numerically in two and three dimensions 
to obtain various types of self-propelled motion. External forced are 
added to the time-evolution equations and the dynamics are investigated 
in two dimensions both numerically and analytically in Section 4. The 
results are summarized in Section 5. 

§2. Time-evolution equations for a domain 

We start with a coupled set of reaction-diffusion equations for an 
activator u and an inhibitor v given by [2] 

(1) 

(2) av 2 
-=\7 v+u-(3v at ' 

where f{u,v} = -u+iJ(u-p'{u,v}) with iJ(x) = 1 for x > 0 and 
iJ( x) = 0 for x < 0. The functional p' { u, v} contains a global coupling 
as 

(3) p' =p+O"[j(u+v)dr- W], 

where O" and W are positive constants, 0 < p < 1/2 and the integral 
runs over the whole space. The constants T and (3 are positive and 
chosen such that the system is excitable and that a localized stable pulse 
(domain) solution exists. Inside the domain, the variable u is positive 
surrounded by the rest state where u and v vanishes asymptotically 
away from the domain. The parameter E is a measure of the width of 
the domain boundary (interface). Hereafter we assume that the interface 
is infinitesimally thin, i.e., E --t 0. Furthermore, we consider the limit 
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a -t oo so that the global coupling becomes p' = p with 

(4) j(u+v)dr= W, 

and f { u, v} is no more a functional but is given by 

(5) f(u) = -u+'!9(u-p). 

The constraint (4) means that the area (volume in three dimensions) of 
a domain is a conserved quantity. 

Domain dynamics is uniquely specified if one determines the motion 
of the interface of domain [4], [7]. Let us put V(¢, t) as the normal 
velocity of the interface in two dimensions where ¢ is the angle from the 
x-axis. The velocity of the center of mass is given by 

(6) v = ~ 12
7r d¢ (R(¢, t? + (dR(¢, t)/d¢)2) 112 R((¢, t)V(¢, t) ' 

where A is the area of the domain, R is the position vector at the 
interface from the center-of-mass position and R = IRI. Deformations 
of a domain around a circular shape with radius R0 are represented in 
the moving frame at the velocity v as 

(7) R(¢) = R 0 + 8R(¢, t), 

where 

00 

(8) 8R(¢, t) = L en(t)einc/>. 
n=-oo 

The modes n = ±1 related with the translational motion of domain are 
excluded from the summation. The niodes C±2 represents an elliptical 
deformation. We introduce a second rank tensor as follows [4]; 

(9) 
-822 = C2 + C-2 , 

821 = i(c2 - c-2) . 

For an elliptical domain, we may put c±2 = (82/4) exp(=t=i2¢2) and R(¢) 
is represented as 

(10) 
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where <h is a positive constant. In this case, the second rank tensor S 
can be written in terms of the unit vector N = (cos ¢2, sin ¢2) as 

(11) 

This is equivalent with the nematic order parameter in liquid crystals 
[11]. The modes C±3 are necessary if we consider the head-tail asymme­
try of a propagating domain. Le us put C±3 = (83/2) exp(=Fi3¢3) with a 
positive constant 83 and introduce 

(12) ji/(1) (cos ¢3, sin ¢3) , 

(13) ji/(2) 27r 27r 
( cos(¢3 + 3 ), sin(¢3 + 3 )) , 

(14) ji/(3) 2rr 2rr 
( cos(¢3- 3),sin(¢3- 3)). 

The third-rank tensor associated with then = ±3 modes is defined in 
terms of the unit vectors by 

(15) 

From the definitions (12), (13) and (14), we obtain [4] 

(16) 

(17) 
Un1 = 83 cos 3¢3 = c3 + c_3 

U222 = -83sin3</J3 = -i(c3- C-3) 

as well as the relations Un1 = -U122 = -U212 = -U221 and U222 = 
-Un2 = -U121 = -U211· The tensor Uafh is the same as the order 
parameter for banana (tetragonal nematic) liquid crystals in two dimen­
sions [11]. A deformed domain in three dimensions is formulated in 
terms of the spherical harmonics and the expression of Saf3 is given in 
Ref. [7]. 

The time-evolution equations for if, Saf3 and Uaf3r can be derived 
from Eqs. (1) and (2) by means of a singular perturbation for infinites­
imally thin interfaces. The assumption is that the propagating velocity 
is sufficiently small provided that the system is in the vicinity of the 
supercritical drift bifurcation. The final set of equations is obtained in 
two dimensions as follows [4]. 

( ) dva 
1

_
1
2 

18 dt - "(Va + Va V = -al Vf3Sf3a , 



dUafJ-y 
dt 

(20) 
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Fig. 1. Phase diagram obtained numerically from Eqs. (18), 
(19) and (20). Straight motion in the region D, cir­
cular motion in the region o, zigzag motion in the 
region !::::. and chaotic motion in the region of the star 
symbols. This figure is reproduced from Ref. (5) 
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-r;,3UafJ-y + d1 [vav,sv1 - v~'T/ (8a,sv1 + 8,s1 va + 81 av,s)] 

d2 [ + 3 Sa,sV1 + S,s1 Va + S1 aV,B 

v2'T/ (8a,sS1 'T/ + 8,s1 Sa'T/ + 81 aS,s'T/)], 

where 'Y = (rc- r)/2 with Tc the drift bifurcation threshold. (This "( 
should not be confused with the one in the suffix of U a,s1 .) Even up to 
the cubic nonlinearity, there are several other terms which, however, are 
omitted for simplicity. The expressions of the coefficients bi and di are 
complicated and are referred to the original article [4]. We have derived 
the time-evolution equations for v and Sa,s in three dimensions in Ref. 
[7]. 

Before closing this section, we make a remark about the time-evolution 
equations (18), (19) and (20). Since this represents the motion of the 
interface of a domain, those are expected to be related with a wave 
equation in one dimension with a periodic boundary condition. In fact, 
Armbruster et al have studied mathematically the stability and bifur­
cation of dissipative nonlinear waves on a closed circle [9, 10]. The set 
of equations (18), (19) and (20) has some symmetry due to the isotropy 
of space (see Eqs. (24)-(27) below) whereas the one-dimensional wave 
equation has a translational invariance. We have identified the various 
domain motions in two dimensions with the wave solutions in one di­
mension [5]. In three dimensions, such a correspondence, of course, does 
not exist. 
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Fig. 2. Snapshots and the trajectory of a zigzag motion (a) 
and a chaotic motion (b). This figure is reproduced 
from Ref. [5] 

§3. Numerical computation 

We have solved numerically Eqs. (18), (19) and (20) for a 1 = 

-1.0, b1 = -0.5, b2 = 0.3, d1 = 0.1, d2 = 0.8 and '"'( = 1.0 in two di­
mensions to obtain the phase diagram displayed in Fig. 1 [5]. When 
both /"1,2 and /"1,3 are large, a straight motion appears in the region D. 
However, this becomes unstable in the region o where a circular motion 
appears. In the circular motion, the trajectory of a domain exhibits 
a closed circle. The bifurcation between straight motion and circular 
motion was predicted in Ref. [3]. Later it was found numerically in 
a reaction-diffusion system [12]. When the value of /"1,3 is small, new 
motions appear. One is the zigzag motion in the region 6 as shown in 
Fig. 2(a) and the other is a chaotic motion in the region of the star 
symbols as indicated in Fig. 2(b ). We have verified numerically that 
the Lyapunov exponent for this solution is positive. We are unable to 
identify the motion in the region x because of numerical instability. 

In three dimensions, we have derived a set of equations (18) and 
(19) without considering the variable Uaf3'Y [7]. The factor 1/2 in the 
second term in Eq. (19) should be replaced by 1/3. The phase diagram 
is given in Fig. 3 for a 1 = -1.0 and b1 = -0.5 [6]. There are three 
regions for a rectilinear motion, a circular motion and a helical motion. 
The solid line is the linear stability threshold of straight motion whereas 
the broken line is the stability limit of circular motion. The trajectory 
of a helical motion is displayed in Fig. 4. 
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Fig. 3. Phase diagram obtained numerically from Eqs. (18) 
and (19) in three dimensions. The horizontal axis r;, 

should read r;,2 in Eq. (19). The rectilinear motion is 
stable in the region indicated by +, circular motion 
in the region o and helical motion in the region 6. 
This figure is reproduced from Ref. [6] 

y 

Fig. 4. Trajectory and domain shape of helical motion trav­
eling from top to bottom. This figure is reproduced 
from Ref. [6] 

§4. Motion under external fields 
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Now we study the motion of a domain under external fields [8]. We 
consider the simplified set of equations of motion (18) and (19) with 
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b2 = 0 in two dimensions but adding the external forces 

(21) 

(22) 

where 

(23) 

The external force ga is assumed to be given by g = (0, -g) with g > 0. 
The other external force Ea in Qa/3 is applied as E = (1, 0). Since the 
tensor U af3"! is not considered, only straight and circular motions are 
possible in two dimensions [3] in the absence of the external fields. 

Equations (21) and (22) can be written as 

(24) 
dv 

"(V - v3 - ~ sv cos 2'1/! - g sin ¢ 
dt 2 

(25) 
d¢ a . g 

dt 
--ssm2'1j;-- cos¢ 

2 v 

(26) 
ds 

-1'1,S + bv2 cos 2'1/! + h cos 28 
dt 

(27) 
d() 
dt 

b 2 . '1/! h () --v sm2 -- sin2 
2s 2s ' 

where we have put v1 = v cos¢, v2 = v sin¢, N1 = cos() and N2 = sin() 
with v and s positive values, and 'lj! = () - ¢. Note that, when the 
external forces are absent, i.e., g = h = 0, only the difference 'lj! is an 
independent variable. This comes from the isotropy of space. 

First, we show the results of numerical simulations of the model 
equations (24)-(27) in two dimensions for the gravitational-like external 
force, i.e., with g =f=. 0 and h = 0. In the numerical computations, 
the fourth-order Runge-Kutta method is employed with time increment 
ot = 10-4 . The coupling coefficients a and b are fixed as a = -1.0 
and b = -0.5. The bifurcation threshold between straight motion and 
circular motion is given by 'Yc = 0.18 for "" = 0.2. The phase diagram 
on the "(-g plane is shown in Fig. 5. There are four different motions 
as shown in Figs. 5(a)-(d): a circular-drift motion, a zigzag-1 motion, a 
zigzag-2 motion, and a straight-falling motion. In the zigzag-1 motion, 
the velocity along the y-axis does not change the sign whereas it changes 
the sign periodically in the zigzag-2 motion. We emphasize two non­
trivial dynamics. One is the fact that a straight motion becomes unstable 



Self-propelled dynamics of deformable domain 

4 
3 
2 

:- 'Yc 

0.1 
0.05 

0 
-0.05 

(a) 
0 

0 

l 

0.5 

(b) 
<> 

X 

1 1.5 2 
g 

Fig. 5. (Top) Phase diagram on the ""( - g plane for K. = 
0.2. The symbols indicate the following motions; 
circular-drift motion (cross), zigzag-1 motion (dia­
mond), zigzag-2 motion (square), and straight-falling 
motion (circle). Note that there are coexistence re­
gions. (Bottom) Trajectory of (a) the straight-falling 
motion, (b) zigzag-1 motion, (c) zigzag-2 motion and 
(d) circular-drift motion. The arrows indicate the di­
rection of migration. The parameters are chosen as 
""( = 2 and K. = 0.75 for (a) and""(= 3 and K. = 0.2 for 
(b), (c) and (d). This figure is reproduced from Ref. 
[8] 
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for large values of g even when 'Y ~ 'Yc in which a straight motion is stable 
when the external force is absent. The second interesting property is that 
the domain of a circular-drift motion traverses almost perpendicularly 
to the direction of the force. 

This phase diagram has been analyzed by simplifying eqs. (24)-(27). 
That is, we eliminate the variables v and s by putting dv I dt = ds I dt = 0 
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Fig. 6. (Top) Phase diagram on the 7-h plane for "' = 0.5 
obtained numerically from Eqs. (24)-(27). The sym­
bols indicate the circular motion (cross), the zigzag-1 
motion (diamond), the zigzag-2 motion (square), and 
the motionless state (circle). The up (down) triangles 
indicate the straight motion perpendicular (parallel) 
to E. (Bottom) Trajectories of the center of mass 
in the real space for"! = 3 (a) a straight motion for 
h = 1.3, (b) a zigzag-1 motion for h = 0.6, (c) a 
zigzag-2 motion for h = 0.5, and (d) a circular mo­
tion for h = 0.3. This figure is reproduced from Ref. 
[8] 

leaving the set of equations for the angle variables. We may call this 
method a phase dynamical approach. The lines in Fig. 5 have been 
obtained from the reduced set of equations. The thin solid line is a 
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saddle homoclinic-orbit bifurcation boundary whereas the thick solid 
line is a Hopf bifurcation boundary. 

Next, we show the numerical results of self-propulsion in the electric­
like external field with g = 0 and h -:/:- 0 for r;, = 0.5, a = -1.0 and 
b = -0.5. Figure 6 displays, on the 'Y-h space, the phase diagram of 
a variety of dynamical states: a circular motion, a zigzag-1 motion, a 
zigzag-2 motion, and a straight motion. We also show the trajectories 
of these motions in Figs. 6(a)-(d). When the magnitude of the external 
force h is large enough, a domain undergoes a straight motion parallel to 
the electric field for all 'Y· However, this straight motion is divided into 
two classes. In the region of the down triangles in Fig. 6, the direction of 
elongation is parallel to the external force even though we have chosen 
b < 0. In this situation a perpendicular elongation should occur when 
the external force is absent [3]. The elongation becomes perpendicular 
for smaller values of h as indicated by the top triangles in Fig. 6. When 
'Y > "fc, a domain undergoes a circular motion along an elliptically­
deformed trajectory as in Fig. 6(d) under a finite but weak external 
force in the region indicated by the crosses in Fig. 6. Between this 
circular motion and the straight motion, there is a region indicated by 
the diamonds where a zigzag-1 motion occurs as displayed in Fig. 6(b). 
When 'Y is much larger than 'Yc > 0, there appears another motion, 
which is called a zigzag-2 motion between the circular motion and the 
zigzag-1 motion as indicated by the square in Fig. 6. The trajectory 
is displayed in Fig. 6(c). It should be noted that the migration of the 
zigzag-2 motion is, on an average, to the direction perpendicular to the 
external field. 

From the reduced set of equations for () and ¢, we can determine 
analytically some of the phase boundaries. The thick solid line in Fig. 6 
is a Hopf bifurcation boundary whereas the thin solid line is a pitchfork 
bifurcation boundary. The thin dotted line is the bifurcation boundary 
between the circular motion and the zigzag-1 motion obtained numeri­
cally from the phase equations. 

§5. Summary 

We have derived the set of time-evolution equations for a deformable 
self-propelled domain and have shown that there are circular motion, 
zigzag motion and helical motion as well as a straight motion by chang­
ing the migration velocity and the softness of domain. In three dimen­
sions, a helical motion also appears. By adding the external forces, a 
gravitational-like force and an electric-like force, the dynamics exhibit 
much more variety. These dynamical behaviors except for the zigzag-2 
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motion can be understood by the phase dynamical approach. It is our 
expectation that the present study gives new insight into the nonlinear 
domain dynamics far from equilibrium. It is also mentioned the the sys­
tems we have studied are closely related with biological systems such as 
self-propulsion of micro-organisms and living cells. 

The author is grateful to T. Ohkuma, T. Hiraiwa, K. Shitara and 
M. Tarama for their fruitful collaboration in this study. This work was 
supported by the JSPS Core-to-Core Program "International research 
network for non-equilibrium dynamics of soft matter" and by Grant-in­
Aid for Scientific Research A (No. 24244063) and C (No. 23540449) 
from JSPS. 
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