
Advanced Studies in Pure Mathematics 64, 2015 
Nonlinear Dynamics in Partial Differential Equations 
pp. 63-75 

Some recent progress on standing waves of 
FitzHugh-Nagumo system 

Chao-Nien Chen and Hung-Jen Tsai 

Abstract. 

The FitzHugh-Nagumo system is a well-known reaction-diffusion 
model for exhibiting self-organized patterns. Besides regular patterns 
found in a neighborhood of Turing's instability, localized structures 
are also observed in experiment and numerical simulation. In particu­
lar, fronts and pulses are the most well-known localized structures in 
reaction-diffusion systems. This article is aimed at some recent results 
on the variational approach for studying standing waves of FitzHugh­
Nagumo system. 

§1. Introduction 

In recent years pattern formation became an important research 
field, in which the traditional disciplines of physics, chemistry, biology 
and mathematics interact and significant progress [2], [24] has been made 
through the exchange of ideas. Following from Turing [37], reaction­
diffusion systems serve as relevant models [5], [24], [35] for studying 
complex patterns [15], [22], [27] in several fields of sciences; not only 
these regular patterns found in a neighborhood of Turing's instability,· 
localized structures [5], [24] also are observed in experiment and numer­
ical simulation. 

The existence of wavefronts and pulses is one of the central issues in 
understanding dynamics of reaction-diffusion system. Planar wavefronts 
are generic structures connecting two different homogeneous states of a 
system with bi-stable nonlinearity. A well-known model is the Allen­
Cahn equation, in which a standing wavefront can easily be found from 
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phase plane analysis; as matter of fact the explicit form of this solution 
is known. In the Allen-Cahn model, wavefront played a crucial role in 
the generation of interface in earlier stage of phase transition. Moreover, 
in the situation of slow diffusion, the motion of interface [12] is driven 
by its mean curvature. For the N agumo equation, phase plane analysis 
shows that there is a standing pulse: nevertheless it is not stable. 

In the study of diffusion-induced instability, the FitzHugh-Nagumo 
model received a great deal of attention: 

(1) 

(2) 
Ut = d1b.u + f(u)- v, 

TVt = d2b.v + u -1v. 

Here u can be viewed as an activator while v acts as an inhibitor. Vari­
ants of (1)-(2) also appeared in neural net models for short-term memory 
[26] and in studying nerve cells of heart muscle [30]. The aim of this 
article is to report some recent results by using variational methods to 
study standing waves of FitzHugh-Nagumo system. 

§2. Planar standing wavefront 

In seek of standing wavefronts of (1)-(2), a natural question is to 
clarify the influence of diffusivity [11] to the existence of such waves. 
This amounts to studying the heteroclinic solutions of a second order 
Hamiltonian system 

(3) 

(4) 

-du" = f(u)- v, 

-v" = u -1v. 

The ratio of diffusivities is denoted by d in the non-dimensional form of 
(3)-(4). 

Theorem 1. Let a= 2((3 + 1)/3. If 1 = 9(2(32 - 5(3 + 2)-1 and 
d > ~-2 , there exists a standing wave solution (u(x),v(x)) of (1)-(2) 
such that (u,v)-+ (0,0) as x-+ -oo and (u,v)-+ (a,a/r) as x-+ oo. 

Let us remark that in system (1)-(2), two homogeneous states (0, 0) 
and (a, a/r) are in the same energy levels only if 1 = 9(2(32 - 5(3 + 2)-1 . 

As in the Allen-Cahn equation, standing wavefront appears in reaction­
diffusion system with balanced potential wells. 

In the proof of Theorem 1, a variational functional with a nonlocal 
term will be studied. We briefly sketch the main idea of this approach 
as follows. Pick a function Uo E C00 (!R) with the property 

(5) ua(x) = { ~ if X ::::0: 1, 
if X:::; -1. 
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Let D * be the differential operator "( - 8 2 / 8x2 . For a given 'l/J E H 1 (JR), 
there is a unique solution satisfying 

(6) 

which will be denoted by L'l/J. In the way to set up a variational func­
tional for solving a heteroclinic solution of (3)-( 4), a simple choice is 
Uo = D*vo with Vo being a C 00-function satisfying 

(7) va(x) = { a~"( for x;::: 1, 
for x::::; -1. 

Let F(~) = -Ia~ f(s)ds. For 'l/J E H 1 (JR), define 

!00 1 
(8) J1('l/J) = -oo 2[d(u~+'l/J') 2 +(uo+'l/J)(vo+L'l/J)]+F(u0 +'l/J)dx. 

If 
J1(~) = inf J1('l/J) 

1/JEH 1 (JR) 

and (u,v) = (u0 + ~,v0 + L~), then (u,v) is a heteroclinic solution of 
(3)-( 4). 

§3. Planar standing pulse 

Fronts and pulses are the most well-known one-dimensional waves in 
reaction-diffusion systems. The profile of a pulse may stay in close prox­
imity to a trivial background state except in one localized spatial region 
where change is substantial. In Hamiltonian systems pulses often result 
from balance between dispersion and nonlinearity [2], and they usually 
represent states which are far away from the homogeneous equilibrium. 

(9) 
(10) 

When there is no diffusion term in ( 2), the system 

Ut = duxx + f(u)- v, 

Vt = E(U- "(V), 

has been considered as a model for the Hodgkin-Huxley system [15], 
[27], [35] to describe the behavior of electrical impulses in the axon of the 
squid. The existence of traveling pulses of (9)-(10) has been established 
[6], [13], [18], [23] for E << 1; in their works the system was treated 
as a singular perturbation problem in which the pulse is constructed by 
piecing together solutions of certain reduced systems. Related stability 
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questions have been studied in [20], [42]. Whether such a pulse exists 
for r:: not necessarily small is left open. 

The absence of diffusion for v in (10) simplifies the existence analysis 
of standing pulse. If (u, v) is a standing pulse of (9)-(10), it is clear that 
v = uh and u satisfies 

(11) duxx + f(u)- uh = 0. 

When"( << 1, (11) can be expressed as duxx- p(x)u = 0 for some 
positive functionp = u2 -(,8+1)u+(.B+1h). An immediate consequence 
of the maximum principle excludes the possibility of having a standing 
pulse. On the other hand if 'Y >> 1, (11) can be cast in the form 
duxx - u(u- a1)(u - az) = 0 for some .B < a1 < az < 1. Phase 
plane analysis indicates that (11) possesses a positive solution u which 
is homoclinic to 0 and a 1 < max u < a 2 . 

Reinecke and Sweers [31] used finite domain approximation to es­
tablish a positive standing pulse solution for (1)-(2). They treated the 
case 'Y > > 1 and sufficiently large d. The presence of three distinct 
homogeneous solutions is essential in their construction of certain su­
persolutions. 

In contrast with the known results of positive standing pulses, when 
'Y < < 1, a standing pulse ( u, v) constructed in [7] is of different shape: 
u actually changes sign while v stays positive. 

Theorem 2. Let .B E (0, 1/2) be given. 

(i) There exist 1 > 0 and d = d('Y) > 0 such that if 'Y < 1 and 
d < d, then there is a standing pulse solution (u,v) of(1)-(2). 

(ii) Both u and v are even functions on ( -oo, oo) and satisfy ( u, v) 
-+ (0, 0) as x -+ oo. 

(iii) u changes signs exactly once on (0, oo) while v > 0 and v' < 0 
on (O,oo). 

By experimenting numerical calculation [36] with various initial data, 
we find a stable standing pulse solution of (1)-(2) with profile as shown 
in Fig. 1. 

§4. Standing wavefront joining with Turing patterns 

An interesting article by Kondo and Asai [22] demonstrated that 
the pattern formation and change on the skin of tropical fishes can be 
predicted well by reaction-diffusion models of Turing type. A common 
pattern structure in fish skin is the rearrangement of stripe pattern; the 
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Fig. 1. Standing pulse solution u changes sign and v stays 
positive. Here'"'(= 0.1, (3 = 0.3 and d = 10-4 

number of stripes tends to increase with body size and defect like het­
eroclinic solution appeared between the patterns with different number 
of stripes. According to the observation [22], defect made change time 
to time during the growth of skin. The reaction-diffusion wave in gener­
ating stripe pattern is a kind of standing wave. Our particular interest 
is to seek standing wavefront joining with Turing patterns. 

To investigate the spatially heterogeneous steady states of ( 1 )-( 2), 
we study the following system of elliptic equations: 

(12) 

(13) 

(14) 

-d1flu = f(u)- v, 

-d2flv = u -{V, 

aul =avl =O av aw av aw ' 

where w is a bounded domain in JR.n with smooth boundary ow. It 
is easily seen that a solution of (12)-(14) is a critical point of <f>( u, v) 
defined by 

(15) 
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where F( u, v) = uv - '!.v2 - r !( e)d~. In fact, with the reaction terms 
2 Jo 

being in coupled with a skew-gradient structure [40], (1)-(2) can be 
expressed as 

(16) Mwt = Dwxx + Q'\!F(w) 

if we set w = ( u, v); the general situation is to consider a system in 
which w(x, t) is ann-dimensional vector function, M and D are n x n 
diagonal matrices with positive entries, 

Q = ( ~ -I~-j ) ' 

and 11 is the j x j identity matrix. Following the work [40] of Yanagida, 
(16) will be referred to as a skew-gradient system. 

In dealing with a strongly indefinite functional <I>, a critical point 
theorem established by Benci and Rabinowitz [4] can be employed to 
study the existence of solutions of (12)-(14). Let <I>"(u, v) be the second 
Frechet derivative of <I> at (u, v). A critical point (u, v) is said to be non­
degenerate if the null space of <I>" ( u, v) is trivial. Concerning the stability 
of steady states, Yanagida [40] introduced the notion of mini-maximizer 
of (15) as follows: A steady state (u, v) is called a mini-maximizer of <I> 
if u is a local minimizer of <I>(·, v) and vis a local maximizer of <I>(u, ·). 
Yanagida showed that non-degenerate mini-maximizers of <I> are linearly 
stable. This result gives a natural generalization of a stability criterion 
for the gradient system in which all the non-degenerate local minimizers 
are stable steady states. 

More recently the stability of steady states of (16) was studied [10] 
in conjunction with a relative Morse index associated with the critical 
point of (15). Let E = H 1 (w) EB H 1 (w). If G is a self-adjoint Fredholm 
opeartor onE, there is a unique G-invariant orthogonal splitting 

E = E+(G) EB E_(G) EB Eo(G) 

with E+(G),E_(G) and E0 (G) being respectively the subspaces on 
which G is positive definite, negative definite and null. In the way of 
investigating the stability of steady states of (12)-(14), Q is extended to 
an operator mapped from H 1 (w) EBH1(w) onto itself. Suppose (u, v) is a 
critical point of <I>. For the pair of Fredholm operators Q and <I>"(u,v), 
we define a relative Morse index i ( Q, <I>" ( u, v)) to be the relative dimen­
sion of E_(Q) with respect to E_(<I>"(u,v)). For a gradient system, a 
non-degenerate critical point with non-zero Morse index is an unstable 
steady state. The next theorem [10] gives a parallel result for skew­
gradient system. 
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Theorem 3. Suppose i(Q, <I>"(u, v))-=/:- 0 and dimE0 (<I>"(u, v)) = 0, 
then for any T > 0, ( u, v) is an unstable steady state of (12)-(14). 

Remark. For a critical point (u, v) of <I>, the work of Abbondandolo 
and Molina [1] provides a way to calculate i( Q, <I>" ( u, v)). 

In [40] Yanagida showed that non-degenerate mini-maximers of <I> 
are always stable for any T > 0. He also pointed out that in convex 
domain a mini-maximizer of (12)-(14) must be spatially homogeneous. 
For a given system, the reaction rates in general should also play sig­
nificant roles in generating a self-organized pattern. We next illustrate 
a criterion [10] for justifying a Turing pattern in skew-gradient system 
with its stability depending on the reaction rates. Let p+ and p- be 
the orthogonal projections from E to E+(Q) and E_(Q) respectively. 
Set r = H 2 (w) EB H 2 (w), 

T = ( ~ 1 ) and D = ( -g1 ~2 ) . 

Define W = T(Dtl.- \12 F(u,v))T, W+ = p+wp+, W_ = p-wp-, 

and 

. (W+z,z)u 
Pi= mf IIP~II2 ' zEr z £2 

(W _z, z) £2 

Ps =sup liP- 112 
zEr z £2 

Theorem 4. Assume that i( Q, <I>"(u, v)) = 0 and dimE0 ( <I>"(u, v)) = 
0. Then (u, v) is stable if Pi > Ps· 

Standing wavefront of scalar reaction-diffusion equation on cylinders 
has been studied in [3], [38], [39]. A typical example is 

(17) 

(18) 

(19) 

Ut = tl.u + Uyy + h(u), for (x, y) E w x JR., t > 0, 

au ov = 0, on ow x JR., 

u(x, y) ---+ u±(x) as y---+ ±oo, 

where u+ and u_ are the solutions of 

(20) 

(21) 

tl.u + h(u) = 0, 

au 
avlaw = 0. 

X Ew, 
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The ca.Se of homogeneous Dirichlet boundary conditions has been treated 
as well. In [38] Vega considered the wavefront solution u(x, y) with the 
property 

u+(x) > u(x,y) > u_(x) for all (x,y) E w x JR. 

Under certain stability assumptions on u+ and u_, he proved existence 
and uniqueness results [38], [39] for this type of standing waves. As a 
consequence of the maximum principle, such a wave is strictly increasing 
in they-direction. If w is convex all the stable solutions of (20)-(21) must 
be constant. 

In many species of tropical fishes, the stripes run in parallel either to 
the anterior-posterior axis or to the dorso-ventral axis. It has been ob­
served that on the two dimensional plane the stripe pattern generated by 
standard reaction-diffusion models of Thring type does not have a fixed 
direction. In the subsequent works of [22], the authors [33], [34] pro­
posed that anisotropic diffusion might have an effect on the contrasting 
difference in the directionality of stripes on the fish skin, because most 
scales are arranged parallel to the anterior-posterior axis. This suggests 
that the substances (for example, activators and inhibitors) controlling 
the pattern formation may diffuse along the anterior-posterior axis at 
a speed different from that along the dorso-ventral axis. Motivated by 
[22], [33], [34], we consider a FitzHugh-Nagumo system [8], [9] with 
anisotropic diffusion: 

(22) 

(23) 

Ut 

TVt 

d1Llu + d3uyy + f(u)- v, 
d2flv + d4Vyy + U- "(V, t > 0, (x, y) E W X JR. 

We look for a standing wavefront ( u, v) with asymptotic properties 
(u(x,y), v(x,y))--+ (u1(x),v1(x)) as y--+ -oo and (u(x,y),v(x,y))--+ 
(u2(x), v2(x)) as y--+ +oo. Here (ui(x), vi(x)), i = 1, 2, are the solutions 
of (12)-(14). The situation of (ui,vi) being a non-constant solution is 
of particular interest. 

For a given u E H 1 (w), we let A0u denote the unique solution of 

av 
-d2Llv + "(V = u, Bv law = 0. 

Then (u, Aoii) is a solution of (12)-(14) if and only if ii is a critical point 
of Jo defined by 
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By making use of variational structure associated with J0 , many exis­
tence results [10], [14], [29], [32] for the non-constant steady states of 
(12)-(14) have been established. 

Let u be a critical point of J0 . Straightforward calculation yields 

Here Jff is the second Frechet derivative of J0 , and the Morse index of 
this critical point will be denoted by i* ( Jff ( u)). On the other hand, for 
any critical point u of J0 , we know that (u, A0u) is a critical point of <I>. 
With the aid of the next proposition, we are able to justify the stability 
of ( u, A 0u) if u is a critical point of J0 . 

Proposition 1. Suppose u is a critical point of J0 and v = A0 u, 
then 

dimEo ( Jff ( u)) = dimEo (<I>" ( u, v)) 

and 
i*(J~' (u)) = i(Q, <I>" (u, v)). 

Since there exist 0 1 > 0 and C2 > 0 such that F(() ~ ~c1e- C2, 
by adding a constant to F if necessary, we may assume that 

inf Jo(u) = 0. 
uEH1 (w) 

Let M0 = {ulu E H 1(w) and Jo(u) = 0}. A stable non-constant steady 
state of (12)-(14) is referred to as a Turing pattern. 

Let n = w X JR. and E = Hz~c(D) nL2 (D). Fori t j, let u;' u; E Mo 
and v be a function in c=(n,JR.) with the following properties: 

(i) ~~ (x, y) = 0 if (x, y) E 8!1 

( .. ) '( ) { Aoui(x) if y ~ -1, 
11 v x, y = 

Aouj(x) if y ~ 1. 

For a given 'ljJ E E, we let A'ljJ denote the unique solution of 

-d2tlv- d4Vyy + "(V = 't/J, v E E. 

wi,j('t/J) = fn ~[d1IV'(u + 't/J)I 2 +d31 a(ua: 't/J) 12 +(u + 't/J)(v + A't/J)l 

+F(u + 't/J)dxdy 
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for 'ljJ E E. Set 

and 
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Ci = inf Ci k· k , 

Then ( u + 'ljJ, v + A'ljJ) is a standing wave of (22)-(23) if ci = ci,j and 'ljJ 
is a minimizer of \[! i,j over E. 

Theorem 5. Assume that'"'(> jf;. Then there exists a standing 

wave solution (u(x,y),v(x,y)) of(22)-(23) such that (u(x,y),v(x,y))-+ 
(ui(x),Aoui(x)) as y-+ -oo and (u(x,y),v(x,y))-+ (uj(x),A0 uj(x)) 
as y-+ oo. 
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