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Asymptotic analysis of compressible, 
viscous and heat conducting fluids 

Eduard Feireisl 

Abstract. 

This is a survey of recent results concerning the mathematical 
theory of compressible, viscous, and heat conducting fluids. Starting 
from the basic physical principles, notably the First and Second laws of 
thermodynamics, we introduce a concept of weak solutions to complete 
fluid systems and analyze their asymptotic behavior. In particular, 
the long time behavior and scale analysis will be performed. We also 
introduce a new concept of relative entropy for the system and show 
how it can be used in the problem of weak-strong uniqueness and the 
inviscid limits. 

§1. Introduction 

In this survey, we discuss certain general ideas and recent results 
of the mathematical theory of viscous, compressible, and heat conduct­
ing fluids. The fundamental principles are the First and Second laws of 
thermodynamics that play a crucial role in the study of qualitative prop­
erties of solutions of such systems. In particualr, the following issues will 
be addressed: 

(1) global-in-time existence of (weak) solutions for any physically 
admissible data, without assuming unnecessary restrictions on 
their size; 

(2) the problem of stability and weak-strong uniqueness; 
(3) long-time behavior of the weak solutions; 
(4) scale analysis and resulting simplified (target) systems, includ­

ing some inviscid limits. 

Received April 18, 2012. 
Revised December 7, 2012. 
2010 Mathematics Subject Classification. 35Q30, 35Q35, 35E15. 
Key words and phmses. Navier-Stokes-Fourier system, long-time behavior, 

scale analysis. 



2 E. Feireisl 

§2. Mathematical theory of fluid dynamics 

We develop a mathematical theory of simple but still physically 
complete fluid systems, to which all basic thermodynamic principles may 
be applied. We focus on energetically closed systems, where both the 
total mass of the fluid and its total energy are preserved in time. We 
choose the mass density (] and the absolute temperature {) as fundamental 
state variables, characterizing completely the fluid in thermodynamic 
equilibrium, while the velocity field u will describe the mass transfer for 
fluids out of equilibrium states. 

2.1. Thermal systems in equilibrium 

A simple thermal system (in equilibrium) is fully described by the 
state variables (], {) and the associated thermodynamic functions: the 
internal energy e = e((], {)), the pressure p = p((], {)), and the entropy 
s = s((], {)), see Callen [3]. 

The thermodynamic functions e, s, and p are interrelated through 
GIBBS' EQUATION: 

(1) {) Ds(Q, {)) = De((],{)) + p(Q, {))D ( ~) . 

In addition to (1), it is customary to impose the so-called HYPOTH­

ESIS OF THERMODYNAMIC STABILITY: 

(2) op(Q,{)) 0 oe((],{)) > 0 
0(] > ' 8{) 

for any (], {) > 0. 
The former condition in (2) means that compressibility of the fluid is 

always positive, while the latter is equivalent to positivity of the specific 
heat at constant volume. Hypothesis of thermodynamic stability plays a 
crucial role in the asymptotic analysis of the underlying fluid system as 
well as in the issues related to stability, in particular, to the problem of 
weak-strong uniqueness, see Section 4. 

2.2. Description of motion, velocity 

The motion of a fluid is characterized by a velocity field u. Velocity 
describes the transport of mass in the fluid and the related balance law 
is usually termed EQUATION OF CONTINUITY. Its classical formulation 
reads 

(3) 
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Here, we shall mostly deal with the weak formulation represented by the 
integral identity 

(4) 1T In ( {!8tcp + (!U · '\7 xCfJ) dx dt =-In [!ocp(O, ·) dx. 

Note that, if satisfied for any test function cp E C~([O, T) x D), 
relation (4) includes implicitly the satisfaction of the initial condition 
g(O, ·) = {!o and the no-flux boundary condition gu · nlan = 0 -the 
impermeability of the physical boundary. 

By Newton's second law the flux associated to the momentum vector 
(!U reads gu ® u- 1!', where 1!' is the Cauchy stress tensor, yielding the 
force per unit surface that the part of a fluid in contact with an ideal 
surface element imposes on the part of the fluid on the other side of the 
same surface element. Fluids are characterized among other materials 
through Stokes' law 

']['=§-piT, 

where the symbol § denotes the viscous stress tensor. 
The balance of linear momentum or EQUATION OF MOTION reads 

(5) 1T In ( {!U · 8tcp + (gu ® u) : V' x!{J + pdiv x!{J li) dx dt 

= 1T In(§: Y'xcp- gf · cp) dx dt -In (gu)o · cp(O, ·) dx, 

or, in the classical form, 

where f denotes a driving force. 
A proper choice of the test functions in (5) is open to discussion. Of 

course, the space of test functions should contain C~([O, T) x 0; R3 ) in 
order to establish, at least at the level of formal interpretation, equation 
(6). Moreover, in accordance with the hypothesis of impermeability of 
the physical boundary, we restrict ourselves to the case cp · nlan = 0. In 
particular, taking 

(7) cp E C~([O, T) x D; R 3 ), cp · nlan = 0, 

we end up with the complete slip boundary conditions for the velocity 
field 

(8) u · nlan = 0, [§n] x nlan = 0. 
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Note that for viscous fluid, where the tensor§ depends effectively on 
the velocity gradient, it is more customary to use the no-slip boundary 
conditions 

(9) ulen = 0, 

corresponding to the space of test functions C;?"'([O, T) x D; R 3 ). The 
reader may consult Malek and Rajagopal [24] for more details concerning 
the physical background of the boundary conditions for viscous fluids. 

We conclude this part by remarking that the concept of weak solu­
tion was introduced, in the context of the incompressible fluids, by Leray 
[19], and later developed by many authors, notably Ladyzhenskaya [17], 
Lions [20], [21], Temam [27], among many others. 

2.3. Energy, entropy, Second law of thermodynamics 

To simplify presentation, let us assume that f = \7 xF, where F = 
F(x) is a given potential, defined and differentiable in D. 

Multiplying, formally, the momentum equation (6) by u we deduce 

= pdivxu- §: \7 xU. 

The quantity 1/21?lul2 -QF represents the mechanical energy of the 
system; whence (10) may be viewed as a balance of mechanical energy. 
Since (10) is not in the form of a conservation law, and, at the same 
time, the boundary an is impermeable, the total energy of the system 
must be conserved. The "missing" part of the energy is converted to its 
internal component e so that the TOTAL ENERGY BALANCE reads 

(11) E(t) = L (~l?lul 2 + Qe(Q,tJ) -QF) (t, ·) dx = E0 for any t > 0. 

The bridge between (10)-(11) is provided by Second law of thermo­
dynamics, specifically by the ENTROPY BALANCE EQUATION: 

where q 8 is the entropy flux, and a is the entropy production rate. In 
view of (1), it is more convenient to set 

where q represents the internal energy (heat) diffusion flux. 
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Multiplying equation (12) by 73, we use Gibbs' equation (1) to deduce 
the internal energy balance 

(13) Ot(l?e(l?, 73)) + divx(l?e(l?, 73)u) + divxq = 73a + q. ~ x 73 - pdivxu. 

Since we want to avoid the flux of energy through the boundary, the 
relevant boundary condition for q reads 

(14) q · nlan = 0. 

Consequently, integrating (13) over n and comparing the resulting ex­
pression with (10), (11), we get 
(15) 

:tIn (~l?lul 2 + l?€(l?, 73)- t?F) dx =In ( 73a- §: \7 xU+ q. ~ x 73 ) dx. 

As a matter of fact, we derived (15) under the principal assump­
tion that all quantities in question are regular (smooth). Keeping in 
mind possible singularities we allow the entropy production a to be 
non-negative (measure) satisfying 

(16) 

In particular, comparing (11), (15), (16) we arrive at the classical rela­
tion 1( q·\7x73) a=-;a §:\7xu- 73 

provided all quantities are smooth. 
Since any non-negative distribution a can be viewed as a Radon 

measure, the weak formulation of the ENTROPY BALANCE EQUATION 

takes the form 
(17) 

faT In ( l?S(l?, 73)8tcp + l?S(l?, 73)u · \7 xCfJ + q . ~ xCfJ) dx dx+ < a; cp > 

= -In (l?s(t?, 73))ocp(O, ·) dx 

for any test function cp E Cg"([O, T) X 0), where (j E M+([o, T] X n) is 
a measure satisfying (16), see [12, Chapter 3]. 

2.4. Constitutive equations 
Constitutive equations describe the material properties of a specific 

fluid. They are (typically non-linear) relations between the fundamental 
state variables and their partial derivatives. 
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2.4.1. Equations of state A typical example of a constitutive rela­
tion is the THERMAL EQUATION OF STATE relating the pressure p to the 
thermostatic state variables {!, {). A universal equation of state charac­
terizing a monoatomic gas reads (see Eliezer et al. [7]): 

(18) 

Combining (18) with Gibbs' equation (1) we obtain 

(19) p([!, {)) = {)512 P ( {)~2 ) for a certain function P. 

The hypothesis of thermodynamics stability formulated through (2) 
leads to 

(20) P'(Z) > 0 for any Z ~ 0, 

and 

(21) 
3 5 P(Z) ZP'(Z) 
2 3 ~ > 0 for all Z ~ 0, 

in particular, 

(22) 
P(Z) 
z5 / 3 \. Poo as Z ---+ oo. 

Accordingly, the specific entropy is given as 

(23) s([!, {)) = S ( {);/2 ) , 

with 

(24) S'(Z) = -~ ~P(Z)- ZP'(Z) < O. 
2 Z 2 

Finally, Third law of thermodynamics requires that 

(25) lim S(Z) = 0, 
Z-+oo 

in particular, it is plausible to require the specific heat at constant vol­
ume to be bounded, 

(26) 0 < -3 ~P(Z)- ZP'(Z) 
2 z :::; c for all Z ~ 0. 
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It is interesting to note that (25) rules out the standard Boyle~ 
Marriot law of perfect gas 

p(g,'/9) = Rg'/9 

that is not suitable for describing real gases for large values of the degen­
eracy parameter g/'19312 • Accordingly, we make a realistic assumption 
that the gas or at least one of its components (electron gas) behaves 
like a Fermi gas in the degenerate area Q / '193 12 > > 1, specifically, we set 
p 00 > 0 in ( 22) (see Eliezer at al. [7]). 

In models describing gases under large temperature regime, it is con­
venient to consider also the effect of thermal radiation. The simplest, 
but certainly not optimal approach consists in adding the so-called ther­
mal pressure PR = a/3'194 , with a > 0. A prototype example of the 
pressure in a real gas then reads 
(27) 

P(Q, '19) = PM(Q, '!9)+PR(Q, '19), withpM(Q, '19) = '195 / 2 P ('19;/2 ), PR = ~'194 , 

where a> 0 is a (very small) positive constant. 

2.4.2. Diffusion flux, transport coefficients We suppose a simple lin­
ear dependence of the fluxes §, q on the affinities \7 xu, \7 x '19. Specifically, 
the viscous stress§ is given by NEWTON'S RHEOLOGICAL LAW: 

(28) 

with the shear viscosity coefficient JJ and the bulk viscosity coefficient TJ, 
while the heat flux q obeys FOURIER'S LAW: 

(29) 

where '"" is called the heat conductivity coefficient. 
In accordance with Second law of thermodynamics, the transport 

coefficients JJ, TJ, and '"" must be non-negative. In addition, we focus 
on (real) viscous and heat conducting fluids therefore we always assume 
that both JJ and '"" are strictly positive. 

2.5. Navier-Stokes-Fourier system describing a general 
compressible viscous fluid 

We introduce a model problem of an energetically isolated fluid sys­
tem based on the physical principles and constitutive assumptions dis­
cussed in the preceding text. 
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2.5.1. Mathematical formulation We are given a family of thermo­
dynamic function: the pressure p = p(Q, fJ), the specific internal energy 
e = e(Q, fJ), and the specific entropy s = s(Q, fJ) satisfying Gibbs' equa­
tion (1), together with hypothesis of thermodynamic stability (2). The 
fluid occupies a bounded spatial domain r2 c R 3 and is mechanically 
any thermally insulated, in particular, the total mass M and the total 
energy E of the fluid are constants of motion: 

(30) :t M(t) = 0, M(t) = l Q(t, ·) dx, 

(31) !E(t) = 0, E(t) = l (~{}lul 2 + Qe(Q,rJ)- QF) (t, ·) dx. 

The time evolution of the fluid is governed by the principal field 
equations, namely, EQUATION OF CONTINUITY: 

(32) 8t{! + divx(Qu) = 0; 

MOMENTUM EQUATION: 

and ENTROPY EQUATION: 

(34) 8t(Qs)+divx(Qsu)+divx (~) = CJ, CJ 2': ~ (~: Vxu- q. :xf}). 
To comply with (30), (31), the system of equations (32)-(34) is 

supplemented by the NO-SLIP boundary conditions: 

(35) ulan= 0, 

or, alternatively, the COMPLETE SLIP boundary conditions 

(36) u · nlan = 0, [§n] x nlan = 0. 

The normal component of the heat flux vanishes on the boundary: 

(37) q · nlan = 0. 

The viscous stress§ is determined through Newton's law (28), while 
the heat flux q obeys Fourier's law (29). 
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2.6. Existence of global-in-time weak solutions 

A rigorous proof of global-in-time weak solutions to the Navier­
Stokes-Fourier system for given initial data eo, 7J0 , u 0 requires several 
technical hypotheses stated below. 

2.6.1. Hypotheses The hypotheses listed below are by no means op­
timal. The interested reader may consult [12, Chapter 3] for the physical 
background and possible relaxations. 

(1) The initial data eo, 7J0 , u 0 satisfy: 

eo, 7Jo E L00 (0), uo E L 00 (0; R3 ), eo(x) ~ 0, 7Jo(x) > 0 for a.a. x E 0. 

(2) The potential of the driving force F belongs to W 1' 00 (0). 

(38) 

(39) 

(40) 

( 41) 

(3) The pressure p = p(e, 7J) is given by 

( .a) _ .o5/2p (-{!-) ~.o4 p {!, v - v 7)3/ 2 + 3 v , a > 0, 

where 

P E C 1 [0, oo), P(O) = 0, P'(Z) > 0 for all Z ~ 0, 

iP(Z)- P'(Z)Z . P(Z) 
0 < ~ c for all Z > 0, lim - 513 = Poo > 0. 

Z Z-too Z 

In accordance with Gibbs' equation (1), the specific inter­
nal energy e obeys 

and 

( 
{! ) 4a 7)3 . 1 3 iP(Z)- P'(Z)Z 

(42) s(e,7J) = S 7)312 + 3 -;, w1th S (Z) = - 2 z2 . 

( 4) The transport coefficients f.l, ry, and "" are continuously differ­
entiable functions of the temperature 7J satisfying 

(44) 0 ~ ry(7J) ~ 7](1 + 7J"'), where 1/2 ~ex~ 1; 

and 

(45) 
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2.6.2. Principal existence result concerning the weak solutions The 
following result was proved in [12, Chapter 3.3, Theorem 3.1]: 

Theorem 1. Let 0 c R3 be a bounded domain of class C2+v, v > 0. 
Suppose that the initial data (}o, iJo, uo, the driving force potential F, 
the thermodynamic functions p, e, and s, and the transport coefficients 
J.L, ry, and K satisfy the general hypotheses stated in Section 2.6.1. 

Then the initial-boundary value problem for the Navier-Stokes-Fourier 
system admits a weak solution (2, {), and u belonging to the class: 

(2 E £ 00 (0, T; £ 513 (0)), {) E £ 00 (0, T; £ 4 (0)) n £ 2 (0, T; W 1' 2 (0)), 

8 
u E £ 2 (0, T; W 1,q(O; R3 )), q = -5-. 

-a 

The main advantage of the class of weak solutions is the fact that 
they exist globally in time and without any essential restrictions on 
the size of the data. The reader may consult the result of Bresch and 
Desjardins [2] for an alternative approach to the weak solutions of the 
complete fluid systems based on some special relations satisfied by the 
density-dependent viscosity coefficients. 

§3. Long-time behavior 

A mathematical object called dynamical system is completely char­
acterized by its state and the rules called dynamics that determine the 
state at a given future time in terms of the present state. The dy­
namics of energetically insulated fluid systems considered in this text is 
governed by the Navier-Stokes-Fourier system of equations introduced 
in the preceding chapter. In order to fix ideas, we impose the no-slip 
boundary condition for the velocity 

(46) ulan= 0. 

3.1. Stationary states 

We study the equilibrium solutions paying attention to the following 
commonly accepted but otherwise rather vague statements: 

(1) equilibrium solutions minimize the entropy production; 
(2) equilibrium solutions maximize the total entropy of the system 

in the class of all admissible states; 
(3) all solutions to the evolutionary system driven by a conserva­

tive time-independent external force tend to an equilibrium for 
large time. 
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The leading physical principles to be used in the forthcoming anal­
ysis are Gibbs' equation stated in (1), together with hypothesis of ther­
modynamic stability specified in (2). 

The entropy equation integrated over n, and added to the total 
energy balance gives rise to the TOTAL DISSIPATION BALANCE in the 
form 

= l (~eoluol2 + eoe(eo,'!9o) -79eos(eo,'!9o)- eoF) dx 

for a.a. T E [0, T] and any positive constant 79. As we shall see in Section 
4, the total dissipation balance will play a crucial role in the construction 
of the relative entropy for the N avier-Stokes-Fourier system. 

Relation (47) implies that equilibrium (time independent) solutions 
minimize trivially the entropy production rate, namely a = 0, specifi­
cally, 

for any equilibrium state. In particular, as u vanishes on the boundary 
(cf. (46)), a direct application of the standard Korn's inequality yields 

(49) u = 0 for any equilibrium state. 

Thus any equilibrium solution g, J satisfies 

V' xP(e, J) = g\7 xF, J = const > 0 in n. 

The static states can be identified through their total mass M0 , 

Mo= fnedx, 

and through the asymptotic limit 

Doo [79] = )~~ l ( ~ elul2 + ee(e, '19) - 79es(e, '19) - eF) ( T, ·) dx. 
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3.2. Static states 
We examine a solution {j, iJ of the STATIC PROBLEM: 

(50) V' xP(i!, iJ) = {j\7 xF, {j ~ 0, iJ = const > 0 in 0, 

satisfying the constraints 

In addition to hypothesis of thermodynamic stability (2), we assume 
that 

(52) . fJp([!, {)) c fi .a 
hm [) > 0 10r any xed u > 0. 
e-+0 (} 

Under these circumstances, given a positive constant iJ, equation (50) ad­
mits only strictly positive solutions {jon condition that V' xF is bounded 
and p satisfies (52). 

3.2.1. Ballistic free energy Given 79 > 0, we introduce the BALLISTIC 

FREE ENERGY: 

(53) H-:a(e, {)) = ee(e, {)) - 79es(e, {)). 

It follows from Gibbs' relation and hypothesis of thermodynamics sta­
bility that 

• (} r-t H-:a(e, 79) is a strictly convex function; 
• {) r-t H-:a(e, {)) is decreasing if {) < 79 and increasing whenever 

{) > 79 for any fixed [!. 

Consequently, the ballistic free energy H19 enjoys certain coercivity prop­
erties. More specifically, for any {j such that 

O<g_<i!<?l 

there exists a positive constant A = A(g_, {j, 79) such that 

(54) H-( {)) - ( - -) 8H-:a(i!, 79) - H-(- 79) {} (}, (} (} 8(} {} (}, 

le- i!l 2 +I{) -791 2 if g_ < e < 7!, 79/2 < {) < 279, 

ee(e, {)) + 791s(e, {))I + 1 otherwise 

(see [12, Chapter 3, Proposition 3.2]). 
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It is easy to check that 

(55) aH:oW, J) = F + c- J in 0 
Of2 e, 

whenever e = e(x), J > 0 is a solution of static problem (50) and ce,J 
is a suitable constant. 

3.2.2. Principle of maximal entropy As a consequence of (55), the 
static solutions minimize the entropy among all states of the system 
having the same mass and total energy. Indeed let e = e(x) > 0, J = 

19 > 0 be a solution of problem (50), and let f2 = e(x) ~ 0, '19 = '19(x) > 0 
be a couple of functions such that 
(56) 

l e dx = l f2 dx, l (ee(e,'19)- eF) dx = l (ee(e,J)- eF) dx. 

It follows from (55), (56) that 

19l ( es(e, J)-es(e, '19)) dx = l ( H-:0(e, '19)-H-;J(e, 19)) dx+ l (e-e)F dx 

= l ( H19(f2, '19) - (e- e) aH~~, 19) - H19(e, 19)) dx. 

Thus, in view of the coercivity properties of the ballistic free energy 
H19, we may infer that: 

(1) the static solution e, 19 maximizes the total entropy functional 

(f2, '19) t-t l es(f2, '19) dx 

among all admissible states of the system with the same mass 
and total energy; 

(2) if 

l f2S(f2, 'IJ) dx = l es(e, 19) dx 

then, necessarily, f2 = e, '19 = 19, in particular, there is at most 
one static solution with prescribed mass and energy. 

3.3. Conservative systems, attractors 

The large time behavior of solutions to the energetically isolated 
Navier-Stokes-Fourier system is completely determined by Second law 
of thermodynamics. We shall see that all global trajectories approach an 
equilibrium state uniquely determined by the total mass and energy that 
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are constants of motion. Moreover, the set of equilibria is an attractor 
for all trajectories emanating from the states of uniformly bounded mass 
and energy. 

As we have already observed, the total mass 

Mo = L e(t, ·) dx 

as well as the total energy 

are constants of motion. Moreover, we may assume that 

L es(e,rJ)(t, ·) dx ~So 

where S0 represents the "initial" entropy of the system. Thus 

( {! ) 4a 1'J3 

s(e, rJ) = S rJ3/2 + 3 Q 

and we suppose that 

(57) So > Mos00 , 8 00 = lim S(Z) ~ -oo. 
Z--+oo 

Our goal is to show that the set of equilibria is an attractor for all 
trajectories emanating from a set of bounded total mass and energy. In 
a way, such a conclusion can be viewed as the most pessimistic scenario 
dictated by Second law of thermodynamics. 

The following result was proved in [13, Chapter 5, Theorem 5.1]. 

Theorem 2. Let D C R3 be a bounded Lipschitz domain. Assume 
that the hypotheses of Theorem 1 are satisfied. Let M 0 > 0, E 0 , So be 
given, with So satisfying (57). 

Then for any E > 0, there exists a timeT= T(E) such that 

lll(eu)(t, ·)11Lsf4(!1;R3):::; E, 

lle(t, ·)- i?ll£5/3(!1) :::; E, 

llrJ(t, ·) -1911£4(!1) :S: E 

) for a.a. t > T(E) 
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for any weak solution {!?, u, '!?} of the Navier-Stokes-Fourier system de­
fined on (0, oo) x 0 and satisfying 

(58) In G&Jiul2 + Qe(Q,'l?)- QF) (t, ·) dx <Eo, l In &J(t, ·) dx > Mo, ) 

essliminft--+o In QS(Q, 'l?)(t, ·)(t, 0) dx >Sa, 

where e, -:a is a solution of the static problem (50) determined uniquely 
by the condition 

In e dx = In!? dx, 

In (ee(e,-:o)- eF) dx =In (~&Jiui 2 + Qe(&J,'I?)- QF) dx 

The main difficulty in Theorem 2 is showing uniformity of the con­
vergence with respect to the time that may be spoiled by the (hypothet­
ical) presence of density oscillations. 

3.4. Systems driven by a non-conservative force 

It is quite natural to ask what happens if the fluid system is driven by 
a non-conservative driving force f and/or if sources of heat are present. 
In such a situation, the total energy balance reads 

We report the following result ([13, Chapter 5.2, Theorem 5.2]) for 
f = f(x) independent oft. 

Theorem 3. Let 0 c R 3 be a bounded Lipschitz domain. Under the 
hypotheses of Theorem 1, let{!?,'!?, u} be a weak solution of the Navier­
Stokes-Fourier system driven by an external force f = f(x) on the time 
interval [To, oo), where f =f= '\1 xF. 

Then 

Another result in this direction reads (see [13, Chapter 5.2, Theorem 
5.2]): 

Theorem 4. In addition to the hypotheses of Theorem 3, assume 
that f = f(t,x), f E L00 ((0,T) x O;R3 ). 
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Then either 

in ( ~ !?lul2 + !?e(!?, '!?)) ( t, ·) dx -+ oo as t -+ oo 

or 

in ( ~ !?lul2 + !?e(!?, '!?)) ( t, ·) dx :::; E 00 for a. a. t > To 

for a certain constant E 00 • Moreover, in the latter case, each sequence 
Tn-+ oo contains a subsequence (not relabeled:) such that 

f(Tn + ·, ·)-+ \1 xF weakly-(*) in L00 ((0, 1) X 0; R3 ) 

for a certain F = F(x), FE W1•00 (0) that, in general, may depend on 
the choice of {rn}~=l· 

3.4.1. Highly oscillating driving force In light of the arguments pre­
sented in the previous section, it may seem that almost any time­
dependent driving force imposed on the energetically insulated Navier­
Stokes-Fourier system produces a "grow-up" of the total energy for large 
values of time. The exceptions are rapidly oscillating forces as shown in 
the following result [13, Chapter 5.3, Theorem 5.3]: 

Theorem 5. Let 0 c R3 be a bounded Lipschitz domain. In addi­
tion to the hypotheses of Theorem 1, assume that the driving force takes 
the form 

f(t,x)=w(t.B)w(x), t>O, xEO, 

where w E W1•00 (0), w #- 0, and 

wE L 00 (R), w -1- 0, sup I r w(t) dtl < oo, 
r>O Jo 

are given functions. 
Then for all f3 > 2 any global-in-time weak solution of the Navier­

Stokes-Fourier system satisfies 

and 

!?U(t, ·)-+ 0 in L514 (0; R3 ) as t-+ oo, 

'!?(t, ·)-+;a in L 4 (0) as t-+ oo, 

!?(t, ·)-+ {j in L 513 (0) as t-+ oo, 

where !?s, '!?s are positive constants, 
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The preceding result can be extended to oscillatory forces that may 
even increase in time. More specifically, we report the following result, 
[1, Theorem 1]: 

Theorem 6. Let 0 c R 3 be a bounded Lipschitz domain. In addi­
tion to the hypotheses of Theorem 1, assume that the driving force takes 
the form 

f(t,x) = t 8w(tf3)w(x), t > 0, x E 0, 

where wE W1 •00 (0), w #- 0, and 

wE L 00 (R), w #- 0, sup I r w(t) dtl < oo, 
T>0 lo 

are given functions. Suppose that 

5 > 0, f3 - 25 > 2 or 5 ::; 0, f3 - 5 > 2. 

Then any global-in-time weak solution of the Navier-Stokes-Fourier 
system satisfies 

rJ(t, ·) ---+ -:J in L 4 (0) as t---+ oo, 

and 

Q(t, ·)---+ 7J in L 513 (0) as t---+ oo, 

where (}8 , rJ s are positive constants, 

Unlike the temperature rJ, the density(} as well as the momentum (}U 

are weakly continuous with respect to the time variable, in particular, 
the instantaneous values eu(t, ·), Q(t, ·) make sense. As a matter of 
fact, it follows from DiPerna-Lions theory [6] that (} is even strongly 
continuous with values in L 1 (0). On the other hand, the convergence 
of the temperature must be interpreted as 

ess lim llrJ(t, ·)- Jii£4(f1) = 0. 
t-+oo 
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§4. Relative entropies and the weak-strong uniqueness prob­
lem 

Motivated by the properties of ballistic free energy (53) discussed 
and used in the preceding part, we introduce the relative entropy for the 
Navier-Stokes-Fourier system in the form: 

(61) E(Q,~,ulr,8,u) 

=in (~l?lu-UI 2 +He(l?,~)- aH~~' 8)(e-r)-He(r,8)) dx, 

where {e,~, u} is a weak solution to the Navier-Stokes-Fourier system 
in the sense specified in Section 2.5, and {r, U, 8} is an arbitrary trio 
of (smooth) functions, with r, 8 > 0, and u satisfying the relevant 
boundary conditions, see [10]. 

As already observed in the preceding section, where r = ij, 8 = 19, 
and U = 0 was a suitable static solution, the relative entropy represents 
a distance between a solution {Q, ~' u} and {r, 8, U}. A remarkable 
feature of the relative entropy functional is that this distance may be 
evaluated for any weak solution of the N a vier-Stokes-Fourier system as 
long as the quantities {r, 8, U} are smooth. The resulting expression 
reads (see [10] for details): 

(62) [E(e,~,ulr,8,U)J::: +loT in~ (§:\7xu- q·~x~) dxdt 

::::; loT in (e(U-u)·8tU+e(U-u)®u:\7xU~p(e,~)divxu) dxdt 

+loT in(§: \7xU + e\7xF · (u- U)) dx dt 

-loT in (Q(s(Q,~)- s(r, 8))8t8 + e(s(e,~)- s(r,8))u · \7x8 

+~ · \7 x8) dx dt 

+loT in ( ( 1- ~) 8tp(r, 8) - ~u · \7 xP(r, 8)) dx dt. 

We emphasize that ( 62) holds for any weak solution {e, ~, u} of the 
Navier-Stokes-Fourier system and any trio of functions {r, 8, U} that 
are continuously differentiable in [0, T] X n satisfying 

r > 0, 8 > 0, Ulan = 0. 
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The concept of relative entropy is central in the proof of the prop­
erty of weak-strong uniqueness for the full Navier-Stokes-Fourier sys­
tem. The leading and apparently simple idea is to take a (hypothetical) 
strong solution {e, J, ii} as "test functions" in (62) and to use a Gronwall 
type argument. A rigorous proof is, however, rather involved yielding 
the following result, see [8, Theorem 6.2], [10]: 

Theorem 7. Let 0 c R 3 be a bounded Lipschitz domain. Under the 
hypotheses of Theorem 1, let {Q, {}, u} be a weak solution of the Navier­
Stokes-Fourier system defined on the time interval [0, T]. Suppose that 
{e, J, ii} is a smooth solution of the same problem emanating from the 
same initial data and defined on [0, T]. 

Then 
1! = e, {} = iJ, u = ii in [0, T]. 

Here, smooth means that all relevant derivatives exist in the classical 
sense and that the functions satisfy the corresponding boundary condi­
tions. The result can be extended to other types of boundary conditions 
as well as to a larger class of spatial domains. 

§5. Scale analysis 

By scaling the equations, meaning by choosing appropriately the 
system of the reference units, the parameters determining the behavior 
of the system become explicit. Asymptotic analysis provides a useful tool 
in the situations when certain of these parameters called characteristic 
numbers vanish or become infinite. The Navier-Stokes-Fourier system 
in the standard form introduced in Section 2.5 does not reveal anything 
more than the balance laws of certain quantities characterizing the in­
stantaneous state of a fluid. In order to get a somewhat deeper insight 
into the structure of possible solutions, we identify the characteristic val­
ues of relevant physical quantities: the reference time Tref, the reference 
length Lref, the reference density l!ref, the reference temperature {}ref, 

together with the reference velocity Uref, and the characteristic values 
of other composed quantities Pref, eref, J.Lref, 'f)ref, ""ref, and the source 
term \7 xFref· Introducing new independent and dependent variables 
X' = X/ Xref and omitting the primes in the resulting equations, we 
arrive at the following SCALED NAVIER-STOKES-FOURIER SYSTEM: 

(63) 

(64) 
1 1 1 

Sr Ot(l?u) + divx(I?U Q9 u) + --2 \7 xP = -R divx§ + - 2 Q\7 xF, 
Ma e Fr 
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Sr 8t(es) + divx(esu) + ;e divx(~) = u, 

together with the associated total energy balance 

d { (Ma2 Ma2 ) 
(66) Sr dt Jn - 2-elul2 + ee- Fr2 eF dx = 0, 

with 

(67) 

and the associated boundary conditions 

(68) u · nlan = 0, [§n] x nlan = 0, q · nlan = 0 

(cf. Klein et al. [16]). 
A sample of used dimensionless CHARACTERISTIC NUMBERS is listed 

below: 

6. SYMBOL 6. DEFINITION 6. NAME 

Sr Lre£ I (TrefUref) Strouhal number 

Ma Uref I J Pre£ I {!ref Mach number 

Re ere£ Uref Lref I f..tref Reynolds number 

Fr Uref I v' Lref /ref Froude number 

Pe Pre£ Lref Uref I ({)ref Kref) Peclet number 

5.1. From compressible to incompressible fluids 

In many real world applications, such as atmosphere-ocean flows, 
fluid flows in engineering devices and astrophysics, velocities are small 
compared with the speed of sound proportional to 1lv'i\1ii: in the scaled 
Navier-Stokes-Fourier system. This observation has a significant impact 
on both exact solutions to the governing equations and their numerical 
approximations. We consider a scaled Navier-Stokes-Fourier system in 
the form: 

(69) 

(70) 
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supplemented with the total energy balance 

(72) 

where the entropy production rate a" satisfies 

(73) 

The system is supplemented with conservative boundary conditions 

(74) u · nlan. = 0, [§n] x nlan. = 0, 

(75) q · nlan. = 0. 

Finally, the initial state of the fluid system is determined by the 
following conditions: 

(76) - 1 - 1 Q(O, ·) = Qo,, = Q + cQo,,, '!9(0, ·) = '!9o,e = '!9 + c'!9a,,, 

where 

(77) 7;!, 79 > 0, { Q6,, dx = { '!96,, dx = 0 for all c: > 0, ln. ln. 
and 

In addition, we suppose 

(79) u(O, ·) = uo,,, 

where 

(80) 

The fluid is considered on a family of bounded domains 0, chosen to 
"mimick" the behavior of the fluid in a fictitious large (unbounded) do­
main n. Pursuing the philosophy that any real physical space is always 
bounded but possibly "large" with respect to the speed of sound in the 
medium, we consider a family of bounded domains {O,}e>o c R 3 such 
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that Oc: ~ 0 in a certain sense as c --+ 0. More specifically, we suppose 
that 
(81) 
0 c R3 is an unbounded domain with a compact smooth boundary 80, 

and set 

(82) Oc: = Br(c:) n 0, 

where Br(c:) is a ball centered at zero with a radius r(c), with cr(c)--+ oo. 

(83) 

(84) 

Our goal will be: 

(1) establish uniform bounds on the family of solution {ec:, 'l?c:, uc:}c:>O 
of problem (69)-(76) independent of the parameter c--+ 0; 

(2) show strong (pointwise a.a.) convergence 

{ Qc: --+ ~ } a.a. in (0, T) X 0, 
'l?c; --+ '!9 

and 

Ug --+ u a.a. in (0, T) X n 

at least for suitable subsequences. 

With (83), (84) at hand, it is relatively easy to identify the limit sys­
tem represented by the so-called Oberbeck-Boussinesq approximation. 
The details can be found in [12, Chapter 5]. 

5.1.1. Stability of static equilibria in the low Mach number limit As 
already observed in Section 3.2, any weak solution {ec:, uc;, '!?c:} of the 
Navier-Stokes-Fourier system (69)-(72) satisfies the total dissipation 
balance 

(85) ln. (~ec:luc:l 2 + c12 [Ho(ec:, 'l?c:)- auH:o(e, :O)(ec:- e) 

-H~(e,1J)]) (T,·) dx+ ~ac:[[O,Tj X0c:] = 

ln. ( ~eo,c:luo,c:l 2 + c12 [ H~(eo,c:, 'l?o,c:)- aeH~(e, :O)(eo,c: -e) 

- H~(e, 19)]) dx 

for a.a. T E [0, T], with the ballistic free energy H~ introduced in (53). 
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Relation (85), together with the structural properties ofthe function 
H-;o established in (54), can be used to deduce uniform bounds indepen­
dent of €. To this end, it is convenient to introduce the essential and 
residual parts of a function h as 

h = [h]ess + [h]res, [h]ess = w(ee:, 'I'Je:)h, [h]res = ( 1- w(ee:, 'I'Je:)) h, 

where 

\[1 E C~ ( 0, oo) 2 , 0 :::; \[1 :::; 1, \[1 := 1 in an open neighbor hood of 

the point [e, :0]. 
In addition, we assume that the viscosity coefficient !-" obeys Chapman's 
law 

(86) 

under the given scaling (cf. (43)). 
The total dissipation balance (85), together with the hypotheses 

(76)-(80) imposed on the initial data, givee rise to the following esti-
mates: 
(87) 

ll[ee:-eJ II ess sup -- < c, 
tE(O,T) € ess £2(!1,,) -

ll[ee:-eJ II ess sup -- < c, 
tE(O,T) € res £5/4(!1e) -

(88) 

II ['I'Jc - :oJ II II[,'}" - :oJ II ess sup -- < c, ess sup -- < c, 
tE(O,T) € ess £2(!1.) - tE(O,T) € ess £4(!1e) -

(89) ess sup llv'euli£2(n.;R3) :::; c, and lla,JM+([O,T]xn):::; E2c 
tE(O,T) 

where the generic constant c is independent of €. 

In addition, as a direct consequence of (73), the previously estab­
lished bounds, the structural properties of the transport coefficients, and 
Korn's and Poincare's inequalities, we obtain 

1T 1T II,'} -:011 2 
(90) llu, ll~n,2(n.;R3) dt :::; c, and . -"-- dt :::; c 

0 0 € W1,2(0e;R3) 

(see [12, Chapter 5.2] for details). 
These uniform bounds reflect stability of the static state e, :0 in the 

low Mach number regime. In particular, we deduce immediately the 
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pointwise convergence claimed in (83). A similar result for the velocity 
field Ue: is less trivial and will be discussed in detail in the remaining 
part of this text. 

5.2. Acoustic waves 

The strong convergence of the velocity (84) is related to propagation 
and attenuation of acoustic waves. As a matter of fact, (84) is not 
expected to hold on bounded domains with acoustically hard boundary, 
where large amplitude rapidly oscillating waves are generated in the limit 
c ----+ 0 (see, for instance, Lions and Masmoudi [23], or Schochet [29] ). 
Accordingly, for (84) to hold it is necessary that the target domain n be 
unbounded (cf. hypotheses (81), (82)), more specifically, the two closely 
related properties must be satisfied: 

• the point spectrum of the associated wave operator must be 
empty; 

• the local acoustic energy decays in time. 

We remark that problems related to propagation of acoustic waves 
in R3 were studied by Desjradins and Grenier [5]. 

5.2.1. Lighthill's acoustic equation The forthcoming analysis pri­
marily rests on the approach proposed by Lighthill [22], where the orig­
inal Navier-Stokes-Fourier system is rewritten in the form of a wave 
equation with a source term usually called Lighthill's tensor. 

We begin by introducing a "time lifting" :Ee: of the measure a e: 
through formula 

< :Ee:; cp >=< ae:; J[cp] >, 
where we have set 

(91) < :Ee:;'P >=< ae:;I[cp] >, I[cp](t,x) = 1t cp(z,x) dz 

for any cp E £ 1 (0, T; C(Oe:)). 

Lighthill's idea [22] is to rewrite the Navier-Stokes-Fourier system 
(69)-(71) in the form: 

(93) c8t V e: + wV' xZe: = c ( div xiF~ + V' xF: + E:1W V' x:Ee:), 

supplemented with the homogeneous Neumann boundary conditions 

(94) Ve: · nlan. = 0, 
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where 

and 
(97) 

F: = W ( (}e c~ Q) +Age ( s((}e, 8e~; s("Q, ~)) _ ( p((}e, 8e~; p("Q, ~)) . 

Here the constants A and w has to be chosen to eliminate the first 
order term in the (formal) asymptotic expansion of the forcing term 
(97) expressed in terms of the quantities ((}e- e)jc:, (8e- ~)/c , more 
specifically, 

(98) 

Note that the wave speed w is strictly positive as a direct consequence 
of hypothesis of thermodynamic stability. 

5.2.2. Regularization and finite speed of propagation Our ultimate 
goal is to show the strong (pointiwise a. a.) convergence of the velocities 
{ ue}e>o claimed in (84). Since we have assumed (82), the distance to 
the "outer" boundary dominates the speed of sound proportional to 1/ c, 
and we may therefore replace ne by n. 

For (84) to hold it is enough to show 

(99) [t~----tfn Ve(t,·)·wdx]--+ [t~----tfn V(t,·)·wdx] in£1 (0,T) 

for any fixed wE C'g"(K; R 3 ), where Ve = (}eUe. 
Since our task has been reduced to showing (99), we may assume, 

with help of a simple approximation, that all quantities appearing in the 
acoustic equations are smooth. Thus our task may be reduced to the 
following: 

Show that the family 

(100) [t 1----tln Ve(t, ·) · w dx] is precompact in £ 1 (0, T) 
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for any wE Crgo(K; R 3 ), K c K c D a bounded ball, provided that 

(101) SOtZE + div X v E = sdiv xF! in (0, T) X n, 

(103) VE · nlan = 0, 

(104) ZE(O, ·) = Zo,E, VE(O, ·) = Vo,E inn, 

where 

and 

(105) 

Zo,E E C~(D), {Zo,E}E>O bounded in L2(D), 

{F!}oo bounded in L2 (0,T;L2 (D;R3 )), 

{JF; 0 }c>O bounded in L2(0, T; L2(D; R3X3)). 
' 

5.2.3. Compactness of the solenoidal part Consider '1/J E W 1'2 n 
W 1' 00 (D; R3 ), divx'I/J = 0, '1/J · nian = 0. Multiplying equation (102) 
on '1/J and integrating by parts, we obtain 

in particular the family 

(106) [t r-+ in V E • '1/J dx J is precompact in C[O, T]. 

Relation (106) may be viewed as (weak) precompactness of the solenoidal 
component of the vector field V E. 
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5.2.4. Abstract variational formulation Our aim is to rewrite system 
(101), (102) in terms of an abstract differential operator 

!::iN, !::iN [v] = l:J..v, 'V xV · nlan = 0, v(x) --+ 0 as lxl --+ oo, 

with 

It can be shown that -!::iN is a self-adjoint, non-negative operator in 
L2 (n), with an absolutely continuous spectrum [0, oo ). Moreover, !::iN 

satisfies the limiting absorption principle 
(107) 

sup I!Vo (-!::iN- .A)-1 o Vll.q£2 (n)·£2(0)] ~ Ca,f3, 
.AEC,O<a::'::Re[>.)::;,B<oo, Im(>.]fO ' 

where 

(see Leis [18]). 
Introducing the acoustic potential 

(108) 

we can rewrite equations (101), (102) in the form 

(109) C:OtZr; + !::J..N~c = c:divxF~, C:Ot~c + wZr; = !::i]\/divxdivxlF~. 

Consequently, the acoustic potential ~c may be expressed by means 
of the standard Duhamel's formula: 

(110) ~c(t, ·) 

= exp ( ±i~~) [t:J..N[h!J + k[h~] 

±i ( !::J..N[h~] + k[h!J)] 

+ fotexp(±it:s~) [t:J..N[H;]+ k[H;] 

±i(!::J..N[H:J+ k[HiJ)] ds, 

with certain functions 
(111) 
{h~}c>O bounded in L 2(f!), {H~}c>o is bounded in £ 2 ((0, T) X f!), 
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5.2.5. An abstract result of Kato In order to show strong conver­
gence of the gradient component of the velocity field, we invoke the 
space-time decay estimates for the group exp(ity' -~N) obtained by 
Kato [15]. 

Theorem 8. [Reed and Simon [28, Theorem XIII.25 and Corollary]] 
Let A be a closed densely defined linear operator and H a self-adjoint 

densely defined linear operator in a Hilbert space X. For >. rf_ R, let 
RH[>.] = (H- >.Id)- 1 denote the resolvent of H. Suppose that 

(112) r= sup IIAoRH[>.]oA*[v]llx<oo. 
\!f_R, vED(A*), ilvllx=l 

Then 

sup ~ 100 
IIAexp(-itH)[wJII3.: dt::::; r 2 . 

wEX, llwllx=l 2 -oo 

The desired conclusion (100) follows by applying Theorem 8 to 

where 
G E C~(O, oo), rp E C~(O) are given functions. 

5.2.6. Convergence via RAGE theorem Kato's result is applicable 
provided the limit domain and the associated Neumann Laplacean obey 
the limiting absorption principle (107). This assumption can be ralexed 
by means of the celebrated RAGE theorem, see Cycon et al. [4, Theorem 
5.8]: 

Theorem 9. Let H be a Hilbert space, A: V(A) C H-+ H a self­
adjoint operator, C : H -+ H a compact operator, and Pe the orthogonal 
projection onto the space of continuity He of A, specifically, 

H =He EB clH{ span{ wE H I w an eigenvector of A}}· 

Then 

(113) II ~ r exp(-itA)CPeexp(itA) dtll -+ 0 as T-+ 00. 
T lo .C(H) 

RAGE theorem represents both necessary and sufficient condition 
for the local pointwise converegence of the acoustic waves, namely, the 
absence of eigenvalues of the Neumann Laplacean in the domain 0. 
More detailed discussion concerning propagation of acoustic waves and 
its characterization by means of spectral measures can be found in [9]. 
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5.3. Inviscid incompressible limits 

An interesting situation appears when the fluid is asymptotically 
incompressible, and, at the same time, the transport coefficients-the 
viscosity and the heat conductivity-are small. This is the situation 
when the Mach number is small but Reynolds and Peclet numbers are 
high. The associated scaled system, in the absence of external forces, 
reads 

(114) Otf! + divx(eu) = 0, 

(115) 

(116) 

supplemented with the total energy balance 

where the entropy production rate a 10 satisfies 

To avoid problems related to the boundary conditions, and, at the 
same time, to guarantee the dispersive estimates for the acoustic equa­
tion, we consider the problem in n = R 3 , prescribing the "far field" 
boundary conditions 

{!-+ e > 0, {) -+-:a, u -+ 0 as lxl -+ 00. 

Furthermore, we consider the initial data in the form 

(119) e(O, ·) = f!o,ro = e+ee~~~' fJ(O, ·) = fJo,ro = -:a+efJ~~~' u(O, ·) = uo,ro· 

Under these circumstances, the limit (target) problem can be iden­
tified as the incompressible Euler system 

(120) divxv = 0, 

(121) 
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supplemented with a transport equation for the temperature deviation 
T, 

(122) 

Here, the function v is the limit velocity while T :::::: fi--;"J Note that 
the system (120)~(122) can be obtained as a hydrodynamic limit of the 
Boltzmann equation, see Golse [14]. 

System (120)~(122) is known to possess a smooth solution at least 
on a short time interval that may depend on the size of the initial data. 
Solutions of the primitive Navier~Stokes~Fourier system are expected to 
converge to solutions of (120)~(122) on the interval of existence of the 
latter. 

Let H denote the standard Helmholtz projection onto the space of 
solenoidal functions. We report the following result, [11, Theorem 3.1]: 

Theorem 10. Let the thermodynamic functions p, e, and s as well 
as the transport coefficients J.L and r., comply with the hypotheses of The­
orem 1, with a = 1. Let 

(123) 
10 

b > 0, 0 <a< 3 . 

Furthermore, take the initial data (119) in such a way that 

{ (1)} {"a(1)} · 2 oo( 3) t?o,c: c:>O, u 0 ,c: c:>O are bounded zn L n L R , 

n(1)-+ n(1) {}(1)-+ {}(1) in L2(R3) 
e<O,c: e<Q ' O,c: 0 ' 

and 

where 

t?b1)' {}b1) E W1,2 n W1,oo(R3), H[uo] = vo E W2,k(R3; R3) 

. 5 
for a certazn k > 2. 

Let Tmax E (0, oo] denote the maximal life-span of the regular solution 
v to the Euler system (120), (121) satisfying v(O, ·) = v0 . Finally, let 
{t?c:, {}c:, uc:} be a very weak solution of the Navier~Stokes~Fourier system 
in (O,T) X R3 , T < Tmax· 

Then 
ess sup II t?c:(t, ·)- {j II£2+£5/3(R3) S cc, 

tE(O,T) 
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..[e;ue---+ Je V in L~c((O, T]; Lf0 c(R3 ; R 3 )) 

and weakly-(*) in L 00 (0, T; L2 (R3 ; R 3 )), 

{)e- ;a ---+ T in L~c((O, T]; L£0 JR3 ; R 3 )) 
c 

and weakly-(*) in L 00 (0, T; L 2 + Lq(R3 )), 1 ~ q < 2, 

31 

where v, T is the unique solution of the Euler-Boussinesq system (120)­
(122), with the initial data 

_ H[ l r. _ _ 8s(e, -:a) {)(1) _ ~ 8p(e, -:a) (1) 
Vo - Uo , 0 - (2 8{) 0 {! 8{) (Jo · 

The proof of Theorem 10 is done by means of the relative entropy in­
equality (62) and illustrates the strength of the relative entropy method 
delineated in Section 4. Results of this type for a simpler compress­
ible Navier-Stokes system (without temperature) were obtained by Mas­
moudi [25], [26]. 

The leading idea is to take 

U = '\7 x<I>e + v, r = e +eRg, e =;a+ cTg 

in the relative entropy inequality (62), where where v is the solution to 
the incompressible Euler system, while Re, Te, and <I>e solve the acoustic 
equation: 

c8t(aRe + f3Te) + w~<I>e = 0, 

c8t '\7 x<l>e + '\7 x(aRe + f3Te) = 0, 

_ ~ 8p(e, -:a) 13 _ ~ 8p(e, -:a) __ ( /32 ) 
a - e 8e ' - e 8{) ' w - e a+ 0 ° 

Noting that the functions Re, Te are not uniquely determined, we 
introduce the transport equation 

with 
~ _ _ 8s(e, -:a) 
u-e 8{) 0 

Equation (124) is nothing other than a convenient linearization of the 
entropy balance. The resulting system of equations is now well-posed. 
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