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products 

Vadim A. Kaimanovich and Florian Sobieczky 

Abstract. 

We construct measures invariant with respect to equivalence re­
lations which are graphed by horospheric products of trees. The con­
struction is based on using conformal systems of boundary measures on 
treed equivalence relations. The existence of such an invariant measure 
allows us to establish amenability of horospheric products of random 
trees. 

§ Introduction 

The study of graphed measured equivalence relations has two origins. 
The first one is ergodic, namely, the orbit equivalence theory for measure 
class preserving actions of countable groups. The second one is geomet­
ric, because such equivalence relations naturally arise (as traces of the 
leaf partition) on transversals of foliated or laminated spaces endowed 
with holonomy (quasi- )invariant measures. 

The departure point of Feldman and Moore in their famous paper 
[FM77] published in 1977 (and announced two years earlier [FM75]) 
was entirely ergodic: it was the idea that numerous properties of mea­
sure class preserving group actions can actually be expressed just in 
terms of the associated orbit equivalence relation. In their work Feld­
man and Moore did not consider any additional leafwise graph struc­
tures on equivalence relations. However, at about the same time Plante 
[Pla75] essentially introduced graphed equivalence relations (in terms of 
finitely generated holonomy pseudogroups) in the topological context of 
foliations. 
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It was only in 1990 that Adams [Ada90] defined the notion of a 
graphed equivalence relation in the purely measure-theoretical setup 
and proved non-amenability of non-elementary treed equivalence rela­
tions with a finite invariant measure. Later this notion was used by 
the first author [Kai97] in order to clarifY the relationship between the 
amenability of an equivalence relation and the amenability of its leafwise 
graphs and to give a new geometrical proof of the Cannes-Feldman­
Weiss theorem on the equivalence of hyperfiniteness and amenability. A 
new insight was brought in by Gaboriau [GabOO] by introducing the cost 
of an equivalence relation with an invariant probability measure as the 
lowest possible average value of the degree of vertices in leafwise con­
nected graph structures. This invariant turned out to be very useful and 
has found numerous applications (e.g., see the recent survey [Fur09]). 

From the probabilistic point of view a discrete equivalence rela­
tion with a quasi-invariant measure naturally arises from any stationary 
Markov chain with discrete transition probabilities (see [Kai98] for an 
explicit formula for the Radon-Nikodym cocycle). Finitely supported 
transition probabilities then produce a locally finite graph structure on 
this equivalence relation. In particular, there is a canonical one-to-one 
correspondence between detailed balance stationary measures of the leaf­
wise simple random walk on the state space of a graphed equivalence 
relation (i.e., the ones with respect to which this random walk is re­
versible) and invariant measures of the equivalence relation. Namely, 
the density of a stationary measure with respect to the corresponding 
invariant measure is just the vertex degree function deg. 

Another link with the probability theory is provided by the fact 
that a graphed equivalence relation on a probability space naturally 
gives rise to a map from this space to the space of rooted graphs g 
(i.e., a random rooted graph). It assigns to any point from the state 
space its leafwise graph with this very point as the distinguished vertex. 
Stochastic homogenization [Kai03] of a certain family of infinite graphs 
consists in finding a probability measure invariant with respect to an 
equivalence relation whose classes are endowed with graph structures 
from this family. The role of such a measure is then similar to the role 
of an invariant measure for a usual dynamical system. 

The space of rooted graphs itself has an intrinsic graph structure: 
two rooted graphs are neighbours if they are isomorphic as unrooted 
graphs and their roots are neighbours in this common graph r. More­
over, if r is rigid, i.e., its isometry group is trivial, then the graph on its 
equivalence class (which is obtained by varying the root position) is pre­
cisely f itself. Denote by Q\6 c Q the space of rooted rigid graphs. Then 
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for rigid graphs the problem of stochastic homogenization reduces to 
finding an invariant probability measure on the corresponding subspace 
of Y0· 

It is easy to construct invariant measures on Q0 by random pertur­
bations of Cayley graphs of finitely generated infinite groups. However, 
there are random graphs whose origin has nothing to do with groups. 
The first example of stochastic homogenization in such situations is the 
invariant measure on the space of rigid rooted trees obtained from aug­
mented branching processes. When studying random walks on Galton­
Watson trees Lyons, Pemantle and Peres noticed that it is natural to 
modify the branching process by letting the progenitor to have one more 
additional offspring (so that all vertices statistically have the same num­
ber of neighbours). Then the arising probability measure on Galton­
Watson trees augmented in this way is stationary with respect to the 
leafwise simple random walk [LPP95b]. Thus, by [Kai98], dividing this 
measure by the degree function deg produces an invariant measure (in 
Theorem 3.2 we also give a simple direct proof of this fact). 

The main purpose of the present paper is to obtain a stochastic 
homogenization for yet another family of graphs: horospheric products 
of trees. 

These graphs were first introduced by Diestel and Leader [DLOl] 
in an attempt to answer a question of Woess [Woe91] on existence of 
vertex-transitive graph not quasi-isometric to Cayley graphs. Although 
the fact that the Diestel-Leader graphs indeed provide such an example 
was only recently proved by Eskin, Fisher and Whyte [EFW07], in the 
meantime the construction of Diestel and Leader attracted a lot of atten­
tion because of its numerous interesting features (see [Woe05, BNW08] 
and the references therein). 

The starting point of this construction is the fact that, given an 
infinite tree T, any boundary point 1 E aT determines the associated Z­
valued additive Busemann cocycle /3"1 on T: for any two vertices x, y E T 
the value f3'Y(x, y) is, informally speaking, the "difference between the 
distances" from the points x and y to the point at infinity 1 (this co­
cycle is actually well-defined for any CAT(O) space). The level sets of 
the Busemann cocycle /3"1 consist of the points in T which are equidis­
tanced from 1 and are called horospheres (or horocycles in the case of 
the classical hyperbolic plane, whence the frequently used alternative 
term "horocyclic products"). 

The horospheric product of two pointed at infinity rooted trees 
(T, o, 1) and (T', o', 1') is then defined in the following way. Take the 
graph-theoretical product of the trees T, T', and consider its subgraph 
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r which has the same vertex set T x T', but contains only those edges 
of the product graph which are in the kernel of the co cycle (3"1 + (3"1'. 
The horospheric product of the trees (T, o, ry) and (T', o', ry') is then the 
connected component of the graph r which contains the product origin 
(o, o'). 

Geometrically one can think about the horospheric products in the 
following way [KW02]. Draw the tree T' upside down next to T so 
that the respective horospheres are at the same levels. Connect the 
two roots o, o' with an elastic spring. It can move along each of the 
two trees, may expand infinitely, but must always remain in horizontal 
position. The vertex set of the horospheric product consists then of all 
admissible positions of the spring. From a position ( x, x') with (J'Y ( o, x) + 
(3~, ( o', x') = 0 the spring may move downwards to one of the "sons" of x 
and at the same time to the "father" of x', or upwards in an analogous 
way. Such a move corresponds to going to a neighbour (y, y') of (x, x'). 

It is natural to look for a stochastic homogenization of horospheric 
products based on stochastic homogenizations of trees, i.e., on treed 
equivalence relations with an invariant probability measure. However, 
such equivalence relations are non-amenable (unless elementary) [Ada90], 
and therefore there is no measurable way of assigning a single boundary 
point ry E 8Tx to any point x from the base space of the equivalence re­
lation [Kai04] (here Tx is the leafwise tree on the equivalence class of x). 
Thus, a stochastic homogenization of horospheric products should be 
preceded by a choice of an appropriate measurable system of boundary 
measures {vx} on 8Tx. By analogy with Fuchsian and Kleinian groups 
(e.g., see [Pat76, Sul79]) we say that a system {vx} is conformal if it is 
quasi-invariant and its Radon-Nikodym derivatives satisfy the relation 
dvy / dvx (ry) = exp(- >.(3"1 ( x, y)) for a certain A > 0 (the dimension of the 
system). 

Given a treed equivalence relation R on a space X, we define its 
boundary bundle as the set X= {(x,ry): x E X,ry E 8Tx} (this is an 
immediate analogue of the unit tangent bundle on negatively curved 
manifolds). If two points x, y E X are equivalent, then Tx and Ty 
coincide as unrooted trees, so that there is a natural identification of the 
boundaries 8Tx and 8Ty. Therefore, X also has a structure of a treed 
equivalence relation 

R = {(x,y,ry): (x,y) E R,ry E 8Tx ~ 8Ty}, 

and R carries the Z-valued additive cocycle jj = (3'Y(x, y). If 1-l is an 
R-invariant measure on X, and {vx} is a conformal system of boundary 
measures of dimension >., then the result of the integration of the system 
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{vx} against the measure p, is the measure 'ji on X such that its Radon­
Nikodym cocycle with respect to the equivalence relation R is precisely 
exp( ->.]f). Thus, the measure 'ji is, in our context, a solution of a clas­
sical problem of ergodic theory: to find a measure with the prescribed 
Radon-Nikodym derivatives. 

Now, let {v~,} be a conformal system of boundary measures of the 
same dimension >. on another treed equivalence relation with invariant 
measure (X', p,', R'), and let fj' be the associated measure on the bound­
ary bundle X'. We shall say that the kernel R of the cocycle c = jj + iJ' 
is the horospheric product of the treed equivalence relations R and R'. 
The equivalence relation R is endowed with a natural graph structure 
such that its equivalence classes are precisely the horospheric products 
of trees from equivalence relations R and R'. Moreover, the product 
measure 'ji x 'ji' is R-invariant, thus providing the sought for stochas­
tic homogenization of horospheric products (Theorem 2.18). It follows 
from the fact that the logarithms of the Radon-Nikodym cocycles of 
the measures fj, Ji' are proportional to the respective Busemann co cycles 
jj, iJ' with the same proportionality coefficient - >., so that the product 
measure is invariant with respect to the kernel of jj + iJ'. Note that this 
construction is very similar to the construction of an invariant measure 
of the geodesic flow on a negatively curved manifold from a conformal 
measure [Kai90]. 

As an application we show in Theorem 2.20 that the horospheric 
product of almost any pair of pointed at infinity rooted trees arising in 
the above situation is amenable, (i.e., does not satisfy the strong isoperi­
metric inequality: there are subsets whose boundary is arbitrarily small 
compared with the subset itself). The proof is based on the fact that 
the equivalence relations (X, 'ji, R) and (X', 'ji', ii') are both amenable 
(as they are graphed by trees pointed at infinity). Therefore their prod­
uct and its subrelation R are also amenable. On the other hand, since 
R has a finite invariant measure, amenability of R implies amenability 
of its leafwise graphs. 

Another application is the existence of the associated finite station­
ary measure of the leafwise simple random walk and the ensuing possi­
bility for a study of the asymptotical properties of simple random walks 
on individual horospheric products (the linear rate of escape, the har­
monic measure, the Poisson boundary, the asymptotic entropy etc.). We 
shall return to this subject in another publication. 

As an example in Section 3 we consider the horospheric products of 
augmented Galton-Watson trees. It is easy to see that the branching 
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measures on their boundaries (i.e., the limits of the appropriately nor­
malized uniform measures on the spheres around the root) form a confor­
mal system of dimension >. = log m, where m is the mean of the offspring 
distribution. Thus, horospheric products of augmented Galton-Watson 
trees corresponding to any two branching processes with the same mean 
are stochastically homogeneous. 

There are numerous natural questions which arise in connection with 
our study. We hope to address them in the future, and here we shall 
just briefly mention some of them. 

(1) In the present paper we do not consider at all the question about 
the ergodicity of arising measures. In fact one can show that in our setup 
the horospheric product of ergodic boundary bundles is also ergodic (the 
proof is based on an analogue of the famous Hopf argument used for 
proving ergodicity of the geodesic flow on negatively curved manifolds 
[Kai90]). 

(2) Currently the augmented Galton-Watson measures (and sim­
ilar measures arising from more general branching processes) are the 
only examples of "nice" invariant measures on the space of rooted trees. 
Although it was recently proved that any invariant measure can be ob­
tained as an appropriate weak limit [Ele08], it would still be interesting 
to have other explicit examples. 

(3) Which treed equivalence relations with an invariant measure 
admit a conformal system of boundary measures? When is such a system 
unique? In fact, conformal systems are closely related with the Hausdorff 
boundary measures (in perfect analogy with the Fuchsian and Kleinian 
case [Sul79]). One can show that under natural assumptions there is at 
most one conformal system of boundary measures which coincides with 
the system of the Hausdorff measures. 

(4) Our point of view on boundary measures on random trees con­
sists in considering systems of boundary measures corresponding to vary­
ing roots rather than a single measure (once again, in perfect analogy 
with the theory of boundary measures on negatively curved manifolds). 
In addition to the Busemann cocycle one can consider other natural co­
cycles (or potentials) on the boundary bundle and ask for existence of 
boundary systems with prescribed Radon-Nikodym derivatives, which 
leads to the notion of a Gibbs system of boundary measures. This no­
tion, in particular, provides a unified approach to a number of results on 
multifractal properties of various boundary measures on Galton-Watson 
trees [MS04, Kin08]. It is also interesting to look at the ergodic proper­
ties of the arising invariant measures of the .leafwise geodesic flow. 
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(5) It is still unknown whether a.e. leafwise graph in a graphed 
equivalence relation with a finite invariant measure has a precise expo­
nential rate of growth [HK87]. As far as we know, this issue is completely 
open even for treed equivalence relations. A refinement of this question 
is the following problem: for which treed equivalence relations do the 
normalized uniform measures on spheres converge (like for the Galton­
Watson and other trees arising from branching processes)? 

The first author would like to thank the organizers of the First 
Seasonal Institute of the Mathematical Society of Japan "Probabilistic 
Approach to Geometry" for their warm hospitality and excellent work­
ing conditions. The. work of the second author was supported by the 
Austrian science fund (FWF) under the project number P18703. 

§1. Graphed equivalence relations 

LA. Equivalence relations 
We shall first remind the basics from the theory of discrete measured 

equivalence relations created by Feldman and Moore [FM77]. Their 
starting point was the observation that many properties of a measure 
class preserving action of a countable group can actually be expressed 
just in terms of the corresponding orbit equivalence relation. We shall 
partially use the groupoid approach, see [Ren80, ADROO]. 

For an arbitrary equivalence relation R C X x X on a state space 
X the composition 

(1.1) (x, y)(y, z) = (x, z) for (x, y), (y, z) E R 

determines a groupoid structure G = G(R) with 

• the set of objects X, 
• the set of morphisms R, 
• the source map s : (x, y) 1--t x, 
• the target map t : (x, y) 1--t y, 
• the identity embedding e: x 1--t (x, x), 
• the involution(}: (x,y) 1--t (x,y)- 1 = (y,x). 

Denote by 
[x] = [x]R = R(x) 

the R-equivalence class of a point x E X. In other terminologies (which 
come from two important sources of equivalence relations: foliations and 
group actions) one also calls equivalences classes leafs or orbits. 

An equivalence relation R on X is called discrete measured if 

(i) It is countable, i.e., the classes [x] are at most countable; 
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(ii) Its state space X is endowed with a structure of a standard 
Borel space, and it carries a a-finite Borel measure J-t, so that 
(X, J-t) is a Lebesgue measure space (i.e., its non-atomic part is 
isomorphic to an interval with the Lebesgue measure on it); 

(iii) It is measurable as a subset of X x X (endowed with the prod­
uct Borel structure); 

(iv) It preserves the class of the measure J-t (= the measure f-t is 
quasi-invariant with respect toR), which means that for any 
subset A c X with ~-t(A) = 0 its saturation 

[A]= U[x] 
xEA 

also has measure 0. 

Below all the equivalence relations are assumed to be discrete mea­
sured with infinite equivalence classes. All the properties related to 
measure spaces will be understood mod 0, i.e., up to measure 0 subsets. 

Any discrete measured equivalence relation can be presented as the 
orbit equivalence relation of a measure class preserving action of a cer­
tain countable group (although there are equivalence relations for which 
such an action can not be free [Fur99]). However, there are equivalence 
relations whose origin a priory has nothing to do with group actions (for 
instance, treed equivalence relations which we shall study below). 

l.B. The Radon-Nikodym cocycle 
The fibers of the source map s satisfy the transitivity relation: 

'1/(x,y) E R 

(the multiplication in the left-hand side is the groupoid composition 
(1.1)). Denote by #x the counting measure on the fiber s-1 (x) of the 
source map (this fiber is in obvious one-to-one correspondence (x, y) f---> 

y with the class [x]). The system of measures { #x}xEX is then left 
invariant in the sense that 

(x,y)#y = #x '1/(x,y)ER, 

so that it is a source (or left) Haar system for the groupoid G. The 
result of the integration of the fiber measures #x against the measure 
J-t on the state $pace X is the a-finite measure f-t# defined as 

which is called the left counting measure on R. 
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In the same way, denote by #x the counting measure on the fiber 
t- 1 ( x) of the target map. The system { #x} is right invariant in the 
sense that 

#x(x,y) = #Y V(x,y) E R, 

so that it is a target (or right) Haar system for the groupoid G. The 
result of the integration of the fiber measures #x against the measure 
J.L on the state space X 

is called the right counting measure on R. Alternatively, the right count­
ing measure J.L# can be obtained from the left counting measure J.L# 
(and vice versa) by applying the involution 0, so that J.L# = OJ.L# and 
J.l# = (JJ.L#. 

It turns out· that the measures J.l# and J.L# are equivalent if and only 
if the original measure J.L is quasi-invariant with respect to R. In this 
case the Radon-Nikodym derivative 

dj.L# 
Ll(x, y) = -d (x, y) 

J.l# 

is called the Radon-Nikodym cocycle of the measure J.L with respect to 
R (it is a multiplicative cocycle in the sense that 

Ll(x, y)Ll(y, z) = Ll(x, z) 

for any triple of equivalent points x, y, z E X). If Ll = 1, then the 
measure J.L is R-invariant, or, respectively, the equivalence relation R 
preserves the measure J.L· 

Equivalently, the measure J.L is quasi-invariant with respect to R 
if and only if for any partial transformation tp of R (i.e., a measurable 
bijection between two measurable subsets A, B c X whose graph is con­
tained in R) the rp-image rp(J.LIA) of the restriction of J.L to A is absolutely 
continuous with respect to the restriction J.LIB of J.L to B, and 

drp- 1J.L dj.L 
Ll(x, y) = -d-(x) = -d (y). 

J.L tpj.L 

Thus, the Radon-Nikodym cocycle can also be considered as the "ratio 
of differentials" 

dJ.L(y) 
Ll(x,y) = dJ.L(x) , (x,y) E R. 
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This formalism is quite convenient and can always be made rigorous by 
passing to the appropriate partial transformations. 

If R = Ra is the orbit equivalence relation determined by a measure 
class preserving action of a countable group G on a measure space (X, J.-L), 
then 

dg-lf.-L 
Ll(x,gx) = ---;;;;-(x). 

l.C. Graph structures 
Recall that a graph r is determined by its set of vertices (usually it 

is denoted in the same way as the graph itself) and its set of edges. We 
shall always deal with non-oriented graphs without loops and multiple 
edges, so that the set of edges can be identified with a symmetric subset 
of r X r \ diag. 

Analogously, a (non-oriented) graph structure on a discrete mea­
sured equivalence relation (X, J.-L, R) is determined by a measurable sym­
metric subset K c R \ diag. The result of the restriction of this graph 
structure to an equivalence class [x] gives the leafwise graph denoted 
by [x]K. We shall call (X, J.-L, R, K) a graphed equivalence relation [Ada90]. 
Actually, in a somewhat less explicit form (in terms of finitely generated 
pseudogroups) this definition is already present in [Pla75], [Ser79] and 
[GC85]. 

We shall always deal with the graph structures which are locally 
finite, i.e., any vertex has only finitely many neighbours, and denote by 
deg the integer valued function which assigns to any point x E X the 
degree (valency) of x in the graph [x]K. Passing, if necessary, to a smaller 
equivalence relation, we may always assume that the graph structure is 
leafwise connected, i.e., a.e. leafwise graph [x]K is connected. The latter 
condition means that 

with respect to the groupoid multiplication (1.1). 
The simplest example of a locally finite leafwise connected ·graph 

structure arises in the situation when R = Ra is the orbit equivalence 
relation of an action of a finitely generated countable group G. For a 
symmetric generating set S put 

K = {(x, y) E R: y = sx for a certains E 8} . 

Then the leafwise graphs [x]K are isomorphic either to the (left) Cayley 
graph (G, S) (if the orbit Gx is free), or to the Schreier graphs de­
termined by subgroups of G (if the orbit Gx is not free). Once again, 
although any measured equivalence relation can be generated by a group 
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action, there is a lot of graph structures (for instance, treed equivalence 
relations considered below) which can not be obtained in this way (cf. 
the comment at the end of Section l.A). 

If the measure J-L is R-invariant and finite, then the leafwise graphs 
[x]K have properties which make them similar to Cayley graphs of 
finitely generated groups. In particular, under this condition deg ·J-L (the 
measure J-l multiplied by the density deg) is a stationary measure of the 
leafwise simple random walk along the classes of the graphed equiva­
lence relation (X, J-L, R, K) [Kai98]. Yet another property is related to 
amenability of the involved structures. 

l.D. Amenability of groups, graphs and equivalence rela­
tions 

There is a lot of definitions and applications of amenability, which 
illustrates importance and naturalness of this notion. Here we shall just 
briefly outline the properties which are used later on in this paper (see 
[Gre69], [ADROO] for the missing references and for further details). 

Let us first remind that the class of amenable groups is, from the 
analytical point of view, the most natural extension of the class of finite 
groups. Indeed, finite groups can be characterized within the class of 
all (at most) countable groups by existence of finite invariant measures. 
There are two ways of "extending" the finiteness property to infinite 
groups. One can look either for fixed points in a bigger space, or for 
approximative invariance instead of precise one. 

Von Neumann implemented the first idea and defined amenable 
groups as those which admit a translation invariant mean, i.e, a finitely 
additive probability measure (actually, the term "amenable" was intro­
duced much later by Day). Means being highly non-constructive objects, 
the other option was explored by Reiter who introduced the following 
condition on a countable group G: there exists an approximatively in­
variant sequence of probability measures en on G, i.e., such that 

'VgEG, 

where 11·11 denotes the total variation norm. Reiter proved that the above 
condition (nowadays known as Reiter's condition) is in fact equivalent 
to amenability as defined by von Neumann. 

By specializing Reiter's condition to sequences of probability mea­
sures equidistributed on finite subsets of G one obtains F¢lner's condi­
tion: there exists a sequence of finite subsets An C G such that 

'VgEG, 
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where L:, denotes the symmetric difference of two sets, and IAI is the car­
dinality of a finite set A. This condition is also equivalent to amenability 
of the group G. 

For finitely generated groups the above approximative invariance 
condition on a sequence of subsets An C G takes especially simple form: 

(1.2) IOAnl ____, O 
IAnl n---+oo ' 

where 8A denotes the boundary of a set A c Gin the left Cayley graph 
determined by a finite symmetric generating set (i.e., 8A is the set of 
all points from A which have a neighbour from the complement of A). 
This is an isoperimetric characterization of amenability. Its formulation 
does not require any group structure, and therefore it can be applied to 
arbitrary graphs. The graphs of bounded geometry (i.e., with uniformly 
bounded vertex degrees) which satisfy the above isoperimetric property 
are called amenable. In spectral terms amenable graphs are character­
ized as the graphs for which the spectral radius of the Markov operator 
of the simple random walk is 1, which is a generalization of Kesten's 
description of amenable groups. 

In a different direction the notion of amenability has been extended 
to group actions, equivalence relations, and, more generally, to groupoids. 
Zimmer was the first to notice that non-amenable groups may have 
actions which are similar to actions of amenable groups. His original 
(rather heavy) definition of amenable actions in terms of a fixed point 
property for Banach bundles was almost immediately reformulated by 
Renault by using a modification of Reiter's condition (although the work 
of Renault remained virtually unknown for quite a while, cf. [Kai97]). 
In particular, for discrete measured equivalence relations this definition 
takes the following form: an equivalence relation (X, ft, R) is amenable 
if there exists a sequence of measurable maps assigning to any point 
x E X a probability measure B~ on the equivalence class of x such that 

(1.3) liB~- BJ{II ----7 0 for ft#-a.e. (x,y) E R. 

Thus, for a graphed equivalence relation (X, ft, R, K) there are two 
notions of amenability. The "global" amenability is the amenability 
of the equivalence relation (X, ft, R) in the sense of (1.3) and does not 
depend on the graph structure K, whereas the "local" or "leafwise" 
amenability means that J-t-a.e. graph [x]K is amenable in the sense of 
(1.2). In general these conditions are not equivalent (see [Kai97] for a 
complete description of their relationship). However, for the purposes of 
the present paper we only need the following implication: if the equiv­
alence relation (X, ft, R) is amenable, the measure ft is finite invariant, 
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and the degrees of leafwise graphs of the structure K are uniformly 
bounded, then J-L-a.e. graph [x]K is also amenable [GC85]. 

l.E. Random graphs and stochastic homogenization 

A rooted ( = pointed) graph (r, o) = r o is a graph r endowed with 
a reference vertex o E r. Two rooted graphs r o and r~, are isomorphic 
( = isometric) if there is an isomorphism ( = isometry with respect to the 
graph metric) cp : r--+ r' such that cp(o) = o'. A graph r is rigid if its 
isometry group lso(r) is trivial; we shall also say that a rooted graph r 0 

is rigid if its underlying graph r is rigid. 
We shall denote by g the space of (isometry classes of) infinite locally 

finite connected rooted graphs, and by g\6 the subspace of g which 
consists of rigid rooted graphs. The space g can be given a complete 
separable metric by putting 

d(ro, r~,) = Tr, 

where r ;:::: 0 is the maximal integer such that the r-balls centered at the 
roots o, o' of the graphs r, r', respectively, are isometric as finite rooted 
graphs. Thus, g is a Polish space, and therefore its Borel structure is 
standard. 

Given a graphed equivalence relation (X, J-L, R, K), any point x EX 
determines the graph [x]K. Let us denote by [x]!" = ([x]K,x) the graph 
[x]K rooted at the point x. Thus, we have the map 

X --+ g , x f---+ [x]!" . 

In particular, if J-L is a probability measure, then its image under the 
above map is a probability measure on the space of rooted graphs Q, 
i.e., a random rooted graph. 

Conversely, the space g is endowed with a natural equivalence rela­
tion R: two rooted graphs r o and r~, are equivalent if the underlying 
graphs r and r' are isomorphic. It gives rise to a natural graph structure 
K on R [Kai98]: 

K = { (r o, r o') : o and o' are neighbours in r} . 

If the group of isometries of r is non-trivial, then the graph [r o]JC is 
the quotient of the graph r with respect to the action of the isometry 
group (in particular, it may contain loops). However, if lso(r) is trivial, 
then [r o]JC is isomorphic to r. Thus, the restriction of the equivalence 
relation R to g\6 (which we shall also denote by R) has the following 
property: 

the graph structure of the equivalence class of any rooted graph 
r o E Q\6 is isomorphic to r itself. 
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Definition 1.4 ([Kai03]). The random rooted graph determined by 
a probability measure p, on the space 90 is stochastically homogeneous 
if the measure p, is invariant with respect to the equivalence relation 1?. 

Below we shall give examples of stochastic homogenization of trees 
and their horospheric products. 

§2. Horospheric products of trees 

2.A. Trees 

Recall that a tree is a connected graph without cycles. Any two ver­
tices x, yin a tree T can be joined with a unique geodesic segment [x, y]. 
Any locally finite tree T has a natural compactification T = T U 8T 
obtained in the following way: a sequence of vertices Xn which goes 
to infinity in T converges in this compactification if and only if for a 
certain (=any) reference point o E T the geodesic segments [o, Xn] con­
verge pointwise. Thus, for any reference point o E T the boundary 8T 
can be identified with the space of geodesic rays issued from o (and en­
dowed with the topology of pointwise convergence). There are many 
other equivalent descriptions of the boundary 8T (and of the compacti­
fication T), in particular, as the space of ends ofT and as the hyperbolic 
boundary of T. 

A tree T with a distinguished boundary point 'Y E 8T is called 
pointed at infinity ( = remotely rooted; in the terminology of Cartier 
[Car72] the point 'Y is called a "mythological progenitor"). A triple 
TJ = (T, o, "!) with o E T and"( E 8T is a rooted tree pointed at infinity. 

Any two geodesic rays converging to the same boundary point even­
tually coincide, so that any boundary point 'Y E 8T determines the 
associated additive Z-valued Busemann cocycle on T x T. It is defined 
as 

(2.1) {J"t(x, y) = d(y, o)- d(x, o) , 

where dis the graph distance on T, and o is the confluence of the geodesic 
rays [x,"f) and [y,"(), see Figure 1. 

The Busemann cocycle can also be defined as 

{J"t(x,y) =lim [d(y,z)- d(x,z)], 
Z-+"f 

so that it is a "regularization" of the formal expression d(y, "!)- d(x, "f). 
In the presence of a reference point o E T one can also talk about the 
Busemann function 
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X 

Fig. 1 

The level sets 
Hk = {x E T : b'Y(x) = k} 

of the Busemann function ( = of the Busemann cocycle) are called hom­
spheres centered at the boundary point "(, see Figure 2. 

'Y 
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~ 

Fig. 2 

2.B. Horospheric products 

Ho 

Definition 2.2. LetT= (T,o, 'Y) and T' = (T', o', 'Y') be two rooted 
trees pointed at infinity, and let b = f3'Y ( o, ·), b' = f3'Y' ( o', ·) be the 
corresponding Busemann functions. The horospheric product Til T' is 
the graph with the vertex set 

{(x, x') E TxT': b(x) + b'(x') = 0} 
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and the edge set 

{ ((x, x'), (y,y')) : (x, y) and (x', y') are edges in T, T', respectively}. 

Remark 2.3. In the cocycle language, the product T x T' is en­
dowed with the Z-valued additive cocycle · c = {37 + {37 1. Its kernel 
kerc = c-1 (0) C TxT' consists of connected components (with respect 
to the product graph structure) which are the horospheric products cor­
responding to different choices of the roots o, o'. 

Geometrically one can think about the horospheric products in the 
following way [KW02]. Draw the tree T' upside down next to T so 
that the respective horospheres Hk(T) and H-k(T') are at the same 
level. Connect the two origins o, o' with an elastic spring. It can move 
along each of the two trees, may expand infinitely, but must always 
remain in horizontal position. The vertex set of Til T' consists then 
of all admissible positions of the spring. From a position (x, x') with 
b(x) + b' (x') = 0 the spring may move downwards to one of the "sons" of 
x and at the same time to the "father" of x', or upwards in an analogous 
way. Such a move corresponds to going to a neighbour (y, y') of (x, x'), 
see Figure 3. 

'Y 

• I 
I 
I 
I 

Fig. 3 
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Remark 2.4. This construction (in a different terminology) was 
first introduced by Diestel and Leader [DLOl] in an attempt to an­
swer a question of Woess [Woe91, Problem 1]: is there a locally finite 
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vertex-transitive graph which is not quasi-isometric with a Cayley graph 
of some finitely generated group? They suggested the product 'l!'3 U 'll'4 

of homogeneous trees of degrees 3 and 4, respectively, as a possible ex­
ample. That this is indeed so was only recently proved by Eskin, Fisher 
and Whyte [EFW07]. In the meantime the construction of Diestel and 
Leader attracted a lot of attention because of its numerous interesting 
features (see [Woe05, BNW08] and the references therein). The aris­
ing graphs are also known under the names of Diestel-Leader graphs 
(when the multipliers are homogeneous trees) and of horocyclic products 
(however, we feel that the adjective "horospheric" is more appropriate, 
because the level sets of Busemann functions in trees are anything but 
cycles). 

2.C. Treed equivalence relations 

A graphed equivalence relation (X, f.J, R, K) is treed if a.e. leafwise 
graph is a tree [Ada90]. We shall denote by Tx = [x]~ the leafwise tree 
of a point x rooted at x. The boundary bundle of a treed equivalence 
relation (X, f.J, R, K) is the set 

X= {(x,')'): X EX,')' E 8Tx} = U {x} X 8Tx, 
xEX 

so that it is an analogue of the unit tangent bundle of a negatively 
curved manifold (since we are talking about equivalence relations, a 
better analogue is actually the unit tangent bundle of a foliation with 
negatively curved leaves, like, for instance, the stable foliation of the 
geodesic flow on a negatively curved manifold, see Remark 2.11 below). 

We shall endow X with the equivalence relation (the boundary ex­
tension of R) 

R = {((x,')'),(y,')')): (x,y) E R, ')' E 8Tx ~ 8Ty} 

~ {(x,y,")'): (x,y) E R, 'Y E 8Tx ~ 8Ty} 

(if two points x, y E X are equivalent, then Tx and Ty coincide as un­
rooted trees, so that there is a natural identification of the boundaries 
8Tx and 8Ty) and with the tr~d graph structure K inherited from X. 

The equivalence relation R is endowed with the Z-valued additive 
cocycle (which we shall also call Busemann along with the cocycle (2.1)) 

(2.5) /3: (x,y,')') f--+ (Jy(x,y). 

It will play an important role in the sequel. 
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In order to endow X with a Borel structure, we shall fix, once and 
forever, a Borel identification of the space X with the unit interval. This 
identification provides us with a linear order on any subset of X. In 
particular, the set of neighbours of any point x E X can be canonically 
identified with the set {1, 2, ... , d}, where d = deg x. Thus, in the 
case of a treed equivalence relation we can record any leafwise geodesic 
x = xo, x1, x2, ... issued from a point x E X as a sequence n1, n2, ... , 
where ni is the position of Xi among the neighbours of Xi-l· In this 
way we obtain, for any X EX, a one-to-one map Tx from ax to a Borel 
subset of NN (this is similar to the well-known Ulam-Harris notation). 
Note that the maps Tx do depend on x (not only on its equivalence 
class!), although the boundaries 8Tx, 8Ty can be identified for any two 
equivalent points x, y EX. 

Finally, let us introduce a measure on the boundary extension X 
~hich wo~d be quasi-invariant with respect to the equivalence relation 
R. Since X is fibered over X, it is natural to construct such a measure 
by integrating a system of measures on the fibers against the measure Jh 
on the base. 

Definition 2.6. Given a treed equivalence relation (X, Jh, R, K), a 
system of finite measures {vx}xEX on the boundaries 8Tx of leafwise 
trees Tx is measurable if the map 

X~ Tx(vx) 

from X to the space of measures on NN is (weakly) measurable (i.e., 
for any measurable function f on NN the integrals (!, Tx(vx)) depend 
on x measurably). A measurable system of boundary measures {vx} is 
quasi-invariant if for Jh#-a.e. pair (x, y) E R the measures Vx and Vy are 
equivalent. A measurable system of boundary measures {vx} gives rise 
to the measure 

on the boundary bundle X which is called a boundary extension of Jh· 

Remark 2. 7. Obviously, 

IIP:II = j llvxlldf.h(x), 

and the measure /): is finite if and only if the above integral is finite. 

Remark 2.8. Another definition of a measurable boundary system 
of measures over a graphed equivalence relation with hyperbolic leaves 
is given in [Kai04] (in terms of separable measurable bundles of Banach 
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spaces). One can establish the equivalence of these two definitions for 
treed equivalence relations in a rather straightforward (if tedious) way. 

Proposition 2.9. Let (X, J.L, R, K) be a treed equivalence relation. 
Quasi-invariance of a measurable system of boundary measures {vx} is 
equivalent to quasi-in variance of the measure Ji with respect to the equiv­
alence relation R, and the Radon-Nikodym cocycle Li of the measure Ji 
with respect to R is connected with the Radon-Nikodym cocycle ~ of the 
measure J.L with respect to the equivalence relation R by the formula 

~ dvy 
~(x,y,')') = ~(x,y)-d ('"Y). 

Vx 

Proof. In the language of "differentials" (see Section l.B) of the 
involved measures 

Li(x y '"Y) = dji(y,')') = dJ.L(y)dvy('"Y) = dJ.L(Y). dvy('"Y) = ~(x y) dvy('"Y) 
' ' dJ.L(X, '"Y) dJ.L(x)dvx('"Y) dJ.L(x) dvx('"Y) ' dvx('"Y) · 

Q.E.D. 

Corollary 2.10. If the measure J.L is R-invariant, then the Radon­
Nikodym cocycle of the measure Ji with respect to the equivalence relation 
R coincides with the pairwise Radon-Nikodym derivatives of the bound­
ary system of measures {vx}: 

~ dvy 
~(x, y, '"Y) = -d ('"Y) . 

Vx 

Remark 2.11. For negatively curved manifolds similar boundary 
extensions (where the boundary is the visibility sphere of the universal 
covering manifold) naturally arise in the study of invariant measures of 
the geodesic flow (e.g., see [Kai90, Led95]). Yet another boundary exten­
sion of a different kind can be associated with the measure-theoretical 
Poisson boundaries rather than with the topological ones (see [Kai95]). 

Definition 2.12. A measurable system of boundary measures {vx} 
over a treed equivalence relation (X, J.L, R, K) is called conformal of di­
mension>. > 0 if it is quasi-invariant and its Radon-Nikodym derivatives 
satisfy the relation 

(2.13) dvy (rv) = e->-.{3-,(x,y) £ ~ ( ) E R~ , or J.L#-a.e. x, y, '"Y • 
dvx 

Remark 2.14. This definition is analogous to the definition of con­
formal streams (measures, densities, see [Pat76, Sul79, KL05]) for nega­
tively curved manifolds. Note that in the group case the identity (2.13) 
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only makes sense in combination with the requirement of equivariance 
of the map x c-> Vx (as otherwise one gets a conformal system from an 
arbitrary measure by multiplying it by the exponent of the Busemann 
cocycle). In our situation the equivariance condition is replaced with the 
requirement that the system of measures { Vx} be measurable (in perfect 
agreement with the general spirit of the theory of equivalence relations 
which consists in replacing group invariance with measurablity). 

Remark 2.15. If the measure JL is invariant, then, in view of Corol­
lary 2.10, a system {vx} is conformal if and only if the logarithm of the 
Radon-Nikodym cocycle of the measure Ji with respect to the equiva­
lence relation R is proportional to the Busemann cocycle on R with the 
proportionality coefficient - >.. 

Remark 2.16. If the measure JL is finite invariant, and JL-a.e. tree 
Tx has at least 3 ends, then in fact a.e. tree has a continuum of ends 
and the equivalence relation (X, R, JL) is non-amenable [Ada90], which 
implies that in this situation there are no invariant measurable systems of 
boundary measures (i.e., there are no conformal systems of dimension 0) 
[Kai04]. 

2.D. Horospheric product of treed equivalence relations 

Let us first remind that the product of two equivalence relations 
(X, R) and (X', R') is the equivalence relation 

R x R' = {((x,x'),(y,y')): (x,y) E R,(x',y') E R'} 

on the state space X x X'. If the relations R, R' are endowed with the 
respective graph structures K, K', then the product relation carries the 
natural product graph structure K x K' (an edge in the product is the 
product ofedges in the multipliers). Finally, if JL (resp., p/) is a R­
(resp., R'-) quasi-invariant measure on X (resp., X') with the Radon­
Nikodym cocycle ~ (resp., ~'), then the product measure JL x JL 1 is 
R x R'-quasi-invariant, and its Radon-Nikodym cocycle is~ x ~'. 

Let now (X, R, K), (X', R', K') be two treed equivalence relations, 
and let (X,R,K) and (X',ii',K') be their respective boundary exten­
sions endowed with the Busemann cocycles 73, 73' (2.5), so that their 
product (X x X', R x ii', K x K') carries the cocycle c = 73 + 73'. 

Definition 2.17. The horospheric product of treed equivalence re­
lations (X, R, K) and (X', R', K') is the equivalence relation R = kerc C 

R x ii' on the product X x X'. It is endowed with the graph structure 
K=RnKxK'. 



Random horospheric products 219 

Thus, the R-equivalence class of a point (x,"f,x',"f') E X x X' 
endowed with the graph structure K is precisely the horospheric product 
of the pointed at infinity rooted trees ([x]~, "!) and ([x']~', 1') in the 
sense of Definition 2.2. 

Let us now endow the treed equivalence relations (X, R, K) and 
(X', R', K') with respective quasi-invariant measures J.L, J.L1 , let {v.,}, {v~,} 
be respective quasi-invariant measurable systems of boundary measures, 
and let ji, Ji' be the corresponding quasi-invariant measures for the bound­
ary extensions (X, R, K) and (X', ii', K'). Then the product measure 
ji x Ji' is R-quasi-invariant (since R C R x ii'), and its Radon-Nikodym 
cocycle a is the restriction of the Radon-Nikodym cocycle of the mea­
sure ji x Ji' from R x ii' to R. Thus, we obtain 

Theorem 2.18. Let (X, J.L, R, K) and (X', J.L1 , R', K') be treed equiv­
alence relations with finite invariant measures, and let {v.,}, {v~,} be re­
spective conformal measurable systems of boundary measures of the same 
dimension A > 0. Then the resulting measure ji x Ji' on the horospheric 
product of these treed equivalence relations (X x X', ji x Ji', R, K) is 
R-invariant. 

Proof. By Corollary 2.10 and Definition 2.12 the Radon-Nikodym 
cocycle of the measure ji x ji' with respect to the equivalence relation 
R x ii' is 

e->..(/3+/3') = e->..c , 

where c = jj + /3' is precisely the cocycle whose kernel determines the 
horospheric product of our treed equivalence relations. Q.E.D. 

Remark 2.19. Our construction of an invariant measure from two 
conformal systems of boundary measures of the same dimension is based 
on the same idea as the construction of an invariant measure of the 
geodesic flow on a negatively curved manifold from a single conformal 
measure (see [Kai90] and the Appendix in [KL05]). The only difference 
is that in our situation we deal with two boundary systems rather than 
one in the classical case. 

Theorem 2.20. Let (X, J.L, R, K) and (X', J.L1 , R', K') be treed equiv­
alence relations with finite invariant measures, and let {v.,}, {v~,} be re­
spective conformal measurable systems of boundary measures of the same 
dimension A > 0. If the measures ji, Ji' are both finite, and if the valen­
cies of the structures K, K' are uniformly bounded, then for ji x Ji'-a.e. 
(x, "f, x', 1') the horospheric product of the pointed at infinity rooted trees 
([x]~, "!) and ([x']~', 1') is amenable. 
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Proof. The treed equivalence relations (X, /i, R, K) and 
(X',/i',R',K') are both pointed at infinity, and therefore amenable 
[Kai04]. Thus, their product is also amenable together with the sub­
relation R (this follows, for instance, from the description of amenable 
equivalence relations as the ones which are orbit equivalent to Z-actions 
[CFW81]). On the other hand, since the measure fix /i' is finite and 
R-invariant, amenability of R implies amenability of a.e. associated leaf­
wise graph (see Section l.D). Q.E.D. 

§3. Galton-Watson trees 

In this Section we shall discuss an example of invariant measures 
on treed equivalence relations and the associated horospheric products 
arising from branching processes. 

3.A. Augmented process 

Let p = {pk} be a probability distribution on the set Z+ = {0, 1, 2, ... }. 
It gives rise to the random rooted tree T 0 , which is the "genealogical 
tree" of the associated Galton-Watson branching process: the number of 
offspring of the progenitor o (the root of the tree) is distributed accord­
ing to the law p, each of them also produces its own offspring according 
to the same law and independently of all the rest, etc. (see Figure 4). 
We shall denote by P = P(p) the corresponding probability measure on 
the space of locally finite rooted trees T c Q. 

!\ 
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I \ 
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For simplicity we shall assume that 

{i) Po = 0, so that the extinction probability is 0, and the 
tree T 0 is a.s. infinite and has no leaves; 

{3.1) {ii) the support of the distribution p contains more than one 
point, so that the tree T 0 is a.s. rigid and has a continuum of 
ends. 

The measure P on the space 'Tt/J c g0 of rooted rigid trees is not 
quasi-invariant with respect to the natural equivalence relation R (or, 
rather, its restriction to 70 which we also denote by R, see Section l.E). 
The reason for this is the fact that the root o is different from other ver­
tices ofT, because statistically it has one neighbour less (we skip the rig­
orous argument). However, a little modification of the Galton-Watson 
process (which we describe below) provides an R-invariant measure on 
70. 

The augmented Galton-Watson process introduced in [LPP95b] is 
defined in the same way as the original Galton-Watson process with the 
only difference that the number of offspring of the progenitor (only) has 
the distribution p~ = Pk-1 (i.e., the root has k + l offspring with proba­
bility Pk), and these offf!pring all have independent standard Galton­
Watson descendant trees with offspring distribution {pk}. In other 
words, the number of offspring of the progenitor is "by force" increased 
by one. Denote by P' = P'(p) the associated probability measure on 
the space ofrigid rooted trees 70. 

3.B. Invariant measure 
1 

Theorem 3.2. The measure JL = -d P' on 70 is R-invariant. 
eg 

This theorem was proved in [Kai98] by using the fact that P' is 
a stationary measure of the leafwise simple random walk on (70, R) 
[LPP95b] and a relation between stationary and invariant measures es­
tablished in [Kai98] (cf. Section l.C). For the sake of completeness we 
shall give a simple direct proof of Theorem 3.2. 

Proof of Theorem 3.2. Let 

R1 = {(x,y) E R: d(x,y) = 1} C 70 x 70, 

where d is the graph metric of the canonical graph structure on the 
equivalence relation R. One can think about R1 as the set of doubly 
rooted rigid trees; its elements are triples (T, o, o'), where T is a rigid 
tree, o E T is its principal root, and its secondary root o' E T is at 
distance 1 from o. Denote by£. the probability measure on R 1 obtained 
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in the following way: consider the principal and the secondary roots 
as the progenitors of two independent Galton-Watson trees with the 
distribution p, and then join these roots with an edge, see Figure 5. 

.._ 

---­_....---

Fig. 5 

_....--­

------

The measure IL coincides with the restriction to R 1 of the left 
counting measure /1# associated with the measure 11· Since 1L is ob­
viously invariant with respect to the involution () (which consists in 
exchanging the principal and the secondary roots, see Figure 6), 

(3.3) any partial transformation of the equivalence relation n whose 
graph is contained in R1 preserves the measure 11· 

This property easily implies that the measure 11 is preserved by all partial 
transformations of R, i.e, is R-invariant. Indeed, let A be a 11-negligible 
subset of T0. Then by (3.3) its !-neighbourhood (with respect to the 
leafwise graph distance) is 11-negligible as well, and so on, so that the 
R-saturation of A is also 11-negligible. Thus, 11 is R-quasi-invariant. By 
(3.3) its Radon-Nikodym cocycle D. is identically 1 on R 1 ; therefore by 
the cocycle identity D.= 1 on R. Q.E.D. 

3.C. Boundary measure 

Given a rooted tree To denote by S;} c T then-sphere centered at 
the root o. If the distribution p has a finite first moment 

then by (3.1) m > 1 (the associated branching process is supercritical), 
and, as it was noticed already by Doob (this was one of the first applica­
tions of the martingale theory), for P-a.e. Galton-Watson tree T0 there 
exists a limit 

(3.4) lim IS;}I = L. 
n---too mn 
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Earlier works containing sufficient conditions for a.s. positivity of the 
limit (3.4) [Har48, Lev59] culminated in the following 

Theorem 3.5 (Kesten-Stigum [KS66, AN72, LPP95a]). Under the 
assumption Po = 0 either 

or 

(i) L:klogkpk<oo, 
(ii) L > 0 P-a.s., 

(iii) EL = 1, where E denotes the expectation with respect to the 
measure P; 

(i') I: k log k Pk = oo, 
(ii') L = 0 P-a.s. 

The idea that existence and positivity of the limit (3.4) can be used 
in order to define a measure on the boundary of the Galton-Watson tree 
is very natural, and apparently for the first time appeared in [Hol73]. 
Nowadays this boundary measure is usually known under the name of the 
branching measure (for instance, see [LiuOl] and the references therein). 
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We shall need this result in a slightly modified form: for the augmented 
Galton-Watson trees instead of the usual ones. 

Theorem 3.6. Denote by #~ the counting measure on the n-sphere 
s;; of a rooted tree T0 • If the distribution p = (Pk) satisfies condition 
(i) from Theorem 3.5 then the limit measure (with respect to the weak* 
topology on the compactification T) 

(3.7) 
#n 

1/ = lim-0 

n mn 

exists for P'-a.e. tree T0 , and the expectation of its norm is 

(3.8) 
1 

E'llvll = 1 + - . 
m 

Proof. For a point x E T \ { o} denote by .'7/: c f)T the shadow of 
the point x as viewed from the root o, i.e., the set of endpoints of all 
geodesic rays issued from o and passing through x, see Figure 7. 

oT 

0 

yx 
0 

Fig. 7 

Weak convergence of the sequence (3. 7) is equivalent to convergence 
of the sequences 

for all x E T, which follows from (3.4), because .'7/:nT is a P-distributed 
Galton-Watson tree growing from the root x. Formula (3.8) is then 
the result of "rescaling" property (iii) from Theorem 3.5: the expected 
number of offspring of the root ism+ 1, whereas for each of them the 
expected mass of the boundary measure is 1/m. Q.E.D. 

Now we can endow the treed equivalence relation ( T0, P', R, K) with 
the measurable system ofboundary measures {vx}, x E T0 arising from 



Random horospheric products 225 

Theorem 3.6. The fact that the measures Vx come from the counting 
measures on spheres rescaled by powers of the constant m immediately 
implies 

Theorem 3.9. Under conditions of Theorem 3.6 the system of 
boundary measures {vx} on the treed equivalence relation (T0, P', R, K) 
is conformal with the exponent A= logm. 

In view of Theorem 2.18 we now obtain 

Theorem 3.10. Let p = (Pk) and q = (qk) be two distributions 
satisfying conditions (3.1) and condition (i) from Theorem 3.5, and such 
that they have the same mean 

Denote by P' and Q' the respective augmented Galton- Watson measures 
on T0, and let measures P' and Q' on the boundary bundle T0 be the 
boundary extensions of P' and Q' determined by the respective systems 
of boundary measures from Theorem 3. 6. Then the image of the product 
measure P' x Q' under the map (T, T') f-7 T H T' is an R-invariant 
finite measure on Y(j). 

By Theorem 2.20 it implies 

Corollary 3.11. If the distributions {pk} and { qk} are in addition 
finitely supported, then the horospheric product T H T' of P' x Q' -a. e. 
pair of pointed at infinity rooted trees (T, T') is amenable. 

Remark 3.12. It is well-known that the horospheric product of 
two homogeneous trees is amenable if and only if they have the same 
degrees (e.g., see [Woe05]). This Corollary can be considered as an 
analogue of this result. Actually, for proving it one does not need all 
the machinery above. Indeed, if the distributions {pk} and { qk} have 
a common point t in their supports, then the corresponding Galton­
Watson trees with probability 1 contain as subgraphs arbitrarily large 
balls of the homogeneous tree 1l't+l· An easy estimate then shows that 
products of these subgraphs will produce F0lner sets in the horospheric 
product (cf. [Sob09]). In fact, a similar argument works also in the 
situation when the convex hulls of these supports intersect, i.e., 

[min{pk}, max{pk}] n [min{qk}, max{qk}] =/= 0. 

[It would be interesting to study the applicability of this argument to 
other invariant measures on T0.J On the other hand, if these intervals 
do not intersect, then, mutatis mutandis, min{pk} 2: max{qk}+1, which 
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means that in the horospheric product all vertex degrees of one multiplier 
will be a.s. strictly less than all vertex degrees of the other multiplier. By 
comparing the simple random walk on the horospheric product of two 
such trees with an appropriate biased simple random walk on Z, one can 
conclude that in this case the return probabilities decay exponentially, 
and therefore the horospheric product is non-amenable. 

Remark 3.13. A connected graph of bounded geometry r is called 
strongly amenable if it admits a F¢lner sequence consisting of connected 
sets which all contain a chosen reference vertex. Otherwise r is said to be 
weakly non-amenable or to have the anchored expansion property [Tho92, 
BLS99, HSSOO]. It was proved in [Sob09] that horospheric products of 
percolation subtrees in a homogeneous tree are a.s. strongly amenable. 
It would be interesting to address this problem for more general random 
horospheric products. 
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