
Advanced Studies in Pure Mathematics 56, 2009 
Singularities - Niigata-Toyama 2007 
pp. 303-320 

On the middle Betti number of certain singularities 
with critical locus a hyperplane 

Mamuka Shubladze 

Abstract. 

We study holomorphic germs f : (cn+l, 0) --> (C, 0) with the 
following properties: 

(i) the critical setH of the germ f is a hyperplane H = {x = 0}; 
(ii) the transversal singularity of the germ f in points of the set 

H \ {0} has type Ak-l· 

We will investigate the topological structure of the Milnor fibre for f 
and give explicit formula for the middle Betti number of the Milnor fibre 
and for the quasihomogeneous case we express it in terms of weights 
and degrees. 

§1. Introduction 

Let f : (Cn+l, 0) ---; (C, 0) be a germ of holomorphic function for 
which the critical set is a hyperplane H = {(x, Yl, ... , Yn) E C x Cnix = 
0}. We consider as in [8] the group Ds of local analytic isomorphisms 
l.fJ : (en+ I, 0) _, (Cn+l, 0) with l.fJ(H) = H. Let On+l be the ring of 
germs of holomorphic functions (Cn+l, 0) ---; (C, 0) and consider two 
ideals of the ring On+l: J(f), the Jacobian ideal off, namely 

J(f) = (~~,:~, ... , :~) 
and, for a natural number k the ideal ( x) k, the k-th power of the ideal 
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The group DH acts on (x)k and the extended codimension of (the orbit 
of) f with respect to this action is defined by 

c(f) = CJ,e(f) = dimc((x)k jT(j)), 

where T(j) is the tangent space to the orbit off at the point f (see 1 
for details), and I= (x)k-I. 

We will study germs f E (xk) with c(f) < oo and prove 

Theorem 1. Milnor fibre of a hyperplane singularity f = xkg, with 
c(f) < oo and an isolated singularity g(O, YI, ... , Yn) is homotopy equiva­
lent to the bouquet of the circle si and kf.L+CJ copies of then-dimensional 
sphere, where f.L = f.L(g(O, YI, ... , Yn)) is the Milnor number of the iso­
lated singularity g(O, YI, ... , Yn), and CJ is the number of Morse points in 
a special unfolding off. 

We will give a proof of this theorem which is a generalization of our 
previous proof for the case of non-isolated hyperplane singularities when 
k = 2, see [10]. 

Moreover for a complex hyperplane singularity f with finite codi­
mension the number CJ of Morse points is given by 

In case f = xk g with g a quasihomogeneous function of degree d with 
weights wo, WI, ... , Wn, 

( d - Wo ) ITn d - Wi CJ= --+1 --. 
Wo i=I Wi 

Quasihomogeneous isolated singularities have been studied by Ar­
nold [1], see also [2]. A formula for the Milnor number has been obtained 
using topological methods by Milnor and Orlik [7]. 

In detail, a holomorphic function f : (en+ I, 0) ----+ (C, 0) is called 
quasihomogeneous of degree d with weights w0 , WI, ... , Wn iffor any>.> 0 
one has 

For quasihomogeneous isolated singularities the Milnor number is given 
by the formula 

IT
n d-w· 

f.L(f) =dime (On+dJ(f)) = ~· 
i=O 2 
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One-dimensional quasihomogeneous singularities have been thoroughly 
investigated by D. Siersma (11, 12]. In this case f = I:;~j=1 hij9i9j with 
hij E On+1 and homogeneous gi, whereas the Milnor number is given 
by the formula 

J.t(/) = IT d- ~i - ((2n + l)d- w- 3aJ-flK=1 ai., 
i=O W, i=1 W, 

where dis the degree off, w = 2::7=1 wi, a= 2::7=1 ai, where Wi are the 
weights of f, and the ai are the degrees of the homogeneous germs 9i. 

§2. A characterization result 

Let f : (Cn+l, 0) ---. (C, 0) be a germ of analytic function having H 
as its singular set. Then the following holds. 

Lemma 1. Let f : (Cn+l, 0) ---. (C, 0) be a germ of a holomorphic 
complex-valued function having H as its singular set. Then it can be 
represented in the form f = xkg(x, Yb ... , Yn), where k;;::: 2 and g is any 
germ from On+1 with g tf. (x). 

Proof. Since, by the assumption, f(O, Yb ... , Yn) = 0, the initial 
function can be represented in the form 

Assume that 

and, since f has a singularity on H, we have 

Hence, applying this argument to 91 (x, Y1, ... , Yn), we obtain a holomor­
phic function 92(x, Yb ... , Yn) such that 

and, therefore, 

f(x, Yb · · ·, Yn) = X292(x, Yb · · ·, Yn)· 
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One can repeat this process to obtain 

until gk(O, Y1, ... , Yn) =f. 0. Then, taking g = gk we obtain the statement 
of the lemma. Q.E.D. 

As in [9], the following holds: 

Proposition 1. Let f E ( xk). Then the tangent space T(j) to 
Orb(!) is a finite-dimensional subspace of the Euclidean space On+l 
which has the form 

( af af) (a f) 
T(j)=m Oyl'"""'()yn +(x) OX 

at the point f. 

Now we can formulate the characterization theorem 

Theorem 2. Let f E (x)k such that f = xkg(x, y1, ... , Yn) and 
g(O, y1 , ... , Yn) has an isolated singularity. Then the following state­
ments are equivalent: 

(a) c(f) is finite; 
(b) the functions g(x, y1, ... , Yn) and g(O, Yl, ... , Yn) have both an 

isolated singularity; 
(c) outside the points on H where g(O, y1 , ... , Yn) = 0, the germ 

f is equivalent to xk; at the points where g ( 0, Yl, ... , Yn) = 0, 
except for the origin, f is equivalent to XkYl· 

Proof. (a)=?(b). Let codim f < oo. Then 

dimrc(x)k jT(j) < oo, 

where T(j) as in 1 has the form 

with~ E (x) and rJi Em, i = l, ... ,n. 
For the function g, we consider the Jacobian ideal (gx, gy1 , ••• , gyJ· 

By the Brianc;on-Skoda theorem [3], we have gn+l E (gx, gy 1 , ••• , gyJ· 
Hence we see that Tn+l (f), which already contains the terms expressed 
through gx and gYi , i = 1, ... , n, is contained in the ideal 
( k k k ) s· X gx, X gy 1 , ••• , X gYn . lnCe 
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we obtain 

dime On+l/(gx,9yu · · · ,gYn) 

= dimc(xk)j(xkgx, Xk9yu· .. , xkgYn) < dimc(x)k /Tn+l(J) < oo. 

Therefore, g(x, Yl, ... , Yn) has an isolated singularity. 
(b)=>(c). Let g be an isolated singularity and g(O,yt, ... ,yn) have 

an isolated singularity at zero, i. e. grad g(O, Yl, ... , Yn) =f=. 0 except for 
the origin. Assuming, for definiteness, that ~(0, y1 , ... , Yn) is nonzero 
at the point z, we consider the transformation 

x = x, fh = g(x, Yl, · · ·, Yn), ffi = Yi, i = 2, · · ·, n 

of class DH. The germ f is reduced to the form xkffl. 
At the points from the singular plane { x = 0} which lie outside the 

space {g(O, Yb ... , Yn) = 0}, we consider the transformation 

X= xJ g(x, Yl, · · ·, Yn), ffi = Yi, i = 1, · ·., n 

of class DH. At the points where x = 0, the Jacobian of this transforma­
tion is equal to J g(O, Yl, ... , Yn) since g(O, Yl, ... , Yn) =f=. 0. Therefore, 
at these points the germ f is right-equivalent to the germ xk. 

(c)=>(a). Let f be a representative of the germ of a given hyperplane 
singularity. In the domain where it is given, we define a sheaf F of On+1-

modules as follows: 

where (x)k+1 and T(j) are considered as modules over the ring of holo­
morphic functions on U c cn+l and On+l as a sheaf of germs of holo­
morphic functions on en+~. The sheaf F is coherent [5]. 

For x =f=. 0 the function f is regular at the point (x, Yb ... , Yn) and 
since (x)k+l ~ (On+l)p, we have dim Fp = 0 and T(j) ~ (On+l)p at 
the point p = (x, Yl, ... , Yn)· If x = 0 and g(O, Yb ... , Yn) = 0, then f 
is right-equivalent to the germ of the function xk and dimcFp = 0 since 
(x )k ~ T(j) at this point. Now assume that x = 0 and g(O, Yb ... , Yn) = 
0; we see that f is right~equivalent to the germ of the function xky1 pro­
vided that (x, y1 , ..• , Yn) =f=. (0, 0, ... , 0). Therefore, outside the origin, 
we have T(j) ~ (x)k+1 , hence dimcFp = 0. Since the support ofF is 
zero, dimc(x)k+l j((x)k+1 n T(j)) is finite. Q.E.D. 
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§3. U nfoldings 

Let f: (en+l, 0) --+ (e, 0) have singular set H, c(f) < oo and in the 
representation f = xkg(x, y1, ... , Yn), g(O, Y1, ... , Yn) have an isolated 
singularity. As in [8)let us introduce 

Definition 3.1. An unfolding(with q parameters) of an analytic 
germ f : (en+l' 0) --+ (e, 0) is an analytic germ F : (en+l X eq' 0) --+ 

(e,O) such that F(z,O) = f(z). 

Definition 3.2. A q-parametric unfolding of a germ of the analytic 
isomorphism h: (em,o) --+ (em,o) is a germ of an analytic mapping 
H : (em x eq, 0) --+ (em, 0) such that H(z, 0) = h(z) and ht(z) = 
H(z, t) belongs to the group D of germs of local diffeomorphisms for any 
sufficiently small t E eq. 

Definition 3.3. An unfolding H(z, t) is called a q-parametric DB­
unfolding if H(z, 0) = h(z) E DH and ht E DH for any sufficiently small 
tEO. 

Definition 3.4. A q-parametric unfolding of the hyperplane sin­
gularity f : (em, 0) --+ (e, 0) is a germ of the analytic function F : 
(em x 0, 0) --+ (e, 0) such that F(z, 0) = f(z) and ft(z) = F(z, t) 
belongs to the ideal (xk) for any sufficiently small t E eq. 

Definition 3.5. Let F and G be q-parametric unfoldings of a hy­
perplane singularity f : (em, 0) --+ ( e, 0). A morphism cp : F --+ G 
between unfoldings is a pair (H, .X), where H E DH is a q-parametric 
D H -unfolding of the unit in D H and A : ( eq, 0) --+ ( er, 0) is defined as 
a germ of the analytic mapping such that the diagram 

commutes, where 

(H, .X)(z, t) = (H(z, .X(t)), .X(t)). 

Definition 3.6. A q-parametric unfolding F of a hyperplane sin­
gularity f is called versal if for each r-parametric unfolding of the G­
hyperplane singularity f, there exists a morphism cp : G --+ F. 

Definition 3. 7. Two q-parametric unfoldings are called equivalent 
if there exist two morphisms cp : F --+ G and '¢ : G --+ F such that 

cp't/J = Id and 't/Jcp = Id . 
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Definition 3.8. A q-parametric unfolding of an F -hyperplane sin­
gularity induces an r-parametric unfolding G of the hyperplane singular­
ity f if there exists an analytic germ i : ( cr, 0) -t ( Cq, 0) which is an em­
bedding satisfying the condition G = i*(F), where i* F(z, t) = F(z, i(t)) 
fortE cr. 

Let us introduce some notation. Let F be a q-parametric unfolding 
and tl, t2, ... ' tq be local coordinates in the space of parameters cq. 
Fori= 1, 2, ... , q we introduce notation 

aiF == aa~l . 
t, t=O 

Proposition 2 (unfolding theorem). Let F be a q-parametric un­
folding of a hyperplane singularity f. Then the following statements are 
equivalent: 

(a) r(f) + (81F, 82F, ... , 8qF)) = (x)k; 
(b) F is a versal unfolding of the hyperplane singularity f. 

Proof. We consider a versal unfolding with respect to the group 
DH. A more general pseudogroup is considered in [4) and a versal un­
folding with respect to this group is constructed in the same paper. 
Taking into account the above definitions, our statements immediately 
follow from those results of [4). Q.E.D. 

Definition 3.9. Let F be a q-parametric unfolding of a hyperplane 
singularity f. The unfolding F is called a miniversal unfolding of f if 
F is a versal unfolding and q = dimc(x)k jr(f). 

Corollary 1. (a) A hyperplane singularity f has a versal un-
folding if and only if 

dimc(x)k /r(f) < oo. 

(b) Any two versal unfoldings F and G of the singularity f are 
equivalent. 

Hence it follows that a miniversal unfolding F of a hyperplane sin­
gularity f can be written in the form 

q 

F(x, Yl, ... , Yn, A)= f(x, Yl, .. ·, Yn) + L Aili(x, Yh· · ·, Yn), 
i=l 

where 
q = codimf = dimc(x)k jr(f) 

and h, l2, ... , lq represent a C-basis of the space (x)k jr(f). 
Similarly to [10), the following is valid 
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Proposition 3. Let f : (en+ I, 0) -+ (C, 0) be a complex-valued 
analytic germ with singularities on H and f E ( xk). Then there exists 
an unfolding 

- k 
f =X (g(x, YI, · · ·, Yn) + AIYI + · · · + AnYn + An+I), 

where 

An+I E Reg(g(O, Yr, ... , Yn) + ArYr + · · · + AnYn), 

Ai E Reg(gradg(O, Yr, ... , Yn)), 

satisfying the following condition: 1 is equivalent to xk or xkyr on H 
and has only singular points of Morse type outside H. 

Proof. Assume that on the hyperplane H, we have g(O, Yr, ... , Yn)+ 
ArYl + · · · + AnYn + An+l =/= 0. Consider the transformation 

X= X '\J g(x, Yr,. ·., Yn) +ArYl+···+ AnYn + An+l, 

Yi = Yi, i = 1, ... , n 

of class D H. Since 

~=~ = '\J g(O, Yr, · · ·, Yn) +ArYl+···+ AnYn + An+l =/= 0, 
x=O 

the Jacobian of this transformation is nonzero and 1 is equivalent to xk 
in these coordinates. 

Now let g(O, Yr, ... , Yn) + AlYl + · · · + AnYn + An+l = 0; choose 

An+ I E Reg(g(O, Yr, ... , Yn) + ArYr + · · · + AnYn +An+ I), 
Ai E Reg(grad(g(O, YI, ... , Yn)). 

Now, assuming that .!!1L88 (0, Yl, ... , Yn) + A1 =/= 0, we consider the trans­
Yl 

formation 

X= x, fir= g(x, Yr, ... , Yn)+ArYr +· · +AnYn+An+l, Yi = Yi, i = 2, ... , n. 

This transformation belongs to the class DH and has the Jacobian of 
the form og 

-;:;- + A1 =/= 0. 
uyr 

In the new coordinates, 1 is equivalent to xky1 at the points of smooth 
(2n- 2)-dimensional submanifolds which are the M~nor fibres of glw 

Outside the singular hyperplane, the unfolding f has finite number 
of Morse poirits. This is proved similarly as in [10]. Q.E.D. 
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In what follows, f will denote unfolding of indicated type, for some 
fixed value of the parameters .A. 

§4. Topology of the Milnor fibre 

The main idea in the study of topology of hyperplane singularities 
is to use special unfoldings of f to get a generic approximation f>.. : 
cn+l ---+ c with properties 

1. the induced fibration above a small circle around the origin of 
f>.. and f must be equivalent; and have therefore the same fibre. 

2. the singular locus of f>.. and the local singularity type of f>.. at 
the points of the critical locus should be as easy as possible. 

For the isolated singularities this idea was used by Le Dung Trang 
to determine the homotopy type of the Milnor fibre [6]; in the one­
dimensional non-isolated case, this idea has been used by Siersma in 
[11]. 

Let f : (Cn+l, 0) ---+ (C, 0) be a germ having an isolated singularity 
on the set H = {x = 0}, f E (xk), and f>.. be the unfolding of the 
singularity f obtained by Proposition 3. Choose Eo > 0 such that for 
any 0 < E ~ Eo, the fiber f- 1(0) m 8Bc; is transversal to the ball. For 
such E > 0 there exists ry(E) > 0 such that 

f- 1(t) m 8Bc: for all 0 < ltl < TJ(E). 

After fixing E and ry, consider the restriction 

where Dry is a disk of radius TJ in C1 . 

Lemma 2. Consider the restriction 

f>.. : XD,>. = f; 1 (Dry) n Be:---+ Dry 

for any 0 < I .AI < o and 0 < ltl < ry, where o and TJ are sufficiently small 
numbers. Then the following statements hold: 

(1) f; 1 (t) m aBc:; 
(2) over the boundary of the disk 8Dry, the induced fibrations f and 

f>.. are equivalent; 
(3) XD and XD,>-. are homeomorphic. 

Proof Proof of (1) is as in [11] and [10] (see also [13]). At the points 
of H n 8Bc:, we have singular points where f>.. equivalent either to xk or 
xky1. If at z E H no Be: f is equivalent to xk, i. e. there exist coordinates 
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(x, Yl, ... , Yn) such that f>..(s) (x, Yl, ... , Yn) rv xk, where f>...(s) is a one­
parameter unfolding of the singularity f and the coordinate x smoothly 
depends on>.. Fort =J 0 the tangent plane f;j_~)(t) is obtained from the 
equation 

kx~- 1 (x- xo) = 0, 

i. e. x = x0 is a hyperplane and, thus, transversally intersects the 
boundary aBE. 

Now assume that at z E H n aBE f is equivalent to XkYl· Thus we 
have 

f>...(s) (x, Yl, 0 0 0 'Yn) rv XkYl· 

Hence the tangent space to fJ:c~) (t) at a point (x0 , y 0 ) = (x0 , y~, ... , y~) 
with y 0 of sufficiently small norm has the form 

( ) k-1 0 ( 0) 2 0 x - xo Xo Yl + Yl - Yl Xo = 

and, therefore, contains the plane { x = x0 , y1 = y~}, which is transversal 
to aBE since the set {Yl = yn coincides with the set 

which transversally intersects aBE n H. 
We have established that the transversality condition is fulfilled at 

points z E H n aBE and the mapping h..(s)ls, is a submersion at the 

points z E aBE \H. Since f- 1 (0)naBE is compact and the transversality 
is an open property, we obtain that fJ:c~)(t) rh aBE for 0 < 11>-11 < 8 and 
0 < ltl < 'T/i this completes the proof of statement (1). 

Statements (2) and (3) can be proved similarly to the proof of 
Lemma 2. Q.E.D. 

Let us proceed with describing the main con~ruction. Let b1 , b2 , 

... , bcr be Morse critical points for the unfolding f with critical values 
J(bl), ... , j(bcr)· Let B1, ... ,Bcr be disjoint (2n + 2)-dimensional balls 
in cn+l centered at the points b1 , ... ,bcr and D 1 , ... ,Dcr be disjoint 2-
dimensional disks centered at the points J(bl), ... , j(bcr ). Choose them 
such that the mapping 

defines a locally trivial Milnor fibration and the transversality condition 
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holds for all t E Di, i = 1, ... , CT. Choose a small cylinder Bo around H 
and a 2-dimensional disk Do E int J(Bo) satisfying the condition 

aBo rh f- 1(t), t E Do. 

We consider the restriction 

of this fibration. A fiber f- 1(t)nB0 of this map can be stratified by using 
the projection 1r on Bc:n(H\U), where U is a tubular neighborhood of the 
smooth nonsingular manifold g( 0, Yl, ... , Yn) + Al Yl + · · ·+An Yn +An+ 1 = 
0, and 

1r(x, Yb · · ·, Yn) = (0, Yb · · ·, Yn)· 

This projection may have singularities. To show this, consider the map­
ping 

if>r f- 1 (Do) nBo--+ c X en, 

which is defined by the equality 

if>1(x, Y1, · · ·, Yn) = (J(x, Yl, · · ·, Yn), Yl, · · ·, Yn)· 

The Jacobi matrix of this mapping is 

af af af 
ax 8y1 8yn 
0 1 0 

0 0 1 

Therefore, the critical set r of if> 1 is given by the equality 

af =O. 
ax 

We see that it consists of the hyperplane H and the hypersurface r l' 
i. e. f = H U f 1 and the projection 

1r: f- 1(t) n B 0 --+ Be: n (H\ U) 

is smooth outside the points from r 1• 

Lemma 3. At all points ojr1n H, f is equivalent to xky1. 
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Proof. We show that at some point of r 1 n H, if f is equivalent to 

xk, then r 1 coincides with H. 

Let 1 = xkg where g = g(x, Y1, ... , Yn) + A1Y1 + · · · + AnYn + An+1 
and g(O, . .. , 0) =/= 0. Then 

Bf = kxk- 19 + xk9x ax 
and, since g(O, ... , 0) =/= 0, we can express x modulo (xk). Therefore, 

Hence, by the Nakayama lemma, we obtain 

Therefore, the set defined by the equation ~! = 0 coincides with the set 
{x = 0}, i.e. r1 =H. Q.E.D. 

This lemma implies that the projection 1r is a locally trivial fibration 
outside points, where 1 is equivalent to xkyb whose fiber is given by 
the equation {1 = t}. Since the set 1r-1 (Ben (H \ U)) is compact 
and consists of singular points, where 1 is equivalent to xk, the fiber 
locally consists of k points. Due to the compactness of this set, we can 
choose the radius of B 0 such that 1r defines the k-sheeted covering over 
Ben (H\ U). 

Consider the space Ben (H \ U). The space Ben (H \ U) is ho­
motopy equivalent to the bouquet of s-1 and J.L copies of n-dimensional 
spheres sn, where J.L is the Milnor number of the isolated singularity 
g(O, Y1, ... , Yn) ([9]). By virtue of the preceding lemma, we obtain the 
following assertion. 

Lemma 4. The Milnor fiber j-1 (t) n B 0 covers the bouquet of 8 1 

and J.L copies of n-dimensional spheres sn by k-sheets. 

Let n ~ 2. To find out the homotopy type of j-1 (t) n B 0 , we 
represent the set Ben (H \ U), which is homotopy equivalent to the 
bouquet of the circle 8 1 and J.L copies of spheres sn, as the union U1 u 
U2, where U1 n Be n (H \ U) is homotopy equivalent to the circle 8 1, 
U2nBen(H\ U) is homotopy equivalent to the bouquet of J.L copies of sn, 
and U1 nU2 is contractible. Since 1r is the k-sheeted coveringf-1(t) nBo 
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on Be: n (H \ U), we conclude that 1r-1(U1) n j-1(t) n B0 is homotopy 
equivalent to 8 1 and, since U2 n Be: n (H \ U) is simply connected, any 
covering on it is trivial and, therefore, 7r~ 1 (U2 nBe:n(H\U)) is homotopy 
equivalent to the direct product of k points by the bouquet of p, copies 
of spheres sn. It is obvious that j-1(t) n B 0 is homotopy equivalent to 
the bouquet of the circle 8 1 and kp, copies of spheres sn. 

We have proved the following lemma. 

Lemma 5. Forn ~ 2, the Milnor fiber f- 1(t)nB0 has the homotopy 
type of a bouquet of the circle 8 1 and kp, copies of an n-dimensional 
sphere sn. 

Similarly to the case of a hyperplane singularity of transversal type 
A1. we can calculate the homology groups of the Milnor fiber in the ball 
Be:. 

Let us consider the case where n = 1, i.e., where f : (C2 , 0) ____. 
(C, 0) is an analytic germ of two complex variables having the form 
f = xkg(x, y), where g(x, y) and g(O, y) are isolated singularities. Then 
we obtain the following assertion. 

Lemma 6. The Milnor fiber f- 1 (t) n B0 has the homotopy type of 
the bouquet of kp, + 1 copies of 8 1 , where p, = p,(g(O, y)) is the Milnor 
number of the isolated singularity g(O, y). 

Proof. The set Be: n ( H \ U) has the homotopy type of a bouquet of 
p, + 1 copies of the circle Sl, where p, = p,(g(O, y)) is the Milnor number 
of the isolated singularity g(O, y) ([9]). 

We have 1r-1 : f-1(t) n B 0 ____. Be: n (H \ U) and, therefore, the 
k-sheeted covering of the space f-1(t) n B 0 is the Eilenberg-MacLane 
space whose fundamental group 1r1(j-1(t) n B 0 ) is a subgroup of index 
k of a free group of p, + 1 generators. This follows from the following 
exact sequence of the covering 1r: 

· · · ____. 1r1(k) ____. 1r1(j-1(t) n Bo) ____. 1r1(Be: n (H \ U)) ____. 

____. 7ro(k) ____. 7ro(f-1(t) n Bo) ____. 7ro(Be: n (H \ U)). 

Since1r1(k) = 0, we have 7ro(f-1(t) n Bo) = 7ro(Be: n (H \ U)) = 0 since 
the subsets f-1(t) nB0 and Be: n (H\ U) are connected. Hence we obtain 

this yields 
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Therefore 1r1 (f-1(t) n Bo) has the rank 

1 + (J.t + 1-1)k = 1 + kj.t. 

Since f- 1 (t) n B 0 is the Eilenberg-MacLane space, we see that it is ho­
motopy equivalent to the bouquet of kJ.t + 1 copies of the circle. Q.E.D. 

Usingthe standard technique from [11] we can obtain as in [10] that 

{
Hn(f- 1 (t) n Be:) = Hn(f- 1 (t) n Be:) EB Z · · · EB Z 

Hk(f- 1(t) n Be:)= Hk(f- 1(t) n Be:), ?f;:. 
Then combining the preceding lemmas, we obtain the following 

Proposition 4. In the case n = 1, homology groups of the Milnor 
fiber f- 1 (t) n Be:, are given by the formulas 

H1(f-1(t) n Be:)= zih+a, 

H 0 (f- 1(t) n Be:) = z, 
Hi(f- 1(t) n Be:) = 0, i =/= 0, 1, 

where Ji1 = kJ.t + 1 and J.t is the number of Morse point for the deforma­
tion f. In the case n ?': 1, we gave 

where Ji2 = kJ.t. 

Hn(f- 1(t) n Be:)= zii2 +a, 

H1(f-1(t) n Be:)= Z, 

H 0 (f- 1(t) n Be:) = Z, 

Hi(f-1(t) n Be:) = 0, i =1= 0, 1, n, 

Similarly to the case of an isolated hyperplane singularity of trans­
versal type A1, the above proposition implies the following theorem (see 
[9]). 

Theorem 3. In the case n = 1, the Milnor fiber f- 1(t) n Be: has 
the homology type of a bouquet of kj.t + 1 + a copies of the circle, where 
J.t = J.t(g(O, y)) is the Milnor number of the isolated singularity g(O, y). 
In the case n ?': 2, it has homotopy type of a bouquet of the circle and 
kJ.t + a copies of an n-dimensional sphere, where a is the number of 
Morse point in a deformation off. 
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§5. The Betti number 

As we see the Morse points of the special unfoldings is an impor­
tant topological invariant because it appears in the expression of the 
homotopy type of the Milnor fibre. 

The number of Morse points can be calculated by an algebraic 
method similarly to the case of an isolated hyperplane singularity. 

Theorem 4. The number of Morse points for a unfolding off is 
calculated by the formula 

a= dime (xk)j(xfx, fyw .. , fyJ· 

Proof. Let F : (cn+l x CA, 0) --t (C, 0), A E CA, be a versal unfold­
ing of the singularity f, where f = xkg(x, Yb ... , Yn)· Such a unfolding 
can be constructed as in Sec. 3. It has the form F = xkG(x,y1 , ... ,yn), 
where G E Ox,y1 , •.. ,y, satisfies the condition GIA=O =g. 

The number of Morse point a is obtained as the number of solutions 
of the following system of equations lying outside the singular plane 
{x = 0} for a sufficiently small parameter A: 

Fx = 0, Fy1 = 0, ... , Fy, = 0, 

and similarly to the case of the hyperplane singularity f, the number of 
Morse points coincides with the index of the intersection of the plane 
{A= 0} with a germ of the surfaces c cn+l X CA given as the closure 
of a germ of the set 

B={Fx=O, Fy1 =O, ... ,Fy, =0, x#O}. 

Since x # 0, we can cancel it and obtain 

s ={kG+ xGx = 0, Gyl = 0, ... 'Gy, = 0} c cn+l X CA. 

Therefore 

a= dime Ox,y1 , ••• ,y,,A/(kG + xGx, Gy1 , ••• , Gy,) 

=dime Ox,yl,···,Yn!Ox,yl,···,Yn (kg+ xgx, gyl' ... 'gy,) 

=dime (xk)/0x,y 1 , ••. ,y, (kxkg + xk+1gx, xkgy1 , ••• , xkgYn) 

= dime (xk) / (xfx, fy 1 , ••• , fy, ), 

this completes the proof. Q.E.D. 

Now assume that f = xkg, where g is a quasi-homogeneous function 
of degree d with weights Wo, w1, ... , Wn. 

One has 
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Proposition 5. Let f E (xk), with w(f) < +oo, and g(O, Yb ... , Yn) 
be an isolated singularity, with the quasihomogeneous mapping 
g(x, Yl, ... , Yn), then 

Proof. Suppose that the mapping g is quasihomogeneous of degree 
d with weights wo, w1, ... , Wn. Then we have g E (gx, gy1 , ••• , gYn), where 
fg = xgx + Ylgy1 + · · · + Yngyn for some f E C. Thus, 

xfx = x(kxk-lg + xkgk) 

= x[kxk-lm(xgx + Ylgy1 + · · · + Yngyn) + xkgx] 

= kxk+lmgx + kmxkylgy1 + · · · + kmxkyngyn + Xk+19x 

= (km + l)xk+1mgx + kmxkylgy1 + · · · + kmxkyngyn' 

where m = l, and 

One has an isomorphism 

(xfx,Jyl' · · ·, fyJ 

= ((km + l)xk+lgx + kmxkylgy1 + · · · + kmxkyngyn,xkgyu···,xkgYn)) 

~ (xk)((km + l)xgx,gyu ... ,gyJ· 

As a result we obtain the needed equality 

dime ((xk)j(xfx,Jyw .. ,fiJJ) =dime (On+lf(xgx,gyw .. ,gyJ). 

Q.E.D. 

Remark. For a quasihomogeneous function g of degree d with 
weights wo, WI, ... , Wn the mapping 

(x, Yl, · · ·, Yn) f--+ (gx, gYl' · · · 'gyn) 

is also quasihomogeneous, of multidegree (do, d1, ... , dn) with weights 
wo, w1, ... , Wn, where dk = d - Wk. Thus the mapping 

is quasihomogeneous of multidegree (d, d- wb ... , d- Wn)· 

One has 
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Theorem 5. f E (xk), with w(f) < +oo and g is quasihomogeneous 
one has 

( d - Wo ) ITn d - Wi 
CY= ---+1 ---, 

Wo i=l Wi 

where dis degree of g, with respect to the weights w0 , w1, ... , Wn· 

Proof. From proposition we conclude 

According to the previous remark the map ( xgx, gy,, ... , gYn) is quasi­
homogeneous of multidegree (d, d- w1 , ... , d- wn), with weights w0 , 

w1, ... , Wn. Using the result [2] about computation of the dimension of 
the local algebra of a quasihomogeneous map, we obtain 

_ d ITn d - Wi _ ( d - Wo ) ITn d - Wi 
CY-- ---- --+1 --. 

Wo i=l Wi Wo i=l Wi 

Q.E.D. 

Corollary 2. The middle Betti number of the Milnor fible F = 

f- 1 (t) n B" is given by 

bn(F) = (k + 1 + d- Wo) IT d- Wi. 

Wo i=l Wi 

Proof. The middle Betti number bn(F) = CY + kp,(g(O, Yl, ... , J1n)), 
where CY is above and p,(g(O, y1 , ... , Yn)) is Milnor number of the iso-

n 

lated singularity g(O, Yl, ... , Yn), so p,(g(O, Yl, ... , Yn)) = fi d-w, this 
i=l Wi 

immediatelly implies the result. Q.E.D. 
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