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Simple analytic proofs of some versions of the 
abstract Prime Number Theorem 

Oswald Riemenschneider 

Abstract. 

On exactly one typewritten page, Ernst Witt sketched in the 60th 
of the last century a proof of the Prime Number Theorem, even in 
a generalized abstract situation. A closer inspection reveals a deep 
correlation to several other publications before and around this time. 
We elaborate his outline in more detail (without trying to find the 
"historical truth" of priority) and demonstrate that only some part 
of his approach can be combined with the quite recent very elegant 
method of Newman and Korevaar to yield a really simple analytic proof 
of a version of the abstract Prime Number Theorem that is close to 
Beurling's original one. 

Nobody is forced to decide between vanilla ice cream 
and chocolate once for all, and it is even possible to 
mix the two, [ .. .]. Paul Halmos 

§0. Introduction 

The Prime Number Theorem (PNT) is considered by some experts 
one of the greatest achievements of mathematics, if not of mankind. 
Perhaps, this is an exaggeration; nevertheless each student of mathe­
matics should have heard about it and part of its history during his or 
her studies and should have been confronted with at least an idea of its 
proof in the simplest form (i. e. without estimating error terms). 

However, this was difficult to achieve for a long time since the an­
alytic proofs of the PNT use quite heavy general machinery or at least 
highly specialized analytic considerations which are not part of the cur­
riculum of standard courses in Real and Complex Analysis. The situ­
ation changed considerably in 1980 when D. J. Newman published his 

Received December 21, 2007. 
Revised September 8, 2008. 
Key words and phrases. (Abstract) Prime Number Theorem, Tauber The­

orems, Ikehara-Wiener Theorem. 



250 0. Riemenschneider 

paper Simple Analytic Proof of the Prime Number Theorem [31] in the 
American Mathematical Monthly. By transferring his ingenious method 
from Dirichlet series to Laplace transforms, J. Korevaar finally pre­
sented in 1982 in Springer's Mathematical Intelligencer a proof which 
- besides standard facts on prime numbers and, of course, the Rie­
mann (-function- was based only on the Cauchy integral formula [17]. 
So, if one is willing to spend some time on the (-function and at about 
one hour on the interrelation between the "prime counting" function 1r 

and some of the Chebyshev functions, one can - as I did from that 
time on - give a complete proof of the PNT as early as at the end 
of a first introductory lecture course on Complex Analysis that needs a 
very short and elementary digression into number theory only (see my 
manuscript Funktionentheorie on my homepage http:/ /www.math.uni­
hamburg.de/home/ riemenschneider / funvorll. pdf). Newman's method 
in Korevaar's simplification found· its way into prominent publications 
(see e. g. Zagier [42] and Korevaar's own masterly survey article [18] 
on Tauber Theorems) and even into the textbook literature (see, e. g., 
Lang [26] and Jameson [14]). 

Parallel to this story there is another one which has to do with my 
University and might be less known. When I told the number theorists 
Helmut Bruckner and Helmut Muller about this new approach they in­
formed me that our former colleague, the renowned algebraist Ernst 
Witt, had distributed in the sixties and seventies of the 20th century a 
proof of the PNT, even in an abstract setting, on just one typewritten 
page. I must confess that I had problems to understand the page imme­
diately in full detail and lost interest in its content and finally the page 
itself. 

In 1998, the collected papers of Witt appeared [41], edited by Ina 
Kersten, containing also a facsimile of the sheet mentioned before and 
a short extra sheet written by hand, followed by some remarks of Horst 
Leptin [28] who made clear that Witt's method is sound (in the clas­
sical, i. e. not generalized case) by invoking only elementary facts on 
£ 2-theory besides the standard results on number theory and the (­
function. However, to come to this conclusion, Leptin had to fill quite 
a lot of new lines in between the lines of Witt, and he remarked that 
there might be a gap in Witt's argument when applied to the generalized 
situation. It was H. Muller [30] who showed in 2002 that the gap can be 
bridged. 

Unfortunately, Leptin missed the opportunity to put Witt's proof in 
the right (historical) perspective, especially by not mentioning that Witt 
used (consciously, as one may suspect) some version of a Tauber type 
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theorem of Ikehara and Wiener and ideas by several mathematicians for 
simplifying its proof. 

I came back to this subject after my retirement when revising my 
texts on standard lecture courses. I thank H. Milller and my student 
Solvejg Glatz for several discussions which clarified the situation to the 
effect that Witt's arguments need- besides elementary complex anal­
ysis and the Riemann-Lebesgue Lemma - only standard £ 1-theory 
like the convergence theorems of B. Levi and Lebesgue and the Tonelli­
Fubini Theorem. 

One can even avoid the Lebesgue integral. Thus, the proof - also 
for the generalized version where one has to bring some more basic facts 
of Fourier analysis into the game - can easily be understood by un­
dergraduate students after a good introduction to Analysis of, say, 4 
semesters, including standard Complex Analysis1•2. 

In this note, I will give a short survey on both approaches and try 
to convince the reader that one can combine the two (chocolate and 
vanilla) to eliminate number theory completely by standard (complex 
and real) analysis. I also include a simple proof of the Ikehara-Wiener 
Theorem along these lines. 

Acknowledgements. I am indebted to the (unknown) referee for con­
structive criticism and helpful remarks on two versions of this manuscript 
which enabled me, as I hope, to improve the text considerably by, e. g., 
eliminating a few mathematical errors and some historical inaccuracies. 
To be sure, solely the author is responsible for any kind of opinion stated 

1In fact, our Physics students in Hamburg learn the necessary facts from 
Analysis already in the first 3 semesters of their 4 semester course in Mathemat­
ics. It is quite unfortunate that after the last University reform in Germany our 
Mathematics students will most probably not sufficiently be armed to follow the 
arguments in full detail. 

2I shall call such arguments occasionally simple or elementary although 
both adjectives may have completely different meanings for number theorists in 
connection with the classical PNT. Diamond tries to explain the distinction in 
his highly recommendable survey article [8]: The approach to the prime number 
problem proposed by Riemann, using a function of a complex variable generated 
by arithmetic data, came to be called analytic. On the other hand, direct real 
variable treatment of arithmetic data, such as the method of Chebyshev, came 
to be called elementary. [. .. j To avoid confusion, we shall (with apologies to 
Sherlock Holmes) use the word simple for "easy to understand". It will be seen 
that some elementary arguments are far from simple. 
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expressis verbis in the text. I also would like to thank the ICTP in Tri­
este for its hospitality during my stay in June 2008 that gave me the 
opportunity to dive more deeply into the matter and to start the revision 
of the paper under such splendid conditions. 
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§1. The Prime Number Theorem in Witt's formulation 

The "classical" Prime Number Theorem states that the prime count­
ing function 

1r (x) := # {p E lP': p ::;: x} = L 1, x E ~+ , 
p:Sx 

where lP' c N denotes the set of prime numbers, behaves asymptotically 
for x -too like xj log x, i. e.3 

X 
1f (x) rv -- (x -t oo) 4 or 

log x 

If one instead of 1r uses the function 

1r (x) log x 
lim 

X-+00 X 

P(x) := #{pEIP': logp::;: x}, 

1 . 

we have P (x) = 1r (ex), and therefore the PNT is equivalent to 

lim xe-xP(x) = 1. 
X-+00 

3log x denotes in the present paper always the natural logarithm of x to 
the basis e. 

4In the following we drop the symbol ( x -+ oo). 
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Remark 1. GauB conjectured already in 1792 or 1793 according to 
a letter to his former student Encke, dated December 24, 1849, that the 
prime counting function 1r behaves asymptotically like 

du 
=li(x)-li(2) 

log u 

with the "logarithmic integral" 

li (x) = r _!:!:___ ( rl-c dU !X dU ) 
} 0 log u := l~ }0 log u + l+c log u 

(which in turn is by de L'Hospital's rule asymptotically equivalent to 
x/ log x ). GauB' letter was published after Riemann's seminal paper 
[33] on the (-function which paved the way for the complex analytic 
proofs of the PNT in 1896 by Hadamard [10] and independently by de 
la Vallee Poussin [36]. After many successful attempts to simplifY the 
methods and to make them applicable to other problems, it was only 
more than 50 years later that Erdos [9] and Selberg [35] gave the first so 
called elementary proofs of the PNT which use only elementary methods 
of real analysis avoiding the (-function altogether, but (as Korevaar puts 
it in [18]) do not qualify as simple at all. 

Remark 2. Investigating the absolute error term for the PNT means 
to find estimates for the difference 

7r (x) - {2x du 
} 2 log u 

There are many results in the literature addressing this problem, also 
in the abstract situation to be studied later. The interested reader may 
consult the standard literature like [21], [12], [34], [14] and the remarks 
at the end of Chapter 6, §1, p. 162 in [16]. 

Witt considers more generally an unbounded non decreasing ( "iso­
tonic'') sequence 

P : 0 < Pl ~ P2 ~ · · · 

of positive real numbers and the corresponding function 

P (x) := #{pEP: p ~ X}, X E ~. 

Therefore, in the classical case, the function P (x) is associated to the 
set P := log IP', rather than to IP' itself. In this generalized context, we 
sometimes write 1r (x) = P (log x). 
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Let now A denote the additive semigroup of ~+ generated by P 
with the corresponding counting function A (x) (which takes the "multi­
plicities" of elements in A into account, i.e. the fact that these elements 
will in general have finitely many representations as sums of elements in 
P ). Then we can ask the following general question: 

Given the asymptotic behaviour of A (x) or of some kind of its av­
erage as x ____, oo what can be said about the asymptotic behaviour of 
p (x)? 

Any such result may be called an abstract PNT. See, e. g., the book 
[16] of Knopfmacher for many examples. 

Remark. Studies in such generalized or abstract situations were 
started in 1937 by Arne Beurling in his memoire Analyse de la loi 
asymptotique de la distribution des nombres premiers generalises I in 
Acta Mathematica [3]. Sticking more closely to the classical situation he 
defines the set of generalized primes by an isotonic sequence 

of real numbers and the set of generalized positive integers (or Beurling 
numbers) N as the multiplicative semigroup generated by P. Transfer­
ring his investigations to the additive setting used in the present paper, 
his main result can be stated as follows: If the counting function A (x) 
attached to the set A := log N satisfies condition 

(B,) A(x) = aex + O(x-'ex) for some a> 0, "( > 3/2, 

then the generalized PNT holds for the set P := log P in the sense 
described above. Diamond [6] showed much later that 'Y = 3/2 does 
not suffice. In the multiplicative setting, the sequence p1 < p2 < · · · 
defined uniquely by 

1Pj (log t)- 1 (1 - cos (log t)) dt = j 

is a counterexample. Bateman and Diamond gave in [1] a proof of Beurl­
ing's result which in many details is closer to Landau's proof of the PNT 
in [23] and at least indirectly related to Witt's page [41]. 

Having the arguments based on the Riemann (-function in the clas­
sical situation in mind it is quite reasonable to assume with Witt (see 
also Sections 2 and 3 where we analyze the consequences of this condition 
more closely): 

(W,e) 100 
e-,6xiA(x)- aexldx < oo for some a> 0, 0 < (3 < 1. 
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Remark 1. In the classical case, we have by the existence and unique­
ness of the prime factorization in the ring Z of integers that 

A = { log n , n E N*} = log N* 

and no multiplicities, such that, with the GauB bracket [y] := max{ n ::; 
nEZ 

y}, y E ~, 
A(x) = [ex]. 

Consequently, the assumption (W13 ) is satisfied with a = 1 and any 
O<j)<l. 

Remark 2. A set P of generalized (additive) primes satisfies Axiom 
A according to [16] if one has 

A(x) = ae15x + O(e'1x) for some a> 0, 0::; ry < 6 

for the counting function of the additive semigroup A generated by 
P. Restricting to the case 6 = 1 by an obvious homothety we see 
immediately that Witt's condition (W13 ) is satisfied for all jJ > ry. 

Remark 3. If K is an algebraic number field of degree d, then 
Axiom A is satisfied for the set of logarithms of the norms of the prime 
ideals in its ring of integers ll: 

P = { log N p , p c ll} 

with 6 = 1, ry = 1 - 1/ d and a certain constant a depending on the 
field K (see Weber [37]). Hence, the condition (W13) is satisfied for any 
fJ>1-1/d. 

Our goal in this survey is to present two simple and self contained 
proofs of the PNT in the following version (see [41]). 

Theorem 1.1. If the set P satisfies (W13) for some 0 < jJ < 1 
then the (generalized) PNT holds in the form 

ex X 
P ( x) "' - or equivalently 7T ( x) 

x ~gx 

Remark 1. Due to the remarks above, this generalizes the classical 
PNT and the so called Prime Ideal Theorem of Landau [20]. 

Remark 2. If the set P of generalized primes satisfies Axiom A, 
then we can simply deduce from Witt's result the following form of the 
PNT (see Chapter 6, § 1 in [16]): 

?T(x)"' 
<Slog x 
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Under this stronger assumption, one can moreover estimate the error 
term (see, e. g., Muller [29] and Bekehermes [2]). 

Remark 3. It should be emphasized that Beurling's result is much 
stronger than Witt's because each condition (W,e), 0 < (3 < 1, implies 
(Ry) for all ry > 0 (see Section 2). In the Appendix to Section 5, 
we indicate how one can derive along the same way the abstract PNT 
under the weaker condition (B1 ) when ry > 2. Here, we follow the 
dissertation of Bekehermes [2]. 

Witt uses in [41] instead of P (x) the function 

F (x) = Fp(x) := e-x 

and the following equivalence statement: 

Proposition 1.2. IfF (x) --> 1 for x--> oo, then the function P 
satisfies the PNT in the form ( *), and vice versa. 

This result is an immediate consequence of the inequalities due to Witt 
which are proven in its hand written note (see also Leptin's commentary 
[28]; however, similar statements are already contained in publications 
before Witt). For the convenience of the reader and to keep this article 
self contained, we repeat the arguments. 

Proposition 1.3. The functions F and P are related by the fol­
lowing inequalities ( x > 0 ) : 

F(x) < xe-xP(x) 

( **) 1 X < - F (x - 2 log x) + F (x) . 
Pl x x - 2 log x 

Proof. The left hand side of ( **) is obvious. For the other side, we 
follow Witt's (and Leptin's) conclusions almost verbatim: From 

P(x) :S L [~] !!__ = ]_ex F(x) 
pEP p Pl Pl 

we deduce immediately after replacing x by x - 2 log x that 

1 
xe-xP(x- 2logx):::; -F(x- 2logx). 

PlX 

Moreover, for 0 < y < x , we have 

y (P (x) - P (y)) = L ¥_ p :S L [ ~] p = ex F (x) . 
*<l:S:[~] p pEP p 
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Substituting y = x - 2 log x yields 

X 
X e-x ( p (X) - p (X - 2 log X)) < X _ 2 log X F (X) · 

Addition of this inequality to the relevant one before gives the right hand 
side of(**). Q.E.D. 

Remark. In the classical case, we have 

with the Chebyshev function 

1/J (x) = 2: [~:g x] log p ::::; 7r (x) log x ::::; x log x. 
PEl' g p 
p<x 

It is well known - an elementary but by no means trivial fact proven 
by Chebyshev (see, e. g., [21], [17])- that more precisely 

1/J (X) ::::; ( 4 log 2) X 

such that in this situation the function F is bounded (from above) -
a fact we a priori do not know in the generalized case (but which is 
true under certain conditions like (W,a) as we will demonstrate later). 
Moreover, 

lim 7r (x) log x = lim 1/J (x) 
X---?00 X X---+00 X 

if either of these limits exists. Hence, the condition F (x) _, 1 implies 
directly the PNT in the classical case without use of Witt's inequalities 
above. 

§2. Tauber Theorems and the classical PNT 

All (elementary and non elementary) analytic proofs of the PNT use 
some theorems of so called Tauber type. One of the standard ways is to 
write the logarithmic derivative of the Riemann (-function as a Mellin 
transform involving the Chebyshev function 1/J : 

- (' ( 8 ) = s ],00 1/J (x) x-(s+l) dx 
( (s) 1 
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(see Theorem 3.2 and the following Remark 1). Here we write s = 
u + it for a complex number as usual in number theory since Riemann. 
Then, the PNT follows in the form 

lim 'ljJ (x) = 1 
X---+00 X 

without any further considerations on the function 'ljJ using the well 
known fact that the function 

(' ( s) 1 
( (s) + s - 1 

has a holomorphic extension to the open half plane 2R s > 0 from the 
following Tauber Theorem. 

Theorem 2.1 (Ikehara-Wiener). Let the real valued function f 
be non negative and non decreasing on [ 1, oo) and suppose that the 
Mellin transform 

g (s) := s 100 
f (x) x-(s+l) dx (" = "f (1) + 100 

x-s df (x)) 

exists for 2R s > 1 . Suppose, moreover, that for some constant a, the 
(holomorphic) function 

a 
g (s) - s - 1 

has a continuous extension to the closed half plane 2R s > 1 . Then 

lim f (x) = a. 
X---+00 X 

In particular, the assumptions can only be satisfied if a ~ 0 . 

Remark. According to Korevaar's survey article [18], p. 482, Ikehara 
applied Wiener's (his mentors) Tauberian theory of 1928 [38] to obtain a 
proof of this result in [11], 1931, thus succeeding in removing earlier extra 
growth conditions. He adds: Most subsequent proofs and extensions have 
benefited from Wiener's version ([39]) of the proof and from Bochner's 
simplification ([4]) of it. He, moreover, mentions in this context papers 
by Landau [23], Ingham [13], Wiener and Pitt [40] as well as expositions 
in books by several authors to which I would like to add the one of Pitt 
[32]. 

Of course, having Chebyshev's bound 'ljJ (x) ::::; C x and the analytic 
properties of the Riemann (-function mentioned above at our disposal, 
we need only a much weaker version of this deep result. 
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Corollary 2.2 (Poor man's Ikehara-Wiener Theorem). Let 
f be non negative, non decreasing and 0 ( x) on [ 1, oo ) such that the 
Mellin transform 

is well defined and holomorphic on ~ s > 1 . Suppose that for some real 
constant a , the function 

a 
g (s) - s - 1 

can be continued holomorphically to a neighborhood of every point on 
the line ~ s = 1 . Then 

lim f (x) = a. 
X-----*00 X 

This, in turn, is a simple corollary to the following 

Theorem 2.3 (Karamata-Ingham). Let F be bounded on the 
interval [ 0, oo) and integrable over any finite subinterval such that the 
Laplace transform 

G (z) = 100 
F (t) e-zt dt 

is well defined and holomorphic on the open half plane ~ z > 0 . Sup­
pose that G (z) can be continued holomorphically to a neighborhood of 
every point on the imaginary axis. Then 

1oo F (t) dt 

exists as an improper integral and equals the value of (the extension of) 
G at the origin. 

The problem with the last theorem (see Karamata [15], theorem B, 
and Ingham [13], theorem III) is that f. i. Ingham used Wiener theory to 
derive it (and even some stronger results). The breakthrough of Newman 
in [31]lies in the fact that he replaced such deep methods in the proof of 
it, as Korevaar puts it, by an ingenious application of complex integration 
theory, involving nothing more difficult than Cauchy's integral formula, 
together with suitable estimates. 

We will present the modified method of proof by Korevaar in the 
appendix to this section. Here, it might be in order to mention that it 
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is quite elementary to go from the Karamata-lngham result to Corol­
lary 2.2. The main point is that, given f, one has to put 

Since by assumption f (x) :::; Cx, F is bounded and locally integrable. 
The Laplace transform of F is easily been calculated: 

= roof (x) x-(z+2) dx - ~ = - 1- {g (z + 1) - ~ - a} 
}1 z z + 1 z 

This transform can, by assumption on g , be holomorphically extended 
into a neighborhood of ?R z = 0, such that the integral 

roo F(t)dt = roo {e-t f(et)- a}dt = roo f(x):; ax dx 
lo lo J1 x 

exists due to Theorem 2.3. Therefore, the problem is reduced to the 
following very elementary theorem of Tauber type. 

Lemma 2.4. Let f: [ 1, oo)--+ ~ be a non negative, non decreas­
ing function and suppose that for some a the improper integral 

roo f (x) :; ax dx 
l1 X 

exists. Then a is real, non negative, and f ( x) "' ax . 

Proof. Clearly, a must necessarily be real and non negative. As­
sume, for the moment, that we have lim sup f (x)j x > a ( 2: 0). Then 
there exists 8 > 0 such that 

f (y) > (a + 28) y 

for arbitrarily large y. This would imply 

f(x) 2: f(y) >(a+ 28)y >(a+ 8)x 

for all X with y < X < py, where p := (a + 28)(a + 8)-1 > 1. 
Hence 

1PY f ( x) - ax 1PY 8 
--'----'---::c-2 -- dx > - dx = 8 log p = Co > 0 , 

y X y X 
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such that the improper integral can not converge according to the Cauchy 
criterion in contradiction to the assumption. -One treats exactly in the 
same manner the other case lim inf f ( x) j x < o: , in which necessarily 
o: > 0. Q.E.D. 

Remark 1. A slightly different proof of the preceding lemma can be 
found in Jameson [14], pp. 130-131, Proposition 3.4.1. 

Remark 2. In his survey [18] on Tauber theory, Korevaar asks at the 
end the following question: Newman's contour integration method { · · J 
provides a beautiful proof for the prime number theorem. Nevertheless 
the Wiener-Ikehara way to the PNT { · · J is somewhat more direct. Is it 
possible to derive the Wiener-Ikehara theorem by simple complex anal­
ysis? Meanwhile he has answered the question himself affirmatively in 
[19] under certain more restrictive assumptions on f which, neverthe­
less, yield the classical PNT. 

One can use Lemma 2.4 and a generalization to shed more light on 
Witt's assumptions (W,i3). By the substitution x = log t and with the 
non negative, non decreasing function N (t) = A (log t), t ~ 1, this 
condition is equivalent to the existence of the integral 

f 00 N(t)-o:td 
1+(3 t 0 

1 t 

By assumption, we have 1 + (3 < 2 , and therefore Lemma 2.4 implies 
N ( t) "' o: t or, differently stated, 

Corollary 2.5. 
lim e-x A(x) = o:. 

X-+00 

However, assuming a stronger condition as in Lemma 2.4 leads also 
to a stronger conclusion. We claim the following result5 : 

Corollary 2.6. Under the assumption (W/3) , 0 < (3 < 1 , it 
follows for all "( > 0 that 

log'Y t 
lim (N (t) -at)-- = 0 or 

t-+oo t 

. x'Y 
lim (A ( x) - o: ex) - = 0 . 

X---+cx:> eX 

In other words : 
A(x) = o:ex + o(x--yex). 

In particular, A satisfies Beurling 's condition (B-y) for all "( > 0 . 

5Its proof has been communicated to me by the referee. 
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Proof. We follow the same strategy as in the proof Lemma 2.4. 
Assume that (W,e) is satisfied for some {3, 0 < {3 < 1, and assume 
moreover that for some '"'/ > 0 we have 

. log'"Y t 
L := hmsup(N(t)- at)-- > 0. 

t---->oo t 

Then, there exist arbitrarily large y such that 

Put now 

L y 
N (y) - a y ~ 2 log '"Y y 

L y 
YL := Y + - -- > Y · 4a log'"Y y 

Since the function N is non decreasing, it follows for all t between y 
and YL that 

L y L y 
N(t)- at~ N(y)- at~ 2 log'"Yy - a(t- Y) > 4 log'"Yy 

Therefore, 

l YL IN (t)- atj t-(,8+1) dt ~ .!. (!:. _Y_)2 y -(,8+1) > C yl-,8 
a 4 log'"Y y L - ,e,'"Y log2'"Y y · 

But the right hand side goes to infinity such that the integral in the 
definition of (W,e) can not exist by Cauchy's criterion. Hence, (W,e) 
implies 

. N(t)-at 
L = hm sup · I 1 '"Y ::; 0 

t---->oo t og t 

for all '"'/ > 0 . By the same method, one can prove that 

L' = lim inf N ( t) - at ~ 0 , 
t'-+oo t I log '"Y t 

since, otherwise, the integrals 

L' y 
Yu := Y - 4a log'"Y y > Y' 

tend with y to infinity. Q.E.D. 
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Appendix: Korevaar's proof of the Karamata-lngham Theo­
rem 

Korevaar's approach to Theorem 2.3 is well documented in literature 
(see [17], [18], [26] and [42]). However, for the convenience of the reader 
and for the sake of completeness, we insert here a proof, even for a more 
general result, which was mentioned already in [17]. 

Theorem 2. 7. Let F be bounded on [ 0, oo) and integrable over 
any finite subinterval such that the Laplace transform 

G (z) = 100 F (t) e-zt dt 

is well defined and holomorphic on the open half plane ~ z > 0 . Sup­
pose that G (z) can be continued continuously to the closed half plane 
~ z ;::: 0 and that the limit 

l. G(z)- G(O) 
liD -'--'----'--'-

Z--+0 Z 
!Rz~O 

exists. Then 100 
F (t) dt 

exists as an improper integral and equals the value of {the extension of) 
G at the origin. 

Proof. Dividing F by a constant we may assume that IF (t) I < 
1. We set 

G .x is an entire function, i. e. holomorphic on C , and it suffices to show 

G.x(O) = {>. F (t) dt -+ G (0). lo >.-+oo 

Replacing F on the interval [ 0, 1] by F := F - G (0) replaces the 
values G (z) of the original transform G by 

G (z) = G (z) - G (0) H (z) 

with 

H (z) = {1 e-zt dt = - e-zt II = 1 - e-z 
lo .Z t=O z 
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The function H (z) is holomorphic on C* with a resolvable singularity 
and value 1 at the origin. Therefore, also the limit for G instead 
of G exists, such that we may assume without loss of generality that 
G(O) = 0. 

We next apply Newman's contour integration method; for this, let r 
be a positively oriented circle about the origin with suitable large radius 
R , and denote by r + the semicircle r n { ?R z ~ 0 } and r _ the part 
in the left half plane. Further' let r 0 be the oriented segment of the 
imaginary axes from iR to -iR . 

,_,.,.----

/ 
( 

-iR 

By Cauchy's integral formula, we have 

G.x(O) = G.x(O) eo = ~ { G.x(z) e>.z dz 
2nz lr z 

= 2~i i G.x(z)e>.z ( ~ + ~2 ) dz. 

The function 
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is, by the assumptions, holomorphic in R z > 0 and continuous on 
R z ;:::: 0 . Hence, by Cauchy's Theorem and a simple limit argument, 

_1_ { G(z)e>..z (-z1 + Rz2 ) dz = 0 = G(O). 
27ri lr +ur0 

Addition of both identities results in a formula which expresses the value 
27ri (G (0)- G>..(O)) as a sum of the following three integrals (up to sign): 

(I) lr+ (G(z)- G>..(z))e>..z ( ~ + ~2 ) dz, 

(II) 1r _ G >.. ( z) e>..z ( ~ + ~2 ) dz , 

(III) froG (z) e>..z ( ~ + ~2 ) dz. 

It remains to show that each of the three integrals becomes small for 
large A ;:::: Ao if the radius R is suitably chosen. We do this for each 
type separately. First, notice that for z E r' i. e. I z I = R' we have 

1 z z + z 2x 
-;; + R2 = -w = R2 ' X = R z . 

Hence, if z E r + and I>.. denotes the integrand of the integral (I), 

li>..(z)l < >..x 2x 
e R2 

< >..x 2x 
e R2 

since the last integral is equal to x- 1 e->..x. This simple result is the 
main reason for replacing the factor 1/ z by the expression e>..z (1/ z + 
z j R2 ) ; the trick goes back to Carleman. This immediately implies 

llr + 1>.. ( z) dz I ~ ~2 1r R = ~ , 

such that this part of the integral is independently of A smaller than 
2Irc/3 if R > 3/c. Similarly, we have on r _ 

I G>..(z) I = 11>.. F (z) e-ztdt I ~ 1>.. e-xtdt ~ - e~xt ~~=0 
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which implies as before that independently of A the integral of type (II) 
behaves like 1/ R for R -+ oo. Thus, this part of the integral is again 
independently of A for sufficiently large R in absolute value smaller 
than 2m~ /3. 

It remains to investigate the behaviour of the integral (III) 

fro G (z) eAz ( ~ + ~2 ) dz = - i I: G (it) eiAt ( ~ + : 2 ) dt 

for fixed R when A -+ oo. By assumption, the function cp (t) := 
G(it) (1/it + it/R2 ) is continuous on JK. Hence, the integral (III) as 
a function of A can be interpreted as the Fourier transform of an L1-

function on lK. By the Riemann-Lebesgue Lemma (cf. Corollary 2.8), 
the integral tends to 0 with A -+ oo . Hence, if for given s > 0 the 
radius R is chosen so large that the integrals (I) and (II) are smaller than 
27rs /3 for all A, there exists to this R a Aa such that for all A 2: Aa 
the third integral is less than 27rs/3, too. Hence, I G (0) - GA(O) I < s 
for all A 2: Aa . Q.E.D. 

Remark. It is easy to avoid here the direct use of the Riemann­
Lebesgue Lemma via integration by parts ([18], [42]). In any case, we 
need only a special case of this Lemma. Since we shall apply this version 
once more in Section 4, we insert a proof. 

Lemma 2.8 (Riemann-Lebesgue). Let cp: lK-+ C be a contin­
uous function. Then, for all real a < b , 

lim lb cp (t) eiAt dt = 0 . 
A--+±oo a 

Proof. We may restrict to the case A -+ +oo (otherwise substitute 
-t for t ). To any s > 0 there exists a continuous function cpa with 
compact support contained, say, in the interval [a - 1, b + 1], such 
that II cpa - Cf511u < s, where (/5 denotes the trivial extension to lK of 
the restriction 'PI [a,b] . Since the factor eiAt is of absolute value 1, we 
can assume without loss of generality that cp itself has already compact 
support, and we have to show that 

lim joo cp (t) eiAt dt = 0 . 
.\---+oo -oo 

Now, for any c E lK, 

h := I: cp (t) eiAt dt = I: cp (t + c) eiA(t+c) dt. 
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In particular, setting c : = 1r /).. , we get 

21).. =I: cp(t)ei>..tdt- I: cp(t + 1rj>.)ei>..tdt 

=I: {cp(t)- cp(t + 1rj>.)} ei>..tdt. 

By uniform continuity, the expression in brackets tends uniformly to 
zero for ).. ---+ oo and vanishes on a fixed compact set for all ).. ?: 1r . 
Thus, 2 1).. ---+ 0 as ).. ---+ oo. Q.E.D. 

The generalized version of the Karamata-Ingham Theorem 2. 7leads, 
of course, to a version of the Ikehara-Wiener Theorem which is less re­
strictive than Corollary 2.2 but still has a simple complex analytic proof. 

Corollary 2.9. Let f be non negative1 non decreasing and O(x) 
on [ 1, oo) such that the Mellin transform 

g (s) = s 100 f (x) x-(s+l) dx 

is well defined and holomorphic on ~ s > 1 . Suppose that for some real 
constant a 1. the function 

a 
h (s) := g (s) - 8 _ 1 

can be continued continuously to a neighborhood of every point on the 
line ~ s = 1 1 and suppose moreover that the limit 

lim h(s)- h(1) 
·-1 s - 1 
~s~l 

exists. Then 
lim f (x) =a. 

X->00 X 

§3. A short introduction to the <:~function 

We present here a very fast introduction to the (-function (A asso­
ciated to an abelian semigroup as in Section 1 and its connection to the 
function ·Fp. Themain (elementary).resultiscontainedinthefollowing 
•theorem. 
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Theorem 3.1. The integral resp. the infinite series resp. the infi­
nite product 

"""' -sa ~ e ' 
aEA 

"""' -sp ~e ' 
pEP 

1 
II 1 - e-sp 
pEP 

converge for the same real values s = a > 0 . If they converge for 
some real a 1 > 0 , they converge absolutely and uniformly for all s 
with lR s = a 2: a 1 , and the identities 

s 1oo e-sx A (x) dx = """' e-sa = II 1 
~ 1- e-sp 

0 aEA pEP 
(+) 

00 . -snp 

=exp(LL~) 
pEP n=1 

hold in this closed half plane. 

Sketch of proof (for more details, see e. g Knopfmacher [16] or 
Lemma 2A in [1]). The statements about absolute and uniform con­
vergence for the integral resp. the series follow from 

If one denotes by a0 := 0 < a1 = P1 < a2 < · · · the elements of the 
semigroup A, then, A (x) = 0 for x < a1 and 

s 100 
e-sx A (x) dx = s 100 

e-sx L 1 dx 
0 0 aEA a<x 

= L S 1oo e-sx,d~ = L e-sa. 
aEA a aEA 

Since P is a subset of A, we have automatically with 'EaEA e-sa the 
(absolute and locally uniform) convergence of the series I:;pEP e-sp, 
which, by standard results of infinite products, is equivalent to the ab­
solute (and locally uniform) convergence of the infinite product 

II (1 - e-sp) =I= 0 and hence of II (1 - e-sp)-1 . 

pEP pEP 

Developing (1 - e-sp)-1 via the geometric series it is clear by the 
definition of the semigroup A that, at least formally, the infinite product 
in ( +) is equal to the infinite sum in ( + ). It is not so difficult to make 
this formal argument rigorous. 
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The last equality is a consequence of the continuity of the exponential 
function and the Taylor expansion of the main branch of the logarithm. 

Q.E.D. 

Definition. If uo := inf u1 over all elements u1 as in Theorem 3.1 
exists as a real number, we define the function (A on the open half 
plane 1R s > u0 ; the (-function associated to A , by one of the identical 
expressions in ( + ). In the special case P = log lP', this is obviously 
Riemann's (-function 

Due to the statements of Theorem 3.1, (A is as a locally uniform limit 
of holomorphic functions holomorphic itself, and it has no zeros due to 
the product expansion which we call, as in the classical situation, its 
Euler product (expansion). 

Remark. Assuming (By) with 'Y > 1 for the semigroup A (in 
particular (W,e) for any 0 < (3 < 1), it follows from(+++) inthe 
Appendix to Section 5, that uo = 1 . 

Using the Euler product expansion of the function (A a8 in the clas­
sical case, one finds easily the relation between its logarithmic derivative 
and the Mellin transform of the function F = F p . 

Theorem 3.2. 

(' (s) roo 
g(s) :=- ~(s) = s Jo e-(s-1)xFp(x)dx. 

Proof. From the Euler product expansion, one deduces immedi­
ately 

g(s) ='"' pe-sp = '"'(p ~e-snp) . 
~ 1- e-sp ~ ~ 
pEP pEP n=1 

On the other hand, F (x) = L Fp(x) with Fp(x) 
pEP 

fixed p E P , and 

1 e-(s-1)x Fp(x) dx = 1 e-sx P L 1 dx = P f: 1oo e-sx dx 
JR+ JR+ n'S,x/p n=1 np 

00 ='!!.I: e-snp. 
S n=1 

Adding up over all p E P leads to the correct result. Q.E.D. 
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Remark 1. Replacing x by log x, the formula in Theorem 3.2 
becomes 

g (s) = s 1= F (log x) x-s dx = s 1= (x F (log x)) x-(s+l) dx. 

Now, xF(log x) is non negative and non decreasing. So, also the gen­
eralized Prime Number Theorem 1.1 follows from the Ikehara-Wiener 
Theorem 2.1 under the assumption that ao = 1 and the function 

('(s) + _1_ 
((s) s-1 

has a continuous extension to the line lR s = 1 . 

Remark 2. If we want a simple proof (say via Corollary 2.2) we 
have not only to show that the function above can holomorphically be 
extended, but also that F is a priori bounded (which somehow was taken 
for granted by Witt [41]). We will give in the next section an elemen­
tary analytic argument based on Muller's paper [30] to the effect that 
our standard assumptions indeed have F :::; M as a consequence thus 
proving the PNT under Witt's conditions. (However, it should be noted 
that Diamond in [7] showed that "Beurling generalized prime numbers 
satisfy Chebyshev estimates" (hence also boundedness of F) under the 
much weaker condition (H.1), 'Y > 1 ). By the same arguments we will 
see that already the assumptions of Theorem 2.1 imply f = 0 (x). 
This opens the way for a simple but not entirely complex analytic proof 
of the Ikehara-Wiener Theorem (Section 5); see also Korevaar [18] and 
Pitt [32], Chapter 6.1. 

Under Witt's condition (W,e), all ingredients for such a simple proof 
(besides boundedness) are more or less for free. By assumption, the 
integral 

~a= e-sx (A (x) - a e"') dx 

converges absolutely and uniformly for all lR s = a 2 a1 > (3 and 
therefore defines by the WeierstraB Regularity Theorem a holomorphic 
function in the open half plane a > (3 containing 1 . Moreover, for 
(J > 1' 

as 1 + S r= e-sx(A(x)- ae"')dx = S r= e-sxA(x)dx. 
s- lo lo 

Consequently, (A has a holomorphic extension to the punctured half 
plane {lR s = a > (3} \ {1} and a pole of order one at the point s = 1 
with residue a. 
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To complete this first part of the simple proof of the PNT we have 
to show that the logarithmic derivative 

('(s) 
g(s) :=-­

( (s) 

is holomorphic in a neighborhood of the closed half plane a ;::: 1 (except 
at s = 1 where it has a pole of order 1 with residue 1 ). For this, we 
need the following generalization of Mertens result6: 

Lemma 3.3. ( does not vanish on the real line ~ s = 1 . 

Proof. For complex numbers z with I z I = 1 one has z z-1 

and therefore the identity 

m-1 m-1 m-1 m-1 

I L z£ 1
2 

= ( L z£ ) ( L -zR' ) = L z£-£' L (m - I k l)zk . 
£=0 £=0 £1=0 £,£1=0 jkj<m 

This yields with z = e-inpt for a > 1 the relation 

in particular, with m = 3, that I ( (a)3 ((a + it) 4 ((a + 2it? I ;::: 1. 
But then, it is impossible - since ( 3 ( s) has a pole of order 3 at s = 1 
-that 

lim ((a + it) = 0 for t #- 0. 
a"-.,1 

Q.E.D. 

Remark 1. This very elegant proof can be found on Witt's page (see 
also [1], Lemma 8B). Obviously, it works under the a priori weaker as­
sumption that the generalized (-function ( (s) := LaEA e-sa satisfies 
what we will call the standard assumptions, i. e. it exists (and hence is 
holomorphic) on the open half plane a > a0 = 1 , and 

0! 
((s)- -­

s - 1 

6 As to the Riemann hypothesis (RH), there are positive and negative exam­
ples, even for isotonic sequences which behave similar to the logarithms of the 
natural numbers; for a more recent paper, see f. i. [43]. This indicates that the 
RH depends also deeply on the additive structure of N. 
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can holomorphically be extended to an open neighborhood of the closed 
half plane a ;::: 1 for some a =f. 0 . In fact, one can use ( ++) to 
show that Lemma 3.3 remains valid under the weaker condition (B,), 
"! > 3/2 (see [1] and the Appendix to Section 5). 

Remark 2. Another short proof of Lemma 3.3 in the classical case­
based on much longer presentations by Hadamard, de la Vallee Poussin 
and Mertens- has been given by Zagier [42] (see also Diamond [8]). 

§4. Witt's approach and boundedness of the function F 

Our goal now is to show that the function F is always bounded 
(from above) under the assumption (W,a) (or the weaker "standard" 
assumptions mentioned in Remark 1 after Lemma 3.3). This can easily 
be deduced from Witt's approach to the PNT (with its amelioration in 
[30]). -In fact, we want to show much more, namely: 

Theorem 4.1. Let the real valued function f be non negative and 
non decreasing on [ 1, oo ) and suppose that the Mellin transform 

g(s) := s 100 f(x)x-(s+l)dx 

exists for ~ s > 1 . Suppose, moreover, that for some constant a , the 
holomorphic function 

a 
g (s) - s - 1 

has a continuous extension to the closed half plane ~ s ;::: 1 . Then, f 
is O(x). 

Corollary 4.2. In the poor man's Ikehara-Wiener Theorem 2.2 and 
in Corollary 2.9 the assumption 0 (x) for f may be dropped. 

Question. If one does not like to mix chocolate and vanilla ice 
cream it is necessary to prove the statement of the preceding corollary 
exclusively by standard complex analysis. Is this possible? 

We write as before F (x) = e-x f (ex) such that after substitution, 
as in Theorem 3.2, 

We then have to conclude that under the assumptions of Theorem 4.1 
the function F is bounded. For this, we will first show the boundedness 
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of a certain convolution F * CI> and need therefore a kind of converse 
which is implicit in Muller's paper (30]. 

Lemma 4.3. Let CI> be a non negative integrable function on JR. 
with 

J := I: CI> (x) dx > 0 

for some a > 0 , and suppose that the convolution F * CI> exists and is 
bounded. Then F is bounded. 

Remark. Note that, in turn, F ~ M implies the existence (and 
boundedness) of the convolution F * CI> since F is by assumption locally 
integrable. 

Proof. The main point of the argument is the monotonicity of the 
function ex F (x). Take any x > 0 and y E (-a, a]. Then 

ex-y F (x - y) 2::. ex-a F (x - a) and ey-x 2:: e-(x+a) . 

From this we deduce that I: ex-y F(x- y)ey-xCI>(y)dy 2:: ex-a F(x- a)e-(x+a) I: CI> (y) dy 

= Je- 2a F(x- a) . 

But the left hand side is not greater than the convolution (F * CI>) (x). 
This implies the result. Q.E.D. 

Theorem 4.4. Let the real valued function f be non negative and 
non decreasing on [ 1, oo) and suppose that the Mellin transform 

g (s) := s 100 f (x) x-(s+l) dx 

exists for lR s > 1 . Suppose, moreover, that for some constant a , the 
holomorphic function 

a 
g (s) - s - 1 

has a continuous extension to the closed half plane lR s ;:::: 1 . Let further 
CI> ;:::: 0 be the Fourier transform of an even, non negative continuous 
function r.p with compact support T C JR.. Put F (x) := e-x f (ex) for 
x ;:::: 0 and extend this function trivially to JR.. Then the convolution 
F * CI> exists, and 

lim (F * CI>) (x) = a r CI> (y) dy. 
X--->00 JR 
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Proof. Let us first remark that by definition the Mellin transform 
g has real values for real s = a . Hence, the constant a must be real. 
Moreover, the assumption on c.p implies that its Fourier transform <P is 
real-valued and also even: 

~ <P (x) = J c.p (t) e-ixt dt = J c.p ( -t) e-ixt dt = J c.p (t) eixt dt 

J eixt + e-ixt J 
= c.p (t) 2 dt = c.p (t) cos (xt) dt . 

Witt starts implicitly with the following two-dimensional integral 

Ia = Ia(x) := { eixtc.p(t)e-sy F(y)dtdy, 
J~x!R 

where s = a + it, a > 0 fixed. Note that the absolute value of the 
integrand is equal to 

c.p (t) e-ay F (y) , 

and we have by our assumption of g being a Mellin transform of f that 

g (s) = s 100 
e-(s-l)x F (x) dx, a > 1, 

and therefore the existence of the iterated integrals 

L ( L. c.p (t) e-sy F (y) dy) dt, a > 0. 
+ 

But this implies by the Theorem of Tonelli, that I a exists for all a > 0 
such that we get by Fubini's Theorem (for fixed a > 0 and x ): 

L ( L e-ay F (y) e-iyt dy) eixt 'P (t) dt = 

L ( L e-i(y-x)t c.p (t) dt) e-ay F (y) dy , 

hence 

~ { eixt g? +a +_it) c.p (t) dt = {oo e-ay F (y) <P (x - y) dy. 
v27r }T +a+ zt }0 

Since also 
s e-(s-l)x dx = --100 s 

0 s- 1 ' 

we arrive at Witt's main equality (slightly generalized): 
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1 J ixt { g (1 + (J + it) 0: } ( ) d -- e ---'(Jtt 
v'27f T 1 + fJ + it fJ + it 

= 100 
e-ay (F (y) - o:) <I> (x - y) dy. 

We now let rJ go to 0. Since the function (z + 1)-1 (g (z + 1) - o: (z + 
1) / z) is uniformly continuous on the rectangle [ 0, 1] x T we can apply 
Lebesgue's Theorem in order to see that the left hand side converges to 

L ( ) ·= _1_ J ixt g (1 + it) - o:jit - 0: ( ) d x . rco= e . 'P t t . 
v2n T 1 + zt 

On the other side, the family e-ay <I> (x - y) converges monotone for 
fixed x to the integrable function <I> (x - y). Thus, this part of the 
right hand side converges due to Levi's Theorem to 

Therefore, the limit 

lim { e-ay F (y) <I> (x - y) dy 
a",O }IR 

exists, too, and the same reasoning yields as limit the value 

k F (y) <J> (X - y) dy = (F * <J>) (X) . 

So, we see that the convolution F * <I> exists, as desired, and we have at 
each x the identity 

Finally, L ( x) being the Fourier transform of a continuous function on 
lR with compact support, lim L (x) = 0 by the Riemann-Lebesgue 

X--->00 

Lemma (see the proof of Lemma 2.8). Thus, 

lim (F *<I>) (x) = o: { <I> (y) dy. 
X-?CX) JTR 

Q.E.D. 
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Proof of Theorem 4.1. We just have to make sure that pairs ( 'fJ, <I?) 
as in Theorem 4.4 and Lemma 4.3 exist. The task can easily be achieved 
by functions of type 'P ( u) := sup (0, b2 (2a - I u I)) . Obviously, 'P is 
equal to the convolution A * A of the function A := b X[ J , X 

-a,a I 

denoting the characteristic function of the interval I . It is well known 
or easy to compute that 

:\ ( t) 

and from this it follows that 

(2 b sin at V; t , 

<I? (t) := rp(t) = w (t) J2; :\ 2 ( ) (sin at)2 
27f t = c -t-

with c := 2b2 ~· Q.E.D. 

Remark. Using the full strength of L1-theory, we obviously need 
only the assumption that for x '\, 1 the function 9x(iy) := g (x + 
iy) converges to g (1 + y) in £1 on every finite interval I y I :::; C. 
Under the stronger assumptions of Theorem 4.4, the use of Lebesgue's 
Convergence Theorem can be replaced by arguments with the Riemann 
integral and uniform convergence; Fubini-Tonelli is also true under these 
assumptions. Finally, it is not difficult to replace B. Levi's Theorem by 
an adequate Riemann equivalent (see [1], Appendix 5, Theorem). 

Appendix: Leptin's interpretation 

In the classical case, we have for u > 0 : 

Therefore, the function Fer defined by Fer(t) := e-ert (F (t) - 1) is 
contained in L 1 n L2 . More generally, this is true when F is bounded 
from above by a polynomial in t , in particular if F is bounded. Then, 
also the Fourier transform Fer E L2 . But, by Theorem 3.2, 

~ g (1 + (J + it) 
Fer(t) = 

1 + (J +it 
1 

(J + it 

Henceforth, the formula ( ***) is nothing else but the Plancherel formula 
applied to the function <I? and the translate TxFer. 
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§5. Witt's proof of the generalized PNT and application to 
the Ikehara-Wiener Theorem 

Of course, it is not quite reasonable to use the relation ( * * *) just 
for proving F :::; M. In fact, it leads to a simple analytic proof of the 
generalized PNT which depends on a little deeper but still elementary 
knowledge of Fourier analysis. The arguments even apply to prove the 
Ikehara-Wiener Theorem 2.1 directly. 

Witt begins his page with the following remark: 

Lemma 5.1. For every E > 0 there exists an even non negative 
continuous function ifJ with compact support such that its Fourier trans­
form <I> has the following properties : 

L <I>(t)dt = 1, e-E < /__€€ <I>(t)dt < 1. 

Proof. Choosing the constants a and b for ifJ in the proof of The­
orem 4.4 appropriately gives the result: By the inversion formula for 
Fourier transforms, we get 

ifJ(u) = - 1- r <I>(t)eitudt 
y'2; JJR 

and therefore, with u = 0 , 

2ab2 = ~ L <I>(t)dt = 2!2 L (sin/tY dt' 

and in particular, as one can also show by complex analytic methods, 

For fixed a > 0 , we choose b > 0 such that 2 a b2 v"21f 
we have for all E > 0 : 

/__€€ <I> (t) dt < /__: <I> (t) dt = 1 . 

1. Then 

On the other hand, we get by the substitution T := at because of 
c = 1/(na) that 

/__E~ <I> (t) dt = ~ 1€ (sin at)2 dt = .:!:.jEa (sin T)2 dT. 
0 na -E t Jr -ca T 

For arbitrarily given E > 0 , one can finally choose a so large that 
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l ea (sin 7 ) 2 _ -- dT > e c7r. 
-ca T 

Remark. The function 

K ( t) = 1 - cos t 
7r t2 

( sin t/2)2 

t/2 

Q.E.D. 

is known in the literature as the Fejer kernel. For <P (t) = r K (rt) the 
formula ( * * *) is nothing else but the "basic relation" in the proofs by 
Wiener and Bochner (see [18], p. 483). 

In order to prove the generalized PNT and even the Ikehara-Wiener 
Theorem 2.1 after Witt, we follow once more the notes of Leptin. We 
put again F (x) = e-x f (ex) and know by Theorem 4.1 that F is 
bounded. Similarly as in Section 4, it follows by the isotony of the 
function X ~ ex F (X) that 

ex-c F (x -c) :::; ex-y F (x - y) :::; ex+c F (x +c) 

for all y with I y I :::; c independently of x. Multiplication with ey-x 
gives then 

e-2€ F (x - c) :::; F (x - y) :::; e2c F (x + c) . 

After choosing <P with respect to c as in Lemma 5.1, this implies 

e-3€ F (x - c) < e-2€ F (x - c) lee <P (y) dy 

< lee F (X - y) <P (y) dy :S e2" F (X + c) 

for I y I :::; c and 

Using the bound F :::; M the choice of <P gives the inequalities 

0 :S ( F * <P) (X) - lee F (X - y) <P (y) dy = 

{ F(x-y)<P(y)dy:SM(1-e-"). 
}IYI?.c 
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Therefore, 

and 
F (x - E) ~ e3" ((F *<I>) (x) + M (1 - e-")). 

Because of lim (F * <I>) (x) = a (Theorem 4.4), the claim follows: 
X->00 

lim F (x) = a. Q.E.D. 
X->00 

Remark. According to our remarks at the end of Section 4, the 
proof of the Ikehara-Wiener Theorem 2.1 presented here works under 
weaker conditions on the extension of g thus leading to the conclusion 
of Theorem 4.2 of [19] by almost the same path of reasoning. Moreover, 
Theorem 2.1 itself can be proved without referring to the Lebesgue in­
tegral. 

Appendix: Simple proof under Beurling's conditions 

Let us finish this survey with some comments on what we can achieve 
with our approach when we only assume one of the less restrictive con­
ditions (B'Y) instead of (W,a). We first notice (see Section 3) that for 
a> 1 we have 

(+++) 
O!S 

(A(s) = 8 _ 1 + sp(s) 

with 

p(s) = 100 e-sx(A(x)- aex)dx. 

Certainly, p (s) is a holomorphic function with derivatives 

It is easily seen that this derivative can continuously be extended to 
a 2: 1 if the semigroup A satisfies (B'Y) with 'Y > n + 1. So, we may 
conclude: 

Theorem 5.2. If 'Y > n + 1, then (A and all its derivatives 
up to the n-th order have continuous extensions to the punctured line 
{~s=1}\{1}. 

In particular, if 'Y > 1 , the function (A has a continuous extension 
to the punctured line {a = 1} \ {1}, and, moreover (cf. [1] and the 
concluding remarks at the end of this appendix), this extension has no 
zeros if 'Y > 3/2. Therefore, if we suppose that 'Y > 2, we know that 
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the quotient (~/(A can continuously be extended to the line a = 1 
except at the point 1 . More precisely, one can easily prove the following 
lemma (see [2], Lemma 3.4). 

Lemma 5.3. Define the function h on the open half plane {a = 
~s > 1} by 

(~ (s) 1 
h (s) := - (A (s) - s - 1 . 

Then, for 'Y > 2 , h can continuously be extended to the line a = 1 , 
and it exists the limit 

10 h ( s) - h ( 1) 
lm 0 

·-1 s - 1 
~s;;:::1 

Using also our former considerations, especially Corollary 2.9, this 
immediately yields a (quite) simple proof of the followingpart of Beurl­
ing's Theorem, as was first noticed by Bekehermes [2]. 

Theorem 5.4. The abstract PNT holds under the condition (B1 ), 

'Y > 2 0 

Remark. Bekehermes also invoked the Chebyshev estimates of [7] 
for his proof. We can avoid this by referring, once more, to Theorem 4.1. 

Let us add a few remarks on the non vanishing of the (-function on 
a = 1 for 'Y > 3/2 following [1]. Bateman and Diamond first conclude 
that ( = (A cannot tend to zero too quickly as s ---+ 1 + it. In fact, 
if 'Y > 1 , then for any non zero real number t and any positive integer 
m there exists a positive constant C = C (m, t) such that 

I ((a + it) I ~ C (a - 1)1/2+1/2m 

(see [1], Lemma 8C; to come to this result, the authors apply(+++) 
for arbitrary m ). On the other hand (loc. cit., Lemma 8D) one has a 
Lipschitz condition for 1 < 'Y < 2 (this is no loss of generality since 
( B 1 ) implies ( B 1 ,) for all "(1 < 'Y ) : 

I ( (s1) - ( (s2) I :<::::: D I s1 - s2l1 - 1 

for all s~, s2 E 0(8, ~)and D = D(8, ~),where 0 < 8 < ~- 1 
and 

0(8,~) :={sEC: ~s ~ 1, Is -11 ~ 8, lsi:<:::::~}. 

So, if ( (1 + ito) = 0 for some t 0 E ~*, then for all m and all a with 
1<a<2: 

C (a - 1)1/2+1/2m :<::::: I ((a + ito) I :<::::: D (a - 1)1-1 . 
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This obviously leads to a contradiction when m is so large that 1/ (2m) < 
1- 3/2. 
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