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From Pitman's theorem to crystals 

Philippe Biane 

Abstract. 

We describe an extension of Pitman's theorem on Brownian motion 
and the three dimensional Bessel process to several dimensions. We 
show how this extension is suggested by considering a random walk on a 
noncommutative space, and is connected with crystals and Littelmann 
paths. 

§1. Introduction 

Two of the most famous results on Brownian motion, Levy's and 
Pitman's theorems, which we recall in the following sections, involve 
transformations of the Brownian paths which are closely related to trans­
formations of paths occuring in a completely different area of mathe­
matics, the Littelmann path model for representations of semisimple Lie 
algebras. Recently some generalisations of Pitman's theorem to multi-

, dimensional Brownian motion have been discovered, which throw some 
light on this coincidence. These generalisations involve Brownian mo­
tion on hermitian matrices, and the motion of its eigenvalues, which 
takes place in a cone, the Weyl chamber of the Cartan algebra of the , 
group SU(N). In this paper I will consider a random walk on the dual 
of the group SU(2), considered as a noncommutative space, which I in­
troduced and studied some years ago, and show that, by deforming it 
to a random walk on the dual of the quantum group SUq(2), and let­
ting q go to 0, one can reproduce the proof of Pitman's theorem. This 
construction immediately suggests how to extend Pitman's theorem to 
several dimensions, and this extension will be described in the following 
sections, using the Pitman operators, which are path transformations 
generalizing straightforwardly the transformation occuring in the origi­
nal Pitman's theorem. These Pitman operators satisfy braid relations, 
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and can be used to define path transformations associated to elements 
of an arbitrary Coxeter group. Considering the longest element of a 
finite Coxeter groups, one obtains a transformation which maps usual 
Brownian motion to the Brownian motion conditionned to stay in a 
fundamental domain of the Coxeter group. 

§2. Paul Levy's theorem 

Let (Bth?.o be a real Brownian motion, starting from 0, Paul Levy 
showed [L] that the stochastic process 

Xt := Bt - inf Bs 
O:Ss:St 

is distributed as the absolute value of a real Brownian motion. The 
theorem is illustrated in the following figure, where a typical Brownian 
path, as well as its transform, are depicted. 

0.00 0.25 0.50 0.75 1.00 

Fig. 1 

Furthermore, Levy observed that the original Brownian motion Bt 
can be recovered from Xt by 

(2.1) 
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where Lr is the local time at zero of X, defined by 

L~ = lim 2
1 t 1x E[-t: t:]ds. 

e:--+0 c: Jo • , 
This is a purely probabilistic statement since, in general, given a non­
negative continuous function f, there exists many continuous functions 
g satisfying f(t) = g(t) -info:'O:s9 g(s), therefore the equation (2.1) holds 
only almost surely. 

§3. Pitman's theorem 

Many years after Levy's theorem, Jim Pitman [P) obtained the re­
markable result that the stochastic process 

Rt := Bt - 2 inf Bs 
O:'O:s9 

is a Markov process, actually it is distributed as the norm of a three 
dimensional Brownian motion, also called a three dimension Bessel pro­
cess. See the figure below. 

0.00 0.25 
-- l(t)=inf(Y(s);O<:s<t) 
---1 
···--····--····· R(t)=Y(t)21(t) 

0.50 
--y 

Fig. 2 

0.75 1.00 
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This time the original Brownian motion cannot be recovered from 
the knowledge of the process (Rs; s ::::; t) up to time t, however there is 
an inversion formula for t = oo, namely one has Rt --+ oo as t --+ oo and 
for all t 2': 0, one has 

In fact, given a nonnegative function f: [0, T] --+ R with f(O) = 0, and 
a real number x E [0, f(T)] there exists exactly one function g such that 

f(t) = g(t)- 2 inf g(s) 
o:::;s:::;t 

0::::; t::::; T 

and 
g(T) = f(T) - 2x. 

The function g can be recovered by 

(3.1) g(t) = f(t)- 2inf(x, inf f(s)). 
t:c;s:c;T 

It is therefore enough to give the value of the random variable infs;:::t Rs, 
in order to recover (Bs)o:::;s:::;t from (Rs)o:c;s:c;t· 

There are many proofs of Pitman's theorem, but the original one 
by Pitman is probably the simplest, it relies on a discrete time approx­
imation, by a Bernoulli random walk. One considers such a random 
walk 

(3.2) 

where the Xi are a sequence of iid random variables, with distribution 
P(Xi = ±1) = 1/2. The two dimensional discrete time stochastic pro-
cess 

is a Markov chain on the set 

{(t, k) EN* X z IkE ( -t, -t + 2, ... 't- 2, t)}, 

with probability transitions 

p((t, k), (t- 1, k- 1)) = t 
p((t, k), (t + 1, k + 1)) = ¥ 

p((t, -t), (t + 1, -t + 1)) = 2 
p((t, -t), (t + 1, -t- 1)) = ~· 

if t > k > -t, 
if t > k > -t, 
and 

It is easy to infer from this that the discrete time process 

(3.3) 
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is a Markov process on the nonnegative integers, with probability tran­
sitions given by 

(3.4) 
k+2 

p(k, k + 1) = 2(k + 1); 
k 

p(k, k- 1) = 2(k + 1)" 

By space--time scaling, one has a convergence in distribution of the 
processes 

and Pitman's theorem follows. 

§4. Brownian motion on hermitian matrices 

Consider a 2 x 2 matrix valued Brownian motion of the form 

Yt + iZt) 
-Xt 

where X, Y, Z are three independent real Brownian motions. The eigen­
values of this matrix are ±.At where 

therefore the process (.At)t~o is a Bessel process of dimension three, which 
can also be described as "Brownian motion conditionned to stay posi­
tive". In this last statement the conditionning has to be done in Doob's 
sense [D], namely we consider Brownian motion on the positive real line, 
killed at the first hitting time of 0. It is well known that this is a Markov 
process whose probability transition densities can be computed using the 
reflection principle, and are given by 

p~(x, y) = Pt(X, y)- Pt(X, -y) x,y > 0 

where 

is the usual gaussian kernel. There exists a unique positive harmonic 
function for this kernel, which is h(x) = x, and the transition prob­
abilities of the three dimensional Bessel process are given, by Doob's 
h-transform, as 

. h(y) 0 
qt(x,y) = h(x)Pt(x,y) x,y > 0 
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This situation generalises to the case of hermitian matrices of arbitrary 
size. Let (Mt)t2':0 be a brownian motion with values in the space of 
traceless hermitian matrices of size n x n. Thus M is a gaussian process 
with covariance 

E[Tr(AMt)Tr(BMs)] = (s 1\ t) Tr(AB) 

for all traceless hermitian matrices A, B, and times s, t. Then the eigen-
values .X1(t) :::; ... :::; An(t) perform a Markov process in the cone 

C = {(xt, ... , Xn) ERn I X1 + ... + Xn = 0, X1 :::; X2 :::; •.• :::; Xn} 

The transition probabilities of Brownian motion killed at the exit of this 
cone are given by the reflection principle as 

(4.1) p~(x, y) = L c:(a)pt(x, a(y)) 
aESn 

where Sn is the symmetric group acting by permutation of coordinates, 
and there exists a unique positive harmonic function for this kernel, 
given by the Vandermonde determinant 

h(x) = IT(xi- Xj) 

i>j 

The transition densities for the process (.X1 (t), ... , An(t)) are then equal 
to 

(4.2) 
h(y) 0 

qt(x, y) = h(x)Pt (x, y) x,y E C 

The generalisation of Pitman's theorem that we are going to discuss 
constructs a process distributed as (.X1 (t), ... , An(t)) by a path trans­
formation, starting from an ordinary Brownian motion on Rn-l. Such 
a result was first given in [OY], for the case we discuss above, then 
generalized in [BJ], with a completely different proof, to processes with 
values in the Lie algebra of a compact semisimple Lie group. Finally in 
[BBO] we gave still another generalisation, with different techniques, to 
the case of Brownian motion in the fundamental cone associated with a 
finite Coxeter group. 

§5. Random walks on noncommutative spaces 

The two Markov chains Bn and Zn appearing in the proof of Pit­
man's theorem ((3.2) and (3.3)) can be realized naturally using a random 
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walk on a noncommutative space. Consider the following construction, 
which was introduced in [Bl],[B2]. Let A(SU(2)) be the (reduced) group 
C*-algebra of the compact group SU(2). There exists, for each integer 
n, a unique (up to equivalence) irreducible representation of dimension 
n of SU(2). By Peter-Weyl theorem, this implies that A(SU(2)) is the 
C* direct sum of matrix algebras EB~=l Mn(C). Each element of SU(2) 
defines a unitary element )..9 in the multiplier algebra of A(SU(2)). The 
C* algebra A(SU(2)) is a C* -Hopf algebra for the coproduct induced 
by 

A(>.9 ) = >.9 ® >.9 

Let p be the state on A(SU(2)) given by the normalized trace of the 
fundamental representation, i.e. one has 

1 
p(a) = 2rr(a2 ) 

if a = (an)n;;::l E EB~=1Mn(C). The map P : A(SU(2)) --+ A(SU(2)) 
given by 

P = (p ® I d) o A 

is the composition of a morphism and the partial evalutation with re­
spect to a state, it is therefore completely positive, and unit preserving. 
In general a completely positive, unit preserving map on a C* algebra 
is a noncommutative analogue of a Markov kernel, and it is possible 
to construct noncommutative stochastic processes having this map as 
transition probabilities, see e.g. [B4] for an introduction to these topics. 
If the C* -algebra B is commutative, thus isomorphic to Co (X) for some 
locally compact space X, then a completely positive, unit preserving 
map Q : C0 (X) --+ C0 (X) (more precisely, preserving the unit of the 
multiplier algebra) is given by a Markov kernel q(x, dy) on X, by the 
formula 

Qf(x) = L f(y)q(x,dy) 

Consider now the following two commutative subalgebras of A(SU(2)). 
The first one is A(T), the C*-algebra generated by the maximal torus 
T of SU(2) consisting of diagonal matrices. The Gelfand spectrum of 
this algebra is the dual group ofT, isomorphic to Z. The completely 
positive map P leaves this algebra invariant and its restriction to A(T) 
is given by a Markov kernel on Z, which we easily identify with 
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The corresponding Markov chain on the integers is the usual symmetric 
Bernoulli random walk, as in (3.2). The second subalgebra is the cen­
ter of A(SU(2)). Its spectrum is the set of irreducible representations, 
identified with N (for convenience one identifies the representation of 
dimension n with n -1 EN). This algebra again is invariant by P, and 
the corresponding Markov kernel can be computed using the Clebsch 
Gordan formula giving the decomposition of tensor product of represen­
tations 

Pz ® Pn = Pn-1 + Pn+l 

Pn being the irreducible representation of dimension n. This yields the 
transition probabilities of the Markov kernel 

n+2 
p(n,n+ 1) = 2(n+ 1), 

n 
p(n, n- 1) = 2(n + 1) 

This time we find the same transition probabilities (3.4) as the Markov 
chain (3.3) of Pitman's theorem. We now consider the maximal abelian 
subalgebra of A(SU(2)) generated by A(T) and by the center. This can 
be identified with the subalgebra 

EB~=lDn c EB~=lMn(C) 

consisting of diagonal matrices. The spectrum is naturally the set of 
pairs of integers (r, k) with r 2: 0 and k E { -r, -r + 2, ... , r }. This 
abelian algebra is invariant by P, and the restriction of P gives the 
Markov kernel on the spectrum 

p((r, k), (r + 1, k + 1)) 

p((r, k), (r + 1, k- 1)) 

p((r, k), (r- 1, k + 1)) 

p((r, k), (r- 1, k- 1)) 

r+k+2 
4(r + 1) 
r-k+2 
4(r + 1) 
r-k 

4(r + 1) 
r+k 

4(r + 1)" 

This Markov kernel is different from the one appearing in the proof 
of Pitman's theorem. However, we can consider the deformed algebra 
of the quantum group SUq(2) (in the sense of Woronowicz). As a C*­
algebra it is isomorphic to A(SU(2)), but the coproduct is deformed 
into a new coproduct tlq by a parameter q E)O, 1). Let us define a 
unit preserving completely positive map on A(SUq(2)) by the formula 
p(q) = (p ®I d) o tlq We find in this algebra the same maximal abelian 
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subalgebra, which again is invariant by p(q). Identifying its spectrum 
as before, we find, using the q-analogue of the Clebsch-Gordan formula, 
the following transition probabilities 

p((r, k), (r + 1, k + 1)) 

p((r, k), (r + 1, k- 1)) 

p((r, k), (r- 1, k + 1)) 

p((r, k), (r- 1, k- 1)) 

Letting q go to zero then yields essentially the same Markov chain as 
in Pitman's theorem. Details are in [B3]. Once we have recognized the 
role of crystallisation (i.e. letting q go to zero) in obtaining Pitman's 
theorem we can look for a multidimensional generalisation, by consider­
ing compact semisimple Lie groups of higher rank than SU(2), and try 
to emulate the same kind of construction as above. In fact we shall pro­
vide in the next sections a generalisation of Pitman's theorem in which 
the three dimensional Bessel process is replaced by a Brownian motion 
conditionned to stay in a cone associated with a finite Coxeter group 
(not necessarily a Weyl group). 

§6. Pitman operators 

Let V be a real vector space with dual vv. Let a E V and av E vv 
be such that a v (a) = 2, then one defines the Pitman operator P a, acting 
on continuous path 1r with values in V, and such that 1r(O) = 0, by the 
formula 

Pa7r(t) = 1r(t)- inf av (1r(s))a, 
t;:::s;:::o 

It is immediate to check that 

and 
PaPa= Pa· 

T ~ t ~ 0. 

Let a, f3 E V and av, f3v E vv be such that av ((3) = f3v (a) = -2p < 0. 
Since the Pitman operators are idempotent, in order to understand the 
monoid generated by Pa and Pf3, it is enough to be able to compute the 
products of the form PaP(3Pa .. . , where Pa and Pf3 alternate. Plug­
ging the definitions of Pa and P(3 into the product PaP(3Pa ... yields 
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a complicated expression involving minima of quantities in which signs 
alternates. It is therefore remarquable that this expression simplifies to 
give the following. Let n be a positive integer, such that p > cos ~. 
Define 

Yf(so, s1, ... , sk) = 

To(p )a v ( n( so)) + T1 (p )(3v ( n( s!)) + ... + Tn-1 (p hv ( n( Bn-1)) 

where ry = a if n is odd, and ry = (3 if n is even. Then 

(PaP(3Pa .. . )n(t) = ..._,._., 
n terms 

n(t)- inft>so>s,> ... >sn-1>0 Yf(so, ... 'Sn-1)a - - - - -

see Theorem 2.5 in [BBO]. The Tk are the Tchebycheff polynomials 
defined by 

Tk(cosB) =sin(~~ l)B. 
S1n 

In particular, under the assumptions on p and n, one has Tk(P) ::;:: 0 for 
allk:::;n-1. 

The braid relations for Pitman operators follow: if p = cos ~ then 
(Theorem 2.4 in [BBO]) 

n terms n terms 

where there are n terms in the product. 
Let (W, S) be a Coxeter system (see e.g. [BO], [H]). We choose a 

root and coroot system (as, a~)sES for (W, S), such that for each s E S, 
and for all x E V, one has 

Denote by Ps the Pitman transform associated with the pair (a 8 , a~). 
Let H s be the closed half space 

Let w E W and let 
w = s1 ... sl 

be a reduced decomposition of w, where l = l(w) is the length of w. 
Using the braid relations for Pitman operators, and a fundamental result 
of Matsumoto ([BO] Ch. IV, n° 1.5, Proposition 5) the operator 



From Pitman's theorem to crystals 11 

depends only on w, and not on the chosen reduced decomposition. If W 
is a finite Coxeter group, and w0 its longest element, then one has 

In particular, for any path 1f the path P wo 1f takes values in the funda­
mental chamber 

C = nsESHs 

Let 1f be a path with values in the fundamental chamber, then the set 
of paths rJ such that P wo rJ = 1f is a continuous (as opposed to discrete) 
analogue, for arbitrary finite Coxeter groups, of the Littelmann module, 
and the Pitman operator is the analogue of the Kashiwara map on a 
crystal, see [BBO]. 

We have seen that, under certain conditions on n, the product of n 
terms 

Pa.Pf3Pa. ... 

has a nice expression, given by minimizing over some sequences of times. 
It is an interesting, but certainly difficult problem, to try to find similar 
expressions for an arbitrary product 

p 0'.1 p 0'.2 p 0'.3 ••• 

where ai, a'( are arbitrary elements with a'((ai) = 2, and associated 
reflections Si. A necessary condition for this product to have a nice 
expression is that the images s k s k-l ... s1 C of the fundamental cone 
C = ni(a'( > 0) do not overlap. When the reflections Si belong to a 
Weyl group, such an expression was found in [BBO], Theorem 3.12. 

§7. Brownian motion in cones 

We assume that the Coxeter group W is finite, and that the space 
V is euclidean, with W acting by orthogonal reflections. We choose a 
fundamental chamber C and let h be the product of the positive coroots, 
i.e. 

h(x) = rr (3v (x) 
(3ER+ 

where R+ is the set of positive roots, then the function h is still the only 
(up to a multiplicative constant) positive harmonic function vanishing 
on the boundary of C, and formula ( 4.1) with Sn replaced by W gives the 
semigroup of Brownian motion killed at the boundary of the cone. The 
Brownian motion conditionned to stay inC is then defined as the Markov 
process with transition probabilities given by ( 4.2). The following result 
has been proved in [BBO], Theorem 5.6. 
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Theorem 7.1. Let (Bt)t>o be a Brownian motion in V, then the 
stochastic process (Pw0 B(t))t>o is a Brownian motion conditionned to 
stay in the cone C. 

The proof of the theorem uses ideas from queuing theory. 

§8. Connection with the Duistermaat-Heckman measure 

We have seen that the information lost in passing from a path 1r to 
Pa1r is a real number in the interval [0, Pa7r(T)], since one can recover 
1r from Pa1r and this number by (3.1), therefore the information needed 
to recover 1r from P wo 1r is a family of l ( w0 ) nonnegative real numbers 
(depending on the chosen reduced decomposition of wo). One can show 
that, for a fixed path TJ with values in the cone C, and for some reduced 
decomposition 

wo = s1 ... sz 

the set of all numbers arising from paths 1r such that Pwo 1r = TJ, is a 
convex polytope which depends only on TJ(T) and not on the rest of the 
path. Furthermore, when 1r = B is chosen randomly as a Brownian 
path, the conditional distribution of the point in the polytope, know­
ing Pw0 B(T), is the normalized Lebesgue measure, and the conditional 
distribution of B(T), knowing Pw0 B(T), is a probability distribution on 
the convex hull of the points w(B(T)), wE W, which is the image of the 
Lebesgue measure on the polytope by the affine map 

l 

(xl, ... , Xz) --+ Pw0 B(T) - L Xi as, 
j=l 

When W is a Weyl group, and the root system corresponds to the root 
system of a semi-simple Lie algebra, this probability measure is the 
(normalized) Duistermaat-Heckman measure, and the polytopes defined 
above have been studied by Berenstein and Zelevinsky [BZ]. These top­
ics will be discussed further in [BB02]. 
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