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Local geometric Langlands correspondence: 
the spherical case 

Edward Frenkel1 and Dennis Gaitsgory2 

To Masaki Kashiwara on his 60th birthday 

Abstract. 

A module over an affine Kac-Moody algebra g is called spherical 
if the action of the Lie subalgebra g[[t]] on it integrates to an algebraic 
action of the corresponding group G[[t]]. Consider the category of 
spherical g-modules of critical level. In this paper we prove that this 
category is equivalent to the category of quasi-coherent sheaves on the 
ind-scheme of opers on the punctured disc which are unramified as 
local systems. This result is a categorical version of the well-known 
description of spherical vectors in representations of groups over local 
non-archimedian fields~ It may be viewed as a special case of the local 
geometric Langlands correspondence proposed in [FG2]. 

§1. Introduction 

A general framework for the local geometric Langlands correspon­
dence was proposed in our earlier work [FG2] (see also [FG3]-[FG5] and 
[F2]). According to our proposal, to each "local Langlands parameter" 
a, which is a G-local system on the punctured disc 1>x = SpecC((t)) (or 
equivalently, a G-bundle with a connection on 1> x), there should corre­
spond a category eO" equipped with an action of the formal loop group 
G((t)). Even more ambitiously, we expect that there exists a category 
euniv fibered over the stack Locc (1> X) of G-local systems, equipped with 
a fiberwise action of the ind-group G((t)), whose fiber category at a is 
eO". Moreover, we expect euniv to be the universal category equipped 
with an action of G (( t )) . In other words, we expect that Locc ( 1> x) is the 
universal parameter space for the categorical representations of G((t)). 
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The ultimate form of the local Langlands correspondence for loop groups 
should be, roughly, th~ following statement: 

(1.1) 
categories fibering 

over Loc0 ( 1) x ) 

categories equipped 
with action of G((t)) 

We should point out, however, that neither the notion of category 
fibered over a non-algebraic stack such as Loc0 (1)x), nor the unversal 
property alluded to above are easy to formulate. So for now (1.1) should 
be understood heuristically, as a guiding principle. 

As we explained in [FG2], the local geometric Langlands correspon­
dence should be viewed as a categorification of the local Langlands corre­
spondence for the group G(F), where F is a local non-archimedian field. 
This means that the categories ea, equipped with an action of G((t)), 
that we wish to attach to the Langlands parameters O" E Loc0 (1)x) 
should be viewed as categorifications of smooth representations of G(F) 
in the sense that we expect the Grothendieck groups of the categories 
ea to "look like" irreducible smooth representations of G(F). 

1.1. The spherical part 
In the study of representations 1r of G(F), a standard tool is to 

consider the subspaces 1rK of vectors fixed by open compact subgroups 
K of G(F). 

This procedure has a categorical counterpart. Let K be a group­
scheme contained in G[[t]] and containing the Nth congruence subgroup 
KN for some N (i.e., the subgroup of G[[t]] consisting of elements con­
gruent to 1 modulo tN C[[t]]). For example, K can be G[[t]] itself, or the 
Iwahori subgroup I. 

Given a category e, acted on by G((t)), we can consider the corre­
sponding K-equivariant category eK. Via (1.1), any such eK is also a 
category fi be red over Loco( 1) x ) . 

This procedure applies in particular to euniv· Although at present 
we do not know how to construct the entire category euniv, we do have 
a guess what e~iv is for some choices of K. 

In this paper we specialize to the simplest case K = G[[t]]. (An­
other case, which can be explicitly analyzed is that of K =I, discussed 
in [FG2].) Based on the analogy with the classical local Langlands cor­
respondence for spherical representations, we propose: 
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(1.2) e 0 Wll ~ Rep(G) 
UlllV • 

Here Rep( G) is the category of (algebraic) representations of G, 
which can be also thought as the category of quasi-coherent sheaves on 
the stack ptjG. The structure of category fibered over Locc('Dx) comes 
from the maps of stacks 

(1.3) 

corresponding to the inclusion of the stack Loc6nr of unramified local 
systems (or, equivalently, local systems on the unpunctured disc 'D) into 
the stack Loco( 'D x) of all local systems. 

1.2. Representations of critical level 

In [FG2] we have considered a specific example of a category equipped 
with an action of G((t)); namely, the category "9crit -mod of modules over 
the affine Kac-Moody algebra g of critical level. It carries a canonical 
action of the ind-group G((t)) via its adjoint action on "9crit· 

What should be the relationship between "9crit -mod and the conjec­
tural universal category euniv? 

We note that the category "9crit -mod naturally fibers over the ind­
scheme Op0 ('Dx) of G-opers on 'Dx introduced in [BD]. This is because, 
according to [FF, F 1], the center 3 9 of the category "9crit -mod is isomor­
phic to the algebra of functions on Op0 ('Dx ). 

The idea of [FG2] is that the latter fibration is a "base change" of 
euniv, that is, there is a Cartesian diagram 

9crit -mod ------7 euniv 

(1.4) 1 1 
Ope( 'D x) ___::____. Loco( 'D x) 

which commutes with the action of G((t)) along the fibers of the two 
vertical maps. In other words, 

(1.5) 

Given a g-oper x, let us consider it as a point of Spec(39 ), i.e., a 
character of 3 9 . Let "9crit -modx be the full subcategory "9crit -modx of 
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!Jcrit -mod whose objects are !Jcrit-modules, on which the 39 acts accord­
ing to this character. This is the fiber category of the category !Jcrit -mod 
over X E Opc('Dx). 

Let u = a(x) E Locc('Dx). By (1.5), we have: 

(1.6) e,. ~ !Jcrit -modx . 

As was mentioned above, at the moment we do not have an indepen­
dent definition of euniv, and therefore we cannot make the equivalences 
(1.5) and (1.6) precise. But we use it as our guiding principle. This 
leads us to a number of interesting corollaries, some of which have been 
discussed in [FG2]-[FG5]. 

For example, if x, x' are two G-opers, such that the corresponding 
local systems a(x) and a(x') are isomorphic, for every choice of an 
isomorphism we are supposed to have an equivalence of categories: 

(1. 7) !Jcrit -modx ~ !Jcrit -modx' 

intertwining the actions of G((t)). This is a highly non-trivial conjecture 
about representations of !Jcrit. 

1.3. Harish-Chandra categories 

Let us return to the discussion of the category of K -equivariant 
objects in the context of e = !Jcrit -mod. The corresponding category 
!Jcrit -modK identifies with the category of (!Jcrit, K) Harish-Chandra 
modules. When K is connected, this is a full abelian subcategory of 
!Jcrit -mod, consisting of modules, on which the action of the Lie algebra 
Lie(K) C !Jcrit is integrable, i.e., comes from an algebraic action of K. 

Now specialize to the case K = G[[t]]. We call objects of the cor­
responding category !Jcrit -modG((t]] of G[[t]]-equivariant !Jcrit-modules 
spherical. Combining eqns. (1.2), (1.3) and (1.5), we arrive at the 
following equivalence: 

Here we should remark that although the stack Locc('Dx) is a prob­
lematic object to work with, the fiber product 
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appearing on the right-hand side of (1.8) is a well-defined (non-reduced) 
ind-subscheme of Op0 (Tix). This is the moduli ind-scheme of opers that 
are unramified as local systems. We denote this ind-scheme by Op6nr. 

It is a disjoint union of ind-schemes Op(;nr,\ .X being a dominant weight, 

where the reduced scheme corresponding to each Op(;nr,>. is the scheme 

Opdg,>. of .A-regular opers introduced in [FG2]. 

Thus, the heuristic guess given by (1.8) leads to the following precise 
statement, which is the main result of this paper: 

Main Theorem. The category 9crit -modG[[t]] of spherical 9crit -modules 
is equivalent to the category of quasi-coherent sheaves on the ind-scheme 
Op6nr of G-apers on nx unramified as local systems. 

Moreover, we show that a functor from the former category to the 
latter one is an analogue of the Whittaker functor. 

1.4. Some corollaries 

Let x be a C-point of Opc(Tix), and let us consider the category 
9crit -mod~[[tlJ. As an abelian category, this is a full subcategory of 
9crit -modx, consisting of G[[t]]-integrable modules. 

One can show (see [FG3], Corollary 1.11) that this category is 0 
unless X E Op6nr· In the latter case, from the Main Theorem we obtain 

that the category 9crit -mod~[[t]] is equivalent to the category of vector 
spaces. This result is the first test for our prediction that 9crit -modx, 
as a category equipped with a G((t))-action, depends only on o:(x), as 
expected in (1. 7). In addition, this equivalence is in agreement with a 
classical fact that the space of spherical vectors in an irreducible repre­
sentation of G(F) is either zero or one-dimensional. 

As another corollary of the Main Theorem, we obtain the follow­
ing description of the algebra of self-Exts of the Weyl modules V >. in 
the derived category D(gcrit -modG[[t]]) of (9crit, G[[t]]) Harish-Chandra 
modules: 

where :N;eg/ unr is the normal bundle of Opdg,>. in Op(;nr,>._ (In the above 

formula we identify the algebra of functions on Opdg,>. with the corre­

sponding quotient of 39 , denoted 3~eg,>..) For .X = 0 this isomorphism 
was previously established in [FT] by other methods. 
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1.5. Structure of the proof 

The proof of the Main Theorem is quite simple. The main idea is 
that the category gcrit -modG[(t]] has a universal object, denoted :Def crit• 
which is the vacuum module of the chiral algebra of differential opera'tors 
on G. The module :Def crit is in fact a !icrit-bimodule, and for any other 

object M E !Jcrit -;rnodG[(t]] we have 

00 

ch 2 
M ~:De crit ® M , g((t)) 

-T 
(here ® stands for the semi-infinite Tor functor). 

g((t)) 
Therefore, in order to define functors and check isomorphisms on 

!icrit -modG[[t]], it is enough to do so just for the module :Def crit. Thus, 
in Sect. 2 we prove a theorem that describes the structur~ of :D~crit 
as a hi-module over !Jcrit -modG[[t]], and in Sect. 3 we derive our Main 
Theorem from this structure theorem. 

§2. Chiral differential operators on G at the critical level 

In this section we describe the structure of the chiral algebra of 
differential operators (CADO) on a simple connected simply-connected 
algebraic group G over C at the critical level, viewed as a bimodule over 
9crit• 

2.1. Notation 

We will follow the notation of [FG2]. In particular, !icrit is the crit­
ical central extension of the formal loop algebra g((t)), !Jcrit -mod is the 
category of discrete modules over !icrit, 3 9 is the center ofgcrit -mod (or, 
equivalently, of the completion of the enveloping algebra of !icrit). This is 
a topological commutative algebra. According to a theorem of [FF, Fl], 
the corresponding ind-scheme Spec(39 ) is canonically isomorphic to the 
moduli space Opc;{1JX) of G-opers on the formal punctured disc, where 
G is the Langlands dual group toG (of adjoint type). For the definition 
of Opc(1>x), see [BD]. 

For >. E A+, we let 3~eg,>. denote the quotient of 39 corresponding to 
the sub-scheme Opdg,>. C Opc(1>x) introduced in [FG2], Section 2.9. 
Let 
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be the Weyl module with dominant integral highest weight .X E A+. 
According to [FG6], Theorem 1, the action of 3 9 on v;,crit factors as 
follows: 

3g -+> 3~eg,-\ ~ End(v;,crit)· 

Furthermore, v;,crit is flat (and in fact, free) as a J~eg,-\_module. 

Let lJcrit -modG[[t]] be the full abelian subcategory of lJcrit -mod. 
In this paper we will work with the "naive" derived category D(gcrit 
-modG[[t]J). However, by generalizing the argument of [FG2], Sect. 
20.16, one can identify D(gcrit -modG[[t]]) with the G[[t]]-equivariant de­
rived category corresponding to lJcrit -mod, as introduced in loc. cit., 
Sect. 20.8. 

In particular, for JVC E lJcrit -modG[[t]] we have: 

ExtL,, -modGII•Il (v;,crit' JVC) ~ Ext~[[t]](V-\, JVC). 

2.2. Unramifi:ed opers 
Let Opdnr C Opc(~JX) be the ind-subscheme of opers that are un­

ramified as local systems. For any ((>algebra A, the set of A-points of 
Opdnr is by definition the set of opers on SpecA((t)), which are isomor­
phic, as local systems, to the trivial local system. We have: 

(2.1) Opdnr ~ u Op{;nr'\ 
-\EA+ 

where Op{;nr,-\ are pairwise disjoint formal sub-schemes of Op0 (nx) with 

(0 unr,A) ,...., 0 reg,-\ Pa red- Pa · 

We will also use the notation Spec(3~nr), Spec(3~nr,-\) for these 

ind-schemes. Let £~g/ unr denote the closed embedding Spec(J~eg,A) ~ 
Spec(3~nr,-\); let 1-\ denote the (closed) ideal ofSpec(3~eg,-\) in Spec(3~nr,-\); 
let N;eg/ unr be the normal to Spec(3~eg,-\) in Spec(3~nr,-\). It follows from 

[FG2], Section 4.6, that its sheaf of sections is a locally free 3~eg,-\ -module 
(in other words, N;egfunr is svector bundle over Spec(J~eg,-\)). Moreover, 

39 carries a Poisson structure, which identifies N;egfunr with !1 1 (3~eg,-\). 

The following fact was established in [FG3], Corollary 1.11 (note 
that Spec(3~nr) was denoted by Spec(3~Lf.) in [FG3]). 

Theorem 2.3. The support in Spec(39 ) of every JVC E lJcrit -modG[[t]] 
is contained in Spec(3~nr). 
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Thus, every G[[t]]-integrable g-module M splits as a direct sum 
E9 M'\ where JV[>- is supported at Spec(3~nr,.>.) and has an increasing 

.>. 
filtration whose sub-quotients are quotient modules of v~,crit· 

2.4. Chiral differential operators 

Let X be a smooth algebraic curve. We will work with Lie-* algebras 
and chiral algebras on X and with modules over them supported at a 
fixed point x EX (see [CHA] for the definitions). In this paper all chiral 
algebras will come from vertex algebras, and we will tacitly identify a 
chiral algebra with its vacuum module, i.e., its fiber at any point of a 
curve equipped with a coordinate. In fact, everything may be rephrased 
in terms of the corresponding vertex (Lie) algebras and modules over 
them, but we will use the formalism of chiral algebras for the sake of 
consistency with [FG 1]-[FG3]. 

Recall from [AG, GMS] that for any level K, (i.e., an invariant bilinear 
form on g) we have the chiral algebra of differential operators (CADO), 
denoted by :Def '" It comes equipped with two mutually commuting 
embeddings ' 

(2.2) 

where 

/'i, 1 = -K, + 2/'i,crit· 

Recall that the fiber of Ag,~< at x is the vacuum Weyl module 'V g,~< 
of level K,, and the fiber of :Def crit at x with 

Here t is a formal coordinate at x and Oc[[t]] is the algebra of functions 
on the group G[[t]], on which g[[t]] acts trivially and 1 acts as the iden­
tity. This is a module over g"' EB g"''. The action of g"' on ;och( Gkx 
corresponding to the left arrow in (2.2) is the natural action on this in­
duced module, and the action corresponding to the right arrow in (2.2) 
was constructed in [AG, GMS]. We will refer to the two actions as the 
"left" and the "right" actions, respectively. 

2.5. CADO at the critical level 

We now specialize to the critical level K, = K,crit. Then K, 1 = K,crit, 
and so both left and right actions of g correspond to the critical level. 
We will describe the structure of ;och( G)crit,x as a !Jcrit-bimodule. From 
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now on, when there is no confusion, we will skip the subscript x when 
describing the fiber of the chiral algebra at x. 

Let 39 denote the center of Ag,crit (note that Jg identifies with J~eg,o). 
The following has been established in [FG 1]: 

Lemma 2.6. The two embeddings 

[, t : bg =4 1Jef,crit 

differ by the automorphism of 39 , induced by Cartan involution T of g. 

As a bimodule over 9crit, 1Jef crit is G[[t]]-integrable with respect to 
both actions. By Theorem 2.3, its support over Spec(39 ) is contained 
in Spec(3~nr) (note that by Lemma 2.6, the two actions of 3 9 on 1J~crit 
differ by T). Hence, we have a direct sum decomposition of 1)~crit as a 
9crit-bimodule: 

1)ch ~ ffi 1)ch,>. 
G,crit - W G,crit 

.XEA+ 

where 1J~,~~it is the summand supported at Op(;nr,>. = Spec(3~nr,>.) (see 
formula (2.1)). 

Recall that <9c[[t]] denotes the algebra of functions on G[[t]]. It has 
a natural structure of commutative chiral algebra, and as such it is a 
chiral subalgebra of 1)~crit. The map 

<9c[[t]] -t 1Jef,crit 

respects the bimodule structure with respect to g[[t]] C 9crit· 

For >. E A+ we have a natural map 

v>. l8l VT(A) -t <9c '--+ <9c[[t]]l 

compatible with the action of g[[t]] EB g[[t]]. Inducing, we obtain a map 
of bimodules over 9crit: 

\I:TA yT(>.) 1)ch,>. 
Vf g,crit l8l g,crit -t G,crit · 

From Lemma 2.6 we obtain: 

Lemma 2.7. The above map factors through a map 

(2.3) 
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2.8. A description of the CADO 

Recall that JA denotes the ideal ofSpec(J~eg,A) in Spec(3~nr,A). Con­
sider the canonical increasing filtration on 1)g'~:it numbered by i = 

0, 1, ... with Fi(1)g'~:it) being the !Jcrit sub-bimodule, annihilated by the 
i +1-st power of the ideal JA. By construction, the image of the map 
(2.3) belongs to F0 (1)g',~:it)· 

We are now ready to formulate the main result of this section: 

Theorem 2.9. 

(1) The map (2.3) defines an isomorphism 

'\ITA 'IITr(A) ,....., FO(~ch,A ) 
VI g crit 0 VI g crit - ,l.J G crit · 

' 3;eg,.>... ' ' 

(2) The canonical maps 

(JA)n/(IA)n+l 0 gr0(1)ch,A. ) ___. grn(1)ch,A. ) 
>. G,cnt G,cnt 

3~eg, 

give rise to isomorphisms 

(2.4) n(~ch,A ) O(~ch,A ) S n (NA ) gr ,l.JGcrit ~gr ,l.JGcrit 0 ym,reg,>. regfunr 
' ' 3~eg,A og 

of !Jcrit-bimodules, where N;eg/unr is the normal bundle to Opdg,A in 
0 unr,A 

Pa . 
The above theorem should be contrasted with the following: 

Lemrp.a 2.10. For a generic"' (i.e., such that ti/tic is not a rational 
number) we have an isomorphism 

(2.5) ~ch ffi '\ITA 'IITT(A) 
,l.JG,K ~ "1] VI g,K 0 VI g,K') 

AEA+ 

of g~<- E9 g~<-' modules. 

Proof. For any level "' we have a canonical non-zero homomorphism 
of g~<- E9 g~<-' modules 

(2.6) '\ITA 'IITr(A) ~ch 
VI g,K 0 VI g,~<-' ___. ,l.JG,K· 

If /'i SatisfieS the COnditiOnS Of the lemma, then both v~,K and v;~;: are 
irreducible modules. Therefore the above maps are injective. The asser­
tion of the lemma then follows fromthe obvious fact that the characters 
of the two sides of (2.5) are equal to each other. Q.E.D. 
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For special values of !i, when !i/ lie E Q, the modules v;,~< and v;,(~j 
may become reducible, and so the structure of ;Dcf,~< may become more 
complicated. Theorem 2.9 describes what happens at the critical level 
li = ficrit· In this case the image of the homomorphism (2.6) is equal to 

V~ crit ® v:~.AJt. In other words, we observe the collapse of the degrees of 
Ql JA Vl 

freedom corresponding to 3.A· But these degrees of freedom are restored 
by the second factor in (2.4). 

2.11. Proof of part (2) 

We shall first prove part (2) of Theorem 2.9. Recall the chiral al­
gebroid A~~~;~ of [FG1], Section 4, whose chiral enveloping algebra is 

;D~~orit' by Lemma 9. 7 of lac. cit. (note that the assertion of Theo­
rem 2.9 for A= 0 follows in fact from this isomorphism and Lemma 7.4 
of [FG1]). 

A version of Kashiwara's theorem proved in Section 7 of lac. cit. 
implies the following: 

Proposition 2.12. Let M be a chiral A~~~;~-module, whose support 

over Spec(39 ) is contained in Spec(3~nr,..\). Let Fi(M), i = 1, 2, ... be 
the canonical increasing filtration on M by the powers of 1..\. Then 

(a) Ri(L..\) 1(M) = 0 fori> 0 and R0 (L..\) 1(M) ~ F 0 (M). 

(b) The canonical maps 

give rise to isomorphisms 

We apply this proposition to ;D~.·c~it, which is a chiral module over 

;D~·2rit' and hence over A~:~;~, and the assertion of point (2) of Theo­
rem 2.9 follows. 

2.13. Proof of part (1) 

To prove part (1) of Theorem 2.9, let us first show that the map 
(2.3) is injective. Indeed, let K denote its kernel; this is a bimodule over 
lJcrit, supported at Spec(3~nr,..\) and G[[t]]-integrable with respect to both 
actions. Hence, if K =f. 0, there exists a non-zero map of v;,crit ---> K of 
lJcrit-modules, with respect to the left action. 
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However, we claim that the map 

is injective, and in fact an isomorphism. This would lead to a contra­
diction, implying that K = 0. 

To show that (2.7) is an isomorphism, consider the composition 
(2.8) 

v;~>-Jt --+ Hom9crit (v;,crit' v;,crit 129, v;~>-Jt) --+ Hom9crit (v;,crit' 1J~,'c~it). 
3 ~eg,A 

We claim that the first arrow in (2.8) is an isomorphism. Indeed, 
. 'l>rr(>.) . fi t reg,>. h since "'g,crit IS a over 39 , we ave 

and by the main result of [FG6], the natural map 

is an isomorphism. 

Now we claim that the composition in (2.8) is an isomorphism. The 
latter is equivalent to point (a) of the following assertion, established in 
[AG]: 

Lemma 2.14. 

(a) 

H ~ ("'.>. "'ch ) ~ H (VA "'ch ) ~ 'l>rr(>.) om9crit "'g,crit' "-'G,crit - oma[[t]J '"-'G,crit - "'g,crit' 

(b) Fori> 0, 

Exth[[t]] (V\ 1Jef,crit) = 0. 

2.15. Computation of characters 

We are now ready to finish the proof of Theorem 2.9. Using the 
coordinate on the formal disc, we will view 1Jef crit as acted on by G x 
G x Gm, where the latter acts by loop rotation's. It is easy to see that 
the isotypic components for the above action are finite-dimensional. 

Using point (2) of Theorem 2.9 and the above injectivity result, 
we obtain that the theorem would follow once we show that for each 
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J.Ll,J.L2, d, 

dim ( HomaxGXIGm (VIll 18> V~'2 18> cd' ~Cf.crit)) = 

L dim (HomaxGxiGm ( VJll Q9 Vll2 Q9 cd' 
>. 

Since :N;egfunr ~ 01 (3~eg,>.), and since each 3~eg,>. is isomorphic to a 
polynomial algebra, the multiplicities of the irreducibles in the G x G x 
Gm-modules 

(u>. .. rr(>.) ) S ("'r>. ) >. ,-(>.) "~ g crit Q9 "'g crit Q9 ym3reg,>- J~reg/ unr and V g crit Q9 V g crit 
' 3~eg,A ' 3 ~eg,.>.. · g ' ' 

are the same. 

Hence, it suffices to show that for each J.LI. J.L2 , d, 

dim (HomaxGXIGm (VIll Q9 V~'2 Q9 cd' ~Cf.crit)) = 

L dim ( HomaxGxiGm ( Vlll Q9 V~'2 Q9 cd' v;,crit Q9 v;~>-Jt)) . 
>. 

However, the one-parameter families of G x G x Gm-modules given 

by v;,tt,.+ttcrit @ v;~~~li+ttcrit and ~(f,IP where Kr., = fiKo for SOme non­
zero invariant inner product Ko, are fi-fiat. Hence, it is sufficient to check 
the equality 

dim (HomaxGxiGm (V~' 1 Q9 V~'2 Q9 Cd, ~~r.)) = 

= L dim (HomaxGxiGm (vJll Q9 V~'2 Q9 cd, v;,tt,.+ttcrit Q9 v;~~~li+ttcrit)) 
>. 

for a generic ti. The latter equality indeed holds, since for fi irrational 
we have an isomorphism of 9crit-bimodules: 

~ch ~ ffi v>- @ v,-(>.) 
G,li '\J7 g,l'tfi+~crit g,-Kti.+Kcrit 

>. 

by Lemma 2.5. 

§3. The category of spherical modules 

In this section we use the results on the CADO obtained in the 
previous section to prove the Main Theorem stated in the Introduction. 
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3.1. Semi-infinite cohomology functor 
Let b be a Borel subalgebra of g and n its nilpotent radical. Choose 

a non-degenerate character 1/J : n -+ C. Define the character 

(3.1) Xo : n((t)) -+ C 

by the formula 

( n) {1/J(x), ifn=-1, 
Xo x0t = · 

0, otherwise. 

We have the functors of semi-infinite cohomology (the quantum Drinfeld­
Sokolov reduction) from the category ofgcrit-modules to the category of 
graded vector spaces, 

(3.2) M f-+ H~+i(n, n[[t]], M 0 xo), 

introduced in [FF, FKW] (see also [FB], Ch. 15, and [FG2], Sect. 18; 
we follow the notation of the latter). 

More generally, for a complex Jv(• of gcrit-modules (or of n((t))­
modules), the corresponding semi-infinite Chevalley complex 

c~ (n((t)), M• 0 xo) 

gives rise to a well-defined triangulated functor 

n+(gcrit -mod)-+ D(Vect). 

This is an analogue of the Whittaker functor in representation theory of 
reductive groups over local fields. 

Since 3 9 maps to the center of the category gcrit -mod, the above 
functor naturally lifts to a functor 

n+(gcrit -mod) -+ D(39 -mod). 

By Theorem 2.3, the composed functor 

D+(gcrit -modG[[t]])-+ D+(gcrit -mod)-+ D(39 -mod), 

factors through a functor 

\II: D+(gcrit -modG[[t]])-+ D (QCoh(Spec(3~nr))). 

The main result of this paper is the following: 

Theorem 3.2. The functor \II is exact (with respect to the natural 
t-structures) and defines an equivalence of abelian categories 

(3.3) gcrit -modG[[t]] ~ QCoh(Spec(3~nr) ). 
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3.3. Strategy of the proof 
We will derive Theorem 3.2 from the following two statements. 

Proposition 3.4. There exists an isomorphism of algebras 

(3.4) R. Hom9crit -modG[[t]] cv;,crit' v;,crit) 
"' R• Hom (2reg,.>. 2reg,.>.) - QCoh(Spec(3~n•)) og 'og • 

Let gcrit -modreg,.>. be the full subcategory of gcrit -mod, consisting 
of modules, whose support over 3 9 is contained in Spec(J~eg,.>.). Let 
~ dG[[t]] d h . t . 9crit -mo reg,.>. enote t e m ersect10n 

~ d ~ dG[[t]] 9crit -mo reg,.>. ngcrit -mo . 

Proposition 3.5. The functors W and £., t-+ v;,crit ® £., define 
3~eg,). 

mutually quasi-inverse equivalences 

~ dG[[t]] ._ reg,.>. d 
9crit -mo reg,.>. -t Jg -mo . 

For .A= 0 this was proved in [FGl] (see also Conjecture 10.3.12 of 
[F2]). . 

We remark that, conversely, both of these propositions follow from 
Theorem 3.2 and the isomorphism 

(3.5) W(V.>. . ) ,...., 2reg,.>. g,cnt - og 

established in [FG6]. 
Note that Spec(J~eg,.>.) ---+ Spec(3~nr) is a regular embedding. There­

fore we have 

R• Hom (2reg,.>. 2reg,.>.) ,...., A• ("'r.>. ) QCoh(Spec(3un•)) og 'og - reg,.>. J~reg/ unr • 
g 3g 

Combining this with Proposition 3.4, we obtain: 

Corollary 3.6. 

For .A = 0 the isomorphism (3.6) was established in [FT] by other 
methods. The above proof is independent of [FT] and therefore provides 
an alternative argument. 

Let x be a ((>point of Op(;nr, that is, a .A-regular oper in Opdg,.>. for 

some .A E A+. We denote by gcrit -modx the category of gcrit-modules 



182 E. Frenkel and D. Gaitsgory 

on which the center 39 acts according to the character associated to 
X· Let 9crit -mod~[[t]] be the corresponding G[[t]]-equivariant category. 

This category contains the quotient v;,crit(X) of the Weyl module v;,crit 
by the central character X· Theorem 3.2 then has the following corollary 
(see Conjecture 10.3.11 of [F2]): 

Corollary 3. 7. For any X E Opd'g''\ A E A+, the category 9crit 

-mod~[[t]] is equivalent to the category of vector spaces: its unique, up 
to isomorphism, irreducible object is v;,crit(X) and any other object is 
isomorphic to a direct sum of copies of v;,crit(X)· This equivalence is 
given by the functor \11. 

This provides a non-trivial test of our conjecture, described in the 
Introduction (see formula (1.7)), that the categories 9crit-mod~ and 

9crit -mod~ are equivalent whenever the local systems underlying X and 
x' are isomorphic to each other. 

3.8. Computation of \II 

The first step is to compute the functor \II on the objects i)~~~it" 
Since the functor \II commutes with direct limits, from Theorem 2.9 and 
(3.5) we obtain that 'B2; := \11(1)~~~it) is acyclic off cohomological degree 

0 (here we view i)~~~it as an obj~ct of 9crit -modG[(t]] via the left action 
[). , 

Proposition 3.9. The functor \II defines an isomorphism 

H ~ ("'r.>. ""ch,.>. ) H ( reg,.>. 'B.>. ) Omgcrit·-mod VI g,crit' -4/G,crit --+ om3-mod Jg ' G 

(here we consider the left action [ of9crit on 1)~~~it). Furthermore, the 
higher Ri Hom's, 

vanish. 

Proof. From Lemma 2.14, we know that 

Ri H ("'r.>. ""ch,.>. ) _ O OmlJcrit -modG[[t]] VI g,critl -4/G,crit -

fori> 0 and 

H ~ (V.>. i)ch,.>. ) "" y'"(.>.) om9crit -mod g,crit' G,crit - g,crit· 
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By Theorem 2.9(2) and formula (3.5), 'B2; has a filtration with the 
associated graded quotients given by 

n('B>.) ,....., yr(>.) S n (N>. ) gr G - g crit 0 ym,reg,>. reg/ unr · 
' · 3;eg,A og · 

Moreover, it follows from the definition of the filtration on i'{f crit that 
this filtration is the canonical one, given by the powers of annihilation 
by I\ This implies that Ri(~>.)'('B&) = 0 fori> 0 and that the natural 
map 

is an isomorphism. 

3.10. Proof of Proposition 3.4 

Consider the relative Chevalley complex 

Q.E.D. 

taken with respect to the right action of 9crit on i'~~~it> as a complex 

of objects of 9crit -modG[[tlJ. By Lemma 2.14, it is q~asi-isomorphic to 
v;,crit itself. We need to show that the functor \II induces isomorphisms 

Ri Hom9crit -modG[[t]] (v;,crit> c•(g[[t]]; g, i)~~~it 0 v>-)) -+ 

-+ Ri Homv(QCoh(Spec(3~nr))) (3~eg,>-, \II ( c•(g[[t]]; g, i'~.~~it 0 v>-))). 

Taking into account Proposition 3.9, it remains to show that the 
natural map 

is an isomorphism, i.e., that the corresponding spectral sequences con­
verges. 

The latter is established as follows: we endow the hi-complex in 
the LHS of (3.7) with an additional Z-grading, as in [FG6], Section 4 
(see also [FG2], Section 18.11). We obtain that in each graded degree, 
the corresponding hi-complex is concentrated in a shift of a positive 
quadrant, hence the convergence. 
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3.11. Proof of Proposition 3.5 
We are now ready to derive Proposition 3.5. The fact that functor 

2reg,>. -mod -+ ~g · ~modG[[t]] 
og cnt reg,)..' 

given by 
£., ~ v; crit 0 .c, 

' reg,A 
3g 

is an equivalence, follows from Proposition 3.4 by repeating verbatim 
the argument in [FG 1], Section 8. 

It remains to show that w(v; crit 0 .C) is acyclic away from the 
' 3~eg,.\ 

cohomological degree 0, and that the 0-th cohomology is isomorphic to 
.C. 

Since the functors appearing above commute with direct limits, we 
can assume that .C is finitely presented. Since J~eg,>. is isomorphic to a 
polynomial algebra, we can further assume that .C admits a finite reso­
lution by free J~eg,>. -modules. This reduces the assertion to the formula 
(3.5). 

3.12. Exactness 
We are now ready to show that the functor \II is exact, i.e., that for 

ME 9crit ~modG[[tJJ, the object \II(M) is acyclic away from the cohomo­
logical degree 0. 

Indeed, since \II commutes with direct limits, we can assume that 
M is supported at the k-th infinitesimal neighborhood of Spec(J~eg,>.) 
inside Spec(3~nr,>.). By (finite) devissage, that is, by representing M as 
a k-iterated successive extension of modules supported at Spec(J~eg,>.), 
we may further assume that M belongs to 9crit -mod~~~~. In the latter 
case, the assertion follows from Proposition 3.5. 

3.13. Completion of the proof of Theorem 3.2 
Let us now show that the functor \II induces isomorphisms 

i ( ).. ) R HomOcrit -modG[[t]) V g,crit' M 

-+ Ri Homv(QCoh(Spec(3~nr))) (J~eg,A, \II(M)) 
(3.8) 

for any i and M E 9crit -modG[[t]]. 

Both sides commute with direct limits in M, so we can again as­
sume that M is supported at the k-th infinitesimal neighborhood of 
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Spec(3~eg,>.) inside Spec(3~nr,>-), and further that it is on object of 9crit 
G[[t]] . 

-modreg,>.' I.e., 

for some 3~eg,>. -module £.,, Using commutation with direct limits again, 
we can assume that £., is finitely presented, and hence admits a finite 
resolution by free 3~eg,>. -modules. In the latter case, the isomorphism of 
(3.8) follows from Proposition 3.4. 

By the same devissage procedure we conclude that the functor w 
induces isomorphisms 

Ri Homilcrit -modGII•II (M~, M2) ____. Ri Homv(QCoh(Spec(3~nr))) (w(Mt), W"(M2)) 

for any i and Mt, M2 E 9crit -modG[[tlJ. 

Finally, it remains to see that w is essentially surjective. Again, 
by commutation with direct limits, it is sufficient to see that any £., E 

QCoh(Spec(3~nr)) supported at the k-th infinitesimal neighborhood of 
Spec(3~eg,>.) lies in the image of w. 

Since w induces an isomorphism on the level of Ext1, by induction, 
we can assume that k = 0, i.e., £., E 3~eg,>. -mod. In the latter case, the 
assertion follows from Proposition 3.5. 
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