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The Bender-Wu analysis and the Voros theory. II 

Takashi Aoki, Takahiro Kawai and Yoshitsugu Takei 

Abstract. 

In our earlier paper ([AKT1]), by interpreting the formal transfor
mation to the Airy equation near a simple turning point as the symbol 
of a microdifferential operator, we derived the Voros connection for
mula or, equivalently, the discontinuity function of a Borel transformed 
WKB solution at its movable singularities. In this paper we extend 
this approach to the two turning points problem; by constructing the 
formal transformation which brings a Schri:idinger equation with two 
paired simple turning points that merge (i.e., a merging-turning-points 
equation or an MTP equation for short) to the Weber equation and by 
interpreting it as the symbol of a rnicrodifferential operator, we reduce 
the analysis of an MTP equation to that of the Weber equation. Then, 
combining this transformation theory with the so,.called "Sato's con
jecture" for the Weber equation, we obtain the discontinuity function 
of a Borel transformed WKB solution of an MTP equation at its fixed 
singularities. 

§0. Introduction 

In our earlier paper [AKTl] we discussed how to understand the pio
neering work of Bender and Wu ([BW]) in the framework of exact WKB 
analysis ([V], [Pl]), i.e., WKB analysis based upon the Borel resumma
tion. This is what Silverstone ([S]) also aimed at; the paper [S] clearly 
explains how the Borel resummation method clarifies several ambiguous 
points in traditional WKB analysis. An important point of [AKTl] is 
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that the formal transformation used in [S] can be interpreted as the sym
bol of a microdifferential operator acting on the Borel transformed WKB 
solutions ([AKT1, Section 2]). In a neighborhood of a simple turning 
point, this interpretation enabled us to derive the Voros connection for
mula from the connection formula for Gauss' hypergeometric functions. 
But, when two turning points are relevant, we encounter the following 
troubles in putting the idea into practice. 

Problem 1. To perform the actual computation we use an integral 
operator that represents the microdifferential operator in question. In the 
case of two turning points problem we are to analyze the analytic struc
ture of a Borel transformed WKB solution at two singular points whose 
relative location is fixed (the so-called "fixed singularities"), and we need 
to guarantee the existence of a sufficiently large domain of definition of 
the integral operator for this purpose. In [AKT1, Section 2], we studied 
only "movable singularities" which eventually merge, and troubles of this 
sort did not arise. 

Problem 2. In the situation where only one simple turning point is 
relevant, the Borel transformed WKB solution of the canonical equation 
(the Airy equation) can be explicitly written down in terms of hypergeo
metric functions. When two turning points are relevant such a concrete 
expression cannot be expected. Hence some other way of describing ana
lytic properties of the Borel transformed WKB solutions of the canonical 
equation (i.e., the Weber equation this time) should be found. 

Problem 3. In the two turning points problem, the canonical equa
tion contains an infinite series E(ry) = Lk>oEkTJ-k as the parameter 
E contained in the Weber equation. Hence we have to find the correct 
analytic meaning of WKB solutions of an equation whose coefficients 
contain such infinite series. In this paper we use the terminology "oo
Weber equation" to designate the Weber equation with an infinite series 
as its parameter, if such a distinction is necessary. 

Our answers to these problems are as follows. 
To cope with Problem 1, we consider a Schrodinger operator that 

depends on a parameter t (tied up with the energy in most applications) 
and that has two paired simple turning points which merge to form a 
double turning point at t = 0. Such an operator is called a merging
paired-simple-turning-points operator, or, for short, a merging-turning
points (MTP) operator. To be more concrete, an MTP operator is a 
Schrodinger operator of the form 

(0.1) d~2 - ry2Q(x, t) (TJ: a large parameter) 
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which depends on a parameter t, where the potential Q(x, t) satisfies the 
following conditions: 

(0.2) Q(x, t) is holomorphic near the origin (x, t) = (0, 0), 

(0.3) Q(x, 0) = cx2 + O(x3 ) (c: a non-zero constant), 

(0.4) for each t (# 0), the equation Q(x, t) = 0 in x has two distinct 
simple roots which merge together at t = 0, whereas other 
roots stay uniformly away from 0 for sufficiently small t. 

(The definition shall be made more precise concerning the merging speed 
of two simple turning points in Section 2. Cf. Definition 2.1 in Section 2.) 
Then we can construct a transformation that brings the following MTP 
equation 

(0.5) ( d2 2 - )~ 
dx2 - TJ Q(x, t) 'l/J = o 

uniformly to the following t-dependent oo-Weber equation 

(0.6) 

The precise meaning of the "uniform transformation" will be given in 
terms of the transformation of the Borel transformed WKB solution 
(Section 2, Remark 2.4). Intuitively speaking, we define the uniformity 
of transformation through the uniformity with respect to t of the domain 
of definition of the integral operator determined by the transformation. 
Since the distance of "fixed singularities" of (0.6) tends to 0 as t tends 
to 0 (Section 4, Remark 4.1), the uniformity guarantees that they are 
contained in the domain of definition of the integral operator for suffi
ciently small t. Thus Problem 1 disappears for an MTP operator with t 
sufficiently small. Before establishing the transformation theorem (The
orem 2.2 and Theorem 2.4) for t # 0, we first prove the result for t = 0 
in Section 1. The result plays an important auxiliary role in our later 
discussions in Section 2, and it is also of its own interest as it gives the 
transformation theory in the situation where a double turning point is 
relevant. (Cf. [P1], [DDP2], [P2], [T].) The required transformation 
theory for an MTP operator with t # 0 (Theorem 2.2 and Theorem 2.4) 
is constructed through a perturbation of the transformation found for 
t = 0. In Sections 1 and 2 we concentrate our attention to the formal 
structure of the transformation, and the estimation of the growth order 
of the obtained series is separately discussed in Appendices A and B. 
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In solving Problem 2 we make use of "Sato's conjecture" ([KT1]), 
whose clear-cut proof has recently been given by Shen and Silverstone 
([SS]). (See also [V], which gives a transcendental prooffor the parabola 
potential (versus the inverted-parabola potential used in Sections 2 and 
3).) An important consequence of Sato's conjecture is that the discon
tinuity function (or, more specifically, the alien derivative) of the Borel 
transformed WKB solution of the Weber equation is an E-independent 
constant multiple of the Borel transformed WKB solution evaluated at a 
fixed singularity. (Theorem 3.1; see also [DDP1] and [CNP].) Note that 
the study of one simple turning point problem given in [AKT1] makes 
use of the explicit form of the Borel transformed WKB solution of the 
Airy equation only in analyzing the structure of its discontinuity at a 
movable singular point. Hence this seemingly somewhat weaker result 
suffices for the study of the connection problem. 

To answer Problem 3 we make full use of the estimates of the coeffi
cients of the series E(t, 17) (Appendix B); it is a symbol of a microdifferen
tial operator. This observation enables us to employ the same technique 
as was used in [AKT1] to give an analytic meaning to the formal co
ordinate transformation in the independent variable of the Schrodinger 
equation, i.e., x-variable. This time we regard E, together with x, as 
an auxiliary variable in a resurgent function in ry-variable, that is, we 
interpret 

(0.7) ;f;(x, 17) = 1/J(x, ry, E(ry)) 

as 

or 

Because of the growth order condition that Ek 's satisfy (Appendix B, 
(B.107)), the infinite series 

(0.10) 
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is a well-defined microdifferential operator, where(} stands for the symbol 
of the operator ojoEo and the ideograph : : designates the normal 
order product of the symbol. (Theorem 4.1; see [A] for the definition 
of a normal order product; it consistently assigns a microdifferential 
operator to each symbol.) 

Combining all these answers to Problems 1, 2 and 3, we describe in 
Section 5 how to obtain concrete results from the transformation theory 
developed in Section 2. 

Appendices A and B give detailed proofs of required results on the 
estimation of coefficients of several series formally constructed in Sec
tions 1 and 2. In particular, we would like to call the attention of the 
reader to Proposition B.1; this result gives another constructive proof 
of the existence of (q0 (q), E0 ) in Theorem 3.1 of [AKT1]. The proof 
given in [AKT1] was rather geometric and transcendental, while the 
construction of the corresponding object (x0 (x, t), Eo(t)) in this paper is 
more algebro-analytic. It is noteworthy that the construction scheme for 
(x~) (x), Ekj)) is uniform with respect to indices j and k and that still 
their growth orders substantially differ depending on whether j tends to 
oo or k tends to oo. 

In ending this introduction, we express our heartiest thanks to Pro
fessor H.J. Silverstone and Professor T. Koike for the stimulating discus
sions with them. The extended stay of Professor Silverstone at RIMS 
has given us fresh impetus to attack the two turning points problem 
again, which we had set aside for quite a while. 

§1. Reduction of an MTP equation to the canonical form at 
t=O 

The purpose of this section is to find the canonical form of an MTP 
equation at t = 0. As we emphasized in Introduction, the results in this 
section (Theorems 1.1, 1.4 and 1.5 below) may be regarded as reduction 
theorems for a general operator with a double turning point. 

Theorem 1.1. Let Q(x, t) be the potential of an MTP operator (0.1) 
in Introduction. Suppose that there exists an open disk U centered at the 
origin x = 0 for which the following hold: 

(1.1) 

(1.2) 

Q(x, 0) is holomorphic on U, 

Q(x, 0) -:f 0 on U- {0}. 

Then we can find an open neighborhood w of the ongm, a sequence 
{Ek0)h~o of constants and a sequence {xk0)(x)}k~o of holomorphic 
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functions on w so that the series E<0>(ry) = Ek>oEk0)'TJ-k and 

x<0>(x,ry) = Ek>oxk0>(x)ry-k, where"' is the large para~eter contained 
in the MTP operator (0.1), formally satisfy the following relations (1.3) 
,....., (1.7) on w: 
(1.3) 

( 
d {0) (- ) ) 2 {0) (- )2 -2 

Q(x,o) == x dxx,ry (E<o>(ry)- x :'"' ) - "'2 {x<o>(x,ry);x}, 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

x~0)(0) = 0, 

d {0) 

~~ (0) =F 0, 

E (O) E(O) - 0 ( 0 1 2 ) 
0 ' 2p+l - p = ' ' ' ... 

x~~+l = 0 (p = 0, 1, 2, ... ). 

Here, and in what follows, { x; x} designates the Schwarzian derivative, 
i.e., 

(1.8) 

Proof. 
find 

(1.9) 

(1.10) 

(1.11.n) 

( d3x;dx) _ ~ (d2x;dx) 2 
dx3 dx 2 dx2 dx 

Comparing the coefficients of like powers of"' in (1.3), we 

Q( - O) = dxo (E(o) _ ~ {0)2) ( {0)) 2 
x, dx o 4 xo ' 

0 = 2 dxo dxl (E(o) - ~ {0)2) ( 
{0) {0)) 

dx dx 0 4x0 

+ dx0 (E(o) _ ~ (o) {O)) ( {0)) 2 
dx 1 2xo xl ' 

(n 2: 2), 
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where 

(1.12) 

1 
+-

2 
k+l+i-L=n-2 

25 

First we note that the assumption (0.3) together with the requirements 
(1.4), (1.5) and (1.9) forces 

(1.13) 

Hence (1.9) entails 

(1.14) ( 
- ) 1/2 

x~o) (x) = 2 fox J -Q(x)dx , 

and conditions (0.3) and (1.2) guarantee that x~o) (x) is holomorphic on 
U and that it satisfies (1.4) and (1.5). 

Next we evaluate the right-hand side of (1.10) at x = 0 to find 

(1.15) 

should hold if xi0 ) (x) is holomorphic near x = 0. On the other hand, if 

(1.15) holds, then by dividing (1.10) by x~0)(dx~0) jdx? we obtain 

(O) dxio) + (O) _ 0 
Xo (o) xl - . 

dx0 

(1.16) 
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In view of (1.4) and (1.5) we may use 

(1.17) x = x<0 l(x) 
def 0 

as a new coordinate near x = 0, and the inverse function of x6°) (x) is 
denoted by g(x), i.e., 

(1.18) 

Regarding (1.16) as an equation on x-space, we find that it is an equation 
with regular singularity at x = 0 with characteristic index -1. Hence a 
holomorphic solution x~o) of (1.16) should vanish identically near x = 0. 
To fix the notation, let us choose a small disk w0 in x-space that is bi
holomorphically mapped by g(x) to a neighborhood w of the origin of 
x-space which is contained in u. 

Now, as the structure of the principal part of (1.11.n) is the same 
as that of (1.10), the argument for x~o) is basically the same as above; 
the only difference is that, instead of (1.15), we obtain 

(1.19) E(o) = - R(o) dxo ( (0)) -2 
n n dx 

and that, instead of (1.16), we find 

d (O) E(o) + R-(0) 
~ (0) _ 2 n n 

X d +xn - (o) -x Xo (x) 
(1.20) 

where .R~o) = (dx6°) jdx)- 2 R~o). The above choice of E~o) guarantees 

that (E~o) + R~0))fx6°) (x) is holomorphic on w, and hence a holomorphic 

solution x~0)(x) of (1.20) exists on w0 . Furthermore, (1.12) entails that 
R (O) • ft h f h" h t . E(O) (O) •t d . 

2v+l IS a sumo erms eac o w 1c con ams 2q+V x2q+l or 1 s enva-

tive as its factor with q < p. Since we have confirmed (Ef0), x~0)) = 0, we 

find by the induction on p that R~~+l vanishes identically. Hence (1.19) 

implies that E~~~1 also vanishes. Thus we have constructed x<0 ) (x, ry) 
and E(0l(ry) which satisfy (1.3) rv (1.7). Q.E.D. 

Remark 1.1. If the potential Q contains lower order terms in ry, i.e., 
if Q has the form 

(1.21) Q = I: ,.,-kQk(x, t), 
k?:O 
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the reasoning proceeds equally as well on the condition that Q0 (x, t) 
satisfies (1.1) and (1.2) and that -Qk(x, t)'s have the common domain of 
definition which contains the origin; it suffices to add -Qn+2 (x, 0) to 
R~O) in (1.12). 

As is well-known ([AKT1], [KT1], [KT2]), Theorem 1.1 entails the 
following structure theorem for a WKB solution of an MTP equation 
restricted tot= 0. 

Theorem 1.2. In the situation considered in Theorem 1.1, the in
finite series x(0l(x,1J) and E(0 )(1J) satisfy 

(1.22) S(x, 17) = ( d~;l) S(x(0l(x, 17 ), E(0l(17), 17) 

_ ~ (d2x(0l(x, 11)) I (dx(0l(x,1J)) 
2 dx2 dx ' 

where S and S are formal series in 17-1 beginning with respectively 
§_1 (x)1J and B-1 (x )1J which solve 

(1.23) -2 dB 2 -s + dx = 1J Q(x,O) 

and 

(1.24) 

and for which 

(1.25) arg B-1 (x) = arg (d~r B-1 (x6°) (x))) 

d (0) 

holds (and hence S-1(x) and ~~ B-1(x6°)(x)) coincide). 

Proof First we note that the relation (1.3) together with the def
inition of S entails the following relation (1.26). Here, and in what 
follows, we often omit E(0 )(1J) in the symbol S(x,E(0 )(1J),t]). 

(1.26) 

( d~;) S(x(O)(x,1J),1J)- ~ ( ~~~0)) I ( d~~O)) r 
d ( dx(o) 1 ( d2x(O)) I ( dx(0) ) ) + dx dx S(x(o) (x, 1J), 1J) - 2 · dx2 dx 
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Comparing (1.26) with (1.23), we find that 

(1.27) 

and S(x, ry) satisfy the same equation. Then, in view of the assumption 
(1.25), we conclude 

(1.28) 

Q.E.D. 

To proceed to discuss the structure of wave functions, let us now 
recall the following definition of Bodd, the odd part of a solution S of 
the Riccati equation. 

Definition 1.1 ([AKT3, Definition 2.1]). Consider the following 
Riccati equation with ry-dependent potential (like E(o) ( TJ) - x 2 /4): 

(1.29) 2 dB 2 (""""' k) S(x, TJ) + dx (x, ry) = TJ L Qk(x)ry- . 
k2:0 

Let s± respectively denote the solution of (1.29) that begins with 
±ryJQo(x). Then the odd part Bodd of Sis, by definition, given by 

(1.30) - 1( + -
Bodd - 2 S - S ) . 

Using this definition of the odd part of S, we obtain the following 
result from (1.22). 
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Corollary 1.3. The odd part Sodd is reduced to the odd part of S 
of the Weber equation with Eb0 ) = 0, that is, 

(1.31) - - - ( dx(o) ) (o) -
Sodd(x, TJ)- dx Sodd(x (x, TJ), TJ) 

holds with the appropriate choice of the branch of s_l(x). 

Using these transformation results for a WKB solution of the Riccati 
equation associated with the Schrodinger equation, we can relate a WKB 
solution of the Weber equation itself with that of the MTP equation at 
t = 0. To discuss this point in detail, we first note the following relation: 

(1.32) 

Hence we obtain 

(1.33) 

i.e., 

d 
-Sodd d 

s+ + s- = - dx = -- log Sodd. 
Sodd dx 

(1.34) 

This means that, for a generic point a, 

(1.35) 1 lx 7/J± = ~ exp(± Sodddx) 
V Sodd a 

satisfy the equation 

(1.36) 

though the definition of the odd part Sodd is not a naive one based on 
the oddness of the degree in ry. 

Now, using this normalization of a WKB solution, we find the fol
lowing. 

Theorem 1.4. Let us consider the situation assumed in Theo
rem 1.1, and let 7/J be a WKB solution of the oo- Weber equation 

(1.37) 
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defined with the infinite series E(O) ( 7]) constructed there; in particular, 
we have 

(1.38) 

Then with the infinite series x(o) ( x, 7]) constructed there we find 

( - ) = (dx(o)(x,ry))-1/2 ·'·( (o)(- ) ) (1.39) cp x,, dx '~' x x,, , , 

satisfies the following MTP equation at t = 0: 

(1.40) ( d~2 -ry2Q(x, o)) cp(x, ry) = o. 

Proof. It follows from (1.3) and (1.37) that 

(1.41) 

~<p = (~ (dx(o))-5/2 (d2x(o))2- ~ (dx(0))-3/2 d3x(o)) 
dx2 4 dx dx2 2 dx dx3 '1/J 

( 
dx(o) ) 3/2 d2'1j; I 

+ dX dx2 x=x(O) (x,1j) 

- - 'Tl E() __ - ·'· 
- ( dx(o)) 2 2 ( o x(0)2) ( dx(o)) -1/2 

dx ., 4 dx '~' 

(~ (dx(o))-2 (d2x(0))2- ~ (dx(o))-1 d3x(o)) (dx(0))-1/2 
+ 4 dx dx2 2 dx dx3 dx '1/J 

= ry2Q(x, o)cp. 

Thus we find (1.40). Q.E.D. 

Concerning the structure of the function cp, by considering the loga
rithmic derivative of both sides of ( 1.39) we obtain the following relation 
(1.42) by (1.22): 

(1.42) dlogcp _ -~~ (ax(o)) dx(o) (o) _ 
dx - 2 dx log ax + dx S(x (x, ry), "7) 

= S(x, ry). 

This means that the wave function cp is also represented in the form 
of ( 1.35). Thus the infinite series x(o) ( x, 7]) defines a transformation of 
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WKB solutions via (1.39) in the case of a double turning point problem, 
just like in the case of a simple turning point ([S], [AKTl]). 

Furthermore, the growth order condition (A.3) on {Ek0)h~o implies 
that E{O) ( 'fJ) is a symbol of a microdifferential operator; this means that 
the Borel transform of the oo-Weber equation 

(1.43) 

is a well-defined microdifferential equation defined on 

(1.44) {(x, y; ~, ry) E T*C2; 'fJ =f. 0}. 

In what follows we let M denote the microdifferential operator in (1.44), 
that is, 

(1.45) M = a2 - (E(o)(ajay)- x2) a2 . 
ax2 4 ay2 

On the other hand, the growth order condition (A.4) on {xk0)(x)}k~o 
guarantees that the relation (1.39) turns out to be a microdifferential 
relation through the Borel transformation. The proof of this fact is 
basically the same as that given in [AKTl, Section 2], where a simple 
turning point problem is discussed. In this paper, by following the pre
sentation of [AY], we formulate our result as the microlocal equivalence 
between the Borel transformed MTP equation at t = 0 and the Borel 
transformed oo-Weber equation with E~o) = 0. (Theorem 1.5 below.) 
To state Theorem 1.5, we first introduce 

(1.46) 

In particular, we have 

(1.47) ro = x. 

We note that the Borel transformed MTP operator at t = 0, i.e., 

(1.48) 

can be rewritten in (x, y)-variable as follows: 

(1.49) (g')-2 L. , h L + ( a2 x2 a2 g" a ) 
w ere = ax2 4 ay2 - 7 ax . 
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Here, and in what follows, we let g' and g" denote respectively dg / dx 
and d2gfdx2. As the Taylor expansion of'¢(xC0 )(x,ry),TJ) is 

(1.50) 
~ (r1(X)TJ-1 +r2(X)TJ-2 + ... )n an·'·( ) 
~ ' a n <p x, TJ , n. x 
n~O 

its Borel transform is given by 

(1.51) : exp(r(x,ry)~): '¢B(x,y), 

where the ideograph: : designates the normal ordered product ([A]), 

(1.52) r(x, TJ) = 2: rk(x)ry-k 
k~1 

and '¢B denotes the Borel transform of'¢. Hence the Borel transform of 
the right-hand side of (1.39) is expressed as 

(1.53) ( 
d ) -1/2 

: g'(x)112 1 + d: exp(r(x, TJ)~) : '¢B· 

Let us now denote the microdifferential operator in (1.53) by X, that is, 

(1.54) X=: g'(x) 112 (1 + ~=)- 112 exp(r(x,ry)~):. 
Since Theorem 1.4 asserts that the Borel transformed MTP operator L 
at t = 0 annihilates X'¢B for a solution '¢B of the Borel transformed co
Weber equation with Ea0) = 0, we may naturally expect the following 
Theorem 1.5 to hold. We now prove that our expectation is correct. 

Theorem 1.5. There exists a microdifferential operator Y on 

(1.55) !1o = {(x,y;~,TJ) E T*C?;x E wo,TJ =f. 0} 

which satisfies 

(1.56) LX=YM, 

and both X and Y are invertible. 

Proof. Let us try to find Yin the form 

(1.57) : c1 (x, TJ) exp(r(x, TJ)~) : 

Note that X has a similar form with C1 replaced by 

(1.58) ( 
d )-1/2 

C = g'(x)1f2 1 + d: 
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By a straightforward symbol calculus we find that (1.56) is satisfied if 
the following three conditions are satisfied: 

( dr) 2 
(1.59) c 1 + dx = cl, 

( dr) dC ( d2r g" ( dr)) (1.60) 2 1 + - - + - - - 1 + - c = 0, 
dx dx dx2 g' dx 

x 2 2 d2 C g" dC ( 1 ) (1.61) C-TJ +---- = -C1 "'Ek0 )TJ-k- -4 (x + r) 2 7]2 . 
4 dx2 g' dx ~ 

k?_2 

As C satisfies (1.60), we should have 

(1.62) ( )
3/2 

cl = g'(x) 112 1 + ~= 
Using these concrete expressions together with (1.9), we can rewrite 
(1.61) as an equation in x-coordinate: 

( d (0)(- )) 2 ( (0)(- )2) 2 
(1.63) Q(x, o) = x dxx, TJ E<0l (TJ) - x :' TJ - TJ; { x; x}. 

Here we have used the relation 

(1.64) 

to find 

(1.65) 

= (dx) -1/2 
c dx 

(g')-2 (d2C- g" dC) = d2_c = -~C{x; x}. 
dx2 g' dx dx2 2 

The relation (1.61) is nothing but (1.3). Thus (1.61) has a solution C1 

of the form (1.62), which proves the existence of required operator Y. 
Since the principal symbol of X and that of Y are both 

(1.66) 

they are different from 0 on !10 . Hence they are invertible as microdif
ferential operators. Q.E.D. 

Remark 1.2. The microlocal result formulated as in Theorem 1.5 is 
a special case of Theorem 2.6 in Section 2; the point is that the trans
formation of an MTP operator to the oo-Weber equation is constructed 
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as a perturbation of the transformation that brings the MTP operator 
at t = 0 to a particular (i.e., E6°) = 0) oo-Weber equation and that 
the perturbation series in t are convergent ones (Proposition B.1 and 
Proposition B.2 in Appendix B). 

§2. Reduction of an MTP equation to the canonical form for 
t#O 

The purpose of this section is to find the canonical form of an MTP 
equation for t -I 0 by making use of the result in the preceding section. 
Before entering the detailed analysis of an MTP equation, we first make 
its definition precise concerning the merging speed of two simple turning 
points in (0.4) so that we may avoid unnecessary complications. 

Definition 2.1. A Schrodinger operator P of the form 

(2.1) d2 2Q(- ) 
dxz - TJ x, t ( TJ : a large parameter) 

is called a merging-paired-simple-turning-points operator, or, for short, a 
merging-turning-points (MTP) operator, if its potential Q(x, t) satisfies 
the following conditions (2.2) rv (2.5). 

(2.2) Q(x, t) is holomorphic near the origin (x, t) = (0, 0), 

(2.3) Q(x, 0) = cx2 + O(x3 ) (c: a non-zero constant), 

(2.4) for each t (# 0), the equation Q(x, t) = 0 in x has two distinct 
simple roots S±(t) which merge together at t = 0, whereas 
other roots of the equation stay uniformly away from 0 for 
sufficiently small t, 

(2.5) there exists a positive constant cr0 for which 

Is~) I> cro 

holds on a neighborhood of the origin t = 0. 

Remark 2.1. Condition (2.4) means that the points x = S±(t) are 
simple turning points of the operator in question, and Condition (2.5) 
guarantees that the situation considered is a generic one under the as
sumption (2.3), as the following Proposition 2.1 shows. 



The Bender~ Wu analysis and the Voros theory. II 35 

Proposition 2.1. Let P be an MTP operator. Then its potential 
Q(x, t) has the following form on a sufficiently small neighborhood of the 
origin (x,t) = (0,0): 

(2.6) Q(x, t) = Qc0l(x) + tQC1l(x) + t2 QC2l(x) + ... 

with 

Proof. Using (2.3), we apply the Weierstrass preparation theorem 
to Q(x, t) to find holomorphic functions h(x, t) and g1(t) (j = 1, 2) for 
which the following hold: 

(2.8) Q(x, t) = h(x, t)(x2 + g1 (t)x + gz(t)), 

(2.9) h(O, 0) -j. 0, 

(2.10) g1(0) = gz(O) = 0. 

Then we find 

(2.11) ( ) --.:.:.:gl:..c.( t..:.._) _±_y!Y...:g::..:l-"-( t-'-) 2_-_4_.:::g~z (::_.:_t) 
S± t = 2 

near t = 0, and hence (2.10) and (2.5) imply 

(2.12) 

with 

(2.13) 

g2 (t) = g~1)t + 'L,g~j)tJ 
j?_2 

Expanding h(x, t) and g1 (t) as 

(2.14) h(x, t) = hc0l(x) + thC 1l(x) + t2 hc2l(x) + ... 

and 

respectively, we find 

(2.16) Q(x, t) = hc0l(x)x2 

+ t(hC 1l(x)x2 + hC0l(x)(gi1lx + g~l))) + O(t2 ). 
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Thus Q has the expansion of the form (2.6) and the coefficient Q{l) (x) 
of t 1 in the expansion has the form 

(2.17) 

Then (2.9) and (2.13) guarantee that Q{l) (0) is different from 0. Q.E.D. 

Remark 2.2. As the holomorphic function g2 (t) vanishes at t = 0, 
the relation (2.13) entails that 

(2.18) 

holds near t = 0. Thus (2.13) guarantees that s+(t) and s_(t) are 
distinct simple turning points near t = 0. 

We now state the core result in this section. 

Theorem 2.2. Let Q(x, t) be the potential of an MTP operator. 
Then we can find an open neighborhood wo of the origin x = 0, holo
morphic functions x~) (x) (j, k 2: 0) on wo and constants Ekj) (j, k 2: 0) 
such that the formal series 

(2.19) 

and 

(2.20) 

x(x, t, 17) = L X~) (x)tj 17-k 
j,k'20 

E(t, 17) = L Ekj)tj17-k 
j,k'20 

satisfy the following relations (2.21) "' (2.26): 
(2.21) 

Q( - t) = (ax(x,t, 17)) 2 (E(t ) _ x(x,t, 17 )2 ) _ 17- 2 { (- t )· _} 
x, ax , 17 4 2 x x, '17 'x ' 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

x6°)(0) = 0, 

d (0) 

~~ (0) i= 0, 

E(O)- 0 
0 - ' 

E~V+l = 0 (j,p = 0, 1, 2, ... ), 

xVj+l (x) = o (j,p = o, 1, 2, · · · ). 
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Proof Using the expansion (2.6), we construct the required 

(x~), Ekj)) by regarding the relation (2.21) as a perturbation of the rela
tion (1.3); we start with our reasoning by regarding (xC0l(x,ry),EC0l(ry)) 
constructed in Theorem 1.1 as the initial term of the series 
(x(x, t, ry), E(t, ry)) = (Lj~o x(jl (x, ry)ti, Lj~o E(i) (ry)tJ). Then the 
comparison of the coefficients of like powers of t in (2.21) yields the 
following relations: 

where 

(2.28) 

R(j)= L 

1 

4 

j,+)2+)3=j 
j, ,)2 ,)3<j 

j, +)2+)3+j4=j 
j, ,j, ,)3 ,j4 <j 

3 -2 
+-7]-

4 

8x(j,) 8x(h) (. ) 
----EJ3 ax ax 

8x(i,) oxCh) (. l (. l 
----xJ3 xJ4 ax ax 

(j ?:': 1), 

Since R(i) depends only on {E(j,) xCh) or its derivatives}· · < · we 
' ]1,)2 )' 

may try to find a solution (E(i), xUl) of (2.27.j) recursively, i.e., using 
{ E(j,), xCh) }j, ,)2<j as given data. As each equation (2.27.j) consists of 
infinitely many terms, finding a solution (E(j), xUl) of (2.27.j) amounts 

to finding out infinitely many quantities { Ekj), x~) h~o- In order to 

construct a holomorphic function x~) (x) on w0 we have to choose a 

constant Ekj) appropriately, just in the same way as was done in the 
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proof of Theorem 1.1. To illustrate the point, we write down the degree 
0 in rJ part of (2.27.1); it reads as follows: 

{0) d (1) d (0) d (1) 
Q(1)(-) =2 dxo ~E(o) _ ~ (0)2~~ 

x dx dx 0 2 xo dx dx (2.29) 

+ ( dx~0)) 2 
E(1) _ ~ (dx~0)) 2 

(o) (1) 
dx o 2 dx xo xo . 

Since Ea0 ) vanishes by (1.6) and since x~o) vanishes linearly at the origin 
by (1.4) and (1.5), generally speaking, we find (2.29) to be with an 

irregular singularity at x = 0. But, if we choose Ea1) so that it satisfies 

(2.30) 

we can divide both sides of (2.29) by x~o) ( dx~o) / dx) 2 to find 

(2.31) (o) dx0 + (1) = _2_ E(1) _ dx0 Q(1)(-) (1) ( ( (0)) -2 ) 
Xo (0) Xo (0) 0 d- X ' 

dx0 x 0 x 

which is with regular singularity at x~o) = 0. We also note that (2. 7) 
implies 

(2.32) 

The equation for (Ei1), x~1))k>o is exactly of the same form as (2.29), 
i.e., 

(2 33) (0)2 dx0 dxk + (O) dx0 (1) = 2 dx0 E(1) + R(1) (0) (1) ( (0)) 2 ( (0)) 2 

. Xo dx dx Xo dx Xk dx k k ' 

where R~1 ) depends only on {Ei~), Ek!)h1 ,k2 <k and {x~~), x~~) and their 

derivatives}k1 ,k2 <k· Thus an appropriate choice of the constant Ek1) en

ables us to divide both sides of (2.33) by x~0)(dx~0) jdx) 2 to find an equa

tion with regular singularity at x~0) = 0 with the characteristic index -1. 

We can then find a holomorphic sblution x~1 ) on w0 • It is now clear that 

we can proceed further in a similar way to find {x~)(x),E~)}j,k~o so 
that x(x, t, ry) and E(t, ry) may satisfy (2.21). The relations (2.22), (2.23) 
and (2.24) are then immediate consequences of Theorem 1.1. Further 
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R~~+l, the coefficient of 'T)-(2p+l) in R(i), is a sum of terms each of which 

contains E~~+l, x~?+l or its derivative as its factor with either 

(i) i < j and q ::; p 

or 

(ii) i = j and q < p. 

Hence by the induction on p (and also on j as a subsidiary step), we find 
they satisfy (2.25) and (2.26). This completes the proof of Theorem 2.2. 

Q.E.D. 

Remark 2.3. In the above proof we arranged our argument so that we 
t t { (i) E(j)} b . th t { (j,) (h)} may cons rue xk , k y assummg a Xk 1 , Xk2 il,h<i;k1 ,k2 ?_o 

and {x~),Ek~)}o:'Ok 1 ,k2 <k have been constructed. But we may arrange 

our argument equally well by constructing { x~), Ekj)} by assuming that 
{ (ill E(i2 )} d { (j,) E(h)} h b Xk 1 , k 2 k 1 ,k2 <k;j1 ,)2?_0 an xk , k O:'Oj 1 ,)2<j ave een con-
structed. Actually our argument in Appendix B is arranged in the 
second way. 

The infinite series (2.19) and (2.20) are convergent with respect to 
t as Proposition B.l and Proposition B.2 in Appendix B show. Hence 
Theorem 2.2 (together with the results in Appendix B) entails the fol
lowing structure theorem (Theorem 2.4 below) for a WKB solution of 
an MTP equation for t i- 0. Note that, for t i- 0, the assumption (2.4) 
enables us to describe explicitly the structure of a wave function for an 
MTP operator, besides a solution of the attached Riccati equation, in 
terms of that for the oo-Weber equation; the key point of the discussion 
is the following lemma. 

Lemma 2.3 (Cf. [AKT2, Proposition 1.6]). For Bodd given in Def
inition 1.1, we find that Bodd consists of terms with a half odd integer 
power of Q(o) multiplied by a holomorphic function. In particular, if a 
point x = a is a simple zero of Q(o) ( x) = 0, the singularity of Bodd is of 
square-root type. 

Proof. Using the induction on l, we can readily confirm that the 
coefficient of r]-l in§+ (resp., s-) is of the form azt"(x)(Q(0))-(31+2)/2 

(resp., a!(x)(Q(0))-(3l+2)12 ) with a holomorphic function azt"(x) (resp., 
a! ( x)). Thus the assertion immediately follows from the definition of 

Bodd· Q.E.D. 

An important implication of this lemma is that the integral 

(2.34) 1x Sodddx 
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is a well-defined series for a simple turning point a if we interpret the 
integral as 

(2.35) ~ hx Sodddx, 

where x denotes the point corresponding to x on the "second" (near a) 
sheet of the Riemann surface of y!QC0 l(x). Thus a normalization of a 
WKB solution of an MTP equation (t =f. 0) can be given as 

(2.36) 

or 

(2.37) ~ exp(± fx sodddx). 
vSodd ls_(t) 

This normalization is most appropriate for our subsequent discussions. 

Theorem 2.4. In the situation considered in Theorem 2.2 the con
structed sequences x(x, t, TJ) and E(t, TJ) enjoy the following properties: 
(i) For a WKB solution S of the Riccati equation 

(2.38) 
-2 as 2 
S + ox = TJ Q(x, t) 

and a WKB solution S of the Riccati equation 

(2.39) 

we find that 

(2.40) - (- ) ox(x,t,TJ) ( (- ) ( )) Sodd X, t, TJ = OX Sodd X X, t, TJ , TJ; E t, TJ 

holds if the branches of §_1 and s_l are chosen so that 

(2.41) S- c- ) (8xo(x, t) ( (- ) ( ))) arg -1x,t =arg ox S_lxox,t;Eot 

may hold. 
(ii) For a WKB solution ;f;+(x, t, TJ) of the MTP equation 

(2.42) ( d2 2- )-dx2 - TJ Q(x, t) '1/J+ = o (t =1- 0) 
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that is normalized as in (2.36), we can find a WKB solution 
'l/J+(x, ry; E(t, ry)) of the oo- Weber equation 

(2.43) ( d2 2 12) dx2 - 'fJ (E(t, ry)- 4x ) 'l/J+(x, ry; E(t, ry)) = 0 

for which the following relation holds: 

(2.44) 
- - ux x, t, 'fJ -

(
!::> (- ))-1/2 

'lj;+(x, t, ry) = &x 'l/J+(x(x, t, ry), ry; E(t, ry)). 

Proof. The first assertion (i) is proved in exactly the same manner 
as in the proof of Theorem 1.2 and Corollary 1.3. 

To prove (ii) let us introduce the following symbols: 

(2.45) 

(2.46) 

and 

(2.4 7) 

xo(x, t) = 2: x~l (x)t1, 
j?_O 

Eo(t) = 2: E~1)t1, 
j?_O 

w(x,t,ry) = 2: x~)(x)t1ry-k. 
j?_O,k?_ 1 

Note that we may assume 

(2.48) xo(s+(t), t) = 2.JEJJ) 

holds; in fact, since x0 (x, t) and E0 (t) are holomorphic by Proposi
tion B.1, the comparison of the coefficients of ry0 in (2.21) shows 

(2.49) Q(x, t) = (~X:) 2 
(E0 (t) - ~x0 (x, t) 2 ). 

Now using these symbols, we find 

(2.50) Sodd(x(x, t, ry), ry; E(t, ry)) ~~ 

= (""" ansodd( (- t) ·E(t ))w(x,t,ry)n) ~ !::> n Xo x, ,ry, ,TJ 1 ux n. 
n?_O 

( &xo &w) 
&x + &x 

""" an Sodd wn &xo 
= ~ 0 n (xo,ry;E(t,ry))-1 !:}-

x n. ux 
n?_O 
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ansodd a ( wn+l ) 
+ L axn (xo, ry; E(t, TJ)) ax (n + 1)! 0 

n2:0 

We then obtain the following relation from (2.50): 

= ~ 1x Sodd(x, ry; E(t, TJ))dxl _ . 
x x=x(x,t,ry) 

Furthermore, the relation (2.48) entails that this can be written as 

(2.52) r Sodd(x, ry; E(t, TJ))dxl . 
J2~ x=x(x,t,ry) 

Thus, by choosing 

(2.53) 1 1x ---;=;=o===;=====;;=;=;===;=;= exp ( S odd (X, TJ; E ( t, TJ) ) dx) 
Jsodd(x,ry;E(t,ry)) 2~ 

as 'l/J+(x, ry; E(t, TJ)), we obtain (2.44) from (2.40), (2.51) and 
(2.52). Q.E.D. 

Corollary 2.5 ([KT1, Proposition A.6]). For a WKB solutionS of 
(2.38) we find 

(2.54) f Sodd(x, t, ry)dx = 2niE(t, ry), 

"f(t) 
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where 1i(t) designates the closed curve in the cut plane shown in Figure 
2.1. 

~ 

\ --~VEJl) 
- ---
Figure 2.1. 

.~ 
J 

_./ 

-2VEJ1) 

Proof. Using the convergence proof of L ·>ox~) (x)ti (Proposi
J_ 

tions B.l and B.2), we find from (2.40) that 

(2.55) f Sodddx = f Sodddx. 

"i(t) xo("i(t),t) 

Then a straightforward computation shows that the right-hand side of 
(2.55) coincides with 27riE(t, ry). Q.E.D. 

The similarity between Theorem 1.4 and Theorem 2.4 (ii) indicates 
that the Borel transformation of the relation (2.44) may provide us with 
a microdifferential relation, and it is really the case. To show this fact 
we introduce a holomorphic function g(x, t), instead of g(x) given by 
(1.18), which satisfies 

(2.56) x = xo(g(x, t), t) 

on a neighborhood of the origin (x, t) = (0, 0). The unique existence of 
such a function g is guaranteed by (2.23). In particular, g(x, 0) = g(x) 
holds. Then, by defining rk = rk(x, t) (k ~ 0) by 

(2.57) rk = I>~)(g(x,t))ti 
j?_O 

this time, we find that the proof of Theorem 1.5 applies to the current 
situation, almost word for word. 
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First, the Borel transformed MTP operator for t -1= 0 is seen to 
assume the form 

(2.58) L = (g1)-2 -- Eo(t)-- ----( rP ( x2 ) a2 g" a ) 
clef ax2 4 ay2 g1 ax 

in (x, y, t)-coordinate; here g1 and g" respectively stand for agjax and 
a2 g j ax2 . Next we define a microdifferential operator X by 

(2.59) 

where 

(2.60) 

• 1 1/2 r . ( a ) -1/2 

. g (x, t) 1 + ax exp(r(x, t, 'TJ)O ., 

r = r(x,t,'T}) = L,rk(x,t)'TJ-k· 
k2:1 

Then (2.44) implies 

(2.61) ;fi+,B(x, t, y) = X'¢+,B(x, y). 

By letting M denote the Borel transformed oo-Weber operator, i.e., 

(2.62) 

and defining another microdifferential operator Y by 

(2.63) . 1 1/2 ar . ( )
3/2 

. g (x, t) 1 + ax exp(r(x, t, 'TJ)~) ., 

we obtain the following Theorem 2.6 that generalizes Theorem 1.5; The
orem 1.5 is a special case of Theorem 2.6 in the sense that it is nothing 
but Theorem 2.6 where tis set to be 0. 

Theorem 2.6. We find 

(2.64) LX=YM 

holds for invertible microdifferential operators X andY. 

Theorem 2.6 shows that the operators L and M are microlocally 
intertwined. This fact indicates that the singularity structure of '¢+,B 

should be inherited to ;fi+,B· A more precise statement (Theorem 5.1) 
will be given in Section 5 after some detailed analysis of singularity 
structure of '¢+,B to be done in Section 4. Here we only note that we can 
find an integral operator to represent the action of the microdifferential 
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operator X upon the multi-valued analytic function 1/J+,B(x, t, y), as is 
discussed in Appendix C. Here we summarize the core of Appendix C 
as the following 

Theorem 2.7. The action of the microdifferential operator X 
upon the multi-valued analytic function 1/J+,B(x, y) is represented as an 
integra-differential operator of the following form. 

X1fJ+,B = 1Y K(x, t, y- y', djdx)1/J+,B(x, t, y')dy', 
Yo 

(2.65) 

where K(x, t, y, djdx) is a differential operator of infinite order that is 
defined on { (x, t, y) E C3 ; (x, t) E w for an open neighborhood w of the 
origin and IYI < C for some positive constant C}, and Yo is a constant 
that fixes the action of (ojoy)- 1 as an integral operator. (See Figure 
2.2.) 

y 

Yo 

Figure 2.2 : y' = Sj(x, t)(j = 1, 2, · · ·) are the singular points 
of 1/J+,B(x, t, y'); the local character of K implies the 
singularities of K 1/J+,B are confined to these points. 

The proof of Theorem 2. 7 is based on Theorem B.4 and Proposition C.l. 
Here we emphasize that a differential .operator of infinite order is of local 
character ([SKK]). Thus the location of singularities of X1/J+,B can be 
immediately read off from the location of singularities of 1/J+,B(x, y') in 
y'-plane for each fixed (x, t). 

Remark 2.4. It follows from the reasoning in Appendix C that w 
may be assumed to have the form w0 x D, where 

(2.66) wo is a simply connected open set in Cx that contains s+(t) 
and s_(t), 
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and 

(2.67) D = {t E C; ltl <~for some positive constant~}. 

Then, as long as t is in D, the integral operator in the right-hand side 
of (2.65), which is obtained through the Borel transformation of the 
right-hand side of (2.44) written down in (x, y, t)-coordinate, acts on 
any multi-valued analytic function <p defined on a neighborhood of w0 x 
{t} x {y E C; IY- ~ol < C}; the domain of definition of the acted 
function <p contains a product set wo x D x {y E C; IY- ~ol < C}. This 
is what we mean by saying that the transformation given by (2.44) is 
"uniform" with respect to t; the uniformity is primarily concerned with 
the uniformity in the Borel-plane, i.e., y-plane. This uniformity, which 
is not immediately visible from (2.44), guarantees that each individual 
fixed singular point of '¢+,B is contained in the domain of definition of 
the integral operator (2.65) for sufficiently small t. Note that, as we will 
see in Section 4, a fixed singular point of '¢+,B is of the form 

(2.68) y = -y±(x, t) + 2mrrE0 (t) (m = 0, ±1, ±2, · · · ), 

where 

(2.69) Y±(x, t) = ± 1x · / Eo(t) - x4
2 dx. 

2VEo(t) v 
Note also that E0 (t) tends to 0 as t tends to 0 by (2.24). 

§3. Analytic properties of WKB solutions of the Weber equa
tion 

To analyze WKB solutions of the oo-Weber equation in Section 4, 
we first recall several basic facts about WKB solutions of the Weber 
equation. In this section the Weber equation means, by definition, the 
following Schrodinger equation: 

(3.1) ( d2 2 x2 ) . dx2 + rJ ( 4 - E) '¢ = 0. 

In choosing the above potential - ( x2 j 4-E) we have followed [KT1]. 
Via the scaling 

(3.2) x = hz, 
Equation (3.1) is reduced to 

(3.3) ( d2 
2 2 ) dz2 + rJ (z - 2E) '¢ = 0, 
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the equation used in [SS] with the difference of the sign in front of 
2E. Note that we use the inverted-parabola potential to find the model 
equation for the situation where two simple turning points are connected 
by a Stokes curve ([AKT1, Section 3], [KT1], [SS]). We also note that 
this choice forces us to employ the coordinate transformation 

(3.4) w = exp (~i) ..jijx 

to relate WKB solutions of (3.1) with Whittaker's principal parabolic 
cylinder function Di7JE-lj2 (w). (The rotation by rr/4 has the effect of 
bringing the inverted-parabola potential to the ordinary parabola poten
tial.) As we emphasized in Introduction, the core object of this section 
is Sato's conjecture ([KT1, p.95]); originally it related a WKB solution 
of (3.1) with the parabolic cylinder function, and Shen and Silverstone 
elucidated its WKB-theoretic meaning by observing that the parabolic 
cylinder function is a finite constant (versus infinite series; see (3.6) be
low) multiple of a Borel resummed WKB solution of the Weber equation 
that is normalized at infinity in the sense of [DDP1] and [DP], that is, 
(3.5) 

'1/Jf"\x, ry) = ~ exp (± {'fl r S_1dx + 1x (Sodd- ryS-l)dx}) . 
Y Bodd J2v'E oo 

Here we note that the meaning of the symbols ry and S is different 
from that used in [SS]. There are two important points to be noted in 
the relation presented in [SS, (44), (45)]. First it manifests the well
definedness of the Borel sum of the WKB solution normalized at infinity 
when arg ry = 0; secondly it enables us to analyze Sato's conjecture 
completely in the framework of exact WKB analysis in the following 
manner: the numerical factor relating the parabolic cylinder function 
and the particular WKB solution in question is a "huge" but explicit 
one, i.e., 

(3.6) ( irr) (-E)~ exp - -
8 en 

(cf. [SS, (43)]; 1/n is our large parameter ry), and setting aside this factor 
we find that Sato's conjecture is reduced to finding out the explicit form 
of the logarithm ¢ of the ratio of a WKB solution 

(3.7) '1/J+(x,ry) = ~exp ( r Bodddx) 
Y Bodd J2v'E 

and the normalized at infinity WKB solution (3.5), that is, 

(3.8) 
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Note that ¢(E, TJ) is independent of x; actually it is known in exact WKB 
analysis by the name of Voros' coefficient after [V]. Its explicit form is 

(3.9) r= (Sodd- TJB-t)dx, 
J2..JE 

and the problem is to show that it is equal to 

(3.10) 
1 21-2n- 1 
2 L 2n(2n- 1) B2n(iTJE)l-2n' 

n2:1 

where B 2n designates the 2n-th Bernoulli number, i.e., 

(3.11) 

In what follows we use "Sato's conjecture" in its WKB theoretic form, 
that is, we begin our discussion with the expression (3.10) of ¢(E, TJ). 
At the same time we note that the proof of "Sato's conjecture" given 
by Shen and Silverstone makes full use of analytic properties of. the 
parabolic cylinder function. 

It is known ([DDPl], [DP, Theorem 1.2.2 (c)]) that ~t~(x, y), the 

Borel transform of ~~co) (x, TJ), is free from singularities on the real !
dimensional half line {y E <C; y = -y+(x) + p, p > 0}, where Y+(x) is, 
by definition, 

(3.12) r s_l(x)dx. 
J2..;E 

Hence (3.8) implies that the study of singularity structure of ~+,B(x, y) 
is reduced to that of the Borel transform of exp ¢( E, TJ). To study its 
singularity structure we first give a concrete description of the Borel 
transform ¢B(E,y) of¢. It then follows from (3.10) and the definition 
of the Borel transformation that 

(3.13) 
1 21-2n _ 1 y2n-2 

¢B(E, y) = 2 L 2n(2n- 1) B2n(iE)l-2n (2n- 2)! 
n2:1 
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iE ( yj(2iE) y ) 
= y2 exp(y/(2iE))- 1 - 1 + 4iE 

iE ( yj(iE) y ) 
- 2y2 exp(yj(iE))- 1 - 1 + 2iE · 

Setting 

(3.14) u = yj(2iE) and X= expu, 

we find 

1 ( 1 1 1 ) 
(3.15) ¢B(E,y) = 2y X -1- X 2 -1- 2u 

1 ( 1 1 1 ) 
= 4y - ~ + X - 1 + X + 1 . 

In a neighborhood of y = 0, the Taylor expansion shows 

(3.16) 
i 

¢B(E, y) = 48E + O(y), 

whereas, near y = 4mrE (n-=/=- 0), 

(3.17) 
-1 1 

¢B(E,y) = -8 . 4 E + 0(1) 
nnz y- n1r 

and, near y = 2(2n + 1)nE, 

(3·18) ¢B(E, y) = 4(2n ~ 1)ni y- 2(2~ + 1)nE + 0(1). 

Thus c/JB(E, y) is a single-valued analytic function with simple poles at 
y = 2mnE (m-=/=- 0) with its residue (-1)m-1/(4nim) there. 

We next consider the alien derivative b.y=2mrrE ¢ of cp(E, rJ). The 
alien derivative is, by definition, given by 

(3.19) b.¢= B-1log(.C=1.C+)B¢ 

= B-1log(1 + (.C=1.C+- 1))B¢ 

= B-1 f (-1ln-1 (£=1£+ -l)nBcp, 
n=1 

where B denotes the Borel transformation and .C+ (resp., .C_) denotes 
the Laplace transformation along a path which avoids the singular points 
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from the above (resp., from the below). It is known (cf., e.g., [DP]) that 
(3.19) can be expressed also as 

(3.20) 

with 
(3.21) 

00 

fj.cp = 2..:::: fj.y=2m7rE ¢ 
m=l 

jj. _ "'= 8 _ 1 [('V(m) _ 'V(m)) "' P+!p_! 'V(m-1) ... 'V(l)l B"' 
y-2m7rE 'I' 1+ J- L 1 ;c;,_ 1 1c: 1 'I'' 

c:j=± m. 

where '/~) (resp., '/~)) designates analytic continuation along a path 
avoiding the j-th singular pointy= 2j7rE from the above (resp., from 
the below) and P+ (resp., P-) denotes the number of indices j for which 
1 ::::; j::::; m -1 and E:j = + (resp., E:j =-)hold. In the case of ¢(E, TJ) in 
question, as its Borel transform is a single-valued analytic function with 
simple poles at y = 2m7r E (m # 0), its alien derivative /j.y=2m7rE ¢ is 
(-27ri) multiple of the residue of ¢B(E,y) at y = 2m1rE, that is, 

(3.22) 

(Cf. [P1], [CNP], [Sa]). Then, by the alien calculus, we find 

(3.23) 

Since 

(3.24) 

(-1)m 
fj.y=2m"' E ( exp ¢) = ~ exp ¢. 

holds when x is in the interior of each region bounded by Stokes curves 
associated with the Weber equation (cf. Figure 3.1), say in region I, we 
find that 

(3.25) fj.y=2m1rE (exp( -y+(x)ry)'lj;+(x, ry)) 

= fj.y=2m1rE (exp( -y+(x)ry) exp(¢(E, ry))'lj;~oo) (x, ry)) 

(-l)m 
= ~ (exp(-y+(x)ry)exp(¢(E,ry)) 'lj;~00)(x,ry)) 

= ( ~~m (exp( -y+(x)ry)'lj;+(x, ry)) 
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II 
III 

IV 

Figure 3.1. 

holds for x in I. 
Thus we find the following Theorem 3.1 on the singularity structure 

of 'l/J+,B(x, y). 

Theorem 3.1. Let 'lj;+(x, TJ) denote the WKB solution of the We
ber equation that is normalized as in (3. 7). Then its Borel transform 
'l/J+,B(x, y) is singular at 

(3.26) y = -y+(x) + 2mnE (m = 0, ±1, ±2, · · · ), 

where 

(3.27) Y+(x) = 1~ fo- :2 
dx, 

and its alien derivative there, i.e, ~y=-y+(x)+2m11'E 'lj;+ satisfies the fol
lowing relation (3.28) for x in region I: 

(3.28) 

§4. WKB solutions of the oo-Weber equation 

As Theorems 2.2 and 2.4 show, the WKB theoretic canonical form 
of an MTP equation is the oo-Weber equation 

( d2 2 12)-(4.1) dx2 -TJ(E(t,TJ)- 4x) 'lj;(x,'f];E(t,TJ))=O. 

In analyzing WKB solutions of (4.1), we wish to relate them with WKB 
solutions of the Weber equation 

(4.2) ( d2 2 1 2 ) dx2 - 'fJ (E- 4x ) 'lj;(x, 'f]; E) = 0. 
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For this purpose we again use the core idea of Sections 1 and 2, that is, 
we relate the Borel transform ;j; B of ;j; and the Borel transform 'ljJ B of 'ljJ 
by a microdifferential operator and then deduce analytic properties of 
;j;B from that of '1/JB· To be more concrete, we interpret a WKB solution 
,(f;(x, 71; E(t, 71)) of (4.1) as follows: 

(4.3) ;J;(x, TJ) =;J;(x, 7J; E(t, 71)) 

='"' (E17J-1 + E27J-2 + ... )n an .!,( . E ) 
~ n! a En 'f/ x, TJ, 0 ' 
n2:0 0 

where '1/J(x, TJ; Eo) is a WKB solution of (4.2) withE= E0 (t). As (2.32) 
guarantees that 

(4.4) aEo I =I= 0 
at t=o 

holds for an MTP operator, we may use Eo as an independent variable; 
Ej's may be regarded as functions of E0 . In view of the growth order 
condition (B.107) that Ej's satisfy we find 
(4.5) 

£ (E ~ ~) ='"' (E1(ajay)- 1 + E2(ajay)- 2 + ... )n an 
0 ' a ' aE ~ I aEn y 0 n2:0 n. 0 

is a well-defined microdifferential operator on 

(4.6) 

for some 80 > 0. In what follows we identify 7J and () respectively with 
the symbol a(ajay) and the symbol a(ajaE0 ); using these symbols we 
may write 

(4.7) 

Now, through the Borel transformation the relation ( 4.3) reads as fol
lows: 

(4.8) ;J;B(x, y) =£(Eo, a jay, ajaEo)'I/JB(x, y; Eo). 

We also note that a similar relation (4.11) holds for the Borel transform 
SB (resp., SB) of a WKB solution S (resp., S) of the Riccati equation 
(4.9) (resp., (4.10)) associated with (4.1) (resp., (4.2)), that is, 

(4.9) 
-2 as 2 1 2 
S + ax = 7J (E(t, 71) - 4x ), 



(4.10) 

(4.11) 
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2 dS 2( 1 2) S + dx = rJ Eo - 4x , 

SB(x, y) =£(Eo, a jay, aj8Eo)SB(x, y; E0 ). 
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It is also clear that a similar relation holds for Sodd, the odd part of S; 
( 4.12) Sodd,B(X, y) =£(Eo, a jay, aj8Eo)Sodd,B(X, y; Eo). 

Furthermore, in parallel with the above treatment of WKB solutions of 
the oo-Weber equation, we can give an analytic meaning to the expo
nential of the Voros coefficient for the oo-Weber equation via its Borel 
transform, i.e., VB = (exp¢(E(t,ry),ry))B in the following manner: 

def 

(4.13) VB(Y) =£(Eo, a jay, aj8Eo)(exp ¢(Eo, TJ))B-

Remark 4.1. As in Section 2, the right-hand sides of (4.8), (4.11), 
(4.12) and (4.13) should be understood as multi-valued analytic func
tions acted upon by the integral operator determined by the microdiffer
ential operator £. While the estimate (B.107) guarantees the existence 
of a common domain of definition as t tends to 0, the quantity E0 (t) 
tends to 0 as t tends to 0. On the other hand, (3.26) implies that a fixed 
singular point of '1/J+,B(x, y) (with respect to y = -y+(x)) is located 
at y = -y+(x) + 2m1rE0 . Thus each individual fixed singular point of 
'1/J+,B(x, y) is contained, for sufficiently small t, in the domain of defini
tion of the integral operator in question. Hence, in this section, we do 
not worry about the existence of a sufficiently large domain of definition 
of the integral operator in question; if necessary, we assume that t (or, 
equivalently Eo) is sufficiently close to 0. 

Concerning the analytic structure of ~+,B and VB we find the fol
lowing. 

Theorem 4.1. Let ~+(x, ry) and cp(E(t, ry), ry) respectively denote 

(4.14) 

and 

(4.15) 

1 1x ~exp Sodd dx 
Y Bodd 2v'EQ 

r= (Sodd - ryS_l) dx, 
J2v'Eo 

where Sodd designates the odd part (in the. sense of Definition 1.1) of a 
WKB solutionS of the Riccati equation attached to (4.1), i.e., 

(4.16) 
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Then the Borel transform '¢+,B(x,y) and VB = (exp¢)B satisfy the 
following relations: 

(4.17) 

(~y=-Y+(x)+2m7rEo '¢+)B(X, Y) 

= ( -l)m : exp(-2m1r(E1 + E2ry-1 + · · · )) : '¢+ B(x, y- 2m7rEo), 
2m ' 

(4.18) 

( ~y=2m7r Eo V) B (y) 
(-1)m 

= --: exp( -2m1r(E1 + E2ry-1 + · · · )) : VB(Y- 2m7rEo), 
2m 

where m = 1, 2, 3, · · ·, and Y+(x) denotes 

(4.19) r §_ 1(x)dx. 
}2.)EO 

Proof. By ( 4.8) and the definition of the alien derivative, we find 

(4.20) 

(~y=-y+(x)+2m7rEo ~+)B(X, Y) 

=(~y=-Y+(x)+2m7rEoB- 1 (£(Eo, 8j8y, 8j8Eo)'l/J+,B(x, y; Eo)))B(x, y) 

=£(Eo, 8/ 8y, 8j8Eo)((~y=-Y+(x)+2m7rEo '1/J+ )B(X, y; Eo))(x, y). 

It then follows from Theorem 3.1 that this can be rewritten further as 
follows: 

(4.21) 
(-1)m 

£(Eo, 8j8y, 8j8Eo)--'ljJ+ B(x, y- 2m7rEo; Eo). 
2m ' 

To relate this function with ~+,B(x,y- 2m1rE0 ), we introduce the fol
lowing coordinate transformation from (y, Eo) to (y, Eo): 

(4.22) { fJ_ = y- 2m7rEo 

Eo= Eo. 

Correspondingly we then have 

( 4.23) {
rJ=rJ 

() = -2m7rij +e. 
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Using (y, Eo)-variable, we find 

(4.24) 

£(Eo, a jay, aj8Eo)'¢+,B(x, y- 2mnEo; Eo) 

_." (E17f-1 + E27f-2 + · · · )n(e- 2mn7f)n . -.-
-. L...... n! . '¢+,B(x, y, Eo) 

n2':0 

" 1 (E --1 E --2 )n " n! ()-k( :;::;\l •1, ( - - ) =: L...... n! 11] + 21] + · · · L...... k!l! -2mn7]1 : •P+,B x, y; Eo 
n>O k+l=n 

- k,l2':0 

=: 2:: ~( -2mn(E1 + E27f- 1 + · · · ))1 : 

12':0 

" 1 (E --1 E --2 )k{Jk .!. ( - E ) : L.._.. k! 11] + 21] + · · · : '1-'+,B X, y; 0 

k2':0 

=: exp( -2mn(E1 + E27f-1 + ... )) : £(Eo,[) jay, of 8Eo)'¢+,B(x, y; Eo) 
-1 . -

=: exp( -2mn(E1 + E21] + · · ·)) : '¢+,B(x, y- 2mn E0 ). 

Combining (4.20), (4.21) and (4.24), we obtain (4.17). The proof of 
(4.18) can be given in exactly the same manner. Q.E.D. 

Remark 4.2. From the viewpoint of applications, it should be most 
appropriate to understand (4.18) to be the content of the mathematical 
assertion called "Sato's conjecture". Note that, as an analytic implica
tion of Sato's conjecture, the Borel transform ;f;+,B of a WKB solution of 
the oo-Weber equation also possesses the same analytic structure ( 4.17) 
as the exponential of the Voros coefficient. As we will see in the subse
quent section, this analytic structure is inherited also by a Borel trans
formed WKB solution of an MTP equation thanks to the transformation 
theory developed in Section 2. 

Remark 4.3. Although we have presented the result in full generality 
for the future reference, all Ek (k : odd) vanish in our actual problem 
discussed in this article. (See (2.25).) However, if the potential Q has 
the form (1.21), then Ek (k: odd) appears in general. 
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§5. Analytic properties of Borel transformed WKB solutions 
of an MTP equation 

In the preceding section we have seen that the Borel transform '1/JB 
of a WKB solution '¢ of the oo-Weber equation 

(5.1) ( d2 2 12) dx2 - 17 (E(t, 17) - 4x ) '1/J(x, 17) = 0 

can be represented in the form 

(5.2) &(Eo, ojoy, 8j8Eo)cpB(X, y; Eo), 

with a microdifferential operator & and the Borel transform cp B of a 
WKB solution cp of the Weber equation 

(5.3) ( d2 2 1 2 ) dx2 - 11 (Eo - 4x ) cp(x, 17; Eo) = 0. 

(For the convenience of the presentation in this section, here we have 
changed the symbol ({i;, '¢) to ('¢, cp).) On the other hand, Theorem 2.4 
(ii) shows that the study of each WKB solution {i;+(x, t, 17) of an MTP 
equation for t # 0 can be reduced to that of a WKB solution '¢+ of the 
oo-Weber equation in that they are related as in (5.4) below with the 
infinite series x(x, t, 17) and E(t, 17) constructed in Theorem 2.2: 

(5.4) 
- _ X X, t, 17 _ ({) ( - )) -1/2 

'¢+(x, t, 17) = ox '¢+(x(x, t, 17), 17; E(t, 17)). 

Furthermore, the growth order condition (B.108) that {xk(x, t, 17)h2::o 
satisfies has enabled us to rewrite (5.4) as a microdifferential relation 
(2.61), that is, 

(5.5) {i;+,B(x, t, y) = X'¢+,B(x, y) 

for the microdifferential operator X given by 

(5.6) : g'(x, t) 112 ( 1 + ~:) - 112 
exp(r(x, t, 11)e) :, 

with the notations in Section 2. (See (2.59).) In view ofthe concrete ex
pression (2.65) together with Theorem 4.1, we find that the singularities 
of {i;+,B are confined to 

(5.7) y = -y+(x, t) + 2mnBo(t) (m = 0, ±1, ±2, · · ·) 
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in a sufficiently small neighborhood of the origin (x, y, t) 
where 

(0, 0, 0), 

(5.8) Y+(x, t) = r .I Eo(t) - x42 dx. 
12../Eo[i) v 

Then, in view of (2.48) and (2.49), we find that the corresponding sin
gular point in (x, t, y)-coordinate is 

(5.9) y = -y+(x, t) + 2m7rEo(t), 

where 

Y+(x, t) = jx JQ(x, t)dx. 
s+(t) 

(5.10) 

Since the alien derivative (or the discontinuity) of 1/J+,B at the point 
is given by (4.17) (with E2p+l = 0), the application of X entails the 
following 

Theorem 5.1. For an integer m and the Borel transform '¢+,B of 
the WKB solution'¢+ of an MTP equation (t f 0) that is normalized 
as in (2.36), the following relation (5.11) holds for sufficiently small t 
(f 0). 

(5.11) (Lly=-Y+(x,t)+2m7rEo(t)'¢+)B(X, t, Y) 

where 

(5.12) 

and 

(5.13) 

(-1)m 
= -- : exp( -2m1r(E2(t)ry-1 + E4 (t)ry- 3 + · · ·)) : 

2m 
'¢+,B(x, t, y- 2m7rEo(t)), 

E· = - 1- i S·(x t)dx 
J 2 . J ' 7rZ i 

with i' being the closed path given in Figure 2.1 and with Sj denoting 
the coefficient of ry-1 in Bodd, the odd part of a WKB solution S of the 
Riccati equation 

(5.14) 
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Appendix A. Estimation of the transformation to 
the canonical form near a double turning point 

In Appendix A we show that the transformation 

00 

(A.1) x(o) (x, 17) = 2..:: xk0l (x)17-k 

k=O 

constructed in Theorem 1.1 is Borel transformable in the sense of [KT2]. 
That is, we prove the following 

Theorem A.l. Let 

00 00 

(A.2) X(O)(x, 17) = 2..:: Xk0 )(x)1J-k and E(0 )(17) = 2..:: Eko)17-k 

k=O k=O 

be the transformation and the coefficient of the canonical form of an 
MTP operator at t = 0 constructed in Theorem 1.1, respectively. Then 
there exist a positive number p0 , an open neighborhood w of x = 0 

and a positive constant Co for which w :J {x; lxl ::::; po}, xk0 )(x) 

(k = 0, 1, 2, ... ) are holomorphic and dx~o) / dx =1- 0 in w and the fol
lowing inequalities hold fork = 1, 2, 3, · · · : 

(A.3) 

(A.4) 

(A.5) 

sup lxk0 l(x)l::::; k! Ci. 
lxiSPo 

sup I dx~~(x) I ::::; k! Ci. 
lxiSPo X 

To prove this theorem, we show the following proposition by induc
tion: 

Proposition A.2. Let 

00 00 

(A.6) X(O) (x, 17) = 2..:: XkO) (x)17-k and E(0 )(17) = 2..:: Ek0 )17-k 

k=O k=O 

be the transformation and the coefficient of the canonical form of an 
MTP operator at t = 0 constructed in Theorem 1.1, respectively. Let p 

be a positive constant for which Xko) (x) (k = 0, 1, 2, ... ) are holomorphic 
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and dx~o) jdx =f. 0 holds in an open set containing the disc lxl ::; p. Then 
there exists a positive constant A so that for each small positive number 
e, the following inequalities hold fork= 1, 2, 3, · · · : 

(A.7) 

(A.8) 

(A.9) 

sup lx~0)(x)l::; k!e-kAk, 
lxl$p-e 

Proof. First we recall the construction of x~o) (x) and Eko) in Sec
tion 1. For the sake of simplicity of notation, we abbreviate the super
script. That is, x~o) (x) and Ek0 ) are denoted by xk(x) and Ek, respec
tively. The leading term Eo of E is taken to be 0 and that of x is defined 
by the relation 

(A.10) 

which entails 

(A.ll) ( 
- ) 1/2 

xo(x) = 2 fox y' -Q(x)dx 

Here, and in what follows, x~ designates the differentiation of xo with 
respect to x. As is discussed in the proof of Theorem 1.1, E2p+l = 0 and 
x2p+l = 0 for p = 0, 1, 2, .... Hence (A.7), (A.8) and (A.9) trivially hold 
for odd k and the statements seem to be redundant. We prove (A.7), 
(A.8) and (A.9) by induction on k, however, because our argument works 
in the case Q(x) contains lower order terms with respect to ry, where 
some of Ek or Xk are not equal to zero for odd k. The higher order 
terms Xn and En ( n 2: 1) are determined so that the following relations 
are satisfied: 

(A.12) 2 I dXn ( I )2 ( I )2 x 0x 0 dx + xo x0 Xn = 2 x0 En+ 2Rn, 

where 

(A.13) Rn = Rn,l + Rn,2 + Rn,3 + Rn,4 
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with 

(A.l4) 

(A.15) 

(A.l6) 

T. Aoki, T. Kawai and Y. Takei 

Rn,l = L X~1 X~2 El, 
k1 +k2+L=n 
k1 ,k2,l<n 

We take z = x 0 (x) as a new independent variable. Then (A.12) is 
rewritten as follows: 

(A.18) 
2dXn Rn 

z dz + ZXn = 2En + 2 (x~) 2 . 

To .obtain the estimates of Xn and En from that of Rn, we use the 
following lemma: 

Lemma A.3. Let v(z) be a given holomorphic function on ~ = 
{z; lzl < ro}, and consider the following differential equation for u(z): 

(A.l9) (z2 d~ + z) u(z) = 2E + 2v(z), 

where E is a constant to be determined. Then there uniquely exist a 
constant E and a holomorphic function u(z) on~ that satisfy (A.l9), 
and the following inequalities hold for any positive constant r which is 
smaller than ro: 

(A.20) 

(A.21) 

(A.22) 

lEI ~ sup lv(z)l, 
lzl:5r 

4 
sup lu(z)l ~ - sup lv(z)l, 
izi:5r r izi:5r 

sup I d~(z) I ~ ~ sup lv(z)l. 
lzl:5r z r izl:5r 
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Proof. The unique solution u(z) and E are given as follows: 

(A.23) u(z) = ~ t v(z)- v(O) dz, 
z }0 z 

(A.24) E = -v(O). 

Hence (A.20) immediately follows from (A.24). 
Let w(z) denote 

(A.25) w(z) = v(z)- v(O) = v(z) +E. 
z z 

Then (A.23) entails 

(A.26) u(z) = 211 w(zs)ds. 

Hence, by using the maximum principle for w(z), we obtain 

(A.27) sup lu(z)l < 2 sup lw(z)l 
lzi:Sr lzi:Sr 

2 
- sup lv(z) + El 
r lzi:Sr 

< ~ (sup lv(z)l +lEI) 
r izi:Sr 

4 
< - sup lv(z)l. 

r lzi:Sr 

Finally, using the differential equation (A.19) together with (A.25) 
and (A.27), we find 

(A.28) sup lz du(z) I < sup lu(z)l + 2 sup lw(z)l 
lzi:Sr dz lzi:Sr lzi:Sr 

< 4 sup lw(z)l 
lzi:Sr 

8 
< - sup lv(z)l. 

r lzi:Sr 

Hence it follows from the Schwarz lemma that 

(A.29) sup I dud(z) I :::; ~ sup lv(z)l. 
lzi:Sr z r lzi:Sr 

This completes the proof of Lemma A.3. Q.E.D. 
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We assume that (A.7), (A.8) and (A.9) hold fork< n. To obtain the 
estimates of Rn from the hypothesis of induction, we need the following 
lemma: 

Lemma A.4. The following inequality holds for all positive integers 
j and k satisfying k :::; j: 

(A.30) 
il+iz+··+ik=j 

il·····ik~l 

Proof. If j is smaller than or equal to 3, (A.30) trivially holds. 
Suppose that j is greater than 3. The case where k = 1 is trivial. If 
k = 2, we find 

(A.31) 2:: j1!j2! 
il +i2=j 
ibi2;?::1 

= (.- 1)! (2 + ~ jl!(j- Jl)!) 
J L..- (j- 1)! 

]1=2 

:::; (j - 1)! (2 + ~ (j ~ 1) ) 
}1-2 

( j- 3) 
:::; 2(j- 1)! 1 + j- 1 

:::; 4(j- 1)!. 

Hence we have (A.30) for k = 2. If k is greater than 2, (A.30) can be 
reduced to the case k- 1: 

(A.32) 

il+iz+··+ik=j 
iJ, ... ,jk~l 

< 

J'+ik=j il +···jk-1 =i' 
J'~k-l,jk2:1 il·····ik-12::1 

i'+ik=j 
:i'2::k-1,jk2:':1 

io+ik=i-k+Z 
Jo2::l,Jk2':1 

This completes the proof of Lemma A.4. Q.E.D. 
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Let C denote the constant satisfying 

(A.33) I dJxo(x) I C sup _. < 
lxi::OP dxJ -

(j = 0, 1,2,3), 

(A.34) I 1 I sup -,-- < C 
lxi::OP xo(x) -

and 

(A.35) I 1 I sup 1 <C. 
lxi::OP (xo(x))2 -

By the definition of Rn, 1 , we have 

(A.36) 

and hence 

(A.37) sup IRn,l(x)l < 
lxi::OP-"' 

We set 

L k1! k2! l! c-k1-k2-l Ak1 +k2+l 

k1+k2 +l=n 
kl,k2,l2':1 

+2C L k!l!c-k-lAk+1 

k+l=n 
k,l2':1 

(A.38) Bn 1 = - -- + 8C . 1 ( 16 ) 
' n n-1 

Similarly, we divide the sum in the definition of Rn,2 as follows: 

63 
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Estimating each term by using the hypothesis of induction, we have 

(A.40) sup IRn,2(x)l 
lxi~P-" 

s (~ 2: k1!k2!h!l2!+ ~ 2: k!h!l2! 
k1 +k2+l1 +l2=n k+l1 +l2=n 

k1,k2,l1,l2<':1 k,l1,l2<':1 

c 
+2 L kl!k2!l!+C2 L k!l! 

k1 +k2+l=n k+l=n 
kl ,k2,l<':1 k,l;:>:l 

Applying Lemma A.4, we obtain 

(A.41) 

Now we set 

(A.42) 

sup 1Rn,2(x)l 
lxl~p-c 

:::; (16(n- 3)! + 8C(n- 2)! + 8C(n- 2)! 

+4C2(n- 1)! + C 2(n- 1)! + C2 (n- 1)!) e-n An 

1 -nAn 1 ( 16 16C 602) 
:::; n. c · ;, (n- 1)(n- 2) + n- 1 + · 

Bn 2 = ~ ( 16 + 16C + 6C2) . 
' n (n- 1)(n- 2) n- 1 · 

To have the estimates of Rn,3 and Rn,4, we need that of x%(x) and 
x%'(x) for k < n. Replacing c by kc/(k + 1) in (A.9), we obtain the 
following estimate for lxl :::; p- kc/(k + 1): 

(A.43) < k! (~)-k Ak 
k+1 

< ek!c-kAk. 

If lxl :::; p- c, we can write 

(A.44) "(-) 1 1 x~(() xk x = -2 . (~' -)2d(. 
7rZ 1<:"-xl=$" '>-X 
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Combining this with (A.43), we have 

(A.45) sup lx%(x)l ~ e(k + 1)! e-k-l Ak. 
lxl:=;p-e 

Similar argument shows 

(A.46) sup lx%'(x)l ~ e2(k + 2)! e-k-2 Ak. 
lxl:=;p-e 

We divide the sum appearing in the definition of Rn,3 as follows: 

(A.47) 

x"' 
+_Q_ 

2 

The hypothesis of induction and (A.46) yield 

(A.48) 

sup IRn,3(x)l 
lxl:=;p-e 

k+lt';;:~n-2 l-'1 +J.t2+··+J.tz=J.' 

X (f..Ll + 1)! ... (f..Ll + 1)! €-J.t-lAJ.t+l 

c + 2 2:: 2:: Cl+1(f..Ll + 1)! · · · (f..Ll + 1)!e:-~-'- 1 A~-'+1 . 
1+~~7-2 1-'1 +J.t2+··+J.tz=J.' 

By Lemma A.4, the right-hand side is dominated by 

(A.49) 

Since 

(A. 50) 

2C n-3 ( l)l 
~2 n!e-nAn-22: n~ "(4C)l 

n. 
l=O 

+ C3 (n- 2)! €-n+2 An-2 ~ (n- 2 -l)! (4C)l. 
2 L.....t (n- 2)! · 

l=O . 

~ (n- l)! s1 < e8 and 
L.....t ' -

~ (n- l- 1)! (l + 1) 1 s 
L.....t 1 s ~ e n. 

l=O 
n. 

l=O 

65 
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hold for any positive s and m ::; n- 1, (A.49) is not greater than 

(A.51) ( e:C n! E-n An-2 + ~3 (n- 2)! E-n+2 An-2) e4C_ 

Hence we have 

(A. 52) 

where we set 

(A. 53) 

sup IRn,3(x)l :S n!E-nAn Bn,3, 
lxi:Sp-c: 

C ( 2 C2c2 ) 4C 
Bn,3 = 2A2 e + n(n- 1) e · 

Finally, we rewrite the definition of Rn,4 as follows: 

(A. 54) 
(l + 1 )x" x" k, k2 I I 

xp;,+l···Xp;z+l 

11'1 +·+p;z=p; 

It follows from the hypothesis of induction and (A.45) that the following 
inequality holds: 

(A.55) 

(kl + 1)!(k2 + 1)!(pl + 1)! ... (JLl + 1)! 

k1 +k2=n-2 
kl ,k2~1 

(k1 + 1)!(k2 + 1)! 

3 n-3 

+ 3e~ E-n+l An-2 l_)z + l)Cl 

l=l 
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X (k + 1)!(JL1 + 1)! ... (JLI + 1)! 
k+J.11 +··+J.!t=n-1-2 

+ 3eC3 (n -1)' cn+lAn-2 
2 . 

3C4 n-2 
+ 4 c-n+2 An-2 l:)z + 1)C1 L (JL1 + 1)! · · · (JLI + 1)!. 

1=1 J.!l +··+J.!t=n-1-2 

By Lemma A.4, the right-hand side is dominated by 

n-4 

(A. 56) 3e2C 2c-n An-2 L(l + 1)(4C)1(n- l- 1)! 
1=1 

+ 3e2C2(n- 1)! e-n An-2 

3 C3 n-3 
+ -;-c-n+1 An-2 L(l + 1)(4C)1(n -l- 1)! 

1=1 

+ 3eC3 (n- 1)1 c-n+1 An-2 
2 . 

C4 n-2 
+ _3 -c-n+2 An-2 ""'(z + 1)(4C)1(n -l- 1)1 16 L.....t .. 

1=1 

Using (A.50), we see that (A.56) is smaller than 

(A. 57) 

Thus we have the following estimates for Rn,4: 

(A. 58) 

where we set 

sup 1Rn,4(x)l ::; n! c-nAn Bn,4, 
lxl~p-e 

(A. 59) Bn,4 = 3~2 
( ( e2 + e~c + c::2

) e40 + 2: (2e + Cc)) . 

Therefore we have the following estimates for Rn: 

(A.60) sup IRn(x)i::; n!c-nAn Bn, 
lxl~p-e 
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with 

(A.61) Bn = Bn,l + Bn,2 + Bn,3 + Bn,4· 

We apply Lemma A.3 for 

Rn 
v = (x~)2. (A.62) 

Then we have the following estimates of En: 

(A.63) 

We go back to the original coordinate x. Taking supremum in x instead 
of z = x 0 (x), we have the following estimates for Xn and x~: 

(A.64) 

_ 2 403 Bn 
sup lx~(x)l:::; --n! c:-n An . 

ixl:£p-e p- c: p- c: 
(A.65) 

Since we may assume 0 < c: < p/3, we obtain 

(A.66) 

(A.67) 

We note that Bn are bounded when c: > 0 tends to zero and 

(A.68) 

Hence there exists no E N which depends only on x0 and p so that 

(A.69) ·{1 p p2} 
Bn,l + Bn,2 :::; mm 202' 1202' 3603 

holds for n 2 n0 • On the other hand, we can choose A > 0 from the 
beginning for which 

(A.70) ·{1 p p2} 
Bn,3 + Bn,4 :::; mm 202' 1202 ' 3603 
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holds. Then we have 

(A.71) {c2B 602 Bn 1803 Bn} max n, ---, 2 :::; 1 
p p 

and induction proceeds when n 2 n 0 . 

The above argument shows that there exist positive numbers Kn 
(n = 1, 2, ... , no- 1) independent of E so that 

(A.72) 

(A.73) 

and 

(A.74) 

sup lxn(x)l :::; en Kn, 
l:i:I:'Op-c 

sup lx~(x)l:::; E-n Kn 
l:i:I:'OP-E 

hold for n = 1, 2, ... , n0 - 1. Now we set 

(A.75) At Kn ;;: { 1} 
l:'On:'Ono-1 ( n! ) 

= max -

and take A' as A if A' is greater than A. This completes the proof of 
Proposition A.2. Q.E.D. 

Appendix B. Estimation of the transformation that 
brings an MTP equation to an oo-Weber equation 

In Appendix B we discuss how to estimate the growth order of the 
transformation 

(B.1) 

constructed in Section 2, that is, the transformation that brings an MTP 
equation 

(B.2) ( d2 2 - ) -dx2 - rt Q(x, t) '1/J = o, 
00 

Q(x, t) = L QUl(x)tj 
j=O 
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satisfying (2.2) '"" (2.5) to an oo-Weber equation 

(B.3) 

with 

(B.4) E(t,,) ~ ~ (~E~j)t;) ,-'. 
Estimation of growth order of E(t, ry) will be simultaneously done (in 
the course of estimation of x(x, t, ry)). 

We first verify holomorphy (in t) of the top order part with respect 
to ry. That is, we prove the following 

Proposition B.l. Let 

00 00 

(B.5) x 0 (x, t) = 2:::>~) (x)ti and E 0 (t) = L Ebilti 
j=O j=O 

be the top order part (with respect to ry- 1 ) of the transformation and the 
coefficient of the oo- Weber equation constructed in Section 2, respec
tively. Then there exists a small positive constant 8 so that both x 0 (x, t) 
and Eo(t) are convergent for lxl :::; 8 and ltl :::; 8. 

Proof. We will prove the convergence of x 0 (x, t) and E 0 (t) by using 
the method of majorant series. 

Before discussing the convergence, we now recall the construction 
of x6j) (x) and Ebj) explained in Section 2. (For the sake of simplicity 

x6il (x) and Ebj) are denoted by xUl (x) and EUl, respectively, and the 
differentiation with respect to x are often abbreviated by ' in this proof 
hereafter.) Comparing the coefficients of like powers of ry- 1 in (2.21), 
i.e., 
(B.6) 

Q( - t) = (ax(x,t,ry))2(E(t ) - x(x,t,ry)2)- 77-2{ (- t )· -} 
x, ax , 77 4 2 x x, , 77 , x , 

we find that xo(x, t) and E 0 (t) are determined in such a way that 

(B.7) 
_ axo 1 ( )

2 

Q(x, t) = ax (Eo(t)- 4(x0 ) 2 ) 

is satisfied. We now set E(o) = 0 and define x<0l (x) by the relation 

(B.8) 
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that is, 

(B.9) 

Hence, thanks to the assumption (2.3), xC0l(x) is holomorphic in 

{ x; [xi :::; 8} for some small positive constant 8 and xC0) 1 (0) =/= 0 holds. 
Next the higher order terms xUl(x) and E(j) (j :2 1) are determined so 
that the following relation is satisfied: 
(B.10) 

Q(j)(x) = -~(xC0l) 2 (xC0l) 1 (xUl) 1 + (xC0l1
) 2 (E(j)- ~x(o)x(j)) + R(j), 

where R(l) = 0 and 

(B.ll) 

1 

4 
k, +k2+ll +l2=j 
k,,k2,h,l2~j-1 

for j :2 2. If we take z = xC0 l(x) as a new independent variable in 
{x; [xi :::; 8} for a sufficiently small constant 8, then (B.10) can be equiv
alently written as follows: 

(B.12) 
dx(j) . . 1 -

z2T + zx(J) = 2E(J) + 2(x(o) )-2 RCJ), 

where RU) R(j) - Q(j). The differential equation (B.12) uniquely 
determines x(j) and E(j), as was already discussed in Section 2. Fur
thermore, their estimates can be obtained through Lemma A.3. In fact, 
putting 

(B.13) I 1 I C = sup 1 , 

lxl~<~ (xCo) (x)) 2 

we obtain the following estimates for E(j) and xUl through Lemma A.3. 

(B.14) 

(B.15) 

[E(j) I :::; C sup [R(j) [, 
lzl~r 

. 4C -
sup [x(J) I :::; - sup [RCJ) [, 
lzl~r r lzl~r 
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(B.16) l
dxUl I BC ~ 

sup -- ::; 2 sup IR(Jll. 
lzi:S:r dz r lzi:S:r 

Based on these estimates (B.14) ,..., (B.l6), the construction of a 
majorant series A(t) = Ej AUltJ of x0 (t, x) = Ej xUl(x)tJ and E 0 (t) = 

Ej EUltj is done in the following manner. 
We first take sufficiently large A(0 ) and A(l) so that they satisfy 

IE(O)I < !:_A(O) sup lx(o) I ::; A (o), I dx(0 ) I 2 (B.17) sup -- ::; -A(o), 
- 4 ' lzi:S:r lzi:S:r dz r 

IE(l)l < !:_A(l) sup lx(ll I ::; A (l), I dx(l) I 2 (B.l8) sup -- ::; -A(1l. 
-4 ' lzi:S:r lzi:S:r dz r 

Next we define A(j) for j ~ 2 by the following recursive relation: 

(B.l9) 

A(j) = c (2~r L A(kl)A(k2)A(l) 

kl+k2+l=j 
kl,k2,l:'Oj-1 

where C1 and r1 are positive constants satisfying 

(B.20) sup IQ(j)l::; C1r-;j. 
lzi:S:r 

Then we can verify that A(t) = Ej AU)tj is a majorant series of 

xo(t,x) = EjxUl(x)tJ and E0 (t) = EjEUltJ in the sense that the 
following inequalities hold for any j ~ 0: 

(B.21) IEUll < !:.AUl 
-4 ' 

sup lx(j) I ::; A (j), 

lzi:S:r 
sup -- ::; -A(J). I dxUl I 2 . 

lzi:S:r dz r 

To prove this, let us assume that (B.21) holds up to j - 1. Replacing 
the definition (B.13) of the constant C by 

(B.22) C =max sup 1 , sup x(o) (x) , { I 1 I I . I 1} 
lxi:S:o (x(o) (x))2 lxi:S:" 
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we find that 

(B.23) 

holds for k :::; j - 1. In view of (B.ll), induction hypotheses together 
with (B.23) entail 

(B.24) sup IR(i) I :::; 
lzl~r 

Hence we have 

(B.25) 

L l(x(kl))'ll(x(k2 ))'11E(l) I 
kl+k2+l=j 
kl,k2,l~j-l 

1 + 4 L l(x(kl))'ll(x(k2 ))'11x(h)llx(l2 )1 
kl +k2+h +l2=j 
kl,k2,hh~j-l 

= ....!:..._A(i) 
4C . 

Combining (B.25) with (B.l4) ,..., (B.16), we thus obtain (B.21) for j. 
That is, (B.21) holds for any j 2': 0 by the induction. 

To verify the holomorphy of xo(x, t) and Eo(t), it now suffices to 
prove that A(t) = L:j A(j)ti is convergent for sufficiently small t. The 
recursive relation (B.19) implies that A(t) satisfies the following alge
braic equation: 
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+ 4~Cl [ ( 1 _ :J -1 
_ ( 1 + :J l 

+ A(o) + ~ ( 2~) 3 
(2r(A(0))3 + 3(A(0))4) + A(l)t. 

(Here the last few terms of (B.26) are added so that the degree 0 and 1 
parts (with respect tot) of (B.26) are automatically satisfied.) Note that 
A(t) = L:i A(j)ti is a unique formal power series solution of (B.26) with 

the degree 0 part A(0). On the other hand, if we introduce it)= ip(t,A) 
by 

(B.27) (l)(t,A) = [1 + ~ ( 2~) 3 
(3r(A<0)) 2 +4(A<0))3)] A 

-c(2~r A3- ~ (2~) 3 
A4 

_ 4~C1 [ ( 1 _ : 1) -
1 

_ ( 1 + : 1) l 
- A(o)- ~ (2~) 3 (2r(A(o))3 + 3(A(o))4)- A(1)t, 

(B.26) can be equivalently written as (l)(t, A) = 0. Since 

(B.28) 

are readily verified, it follows from the implicit function theorem that 
ip(t,A) = 0 has a local holomorphic solution satisfying A(O) = A(0 ). 

Hence A(t) = Ei A(j)ti is convergent for sufficiently small t. This com
pletes the proof of Proposition B.l. Q.E.D. 

Remark B.l. It is interesting to compare the above proof of Proposi
tion B.1 with the core part ofthe proof of Lemma 3.4 of [AKT1], namely 
the existence of (q0 (q), Eo), which corresponds to (xo(x, to), Eo(to)) 
(where to is a fixed non-zero constant) in our current context. 

First of all, in [AKT1] we made essential use of the assumption that 
two simple turning points Po and P1 are connected by a Stokes curve "(, 
whereas we have not made this assumption in this paper. Actually the 
argument in [AKT1] was a subtle and geometric one; we first constructed 
a bi-holomorphic function z(ij) on a neighborhood of the interior of"(, 
and then confirmed that 

(B.29) qo(ii) = -2VEo cos(z(ij)/2) 
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is well-defined and holomorphic near p0 and p 1 . Compared with this del
icate argument, the reasoning in this paper seems to be more straight
forward. The reason why we do not need such a geometric condition in 
this paper is that an MTP operator has a double turning point at t = 0. 
This fact does not imply that s+(t) and s_(t) in (2.4) are connected 
by a Stokes curve, but it still excludes the "bad" case mentioned before 
Theorem 3.3 in [AKTl], namely the situation where some Stokes curve 
runs across the interval between s+(t) and s_(t); if such a Stokes curve 
persists as t tends to 0, s+(t) and s_(t) cannot smoothly coalesce into 
a double turning point. 

Another interesting difference between the reasoning in [AKT1] and 
that in this paper is that we do not require 

(B.30) xo(s±(t), t) = ±2JEo(t) 

in our reasoning but that it is a consequence of Proposition B.l, i.e., the 
convergence of the series 2::1 x~) (x)t1. 

Summing up, we observe that all the subtleties in the reasoning of 
[AKT1] are automatically built in our double series (i.e., a series in t 
and ry- 1) construction scheme, particularly in the convergence proof. 

Thus we have verified the holomorphy of the top order part x0 (x, t) 
and E0 (t) of the transformation (B.1) and the coefficient (B.4) of the 
oo-Weber equation constructed in Section 2. We next consider their 
higher order parts 

00 00 

(B.31) xn(x, t) = 2::: x}ll (x)t1 and En(t) = 2::: E};ilt1 (n ~ 1). 
j=O j=O 

Comparison of the coefficients of like powers of ry- 1 in (B.6) yields that 
Xn = Xn(x, t) and En= En(t) (n ~ 1) are determined by the following 
relation: 

(B.32) ( )
2 oxo OXn 1 2 oxo 1 

2--(Eo- -(xo) ) + - (E - -xox ) + R = 0 OX OX 4 OX n 2 n n ' 

where 

(B.33) 

with 

(B.34) 
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(B.35) 

(B.36) 

(B.37) 

Since x 0 (x, t) is holomorphic at (x, t) = (0, 0) and (8xaf8x)(O, 0) =1- 0 
holds, x 0 (x, t) can be taken as a new independent variable near x = 0. 
Furthermore, as E0 (t) is also holomorphic and (dEa(t)jdt)(O) =1- 0 holds 
thanks to (2.32), we can take E 0 (t) as a new parameter instead oft. 
Thus, in what follows we use (z, s) = (x0 (x, t), E 0 (t)) as a new coordinate 
in a neighborhood of (x, t) = (0, 0). Relation (B.32) then becomes of 
the following form: 

(B.38) 2 8xn (8xo) - 2 
(4s-z )--zx =-2E -2 - R 8z n n ax n· 

As a higher order version of Proposition B.1 we can prove the fol
lowing 

Proposition B.2. Let n ~ 1 and 

00 00 

(B.39) Xn(z,s) = "Lx~l(z)sj and En(s) = LE~)sj 
j=O j=O 

be the n-th order part (with respect to 77- 1) of the transformation and 
the coefficient of the oo- Weber equation determined by (B.38). Then 
both Xn(z, s) and En(s) are holomorphic at (z, s) = (0, 0). Consequently 
they are holomorphic also in the original variables ( x, t). 

Proof. We now prove that Xn and En are holomorphic under the 
assumption that Rn in the right-hand side of (B.38) is holomorphic. 
Then, as Rn depends only on x j and E1 for 0 :::; j :::; n - 1, Proposi
tion B.2 immediately follows by an inductive argument. Similarly to the 
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proof of Proposition B.l, we will prove the holomorphy of Xn and En by 
using the method of majorant series. 

Let 

(B.40) 

be a power series expansion of (8x0 j8x)-2 Rn around s = 0. If we also 
expand Xn and En as in (B.39), the comparison of the coefficients of like 
powers of s in (B.38) yields the following relations: 

(B.41) ( z2 .!!:.._ + z) x(o) = 2E(o) + 2R(o) 
dz n n n ' 

(B.42) z2 - + z x(j) = 2E(j) + 4 Xn + 2R(j) ( 
d ) d (j-l) 

dz n n dz n (j ~ 1). 

In view of Lemma A.3 we find that these relations uniquely determine 
x~) and E!j) in a recursive manner. Furthermore, Lemma A.3 also 
entails the following inequalities for every j ~ 0 and any sufficiently 
small positive number r: 

(B.43) IEc,?)l ~ sup IF(j)l, 
lzl~r 

(B.44) 

(B.45) I 
dx(j) I 8 

sup. _n_ ~ 2 sup IF(j)l, 
lzl~r dz r lzl~r 

where p(O) = R~o) and p(j) = 2(dx~-l) jdz) + kCj) for j ~ 1. 
Let us define B(j) (j ~ 0) by 

(B.46) 

(B.47) 

We now verify that B(s) = L:j B(j)sj is a majorant series of Xn(z, s) = 
L:jx~)(z)sj and En(s) = L_jEc,?)sj in the sense that the following 
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inequalities hold for any j 2: 0: 

(B.48) sup _n_ ~ - B(j). I dx(j) I 2 

lzl:<:;r dz r 

To prove (B.48), we first note that (B.48) for j = 0 immediately follows 
from (B.43) rv (B.45) for j = 0 and the definition (B.46) of B(o). Next 
let us assume that (B.48) holds up to j- 1. Then we have 

(B.49) IF(j)l ~ 21dx~:l) I+ ~k~l~ 
~ ~B(j-l) + sup jk~l(z)l 

r izi:<;;r 

= ~B(i) 
4 

for jzj ~ r. Hence, combining (B.49) with (B.43) rv (B.45), we obtain 
(B.48) for j. Thus (B.48) holds for any j 2: 0 by the induction. 

The convergence of the majorant series B(s) = I:j BUlsi can be 

confirmed in the following way: Let IRnl(s) denote a power series of s 
defined by 

(B.50) 

Then the definition (B.46) rv (B.47) of B(i) implies that B(s) and IRnl(s) 
should satisfy the following algebraic equation: 

(B.51) 
16 4 -

B(s) = 2sB(s) + -IRnl(s), 
r r 

that is, 

(B.52) 4 ( 16 ) -l -
B(s) = -:;. 1- r 2 s IRnl(s). 

If Rn(z, s) is holomorphic in {(z, s); izl ~ r, lsi ~ 8}, then 

(B. 53) sup IR~l(z)l ~ sup IRn(z, s)j8-j 
lzl:<:;r lzl:<:;r,lsl:<:;o 

holds and hence IRnl(s) is convergent for jsj < 8. Thus, as we may 
assume 0 < 8 < r 2 /16, B(s) is also convergent for lsi < 8 thanks to 
(B.52). This verifies the holomorphy of Xn(z, s) and En(s) at (z, s) = 
(0, 0), completing the proof of Proposition B.2. Q.E.D. 
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Remark B.2. (i) Since R1 = 0, we have x1(z,s) = 0 and E1(s) = 0. 
(ii) Assume that x0 (z, s) and E0 (s) are holomorphic and 8xo/8x =/= 0 
holds in { (z, s) ; lzl ~ r, lsi ~ 8} for some positive constants r and 8 
satisfying 8 < r 2 /16. The above proof of Proposition B.2 then verifies 
that Xn(z, s) and En(s) are holomorphic in {(z, s); lzl ~ r, lsi < 8n} for 
an arbitrarily chosen decreasing sequence 8 = 8o > 81 > 82 > · · · . In 
particular, if we choose 8n so that 8 > 81 > 82 > · · · > 8n > · · · 2:: 8/2 
holds, we find that Xn and En are holomorphic for every n in a domain 
{(z, s); lzl ~ r, lsi ~ 8/2} independent of n. 

Finally, combining the holomorphy of Xn and En verified above with 
the reasoning employed in Appendix A, we discuss how to estimate the 
growth order of Xn and En as n tends to oo. 

For that purpose, we first seek for integral representations of Xn and 
En when s =/= 0. Equation (B.38) that determines Xn and En can be 
written as 

(B.54) 8
8 (v'4s- z 2xn) =- 2 (En+ Rn), 
z v4s- z2 

where 

(B.55) Rn = (a;;) -2 
Rn· 

We then find that, under the assumptions=/= 0, a solution Xn of (B.54) 
which is holomorphic at z = -2y's is given by 

(B. 56) _ 2 1z En +Rn d 
Xn-- V4S- z2 -2,;8 V4S- W 2 W. 

If this solution (B.56) is holomorphic also at z = 2y's, En should satisfy 

(B. 57) 
2,;8 -1 s En + Rn dw = 0, 

-2,;8 J 4s - w2 

that is, 

(B.58) 112,;8 Rn En=-- dw. 
7r -2,;8 v4s- w2 

Since Xn and En that are constructed in Proposition B.2 enjoy the holo
morphy both at z = ±2y's, we can conclude that they have the integral 
representations (B.56) and (B.58) for any sufficiently small s =/= 0. 

Using these integral representations (B.56) and (B.58), we prove the 
following 
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Lemma B.3. Assume that Rn(z, s) is holomorphic on {(z, s); /z/ < 
4r0 , /s/ < r5} for a positive constant ro. Let (xn, En) be a solution of 
(B.54) which is given by the integral representations (B.56) and (B.58). 
Then the following estimates hold for any s satisfying lsi = r2 with 
0 < r < ro: 

(B. 59) 

(B.60) 

(B.61) 

/En(s)/ ~ sup /Rn(z, s)/, 
lzl$4r 

4 -
sup lxn(z, s)/ ~ - sup /Rn(z, s)/, 

lzl$4r r izl$4r 

I 8xn ( z, s) I 5 -
sup a ~ 2 sup IRn(z, s)/. 

lzl$4r z r izl$4r 

Proof. (i) By making a change of variable w = 2vfsp in (B.58}, we 
obtain 

(B.62) 

Hence we have 

1 - 11 1 -(B.63) /En(s)/ ~- sup /Rn(z, s)/ ~dp ~ sup /Rn(z, s)/. 
11" lzl$2r -1 1 - p2 lzl$4r 

(ii) Let z denote z/(2vfs). Note that the region {/z/ ~ 4r} corresponds 
to {/z/ ~ 2} in z-variable. It then follows from (B.56) that 

(B.64) _ 1 jz En+Rn(2vfsp,s)d 
Xn-- p. vsv1 - z2 -1 J1 - p2 

We first estimate Xn in the region fL = {Z; /z/ ~ 2, Re z ~ 0}. 
When z belongs to fL, the integration variable p may be assumed to 
satisfy /1-p/ ~ 1. Hence, by making a change of variable 1+p = (1+z)t, 
we have 

(B.65) ljz ----;::::=1=dpl ~ /1 + z/1/2 {1 _1 dt = 2/1 + z/1/2. 
-1 J1 - p2 lo Vt 

Hence, as /1- zi ~ 1 holds when z E fL, we obtain 

(B.66) 
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4 -
:::; - sup IRn(z, s)l. 

r lzi:'04r 

Since Xn can be expressed also as 

(B.67) _ 1 !zEn+ Rn(2y'sp, s)d 
~-- p 

y'sv1 - z2 1 )1 - p2 

in view of (B.57), we can obtain the same estimate for z E n+ 
{ z; lzl :::; 2, Re z ~ 0} as well. Thus (B.60) holds. 
(iii) It follows from (B.38) that 

(B.68) r:( -2) OXn r:- ( - ) 2v;,; 1 - z oz - 2y SZXn = -2 En+ Rn , 

that is, 

(B.69) (1 - z2) o;zn = 9n with 

Let n-,1 (resp. n-,2) be {z; lz+11:::; 1}nn_ (resp. {Z; lz+11 ~ 1}nf2_). 
In n-,1, as 11- zl ~ 1 holds inn_, the maximum principle and (B.69) 
entail that 

(B.70) I OXn I l9n I I 1 sup -- :::; sup --- :::; sup 9n . 
zE!L, 1 OZ zEfL, 1 11- zl zEfL, 1 

This inequality also holds in f2_,2 since 11 + zl ~ 1 holds there. Thus we 
have 

(B.71) _sup 1 a;zn 1 :::; _sup l9nl· 
zEfL zE!L 

Note that inn_ we have 

(B.72) 
1 -

< 2 sup lxnl + -(IEnl + sup IRnl) 
zEfL r zE!L 

< - +- +- sup IRnl =- sup IRnl· ( 8 1 1) - 10 -
r r r zEfL r zE!L 

Combining (B.71) with (B.72), we obtain 

(B.73) I OXn I 10 -sup >)- :::; - sup IRnl· 
zEfL uz r zEfL 
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By a similar argument we can confirm the same inequality also in !1+. 
Hence we conclude 

(B.74) I
OXn I 1 IOXn I 5 -sup - =-sup -- :::; 2 sup IRnl· 

lzl$4r oz 2r lzl$;2 oz r izl$4r 

This completes the proof of Lemma B.3. Q.E.D. 

We now take a small positive constant p > 0 so that Xn(z, s) and 
En(s) (n = 0, 1, 2, ... ) are holomorphic and oxofox =f. 0 holds in a poly
disk {(z, s); lzl :::; 4p, lsi :::; p2 }. Combining Lemma B.3 with the rea
soning employed in Appendix A, we can obtain the following estimates 
of growth order of Xn and En as n tends to oo: There exist positive 
constants A so that for each small positive number s 

(B.75) 

(B.76) 

(B.77) 

sup IEn(s)l:::; n! e-n An, 
lsl$;(p-c:)2 

sup lxn(z,s)l:::; n!s-nAn, 
lzl $4(p-c:), lsl$;(p-c:)2 

I
OXn(z, s) I 1 -nAn sup < n.s 

lz[$;4(p-c:),lsl$;(p-c:)2 OZ -

hold for n = 1, 2, 3, ... and any s > 0. 
To verify (B.75)"' (B.77), let us assume that they hold up to n-1. 

By the assumption we can find a constant C satisfying 

(B.78) 

(B.79) 

(B.80) 

(B.81) 

sup IEo(s)l :::; C, 
lsl$;p2 

sup 1°1:~ I < C (l = 0, 1, 2, 3), 
lz[$4p,[sl$;p2 OX -

sup I (oxo)zl < C (l = 2, 3 and l = -1, -2), 
lz[$4p;[sl$;p2 OX -

l
oxo o2xo I C sup --- < . 

lzl$4p,lsl$;p2 ox ox2 -

On the other hand, by the same reasoning as in Appendix A (cf. (A.45) 
and (A.46) in Appendix A) we obtain 

(B.82) l
o2xm(z, s) I ( +l) · sup 2 :::;e(m+1)!s-m Am 

izl$4(p-c:),lsl$;(p-c:)2 OZ 
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and 

(B.83) 

for m ::; n- 1 from (B.77). Using these estimates, we find that the 
relations 

(B.84) 
axm axo axm 
ax = ax az ' 

(B.85) a2xm _ a2xo axm (axo) 2 a2xm 
ax2 - ax2 az + ax az2 , 

(B.86) a3xm = a3xo axm + 3 a2xo axo a2xm + ( axo) 3 a3xm 
ax3 ax3 az ax2 ax az2 ax az3 

yield 

(B.87) sup -- < Cm!c-mAm laxml 
lzl::;4(p-t:),lsl$(p-t:)2 ax - , 

(B.88) l
a2x I sup -;' :SC(1+e)(m+1)!c-(m+l)Am, 

lzl$4(p-t:),lsl$(p-g)2 ax 

(B.89) 

for 1 ::; m ::; n - 1 and c ::; 1. Then, through an argument similar to that 
of Appendix A, we obtain the following estimates for Rn,k (k = 1, 2, 3, 4) 
defined by (B.34) "" (B.37): 
(B.90) 

sup IRn,k(z, s)l :S n! e-n An Bn,k (k = 1, 2, 3, 4), 
lzl::;4(p-t:),lsl $(p-t:) 2 

where 

(B.91) C2 
( 16 ) Bn,t = n n- 1 + 8 , 

(B.92) B C2 { 16 8(1 + C) 
n,2 = n (n- 1)(n- 2) + n- 1 

+ (1+40+02 ) }, 
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(B.93) 

(B.94) 
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C2 ( C2c2 ) 2 

Bn,3 = 2A2 (1 + e)2+ n(n -1) e4C ' 

B _ 3C4 { ((1 )2 (1 + e )c c2 ) 402 
n,4 - A2 + e + 2 + 16 e 

+(1 +e) (2(1+e)+c)}. 
2n 

It then follows from (B.33), (B.55), (B.80) and (B.90) that 

sup j.Rn(z,s)l:::; n!c-nAn (ctBn,k). 
lzl~4(p-e),lsl~(p-e) 2 k=l 

(B.95) 

Thanks to the maximum principle (with respect to the s-variable for 
each fixed z), 

(B.96) 

for lzl :::; 4(p- c) and lsi :::; (p- c)2 should be attained on {s; lsi = 
(p- c)2}. Hence we can apply Lemma B.3 to obtain 

sup IEn(s)l:::; n!c-nAn (ctBn,k), 
lsl~(p-e)2 k=l 

(B.97) 

(B.98) 

(B.99) 

I
OXn(z,s)l< 1 -nAn( 5C ~B ) sup {) _ n. c ( )2 ~ n,k 

lzl9(p-e),lsi9P-e)2 Z P- c k=l 

from (B.95). Since we may assume 0 < c < p/3 and Sp/15 :::; 1, we thus 
obtain 

(B.100) 

(B.101) 

(B.102) 

sup IEn(s)l:::; n! e-n Anc, 
lsl~(p-e)2 

sup lxn(z, s)l :::; n! e-n Anc, 
lzl9(p-e),lsl~(p-e) 2 

I OXn(Z, s) I 1 -nAnG-sup < n.c 
lzl9(p-e),lsl~(p-e)2 {)z -
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with 

(B.103) 
- 45C 4 

C = - 2 ""'Bn k· 4p ~ , 
k=l 

Hence, if we take n and A so large that C ::; 1 is satisfied, (B.75) "' 
(B. 77) hold also for n. That is, the induction proceeds (for sufficiently 
large n) and we have completed the proof of (B.75)"' (B.77). 

In conclusion, we have proved 

Theorem B.4. Let 

(B.104) 

be the transformation that brings an MTP equation (B.2) to an oo- Weber 
equation (B.3) with 

(B.105) 

We also let 

(B.106) 
00 

xk(x, t) = L x~l (x)tj 
j=O 

oo· 

and Ek(t) = L Ekj)tj 
j=O 

denote the k-th order part (with respect to ry- 1 ) ofx(x,t,ry) and E(t,ry), 
respectively. Then there exist positive constants o and Co for which the 
following hold: 
(i) for every k both Xk(x, t) and Ek(t) are holomorphic in {(x, t); lxl ::; 
o, iti ::; o} and { t; It I ::; o}' respectively. 
(ii) the following inequalities hold fork = 1, 2, 3, .. . : 

(B.107) 

(B.108) 

(B.109) 

sup IEk(t)l::; k! cg, 
1ti:'08 

sup ixk(x, t)i::; k! cg, 
lx1,1t1:":8 

l
axk(x, t) I k' ck sup _ :S · o · 

lxl,lti:'08 ax 
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Appendix C. Representation of the action of X as 
an integra-differential operator 

In Appendix C, using the estimates of the transformation obtained 
in Appendix B (Theorem B.4), we investigate the microdifferential op
erator X defined by (2.59) in detail and represent its action upon a 
multi-valued analytic function in the form of (2.65). Throughout this 
appendix, to simplify the notation, we do not write the dependence of 
the transformation on the parameter t explicitly. As a matter of fact, the 
parameter t does not play an important role in the reasoning below and 
it applies equally to the situation where no parameter is introduced such 
as the transformation near a double turning point discussed in Section 1. 

The microdifferential operator X is defined by (2.59), that is, 

( 
f) )-1/2 

(C.1) X=: g'(x) 112 1 + a: exp(r(x, TJ)~) :, 

where 

(C.2) r = r(x, TJ) = :L>-jrj(x) 
j?_l 

and ~ stands for the symbol of f)/ 8x. We also define r J ( x) by 

(C.3) 

Then, by expanding in the powers of TJ, we may write 

(C.4) 

and 

(C.5) 

Here we set 

(C.6) { 

exp(r(x,ry)~) = 1 + L TJ-j~l fz,j(x). 
l~l~j 

(j ;:::: 1), 
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and 

(C.7) 

Thus the total symbol of X has the form 

(C.8) 

We first consider the kernel function of X, which is, by definition, 
given by 

(C.9) K(x, y, x', y') 

1 ( -ho ~ hi(Y- y')i-l , 
= 4n2 (x'- x)(y'- y) + ~ (j- 1)! (x'- x) log(y- y) 

~ ~ ~ l! hj-j' !l,j' (y - y')i-1 l ( - ')) 
+ ~ ~ ~ ( ·- 1)! (x'- x)1+1 og y Y · 

j=l j'=l l=l ) 

It follows from Theorem B.4 and its proof that there exist a neighbor
hood w1 of (x, t) = (0, 0) and a constant Co > 0 so that we have 

(C.10) sup lri I :::; j! cg (j = 1, 2, ... ), 
W1 

(C.ll) sup lr]l:::; j! cg (j = 1, 2, ... ) 
Wt 

and 

(C.12) 

Using Lemma A.4, we find 

(C.13) 

and 

(C.14) 
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Hence the coefficient of log(y- y1) in the right-hand side of (C.9) con
verges in the set 

(C.15) D = { (x,y,x1,y1) E C4 ; x E w~,x =I= X1, IY....: Y1
1 < ~0 } · 

Thus K(x,y,x1,y1) has the following form: 
(C.16) 

( 1 1) 1 ( -ho ( 1 1) ( 1)) K x,y,x ,y = 47!"2 (x1 - x)(y1 - y) + L x,y,x ,y logy- y , 

where L is a holomorphic function defined in D. 
Next we discuss the representation of the action of X as an integra

differential operator. For that purpose we prepare the following 

Proposition C.l. For a domain U in Cx let 0 denote 

(C.17) n = {(x, y; ~' 1J) E T*(U X Cy); 1] =I= 0}, 

and let P = P(x, 8j8x, 8j8y) be a microdifferential operator of order 0 
on n with the total symbol 

00 

(C.18) a(P) = "I:>-jPj(X,1]- 1 ~). 
j=O 

Here we assume that each Pj ( x, () is an entire function of ( and that 
the following growth order condition should hold: There exists a constant 
Co > 0 so that for any compact subset K of U x C< we can find another 
constant MK satisfying 

(C.19) sup IPj(X, ()I~ MKj! cg 
(x,()EK 

for j = 0, 1, 2, .... Then the action of P upon a (multi-valued) analytic 
function <fJ(x, y) is represented in the following form: 

(C.20) P<jJ(x, y) = r K(x, y- y1, djdx)<fJ(x, y1)dy1, 
}yo 

where K(x, y, djdx) is a differential operator of infinite order that is 
defined on {(x, y); x E U and IYI < 1/Co} and Yo is an arbitrarily chosen 
point that fixes the action of (8j8y)- 1 as an integral operator. 

Proof. Let 

00 

(C.21) Pj(x, () = I>jk(x)(k 
k=O 
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be a power series expansion of P1(x, () around ( = 0. Since a1k(x) is 
given by 

(C.22) 1 i P1(x,() 
a1k(x) = -2 . (k+l d(, 

7fZ I(I=R 

it follows from (C.19) that forK= K' x {(; ICI :::; R} with a compact 
subset K' of U and a positive constant R we have 

(C.23) sup lajk(x)l :::; MK',Rj! cgR-k 
xEK' 

with some constant MK = MK',R· 
Now, in terms of {a1k(x)}1,k, the action of P can be expressed as 

00 

j,k=O 

oo oo (a )k 
= 2.: 2.: = 1]-j-kajk(x) = ax ¢(x, y) 

k=Oj=O 

1y oo oo ( _ ')J+k-1 (a )k 
= 2.: 2.: ajk(x) ~. +yk- 1)! ax ¢(x, y')dy'. 

Yo k=O J=O J 

We set 

(C.25) ( a ) oo ( oo yJ+k-1 ) ( a ) k 
K x,y,ax =t; ~ajk(X\j+k-1)! ax 

and let ck = ck(x,y) (k = 0,1,2, ... ) denote its coefficient of (ajax)k, 
i.e., 

(C.26) 
00 y1+k-l 

ck(x, y) = ~ ajk(x) (j + k _ 1)!. 

To prove Proposition C.1, it then suffices to confirm the following esti
mate for ck: For any compact subset K' of U, any constant r satisfying 
r < 1/Co and any positive constant E there exists a constant M so that 

(C.27) 
Ek 

sup lck(x, y)l :::; M (k 1)' 
xEK',IYI~r - . 

holds for k = 1, 2, .... 



90 T. Aoki, T. Kawai andY. Takei 

In view of (C.23) we find 

(C.28) 
00 IYIJ+k-1 

lck(x, y)l ~ ~ lajk(x)l (j + k _ 1)! 

< -k oo j! cgiYI1+k- 1 

_MK',RR ~ (j+k- 1)! 

M R-k oo < K',R ~Cjl lj+k-1 
- (k- 1)! L..t 0 y 

J=O 

for x E K'. Hence, if y satisfies IYI ~ r < 1/Co, it follows from (C.28) 
that 

(C.29) 
M R -kc1-k 

K' R 0 
sup lck(x, y)l ~ (k _ l)' (1 _ C)" 

xEK',IYI:'::r · · r o 

Thus, as R can be taken arbitrarily large, we obtain (C.27) by setting 
E = (RC0 )-1 and M = MK',RCo(1- rC0 )- 1 . This completes the proof 
of Proposition C.l. Q.E.D. 

Remark C.l. The condition (C.19) is slightly stronger than the 
growth order condition used in the definition of "a microdifferential op
erator of WKB type" introduced in [AKKT]. For the reference of the 
reader we recall the definition of a microdifferential operator of WKB 
type, which is an operator P of order 0 on 0 whose total symbol is of 
the form (C.18) with P1 (x, () satisfying the following condition: For any 
compact subset K of U x !C( we can find a constant MK > 0 so that 

(C.30) sup IP1(x, ()I ~ j! Mi+l 
(x,()EK 

holds for j = 0, 1, 2, .... 

To apply Proposition C.1 to the microdifferential operator X in 
question, we rewrite the total symbol (C.8) of X in the following manner: 

(C.31) 
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00 00 00 

= LTJ-jhj + L T)-(j+k)hj Lil,l+k(TJ-1~)~ 
j=O ~k=O l=l 

Thus, letting Pm(x, () denote 

(C.32) 

we find that the total symbol of X has the form (C.18). Using (C.13), 
(C.14) and Lemma A.4, we then obtain the following estimate for Pm: 

(C.33) IPml <; lhml + t, c~m lh;hml) 1(1 1 

:::; c~/2e4Com! C[;" 

+ t, (i+~m c~i' ,•c" j!(\7 I)! 4'-'cg+>+l) 1(1' 

:::; C~/2e400 (m + 1)! C[;" (1 + ~ ~ ~(4Col(i) 1 ) 
= c~/2e4Co ( 1 + ~(e4Col(l- 1)) (m + 1)! C[;". 

This implies that Pm(x, () defined by (C.32) is an entire function of ( 
and satisfies the growth order condition (C.19). Hence it follows from 
Proposition C.1 that the action of X can be represented in the form 
(C.20), which completes the proof of Theorem 2.7. 

Remark C.2. In estimating the transformation to the Airy equation 
near a simple turning point in [AKT1], we used the following inequality: 

(C.34) 
h +h+···+jk=j 

jl, ... ,jk?_l 

(cf. [AKT1, Sublemma A.2.2]). Lemma A.4 is a refined version of (C.34) 
and this refinement is essential in the above proof of Theorem 2.7. In 
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fact, if we were to use (C.34) instead of Lemma A.4, (C.13) and (C.14) 
would then be 

(C.13)' 

and 

(C.14)' 
jl . 

sup l!z,3 1:::; If cg (1:::; l:::; j), 
Wl • 

respectively, and hence the estimate (C.33) for IPml would become 

(C.33)' 0 2m l m+ · 0.3/2 [ 
00 

( ( l)')] 
IPml:::; Co-1m! Co 1 + tt(Col(l) 1 + 2 m!l! . 

Consequently, in order that the right-hand side of (C.33)' should con
verge, it would be necessary for 1(1 to be sufficiently small. Thus, without 
Lemma A.4, we cannot apply Proposition C.1 and the proof of Theo
rem 2.7 fails. 
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