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A note on asymptotic stability condition for delay
difference equations

Piyapong Niamsup

Abstract.
In this paper, we obtain the necessary and sufficient condition for
the asymptotic stability of the linear delay difference equation
N
Tpt1l = Tnoi +szn—k+(j—1)z =0

j=1

where n = 0,1,2, ..., p is a real number ,and k,l, and N are positive
integers such that k > (N — 1)L

§81. Introduction

In [5], the asymptotic stability condition for the linear delay differ-
ence equation

N

(1) Tn+1l — Tn +szn—k+(]‘—1)l =0
j=1

where n € Ny = NU {0}, p is a real number and k,[, and N are positive
integers with k > (N — 1)I, is given as follows.

Theorem A. Let k, [, and N be positive integers with k > (N — 1)I.
Then the zero solution of (1.1) is asymptotically stable if and only if

2sin ({—1\7) sin (2l_17\r/!)

2 0
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where M = 2k+1— (N — 1)L
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Theorem A. generalizes asymptotic stability conditions given in [1
p.87, 2-3, 5, 6 p.65]. Theorem A. is proved using the fact that the zero
solution of a linear difference equation is asymptotically stable if and
only if all the roots of its characteristic equation lie inside the unit disk.
In [4], we give necessary and sufficient conditions for the asymptotic
stability of the following linear difference equation

Tyl — a’xp_1 + bxp_i =0.

Motivated by these results, we are interested in the asymptotic stability
of the linear delay difference equation of higher order which is similar to
(1.1) as follows:

N

(3) Tn4l — Tn—1 +pz$n——k+(j—~1)l =0
j=1

where n € Ny = NU {0}, p is a real number, and k,, and N are positive
integers with & > (N — 1)I. These linear difference equations may be
used as discrete models of population dynamics of Baleen whales, [2].
Our main theorem is the following.

Theorem 1.1. Let k, I, and N be positive integers with k odd, [ even
and k > (N — 1)I. Then the zero solution of (1.3) is asymptotically
stable if and only if

2 sin (ﬁ[—) si (Ell)

NI

4 0
4) <p< sin (20)

ey =

where M = 2k — (N — 1)1.

Remark 1.1. For p > 0 and k is even, we have F(—1) = pN > 0 and
lim F(z) = —o0; hence F' has a root which lies outside the unit disk

ZzZ—r—0C

and the zero solution of (1.4) is not asymptotically stable.

§2. Proof of Theorem

The characteristic equation of (1.1) is given by
(5) F(Z)=Zk+1—zk_l+p(z(N_1)’+--o+zl+1):0.

For p = 0, F(z) has simple roots at 1 and -1 and root at 0 of multiplicity
k — 1. We first consider the location of the roots of (2.1) as p varies.
Throughout the paper, we denote the unit circle by C and let M =
2k — (N — 1)
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Proposition 2.1. Let z be a root of {2.1) which lies on C. Then the
roots z and p are of the form

(6) z =¢e¥" and
. o lwo,
_ _ym S Wy, SN 5 —
(M) p=2(-1) sin Nl;u =DPm
for some m = 0,1,..., M — 1 where wn,, = 23 7. Conversely, if p is

given by (2.3), then z = ¥ is a root of (2.1).

Proof. We consider roots of (2.1) which lie on C' except the roots
2z =1and z = —1. Suppose that the value z satisfies V! = 1 and 2! # 1.
Then z(M-D! 4... 4 2!+ 1 =0 and 2 is not a root of (2.1) which lies on
C and we shall consider only the value z such that zV! # 1 or 2! = 1.
Thus (2.1) can be written as

I AR Gl )
P==""0 . 141

(8)
Since p is real, we have

_ E -
VDb 4l
(22 — 1)z~ k=1+V-1)1

B R |

(9) p =

where Z denotes the conjugate of z. It follows from (2.4) and (2.5) that

S2E—(N-1I _ _4

which implies that (2.2) is valid for m = 0,1, ..., M — 1 except for those
integers m such that eV'¥m? = 1 and e*m* % 1. We now show that p
is of the form stated in (2.3). There are two cases to be considered as
follows.

Case 1. z is of the form e¥m? for some m = 1,2,...,M — 1 and
2NV £ 1.
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From (2.4) we have

222 = 1) (24 = 1)
o NI _ 1]
e(k—l)wmi (62wmi - 1) (elwmi . 1)
eNlwmi _ 1

e(k—(N—l)%)wmz( Wmi _ —wmz) ( lwmi l_w2m1>
w
™
lw

p =

- Niwmi
e 2 — e

(- (N=1) bum z215111(10,,1)s1n(—m)
Sll’l(lem)

i 2i sin(wy, ) sin (24=)

sin (Nl“’m )

1 Sin(wp, ) sin (l“é )

H

= 2(-1) .
sin (
Case 2. z is of the form e®=* for some m = 1,2,...,M — 1 and
N1
=1.
In this case, we have lw,, = 2qn for some positive integer g. Then
taking the limit as lw,, — 2¢7 we obtain

2(—1)m+a(N=1) gin(w,,)
= ~ .
From these two cases, we conclude that p is of the form in (2.3)
for m = 1,2,...,M — 1 except for those m such that eV'¥m? = 1 and
elwmi 74_ 1.
Conversely, if p is given by (2.3), then it is obvious that z = e¥m* is
a root of (2.1). This completes the proof of the proposition. Q.E.D.
We now consider p as a function of z:

k122 - 1)
2(N=1)1 + o F 2+ 1

(10)

p(z) =~
Then, we have

(11) dp() 272 (222 + (k- 1)(22 - 1))
dz z<N—1)l+ A2+
2F72(22 — 1) {(N — 1)Iz-Dl 4 | —l—lzl}

(zN-D1 4 2t 4 1)°

+

From this we have
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Lemma 2.1. % # 0. In particular, the roots of (2.1) which
z=eWmi

lie on C are simple.
= 0. We divide

z=e¥myg

Proof. Suppose on the contrary that %

(2.7) by 2(2_22 to obtain

222+ (k—1)(z2—1) {(N -1V 442t}

22 -1 2N-Dl 4241 0.

(12)

Substituting z by £ in (2.8) we obtain
(13)
24+ (k=11 -2%) N1+ N =2)2" +... 420V
1—22 2N=-Dp 4l 1

By adding (2.8) and (2.9), we obtain

=0.

2% — (N 1)l =0

which contradicts k& > (N — 1)I. This completes the proof. Q.E.D.

From Lemma, 2.1, there exists a neighborhood of z = ¥ such that
the mapping p(z) is one-to-one and the inverse of p(z) exists locally.
Now, let z be expressed as z = re?. Then we have

de_z[dr ;P
dp 7 |dp rdp
dr rdz
=5

as p varies and remaining real. The following result describes the be-
havior of the roots of (2.1) as p varies.

which implies that

Proposition 2.2. The moduli of the roots of (2.1} on C increases as
|p| increases.

Proof. Let r be the modulus of z. Let z = ¢“™® be a root of C. To
prove this proposition, it suffices to show that

(14) —-p > 0.

There are two cases to be considered.
Case 1. zV! £ 1. In this case we have

k=1(,2 _ 1\(, _ =1 r(,
p(z) = -2 (ZzNz i)(lz Do NI {(1)
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where f(z) =z (z' —1). Then

d_p_ z
dz  (zNE—1)?

where g(z) = ((k—1)f(2) +2f'(2)) (zN' —1) — NizV'f(z). Letting

(=1-1)° -
w(z) = — SF=T0y» We obtain

We now compute Re(w). We note that

f(z)

f(E) = W and
h
fe = 2

where h(z) = I[(1—22)+2(1—2"). From the above relation and 2™ = —1,
we have

#90) = o { (G- @+ @) (G-1) - Sl @)
((k ~ D1(2) + h(z)) (1~ 27)  NIF(2)
ZNl+l+1+k

(k= 1)f(z) +h()) (1 - 2™) = NUf(z)

22NI—k+1
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It follows that

Re(w) = 1_0_—;—_11_)

Y LG A G )
- 2{ zk—lg(z) + _k_lg(f) }
_ _1{ 'g(2) (2N )+z’° lg(2) (2N 1)2}

2 lg(2)I?
((k—1)(2)+h(2)) (2N —1)+Nif(z) ng 1 2,

1 22NI—k+1

ey I (O RR(ONE
PO _NizMif () (b —1)°

(N~ 1)2 -1 [ ((k=1)F(2) + h(2)) (2N - 1)

o ENIE) + (k- D) + 7(2)
z2Ntg(2)] (2Nt =1)) = NizNf(z2)

(le _ 1)3zk—1

= P )+ (@) + 2k - 1) - NDFE)}

Since

h(z) + zf'(z) + (2(k — 1) = NI) f(2) = M f(2)
we obtain
(2Nt — 1)4M ' —2k=1f(z) (2N - 1)4Mp
22N |g(2)]>  2NU—1 T 222Nl|g(z)?

Re(w) =

The value of Re(w) at z = e¥nt is

(2Nt —1)*  Mp
2N 2g(2)|”

Re(w) =

= (2cos Nlw,, — 2)*- Mp 5
21g(2)|
Therefore,
dr _ 2r(cos Nlwy, — 1)> Mp 50

dp lg(2)1?

and it follows that (2.10) holds at z = e¥m?.
Case 2. z! = 1. With an argument similar to Case 1., we obtain

dr 2rN2Mp
dp (M +1)z—M+1J
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which implies that (2.10) is valid for z = e¥m*.
This completes the proof. [
We now determine the minimum of the absolute values of p,, given
by (2.3). We have the following result.
Proposition 2.3. pg = min {|py|: m=0,1,..,.M — 1}
To prove Proposition 2.3, we need the following lemmas.
Lemma 2.2. [5] Let N be a positive integer, then

sin Nt
sint

o

holds for all ¢t € R.
Lemma 2.3. [5] Let 0 < § < %, then the inequality

sin 20 sinyf < sin 6 sinxyl

holds for all z,y € (1, %)

Proof of Proposition 2.3. By assumption, [ is even which implies that
M is also even. It is clear that py > 0. Since each p,, is corresponded
to e¥mi and its conjugate e¥=%, it is sufficient to consider p,, for m =
0,1,...[#2] = & — 1. To this end, we consider the following three
cases.

Case I. N = 1. In this case, we have

. (2m+ D7
m = 2(—1)™ sin ~————2—
pm = 2(~1)"sin 2L
It follows immediately that p,, > po. v
Case II. N = 2. It suffices to show that Ii < L form =

1,2,.., % — 1. Since 2! = —2% and z = e¥™, we get

_zk“l(z2 —1) (=z% ~1)

Pm =

z4k 1
s
z% —1
_z—zt
O
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We observe that
Sln ._(..Z_ﬁ

sin
. M—(2i—1
sin —LMLJW

s M—(2i—1)
S11 —-M_k}ﬂ'

sin (7r - %1—)-7'(>
sin (kﬂ' - %kw)

(23\;1)W

2 . 2(7]\—/12)4—1 kr

sin

sin (2—3\}1—)k7r
= Di-1

Therefore, it suffices to show that

1 1
(15) — < =
Pm Do

form=1,2,..., [% — %] Note that when M = 4j then % — %]
and when M = 2j for an odd number j, then [2 — 1] = 2 _ 1 Tet

6 = 77- Then we have

1 sinkd d 1 sink(2m+1)0

po  sinf an Pm sin(2m+1)6

Note that 0 <6 < 5§ and

i . s
1< M-k<—,1<2 1< —
= Sogtsamtlsagg

since k > [. It follows from Lemma 2.2 that
sin (M — k)0 sin(2m +1)6 > sinf sin (M — k) 2m + 1) 6.
Taking into account that (M — k)6 = m — k6, we obtain (2.8) for m =

L2,. [4 B 1]
Case III. N > 3. We will show that

(16) |pm| > Po

for m = 0,1,...,[#]. With the same argument as in Case II, it
suffices to show (2.9) for m = 0,1,...,[2 —1]. Let 6 = Z. Then
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0<(2m+1)0 < % and
sip Gm+10

2

pm| =2sin(2m+1)0 | ——7
| m| sin !2m+21 Nl6

By Lemma 2.3 and Jordan’s inequality, namely % < 5129 <1lfor0 <
§ < 5, we obtain
4(2m+1)0

TN ’

We will show that (2.13) holds in the following three subcases:
Subcase (ITTa): &€ < Z_ In this subcase we have

2 1
> - o— o —_— ==
(17) |pm| =2 - (2m+1)0 N

2sinfsin¥  2.6.-Y 79

18 = 2 <
() Do sin%lg <

Inequalities (2.14) and (2.15) imply that (2.13) holds for m = 0,1, ...,

g

Subcase (ITIb): 22 > Z In this subcase we have

N_lﬁ__NlTr<E Nl m N
2 2M "2 (N—-1)I 2 (N-1)
since k> (N—-1)land M =2k - (N—-1)I>2(N-1)l - (N —-1)l =
(N —1)l. By using sin % = sin (ﬂ' - %), we get
_ 25inf sin ¥ 2.0-%  qp?
P e = 2T (r - NE) T 2r - Nib

It follows from (2.14), (2.15), and (2.16) that

lp_ml S 4(2m +1)0 . 27 — N0
Po TN 162

_ 4emey) (om
- w2 NIi§

4(2m +1) (2(N— ) 1)

w2

I
o
~~
S
3
+
—_
SN—
N
—
|
| no
—

From the above we have the following:
(i) If N > 12 and m > 1, then (2.13) holds.
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(if) If N > 4 and m > 2, then (2.13) holds.

(iii) If N = 3 and m > 4, then (2.13) holds.

We now consider the remaining cases.

(iv) N > 4 and m = 1. In this case it follows from (2.15) that 16 < %
which implies that

2 sin 36 sin 129

i 3NI6
S =7—

2 316 36162
0= T

(19) Ip1| =

[\
30

It follows from (2.15), (2.16), and (2.17) that

36162 2 — NI9 36
I—gg—l = 2 7le2 > 73 (2m — Ni9)
> §§<27r— WN)=E(7T——WN >
73 N-1 3 2(N —1)
> 4 > 1.
Z 3

(v) N=3and 1 <m < 3. By (2.15) and the assumption of Subcase
(IITb) it follows that £ < ¥ < Z and we have

sin(2m + 1)8 sin 22 | sin 2miL0

Po sin 2@mA1)10 2k DI sin © sin ¢
By Lemma 2.3, we get
sin(2m + 1)@ sin 32| 1 |sin 3| 9] 1
(3(2 +1)w R e =—|3—4sin2— >3
sin ———mT—L sin & 3|sin 3 2 3
By Jordan’s inequality we have
sin ZmA16 _2-(@m+1)g_ 20@m+1)
sin 0 0 T '
Therefore,
1
[P > 2@m +1) > 1 for m = 2, 3.
Po 3
If m=1and p; >0, using 5 < % < %, we obtain
S 210
p_1_3—4sm 5 sin 36 .1‘2.39:§>1

= >
Po 4sin3%—e——3 sin 6 6 =

This completes the proof of Proposition 2.3. Q.E.D.
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We are now ready to prove Theorem 1.1.
Proof of Theorem 1.1. Note that when p < 0 we have F(1) =
—pN < 0 and liI_}I_l F(z) = +00. Thus F has a root which lies outside
2100

the unit disk. For p = 0, F(z) has simple roots at 1 and -1 and root at
0 of multiplicity k£ — 1. Let z1(p) be the branch of the root of (2.1) with
21(0) = 1. Then it follows from (2.7) that

) __ Ny

dp |,—0 2
By the continuity of the roots with respect to p, this implies that if
p > 0 is sufficiently small then all the roots of (2.1) lie inside the unit
disk. Next, Proposition 2.3 shows that pg is a positive minimum value
of p such that a root of (2.1) intersects C as p increases from 0. Then
by Proposition 2.2, if p > pg, then there exists a root of (2.1) which
lies outside the unit disk. From these arguments, we conclude that all
the roots of (2.1) lie inside the unit disk if and only if 0 < p < po.
Therefore, the zero zolution of (1.3) is asymptotically stable if and only
the condition (1.4) holds. Q.E.D.

Remark 2.1. For the case k and ! are odd positive integers, N must
also be odd (otherwise, F(z) will have a root at —1 so that the zero
solution of (1.3) is not asymptotically stable). Note that M is still an
even integer. When N = 1 the same argument as in Case I of the proof
of Proposit1on 2.3 shows that po is the positive minimum of |p,,| for
m=20,1,..., 2 — 1. When N = 3, the same argument as in Case III of
the proof of Proposition 2.3 shows that pg is the positive minimum of
|[Pm| for m = 0,1, ..., [14‘/1 — 5] However, we can not conclude from the
proof in Case III of Propos1t10n 2.3 that po is the positive minimum of

|pm| for m = 0,1, ..., % — 1. We then have the following conclusion:

Theorem 2.4. Let k, [, and N be positive integers with k& and ! odd
and k > (N — 1)I. Then the zero solution of (1.3) is asymptotically
stable if and only if

0<p<ps

sin

* = min tm= M——l +1 % L +2 M 1
p* = Pmim= |- =2 R R :
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where M = 2k — (N — 1)l, p; = min {po, p*}, po = ——Z——)—Qsm(””)ii:(zm and
2M
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