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Foliations and compact leaves on 4-manifolds I. 
Realization and self-intersection of compact leaves 

Yoshihiko Mitsumatsu and Elmar Vogt 1 

Abstract. 

We introduce an easily tractable cohomological criterion for the 
existence of 2-dirnensional foliations with a prescribed compact leaf 
on a 4-rnanifold relying on standard methods, Milnor's inequality for 
the existence of a flat connection on an JR2-bundle over a surface, and 
Thurston's h-principle. This is used to investigate the self-intersection 
numbers of compact leaves of foliations on the product of two surfaces, 
in particular the question whether these numbers are bounded on a 
given 4-manifold. 

§1. Introduction 

This article is the first in a series of papers to study 2-dimensional 
foliations with compact leaves on 4-manifolds, in particular the self­
intersection of these compact leaves. By [HM] the self-intersection ho­
mology class of a Ruelle-Sullivan foliation cycle without compact leaves 
in its support is zero. Thus only the self-intersection classes of compact 
leaves in the support of a foliation cycle contribute to the self-intersection 
class of this cycle. From this fact results our interest in self-intersection 
numbers of compact leaves of n-dimensional foliations on 2n- manifolds, 
with 2-dimensional foliations on 4-manifolds being the first case of in­
terest. 

This article treats two themes. First we give a general criterion in 
(co )homological terms for the existence of a foliation on a given closed 
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4-manifold with a prescribed embedded closed surface as a compact leaf. 
This will be explained in §4. The basic tools for solving this problem 
are Thurston's h-principle for foliations of codimension greater than one 
([Th]), Milnor's inequality for the existence of a flat connection on an JR2-

bundle over a surface ([M]), and well known relations for characteristic 
classes concerning the existence of plane fields on 4-manifolds due to 
Hirzebruch-Hopf ([HH]). 

To deal with this question was prompted by the second theme. Here 
we ask whether for any given closed oriented 4-manifold .1\1 there exists 
an upper bound for the self-intersection numbers of compact leaves of 
2-dimensional foliations on .1\1. This question originated in the work 
of the first author in his thesis [Mil] under the direction of Professor 
Shigeyuki Morita. See also [Mi2]. 

In 1999 the authors showed that there exists for each g ~ 2 and 
any even number k a foliation on .1\1 = 2:9 x T 2 with a compact leaf 
with self-intersection number k. The method to produce these foliations 
is a good illustration in the use of Thurston's h-principle, so that we 
feel justified to include it. This we do in §3. The arguments we use 
in our treatment of the first theme can be regarded as cohomological 
improvements of this method. 

While the results concerning our first theme apply to all closed ori­
entable 4-manifolds, we only consider products of two orientable closed 
surfaces for the second. We show in §6 that the self-intersection num­
bers of compact leaves are unbounded for 2-dimensional foliations on 
products of closed orientable surfaces where either one factor is a torus 
or no factor is a sphere. In all other cases, i.e., at least one factor is 
a 2-sphere and no factor is a torus, the set of intersection numbers is 
bounded. This is proved in §7. In fact, the set of homology classes in 
Hz(:E9 x S 2 ) ~ Z EEl Z which can be realized as a compact leaf of some 
foliation is essentially bounded. 

Apart from the sections mentioned above there are three more. We 
begin in Section 2 by recalling some basic facts about compact leaves of 
foliations. Section 5 contains the proof of a Theorem of Section 4 which 
says that two splittings of an JR4-bundle over a surface into a sum of two 
plane bundles are homotopic as splittings if their Euler classes agree. In 
the final section, apart from raising several questions related to this ar­
ticle, we supplement the information of Section 7 on the foliations with 
compact leaves on 2:9 x S 2 . As will become clear, there are many inter­
esting foliations with compact leaves representing a surprising number 
of elements in Hz(:Eg X S2 ). 
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We only deal with smooth oriented foliations on smooth oriented 
manifolds in this article, but everything will work also in the cr -category, 
r 2: 2. 

The authors are grateful to Dieter Kotschick for suggesting to them 
to introduce cohomological considerations for these problems. As was 
mentioned earlier, the cohomological method gives rise to the existence 
of some very interesting foliations. In the second article of the present 
series we will describe some of them explicitly. 

§2. Fundamentals on compact leaves and basic examples 

In this section and in the next, we explain the constraints on a 
prescribed surface to be a compact leaf of some foliation. The first one 
is due to the integrability of the plane field. 

Before we describe this we fix some notation which we will use 
throughout this paper. M will always denote an oriented closed 4-
manifold, :F a 2-dimensional smooth foliation on a 4-manifold, T [resp. 
v] the tangent [resp. normal] bundle to a foliation, e the Euler class of 
bundles, and E 9 will denote the closed orientable surface of genus g with 
some fixed orientation. We deal only with smooth objects. 

The normal bundle v:F of any foliation :F admits a so-called Bott 
connection, that is, a connection whieh is flat along the leaves of :F([B]). 
(This is true in all dimensions.) 

On the other hand, Milnor's seminal inequality ([M]) asserts that an 
oriented vector bundle ofrank 2 over E9 , g 2: 1, admits a flat connection 
if and only if the Euler number of the bundle is bounded in absolute 
value by one half of the absolute value of the Euler characteristic of the 
surface. Combining these two theorems, we have the following. 

Proposition 2.1. A compact leaf L ~ E9 , g 2: 1, of a foliation 
:F on M satisfies the following inequality between its homological self­
intersection [Lj2 = [L]· [L] E Z and its Euler characteristic. 

1 1 
l(e(v:F), [L])I = I[L]2 1:::; 2l(e(r:F), [L])I = 2lx(L)I = g- 1 

Conversely, if an embedded surface L ~ E9 c M (g 2: 1) satisfies 
I[Lfl :::; g- 1, then L is a leaf of some foliation of some open neighbor­
hood of L. 

The following example is standard and fundamental. It also shows 
how to compactify and modify a foliated tubular neighbourhood of a 
closed surface into a foliated closed manifold. 
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Example 2.2. Take an oriented flat JR.2-vector bundle Ep over a 
closed oriented surface ~9 of genus g ?: 1 with holonomy p : 1r(~9 ) --+ 

5L(2; JR.). Its Euler number k = (e(Ep), [~9 ]) satisfies Milnor's inequality 
I k I :::; g- 1. Take the product 75 of the one-dimensional trivial representa­
tion and p, namely, embed 5L(2; JR.) into the second and the third rows 
and columns of 5L(3; JR.). By taking the associated action of 5L(3; JR.) 
on the space of oriented lines, we obtain an oriented flat 5 2-bundle Ep 
and consequently a foliation :Fp on Ep. 

The points P± E 5 2 which correspond to (±1, 0, 0) E JR.3 are fixed 
points of the action (in fact, the only fixed points, if k -j. 0), and the 
tangential representation at P+ exactly coincides with p, while at P_ 
we obtain p with the orientation reversed. Therefore the foliation :Fp 
has two compact leaves L± correponding to P± with [L±] 2 = ±k. The 
hemispheres H±{(x, y, z) E 5 2 ; ±x > 0} and the equator 5 1 = {x = 0} 
are also invariant. The flat Hvbundle is diffeomorphic as an oriented 
foliated manifold to the original flat vector bundle Ep. The same holds 
for the H_-bundle with the reversed orientation. 

Also remark that if k is even, the 5 2-bundle is diffeomorphic to the 
product bundle once the flat structure is forgotten. The identification 
via this diffeomorphism does not preserve the equator nor P±. In the 
product bundle the compact leaf L± is identified with the graph of a 
map f± : ~9 --+ 5 2 with deg f± = ±k/2. For k odd, the bundle is 
twisted. See also Proposition 5.1. 0 2.2. 

§3. Unbounded self-intersection on ~9 x T 2 • A geometric con­
struction 

In this section, we construct a family of foliations with prescribed 
compact leaves on A1 = ~9 x T 2 (g ?: 2), relying on Thurston's h­
principle, and we also explain how the h-principle is used in our context. 

Theorem 3.1. (Thurston [Th]) Let~ be a smooth 2-plane field on 
a smooth n-manifold N, n ?: 4, let K C N be closed, and assume that 
~ is completely integrable (i.e., it defines a 2-dimensional foliation) in 
a neighborhood of K. Then ~ is homotopic to a completely integrable 
plane field via a homotopy which is constant on K. 

There is an unpublished somewhat simplified proof of this theorem, 
which is due to A. Haefliger. It makes the resulting foliations almost 
visible. We will present this proof in the forthcoming paper [MV]. 

Example 3.2. Fix g ?: 2. Then for each pair of positive integers 
a and b satisfying 1 :::; b :::; g - 1, there exists a foliation { :Fa,d on 
A1 = ~9 x T 2 with a compact leaf La,b , which has self-intersection 
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number [La,b] 2 = 2ab. Especially, on eachsuch M, the self-intersection 
numbers of closed orientable surfaces which are leaves of foliations on 
M are not bounded. 

General strategy: The following is the basic strategy for the con­
struction, which will again be used in the next section. 

First we fix an embedded surface L satisfying Milnor's inequality, 
i.e., I[LJ21 ~ lx(L)I/2. Then as we have seen in 2.1, we can foliate a 
neighbourhood of L. Next we extend the tangent plane field of this 
foliation to a plane field on all of M. In this section this process is done 
by a geometric argument, while a cohomological argument replaces this 
in the next section. Then Thurston's h-principle modifies the plane field 
into a foliation keeping L as a compact leaf. 

Geometric Construction: To begin the construction, let us take 
a distinct points {P1 , •.. ,Pa} ofT2 and b distinct points {Q1, ... ,Qb} of 
E9 • The singular oriented surface 

a b 

L~,b = <U Eg X Pi) u ( u Qj X T 2) 

i=l j=l 

has ab double points. Resolving the double points by rounding off, i.e., 
by removing small disk neighborhoods of the points from the horizontal 
and vertical branches of L~ b' and reconnecting each pair of the resulting 
boundary circles by an an~ulus respecting the orientation, we obtain a 
connected closed surface La,b with the desired self-intersection number. 
However, we do this slightly more carefully so that we can easily extend 
the tangent plane field of this surface to all of M. 

Step 1 (resolving the double points): Take a small holomor­
phic coordinate neighbourhood (Uj, z) around Qj in E9 so that at Qj 
we have z = 0. Also fix a complex structure on T 2 as C/Z EB HZ and 
place P 1 at 0. Let w denote the standard holomorphic local coordinate 
on T 2 . Then around the double point (Qj,PI) = (0,0) consider the 
graph of zw = e:4 for a small constant 0 < e: « 1. Inside the polydisk 
{(z, w); izl, lwl ~ e:2 } of radius e:2 we adopt the graph as part of the 
connecting smooth annulus. 

singular surface L~,b surface La,b plane field ~o 
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Outside the polydisk, we deform the graph as follows. In { ( z, w) ; 
jzj ::; e2 ::; lwl} we deform the graph horizontally, i.e., in z-direction, 
so that outside {(z,w); E: ::; lwl} it is vertical, i.e., it coincides with 
{z = 0}. In {(z,w); lwl ::; e2 ::; lzl} it is deformed vertically so that 
outside { ( z, w) ; E: ::; I z I} it is horizontal. This can be done so that the 
resulting surface is smooth and is away from { z = 0} the graph of a 
function. We can achieve this by a C 1-small deformation if we take E: 

small enough. 
The connecting annulus is then the part of the deformed graph inside 

{(z,w); lzl, lwl::; e} and the disks {(z,O); lzl::; e} and {(O,w); lwl::; e} 
have been removed from F~,b· 

Step 2 (coherent resolutions and the plane field): The 
remaining double points get resolved in exactly the same way using 
exactly the same graphs and deformations as above where at (Qj, Pi) 
we choose the same coordinate system (Uj, z) around Qj as before and 
around Pi the translate of the coordinate system of P 1 . 

The resulting smooth oriented embedded surface La,b has the prop­
erty that any translation of M in the T 2-direction which maps a point 
x of La,b to another point y of La,b also maps a neighborhood of x in 
La,b diffeomorphically onto a neighborhood of y. Therefore, by transla­
tions in the T 2 direction, we can extend the tangent plane field of La,b 
to an oriented plane field ~0 on M. This plane field is smooth in the 
complement of u~=l Qj X T 2 , but globally only C 0 . 

Let 6 be a smooth approximation of ~0 , close enough so that the 
arguments in the next step are valid. 

Step 3 (application of2.1 and 3.1): The surface La,b represents 
the homology class a[I;9 ] + b[T2] and thus has self-intersection number 
2ab. Also it is easy to see that x(La,b) = 2a(1 - g- b). Therefore, 
our condition 1 ::; b ::; g- 1 is nothing but Milnor's inequality in 2.1 
provided that a and b are positive. It follows that there is a foliation of 
some open neighbourhood V of La,b which has La,b as a compact leaf. 

If V is small enough (and 6 close enough to ~0 ), the plane field of 
this foliation is smoothly homotopic to 6 on V. Therefore, by taking 
a closed neighborhood U C V of La,b and a smooth partition of unity 
subordinate to { M \ U, V} we find an oriented plane field ~ on M which 
coincides with the tangent plane field of the foliation on U (and with 6 
outside of V). 

Now, Thurston's hrprinciple 3.1 enables us to deform the plane field 
~ into the tangent plane field of a foliation on M which admits La,b as 
a compact leaf. This completes the construction of Example 3.2. 0 3.2. 
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Remark 3.3. The surface La,b is genus-minimizing in its homol­
ogy class, i.e., the genus of any connected embedded surface which is 
homologous to La,b is not smaller than the genus of La,b· 

This is so, because La,b is close to an almost holomorphic submani­
fold and so is a symplectic submanifold for the product symplectic struc­
ture on M = ~9 x T 2 . Now, the validity ofthesymplectic Thorn conjec­
ture ([OS]) assures that La,b is genus-minimizing in its homology class. 
We can also realize La,b as a holomorphic submanifold of M. 

§4. A cohomological criterion 

We introduce a (co )homological method to decide when the tangent 
plane field of a given surface can be extended to the ambient manifold. 
The following result is well known, and it is an immediate corollary of 
a theorem accredited in [DW] to Pontrjagin [P]. This theorem states 
that for n 2: 4 isomorphism classes of principal SO(n)-bundles over a 
4-complex K without 2-torsion in H4 (K; Z) are completely classified by 
w2,Pt, and W4 . Here, w2 E H 2(K; Z/2) is the second Stiefel-Whitney 
class, PI E H 4 (K; Z) the first Pontrjagin class, and W4 the fourth Stiefel­
Whitney class in H4 (K; Z), n = 4, or in H 4(K; Z/2), n 2: 5. (See also 
the corollary in Section 3 of [DW]). Note that for 80(4)-bundles, W4 is 
just the Euler class. 

Theorem 4.1. Let M be a closed oriented connected 4-manifold and 
assume that the two cohomology classes e1 and e2 E H 2 (M; Z) satisfy 
the follwoing three conditions. 

(1) ei + e~ = PI(M) E H 2 (M; Z) 

(2) (e1 u e2, [M]) = x(M) 

(3) e1 + e2 = w2(M) E H 2(M; Z/2) 

Then, there exists a pair of oriented IR2 -bundles £ 1 and .C2 over M such 
that £1 EB .C2 is isomorphic to the tangent bundle T M and e(.Ci) = ei for 
i = 1, 2. In other words, e1 and e2 are the Euler classes of a transverse 
pair of oriented plane fields on M. 

Assume now that we have a pair of transverse plane fields of M. 
The next theorem will provide us with a simple check involving the 
Euler classes of these fields to decide when the first one of them can 
be homotoped into one which is tangent to a given embedded closed 
surface. A similar statement for splittings of IR2-bundles over the circle 
is not true. 

Theorem 4.2. Let E be an oriented IR4 -bundle over a closed ori­
ented surface L and £ 1 EB .C2 = E and .C~ EB .c; = E be two splittings of E 
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into sums of oriented IR2 -subbundles. Then the following two statements 
are equivalent. 

(4) e(.CI) = e(.C~) and e(£2 ) = e(.C~). 

(5) £ 1 EEJ£2 and .C~ EEJ.C~ are homotopic 
as splittings of E. 

The proof will be given in the next section. 

Corollary 4.3. Let L be an embedded closed oriented connected 
surface in M, e1 and e2 E H 2 (M; Z) be two cohomology classes satisfying 
the conditions (1) - (3) of Theorem 4.1 and the following condition. 

( 4') (e1, [L]) = x(L) and (e2, [L]) = [L] 2. 

Then the tangent plane field T L C T Jt1 of L extends to an oriented 
plane field .C on M. 

Proof of Corollary 4.3. 
This follows from Theorems 4.1 and 4.2 in a straight forward way. 
Assuming the hypotheses of Corollary 4.3, Theorem 4.1 assures the 

existence of a transverse pair of plane fields £ 1 and £ 2 on Jt1 whose 
Euler classes are e1 and e2 . Theorem 4.2 asserts that .C1IL and T L 
are homotopic as sub bundles of E := T MIL· Let 1~, 0 :S t :S 1, be a 
continuous family of 2-dimensional oriented subbundles of E with L~ = 
T L, 0 :S t :S 1/2, and 1~ = .C1IL· 

Next take a tubular neighbourhood p : U3 --> L of L in M which 
we view as a normal disk bundle of radius 3 and let sl c u3 be the 
corresponding unit sphere bundle. Every point of U3 can and will be 
written in the form r ·X, 0 :S r :S 3, X E S1, and we identify 0 ·X with 
p(x) E L. Also for s < 3, Us denotes {r · x E U3l 0 :S r :S s}. 

The bundle TMiu3 is isomorphic to 

p*E = {(r ·x,v) E U3 x Eiv E Eo.x}, 

where as usual Eb denotes the fibre of E over b E L. We identify T Jt1lu3 

with p* E. 
The restriction .Ciu3 of any oriented 2-dimensional subbundle .C of 

T M is described by a map L which assigns to each r · x E U3 an oriented 
2-dimensional subspace L(r · x) of Eo·x· With this notation we define a 
continuous family .Ct, 0 :S t :S 1, of oriented plane fields of Jt1, where £ 1 

is our original £ 1 from above, as follows. 

(a) £tiM\U2 = £1IM\U2 

(b) Lt(r·x)= ; l+t ·x' - _r_ ' { L ( 2(r-l+t) ) 1 t < < 2 

Lt+r(O·x), O:Sr:S1-t. 
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The plane field Co restricted to U1; 2 is the pull back ofT L by p : U1; 2 --) 

L. Therefore it is tangent to Land smooth in the interior of U1; 2 , and we 
may appproximate it by a smooth field, still called Co, which is tangent 
to Land homotopic to C1 as an oriented subbundle ofTM. D 4.3. 

Applying our general strategy stated in Example 3.2, we obtain 
by combining Milnor's inequality 2.1, Thurston's h-principle 3.1, and 
Corollary 4.3 the following theorem, which is one of the main results of 
the present article. 

Theorem 4.4. Let L be a closed oriented connected embedded sur­
face of genus greater than 0 in a closed oriented 4-manifold M which 
satisfies Milnor's inequality 2.1. Assume that two cohomology classes e1 

and e2 E H 2(M; Z) satisfy the following five conditions. 

(1) ei + e~ = Pl(M) E H 2 (M; Z), 

(2) (e1 U e2, [M]) = x(M), 

(3) e1 + e2 = w2(M) E H 2(M; Z/2), 

(4) (e1, [L]) = x(L), 

(5) (e2, [L]) = [Lj2. 

Then there exists a foliaton :F on M which has L as a compact leaf. 

This theorem translates the existence problem of foliations with pre­
scribed compact leaves into a purely cohomological problem, i.e., looking 
for solutions of a system of quadratic equations in the integral cohomol­
ogy ring of the ambient 4-manifold. For 4-manifolds with accessible co­
homology rings these equations can be dealt with. We will see examples 
of this in Sections 6, 7, and 8. 

Remark 4.5. The above theorem implies that the question of 
whether an embedded surface L is a leaf of a foliation depends only on 
its homology class and its genus. Obviously, given a homology class 
and genus satisfying the equations of the theorem, we can realize it by 
an embedded surface if and only if the genus is not smaller than the 
minimal genus of a connected embedded surface in this homology class. 
So it is important to know this minimal genus. Of course, quite often the 
solution of the symplectic Thorn conjecture [OS] provides the answer. 

Here is an immediate corollary to the theorem, which is already 
interesting. 

Corollary 4.6. Let :F be a 2 dimensional oriented foliation on a 
4-manifold and let L be a homologically trivially embedded 2-torus in 
M, i.e., [L] = 0 E H2(M; Z). Then we can modify the foliation in a 
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neighbourhood of L into new foliations F 1 and F 2 such that the following 
holds. 

(1) F 1 has L as a compact leaf. 

(2) F 2 is transverse to L. 

Of course one is tempted to construct these foliations explicitly. 
Some of these constructions will be presented in the forthcoming paper 
[MV]. Scorpan showed the existence of foliations like F 2 in the frame­
work of singular foliations [S]. 

§5. Proof of Theorem 4.2 

In this section we give a proof of Theorem 4.2, though it might 
be a folk theorem. It can be explained in a more general setting, as 
a general story about homotopy classes of subplane bundle of an ori­
ented ~4-bundle. (See for example the two excellent articles of Dold 
and Whitney [DW] and Hirzebruch and Hopf [HH]). However, we deal 
with the material in a rather down-to-earth manner which works in our 
particular range of dimensions. In this section, E refers to the oriented 
connected closed surface Lin the statement of Theorem 4.2. 

Let us start with reviewing the following well known facts, one of 
which was already mentioned in Example 2.2. Let C(k) denote an ori­
ented ~2-bundle over a closed oriented connected surface E with the 
Euler number (e(C(k)), [E]) = k. We also regard C(k) as a complex line 
bundle with c1 = k. Let cr denote the product ~r -bundle and c(: the 
product cr -bundle. The isomorphism classes of complex line bundles or 
oriented ~2-bundles over surfaces are determined by c1 =e. 

The statements in the following proposition are also fairly elemen­
tary and well known. Nevertheless, we review proofs of them , because 
this will aid in understanding the arguments leading up to the proof of 
Theorem 4.2. 

Proposition 5.1. 
1) 

2) 

3) 

Isomorphism classes of oriented ~3-bundles over E are deter­
mined by w2 E H 2 (E; Z/2). In other words, any oriented ~3 -
bundle over E is isomorphic to C(k) EB c1 for some k E Z 
and C(k1) EB c1 and C(k2 ) EB c1 are isomorophic if and only if 
k1 = k2(mod2). 
For any oriented ~3-bundle over E with w2 = 0 [resp. w2 "I 0], 
the self-intersection number of any cross section of the associ­
ated unitS2 -bundle is an even [resp. odd] number. 
Isomorphism classes of oriented ~4-bundles over E are also 
determined by w2 E H 2 (E; Z/2). Any oriented ~4-bundle over 
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I: is isomorphic to some £( k) EB s 2 and its isomorphism class 
is determined by the parity of k. 

4) C2 -bundles over I: are determined by c1 E H 2 (I:; Z). In other 
words, any C2 -bundle over I: is isomorphic to £(kl) EB £(k2 ) 

for some k1 and kz E Z, and £(kl)EB£(kz) and £(m2 )EB£(mz) 
are isomorophic as C 2 -bundles if and only if k1 +k2 = m1 +m2. 

Proof. 1) Reversing the steps in the construction for Example 2.2, 
where a triviallR-bundle was added to an oriented JR2-bundle, gives rise 
to the proof. Let E be an oriented JR3-bundle over I: and S2 E be the 
associated S2-bundle. Because the fibre of S2 E is simply connected, it is 
easy to find a section of S2 E. This section defines a trivial1- dimensional 
subbundle of E which gives rise to an isomorphism E ~ £(k) EB s 1 for 
some k E Z. Also notice here that the normal bundle of this section 
in S 2 E is canonically isomorphic to the complementary subbundle £(k) 
and thus k = I [ L ]21, if L denotes the image of this section. 

We can change the homotopy class of the cross section locally over 
a disc D c I:. There the bundle looks like a product and the section is 
a graph of a smooth map f : D -----> S2. Up to homotopy we may assume 
that the map is constant on the boundary 8D. So f : (D, 8D) -----> 

(S2, f(8D)) has a degree. Changing the degree of this map by l changes 
the self-intersection of the cross section by 2l. 

The statement 2) also follows from the argument above. Remark 
also that if w 2 = 0, there is no homology class whose self-intersection is 
an odd number. 

3) It is also easy to find a cross section to the associated S3-bundle 
of a given oriented JR4-bundle, which splits off a trivial line bundle. Then 
what we have to show reduces to statement 1) for the complementary 
JR3-bundle. 

Of course, an analogous statement is true for oriented vector bundles 
over I: of any rank greater than 2. 

4) The proof is again as in 1). Consider the CP1-bundle associated 
to the given C2-bundle E. Because the fibre is CP1 ~ S2, we can again 
find a cross section, which gives rise to some complex line bundle£ C E. 
Therefore we obtain a splitting E = £ 1 EB £ 2 of E into two complex line 
bundles £ 1 ~ £(kl) and £ 2 ~ £(k2 ) for some k1, k2 E Z. 

As c1 (E) = k1 + k2 is an invariant, any splitting satisfies this relation. 
On the other hand, assume m 1 + m 2 = k1 + k2 . Then we can locally 
change the splitting so as to have E ~ £(ml) EB £(m2) by changing the 
degree of the cross section to the associated CP 1-bundle, as the following 
famous example illustrates. Take E = E~ over I: = CP1. Then we have 
two canonical splittings s~ = E~ EB E~ and E~ = 1 1 EB ry1 where 1 1 denotes 
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the tautological line bundle and ')71 denotes its complement. Of course 
we have /'1 9:! .C(-1) and ')71 9:! .C(1). 05.1. 

We will also use the following proposition. 

Proposition 5.2. For an oriented 5 2 -bundle over I:, two cross 
sections are homotopic if and only if their self-intersections coincide. 

Next, we review some basic facts about the oriented Grassmannian. 
Let us fix the standard orientation and the inner product on ~4 . We 
denote by Gr(4, 2) the set of oriented planes through the origin in ~4 

with its natural structure as a smooth 4-manifold. Let L be an oriented 
plane in ~4 and LJ. be its oriented orthogonal complement. Then we 
obtain a pair (Jt, 1£) of complex structures on ~4 as follows. 

1t IL rotates L by 1r /2. 
1t1L_j_ rotates LJ. by n/2. 
1£ IL rotates L by 1r /2. 
1£IL_j_ rotates LJ. by -n/2. 

Notice that 1+ defines the standard orientation on ~4 while 1_ defines 
the opposite one. We call a complex structure on ~4 positive or negative 
depending on whether it induces the standard orientation or not. Also, 
we assume that any complex structure on ~n is an orthogonal trans­
formation of ~4 . Let :1± denote the set of positive/negative complex 
structures considered as subspaces of 0(4). We have obtained the map 

<I>: Gr(4, 2)--> J+ x :f_. 

Proposition 5.3. 

1) Both of :1± are diffeomorphic to 5 2 . 

2) The map <I> : Gr( 4, 2) --> J+ x :J_ is a diffeomorphism. 

Proof. 1) Let e 1 , ... , e 4 be the standard basis of ~4 . A positive (or 
negative) almost complex structure 1 is uniquely determined by 1(e1 ) 

which lies in the unit two sphere 5 2 ( < e2, e3, e4 >) in the span e{ = 
<e2, e3, e4> of e2, e3, and e4, because 1 rotates L = <e1 , 1(e1)> 
positively and LJ. positively (or negatively). Here < , > denotes the 
linear span. 

Conversely a free choice of the image of e 1 from 5 2 ( e{) determines 
a positive (or negative) almost complex structure. 

We orient 5 2 ( e{) as the unit sphere in < e2, e3, e4 > and orient :1± 
accordingly. 
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2) S0(4) naturally acts transitively on Gr(4, 2). It is not difficult to 
check at one point of Gr(4, 2) that <I> is a local diffeomorphism. There­
fore <I> is a covering map over a simply connected space and hence is a 
diffeomorphism. D 5.3. 

For a given oriented ffi.4-bundle E over I:, we always assume that 
a fibre-wise inner product has been fixed. Then denote by Gr(E) the 
associated G rassmannian bundle and by .:1± (E) the associated bundles 
of positive and negative complex structures. The 5 2-bundles J± (E) over 
I: carry natural orientations. 

With regard to the next lemma, the proof of Proposition 5.3 is more 
important than the statement. 

Lemma 5.4. If w2 (E) =J 0, both bundles J±E are twisted as 5 2 -

bundles, i.e., w2 (J±E) =J 0. If w2 (E) = 0, of course, both bundles 
J±(E) are trivial. 

Proof. By Proposition 5.1 3), we may assume that E ~ c1 EB E' 
withE'= c1 EB .C(k) for some k E Z, with k = (w2(E), [I:]) (mod 2). It 
follows then from the proof of Proposition 5.3 that both J±(E) are ori­
ented isomorphic to S2(E'). Therefore we have w2 (J±(E)) = w2 (E') = 
w2 (E). D 5.4. 

The next Theorem is the key to prove Theorem 4.2. Before stating 
it, we fix some notations. For an oriented ffi.2-subbundle £ C E, let 
J±(£) denote the complex structure of E determined byE=£ EB £1.. 
J±(£) are also considered as sections of J±(E). 

Theorem 5.5. For a splitting E = £ EB £1. with £ ~ .C(kl) and 
£1. ~ £(k2 ), the self-intersection of J±(£) in J±(E) is given as follows. 

[h(£)] 2 = k1 + k2, [L(£W = -k1 + k2. 

Proof. First we prove this for the case£~ E2 ~ ci EBd and £1. ~ 
.C(k). Let us follow the notations in the proof of 5.4. In this case we 
can identify J+(E) with S2(E') and through this identification, h(£) 
is identified with the cross section of S 2(E') which corresponds to the 
canonical frame of d C E', because h(.C)(ci) = E~. As E' = c~EB.C(k), 
the proof of Proposition 5.11) tells us that the normal bundle of J±(£) 
in S 2 (E') is isomorphic to .C(k). This implies 

[h(£W = [L(£W = k. 

Now let us prove the general case. By Proposition 5.1 4), we have 
an isomorphim .C(kl) EB £(k2) ~ £(0) EB .C(k) fork= k1 + k2 as complex 
vector bundles, where .C(kl), £(k2 ), £(0), and .C(k) are considered as 
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complex line bundles. This implies that the complex structures on E = 

.C(ki) EB £(k2 ) given by the two splittings .C(ki) EB £(k2 ) and £(0) EB 

.C(k) coincide. On the other hand, the complex structure on .C(ki) EB 
£(k2 ) [resp. £(0) EB .C(k)] is nothing but J+(.C(ki)) [resp. J+(£(0))]. 
Hence their self-intersections also coincide. Therefore, computing the 
self-intersection of the first complex structure reduces to that of the 
second one and we obtain [h(£(kl))j2 = k = k1 + k2. 

The computation of [L(£)]2 reduces to that of [J+(£)] 2 by reversing 
the orientations. Let E be the JR4-bundle which is identical to E but 
with the opposite orientation. We can realize this by only reversing the 
orientation of _c.l and leaving£ as it is. Therefore E ~ £EBf.l where f.l 
the same as _c.l with the opposite orientation, and thus f.l ~ £( -k2 ). 

Therefore L(£ C E) forE = £ EB _c.l is nothing but h(£ C E) for 
E = £EBf.l. However, the orientation of S2 (E') is the opposite of that 
of S2 (E') where E' = E~ EB f.l. Therefore we obtain 

This completes the proof. 05.1. 

Proof of Theorem 4.2. 
We only have to show ( 4) ==? (5) because the converse is trivial. Now 

(4) implies 

By Proposition 5.2 J+(.CI) and J+(.CD are homotopic to each other as 
sections of :h(E) and so are L (£1) and J_ (£~). Therefore the two sec­

tions (J+(£1), L(£2 )) and (J+(£~), L(£;)) of Gr(E) are homotopic. 
This completes the proof of Theorem 4.2. 04.2. 

§6. Unboundedness for ~9 x ~h 

As an application of Theorem 4.4, we show that for most products 
~9 x ~h of two closed oriented surfaces there is no bound on the set of 
self-intersection numbers of surfaces in ~9 x ~h which can be realized 
as leaves of a foliation on ~9 x ~h. Precisely, we show the following. 

Theorem 6.1. Let M be one of the following products. 

(a) M = ~9 x ~h, where g, h 2: 1, 
(b) M = T 2 x s2 . 

Then, there exists a family of 2-dimensional oriented foliations on M 
with compact leaves such that the set of self-intersection numbers of these 
compact leaves is unbounded. 
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This result is a substantial generalization of Example 3.2. It gives 
an indication that there should be many more manifolds which exhibit 
the same phenomenon. We will see in the proof of this theorem the 
power and ease of use of Theorem 4.4. 

Proof of (a). 
First let us fix some notation, which will be used throughout this 

section and also in the next section. In the cohomology ring 

we identify elements x E H*(E9 ; Z) with x 181 1 E H*(M; Z). Similarly 
y E H*(Eh; Z) is identified with 1 181 y, so that xy is identified with 
x 181 y E H*(M;Z). If N is one of M, E9 , or Eh, {N} denotes the 
cofundamental class. With this understanding, we have 

We use similar notations for homology as well. 
Because both surfaces E9 and Eh have positive genus, there exists 

pairs of classes 

which satisfy 
c1c2 = {E9 } and d1d2 = {Eh}. 

For two positive integers a and b, take an embedded surface L = La,b 
in M which represents the homology class a[E9 ] +b[Eh] E H2(M; Z) con­
structed in the same way as the surface with the same name in Example 
3.2. It has Euler characteristic 

x(L) = 2a(1- g)+ 2b(l- h)- 2ab 

and is genus-minimizing in its homology class, as remarked in 3.3. 
Now let us take two cohomology classes 

2 

e1 a{E9 } + f){Eh} + L T/ijcidj 
i,j=l 

2 

e2 'Y{E9 } + 8{Eh} + L (ijCidj 
i',j'=l 

in H 2 (M; Z) with indeterminate integers a, f), "(, 8, T/ij, and (ij (i, j = 
1, 2). These are candidates for the Euler classes of the tangent and 
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normal bundles of the foliations that we are looking for. We show that 
for an unbounded family of (a, b)'s, there exist solutions e1 and e2 , i.e., 
a, (3, "(, 8, T/ij, and (;j (i, j = 1, 2), for the equations (1)- (5) in Theorem 
4.4 which also satisfy Milnor's inequality. If g 2: 2 or h 2: 2 we have 
more room in H 2 (M; Z) and therefore more freedom to choose e1 or e2, 
but, as we will see, even with this limited choice for the Euler classes of 
tangent and normal bundles of foliations there is no bound on the set of 
self-intersection numbers of compact leaves. 

To prove the theorem, it is enough to present the solutions. How­
ever, here we demonstrate a procedure to solve the equations briefly to 
appreciate the power of the cohomological criterion. 

Let us first assume that h 2: 2. Then, for the surface La,b, Milnor's 
inequality I[La,bFI ::S ~IX(a,b)l becomes 

a(g- 1) + b(h- 1) 2: ab. 

Therefore, by putting a = h- 1 2: 1, the inequality is satisfied for any 
b. The other equations (1)- (5) which have to be fulfilled are as follows 
in terms of the integral indeterminants. 

(1) P1(M) : a8 + /3"( + T/12T/21- T/UT/22 + (12(21- (11(22 = 0, 
(2) x(M) : a/3 + "(8- T/11(22 + rt12(21 + rt21(12- T/22(11 

= 4(1- g)(1- h), 
(3) w2(M) : a="(, (3 = 8, T/ij = (ij (i, j = 1, 2) (mod 2), 
(4) x(La,b) : aa + b/3 = 2a(1- g)+ 2b(1- h)- 2ab, 
(5) [La,bF : a"(+ b8 = 2ab. 

Now ( 4) and ( 5) are also expressed as 

b b 
a --/3+2(1-g)+2-(1-h)-2b 

a a 

'Y -~8+2b. 
a 

Therefore take b to be a multiple of a. Then any integral choice for (3 
and 8 determines integral a and 'Y· Also we assume here that (3 and 8 
are even so that a and 'Y are also even. To fulfill (3), we also assume 
that all T/ij 's and (;j 's are even. Already (3) - (5) are fulfilled. Now put 

T/22 = (11 = (12 = (21 = 0, T/21 = (22 = 2. 

Then for any choice for a, b and any even choice of (3 and 8, it is easy 
to find even integers T/11 and ry12 for which ( 1) and ( 2) are satisfied. 
Therefore the existence of a solution is proved for a = h - 1 and b = 
k ( h - 1) for any k E N. 
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In the case g = h = 1, the argument has to be slightly modified. In 
particular, we need extra handles on L to achieve Milnor's inequality. So 
add local tiny handles to La,b l-times to obtain a new surface L' which 
belongs to the same homology class. Then we have x(L') = -2ab- 2l. 
Putting l = ab, we can achieve the inequality as an extremal case, i.e., 
with equality. Then the five equations are unchanged except for ( 4), 
which now takes the following form; 

b 
a= --!3- 4b. 

a 

For the rest, the same argument works as above. 

Proof of the case (b). 

0 6.1 (a). 

Here we only present some families of the solutions. We use the 
previous notations. In this case, we have H2 (M; Z) 9:' H 2 (T2 ; Z) EB 
H 2 ( S 2 ; Z) so that none of Ci, dj, rJij, or (ij appear in the equations. 
However we need extra handles, whose number is denoted by l. 

It is easy to verify that the requirements (1)-(5) and Milnor's in­
equality are satisfied in the families of solutions presented below. Here 
again, Milnor's inequality is satisfied as an extremal case. 

Claim 6.2. For any a, b;:::: 1, the following families satisfiy all the 
requirements of Theorem 4.4. 

Family 1 : a = 0, f3 = -4a, "( = 0, 6 = 2a, l = ab + b, 
Family 2 : a = -4b, f3 = 0, "( = 2b, 6 = 0, l = ab + b, 
Family 3 : a = -3b, f3 = -a, 'Y = 3b, 6 = -a, l = ab + b, 
Family 4 : a = -b, f3 = -3a, "( = -b, 6 = 3a, l = ab + b. 

This completes the proof for case (b). 0 6.1 (b). 

In case (b), one family would have been enough. There might exist 
many more. 

§7. Boundedness for ~g X S2 

Contrary to the case in the previous section, for Jt1 = ~g X S2 ' 

H 2 (M; Z) is small enough and we can conclude that the set of homol­
ogy classes which can be realized as a compact leaf of some foliation is 
essentially bounded. More precisely the following holds. 

Theorem 7.1. For M = ~9 x S 2 with g =F 1, there exists a 
number B 9 so that any homology class a[~9 ] + b[S2 ] E H 2 (M; Z) 9:' 

H2 (~9 ; Z) EB H2 (S2 ; Z) which is represented by a compact leaf of some 
oriented foliation satisfies one of the following three conditions; a = 0, 
b=O, ora2 +b2 ::;B9 . 
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Corollary 7.2. ForM= I: 9 x S2 with g =f. 1, for any compact leaf 
[L] of any foliation on M, we have 1[£]21::; B 9 . 

Remark 7.3. Our simple proof below shows that we get a bound 
iai, lbl ::; 8(g- 1)2 + 2jg- 11, so that B 9 ::; 2(8(g- 1)2 + 2jg- 11) 2 . 

But this bound is far from optimal, and can be improved without much 
effort. 

Proof of Theorem 7 .1. 
Assume that there exists a foliation :F with e(1:F) = a{I:9} + 

,6{82 }, e(v:F) = r{I:9 } + J{S2 } E H 2 (M; Z) ~ H 2 (I: 9 ; Z) E9 H 2 (S2 ; Z) 
which has a compact leaf L representing a[I:9 ] + b[S2 ]. Here {I:9 } [resp. 
{ S 2 }] denotes the co fundamental class of I: 9 [ resp. S 2] pulled back to M. 
Without loss of generality we may assume that a and bare non-negative 
integers. The Euler classes of the plane fields and the homology class of 
L must satisfy the following equations. 

Pl(M): e(1:F) 2 + e(v:F) 2 = P1(TM) i.e., ap +rb = 0 
x(M): e( T :F) 2 U e(v:F) 2 = e(T M) z.e., ab+,6r=4(1-g) 
x(L): (e(1:F) 2 , [£]) = x(L) z.e., aa+bp=x(L) 
[Lj2: (e(v:F) 2 , [L]) = [Lj2 i.e., ar + M = 2ab 
Milnor: 1[£]21::; lx(L)I/2 i.e., 4ab ::; jaa + bpi 

The proof is broken down into several steps. In the first step we 
show that e( T :F) and e(v:F) are bounded by using the first two equations 
above. In the second, we prove that [L] is bounded in the case ap{b =f. 0 
by using equation ([Lj2) only. In the third step, we deal with the case 
ap{b = 0. Milnor's inequlity is used only in this step. 

Step 1 (bound for the Euler classes):· From the equations 
above we have the following: 

Pl(M) + x(M) : 
P1 (M) - x(M) : 

This implies that 

(a+ 1)(,6 +b) = -4(g- 1) 
(a-1)(,6-b)= 4(g-1) 

1 ~ ial + lrl, 1,61 + lbl ~ 4jg- 11, 

and therefore 

ial, 1,61, hi, lbl < 4jg- 1j. 

This completes step 1. 
Of course this estimate is far from being optimal. The arguments 

used in this step do not apply toM= T 2 x S 2 because then g -1 = 0. 
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Step 2 (bound for [L], when af31b i= 0 ): Assuming af31b i= 0, 
we show that a and bare bounded. The equation ([L] 2 ) reads 

J 1 16 (a-- )(b--)=-
2 2 4 

and we have assumed 16 =/= 0. Therefore, in the ab-plane, (a, b) lies on a 
hyperbola. Put a = a- t5 /2 and b = b- ~. Then the hyperbola is given 

by ab = ~8 . To our integral point (a, b) corresponds an integral or a half­

integral point (a, b). Therefore we have Ia I, lbl ~ ~. This immediately 

implies lal, lbl ~ 8(g -1) 2 , because we have seen that 111, lbl ~ 4lg -11. 
Thus we obtain 

Step 3 (the case af316 = 0 ) : The equations (p1 ( M)) and (x(M)) 
imply that "af31b = 0" is equivalent to 

"a=b=O, f31=4(1-g)" or "at5=4(1-g), f3=1=0". 

Therefore this step further splits into two cases a = t5 = 0 and (3 = 1 = 0. 
If a = 0 or b = 0 there is nothing to prove. So we may assume 

a, b ?_ 1. 
Assume a = t5 = 0 and f31 = 4(1- g). Then ([Lj2) implies 1 = 2b 

and (Milnor) implies 4a :::; lf31. Therefore we have a :::; lg -11, b :::; 2lg -11. 
(In fact, in this case, g > 2, a= 1, b:::; 9-, (3b = 2(1- g)), 1 = 2b, (3 = 
0 (mod 2), see Remark 7.5 below). 

If ab = 4(1- g) and (3 = 1 = 0, we obtain t5 = 2a and 4b:::; lal. So 
b:::; lg -11, a:::; 2lg -11- (In fact, one gets g > 2, a= 1, a= 2(1- g), t5 = 
2, b:::; 9-, see Remark 7.5 below). D 7.1. 

The next proposition deals with the case a · b = 0 excluded in The­
orem 7.1. 

Proposition 7.4. Let M = ~g x S2 , g =/= 1. Then 

1) for any b E Z there is a 2-dimensional oriented foliation on M 
which has a compact leaf representing b[S2 ] E H2 (~g x S2); 

2) for any a =/= 0 there is a 2-dimensional oriented foliation on M 
which has a compact leaf L representing a[~g] E H2 (~g x S2 ), 

and if g > 1, then for any such foliation the leaf L is genus­
minimizing in its homology class. 

Proof of Proposition 7.4. 
We first deal with the case a = 0, b E Z. We may assume that 

b ?_ 0 by changing the orientation of S2 if necessary. We also know that 
any homologically trivial embedded torus is a leaf of a foliation in any 
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homotopy class of foliations. Therefore, we may assume b > 0. Now, 
pick b disjoint vertical copies of 5 2 , punch out a disk in each copy and 
join the resulting disks by attaching (b- 1) annuli in such a way that 
we obtain an embedded 2-sphere L' representing b[52 ]. 

If a{I:9 } + ;3{ 5 2 }, 1{I:9 } +6{52 } are the Euler classes of the tangent 
and normal bundle of a foliation having a compact leaf homologous 
to L', then ([£] 2 ), (x(M)), and (p1 (M)) imply that a = 6 = 0 and 
!31 = 4(1- g). Now choose any even negative ;3 which divides 2(1- g) 
and choose l so as to have 

b;3 = 2(1 - Z). 

Then attach to L' l homologically trivial handles to obtain a connected 
orientable surface L homologous to L' with x(L) = b;3. Finally, put 

4(1- g) 
I= ;3 . 

Then (a= 0, ;3, 1, 6 = 0, a= 0, b, g) satisfy all requirements of Theorem 
4.4. 

If g > 1, a > 0, and b = 0, we obtain 1 = ;3 = 0, a = 6 = 0 mod 2, 
and a6 = 4(1- g). It is easy to embed a surface L' in M such that the 
projection to I:9 is a covering of degree a. Then L' is genus minimizing 
in its homology class. The easiest way to see this is to use the Gromov 
volume for surfaces, and the fact that the projection onto I: 9 is a map 
of degree a for any connected surface representing [L']. Therefore, for 
any surface L homologous to L' we have x(L) = 2a(1- g) - 2Z with 
z;::: 0. Then (x(L)) reads aa = 2a(1- g)- 2Z, and we obtain 6 = 2,a = 
2(1 -g), l = 0. Again, all conditions of Theorem 4.4 are satisfied for 
these choices for (a, ;3 = 0,1 = 0, 6 = 0, a, b = 0, g). 

Of course we can also construct explicitly such a foliation very easily 
in the following way. Take a surjective homomorphism ¢> : 1r1 (I:9 ) -+ 

Z/ aZ and let Z/ aZ act on 5 2 by mapping a generator of Z/ aZ onto a 
rotation of angle 21r /a. Composing with ¢>we obtain an action of 1r1 (I:9 ) 

on 5 2 , and the corresponding suspension foliation is a foliation with all 
leaves compact. The leaves corresponding to the two fixed points of the 
rotations are projected to I:9 bijectively, but any other leaf covers I:9 

with degree a. D 7.4. 

While Proposition 7.4 says that a or b are unbounded, if a · b = 0, 
it only deals with compact leaves with vanishing self-intersection. 

In Section 2 we have seen examples of foliations on I: 9 x 5 2 with com­
pact leaves representing [I:9 ] + b[52 ], i.e., with leaves of self-intersection 
number 2b, as long as l2bl ~ lg- 11. The corresponding foliations were 
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foliated 5 2-bundles :F with e(T:F) = 2(1- g){~9 } and e(v:F) = 2{52 }. 

This corresponds to a = 2(1 -g), (3 = '"Y = 0, 6 = 2 in our notation 
above. 

In fact, whenever f3'"Y = 0 there are no other solutions to our equa­
tions. More generally, we have 

Remark 7.5. Let :F be a 2-dimensional oriented foliation on M = 
~9 x52,g #-1, with e(T:F) = a{~9 }+(3{52 }, e(v:F) = '1{~9 }+6{52 } E 
H 2 (M; Z) ~ H2 (~9 ; Z) EB H 2 (52 ; Z) which has a compact leaf L repre­
senting a[~9 ] + b[52] with a, b ~ 1. 

1) If f3'"Y = 0, then g ~ 3, a = 2(1 -g), (3 = '"Y = 0, 6 = 2, a = 
1, 2b ~ g- 1, and L is genus minimizing in its homology class. 
As we have seen in Section 2 these data are realized by a foli­
ation. 

2) If a6 = 0, then a = 6 = 0,'"'( = 2b,(3 = 2(1- g)jb,a = 
1, b divides g- 1, 2b ~ (g- 1), and L is genus minimizing in 
its homology class. Conversely, these data are realized by a 
foliation. We may choose this foliation as a pullback of a fo­
liation on ~9 x 5 2 with g = (g- 1)/b + 1 via a covering map 
~9 ---+ ~9 where the compact leaf represents [~9] +[52 ]. 

The proofs of these statements follow easily from the equations in­
troduced in the proof of Theorem 7.1 and are left to the reader. 

So far, with regard to a foliation on ~9 x 5 2 (g > 1) and its compact 
leaf representing a[~9 ] + b[52 ] with a, b ~ 1 , if we assume a(3'"'(6 = 0 we 
have a = 1. We will see in the next section that there are many foliations 
on the spaces ~9 x 5 2 , g > 1, having compact leaves representing a[~9 ] + 
b[52] where both ial and lbl are large. Obviously, by Theorem 7.1, then 
g has to be large also. 

§8. Problems and further discussions 

To conclude this article, we present comments, discussions, and 
problems grouped together under three headings. The first is about 
geometric constructions of foliations guaranteed by our cohomological 
criteria. The second one contains comments and questions about fo­
liations on ~9 x 5 2 and their compact leaves, some of which resulted 
from computer calculations we conducted. The final one is concerned 
with our original motivation, the self-intersection of compact leaves of a 
foliation. 
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A. Geometric constructions 
We have shown the existence of certain foliations with some specific 

compact leaves. We are naturally tempted to construct such foliations in 
more explicit ways. In the forthcoming paper, we are goint to introduce 
such a construction of a foliation on 1Et4 which has trivial T 2-knot as a 
leaf and generalize it to those who have spun T 2-knots as their leaves. 

Problem 8.1. Give explicit constructions for a wider class of T 2 -

knots in 1Et4 . 

Of course we first need a geometric and convenient presentation of 
the knot. 

B. Foliations on 2:9 x S2 

Here, we comment on the existence of foliations on l'v1 = 2:9 x S2 

with compact leaves representing a[I:9 ] + b[S2 ] with both a and b, and 
therefore also g large. Also the fact that for many homotopy classes 
of foliations these leaves are minimal genus representatives in their ho­
mology classes, independent of the choice of foliation in its homotopy 
class, seems to be noteworthy. We observed some of these phenomena 
by running computer experiments. 

As before, let o:{2:9 } + ;3{82 } be the Euler class of the tangent 
bundle and r{2:9 }+b{S2 } be the Euler class of the normal bundle of our 
foliation. By Remark 7.5 we have to turn to foliations with o:;3rb =/= 0, 
if we are looking for foliations with compact leaves representing a[I:9 ] + 
b[S2] with a > 1, b > 0. 

Initially, we were uncertain about the existence of such foliations. 
But searching for solutions of the four equations, Milnor's inequality, 
and the congruences coming from Theorem 4.4 with the help of a com­
puter, we saw that solutions abound. Below we present two 3-parameter 
families of foliations with associated homology classes of compact leaves 
by listing the associated values of the eight variables g, a, ;3, /, b, a, b, l. 
Without loss of generality we may assume that a and b are positive. 
The non-negative integer l is the number of homologically trivial handles 
added to the surface of minimal genus in the homology class a[I:9 ]+b[S2 ]. 

So l = 0 is equivalent to the statement that the compact leaf is genus­
minimizing in its homology class. 

Also notice the following. If 

?J, a, 73, -;y, J, a, b, l 

are the homological data for a foliation with compact leaf on 2:9 x S2 , 

then pulling back the bundle, foliation and compact leaf by a d-fold 
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covering map 2:9 ---+ 2::9 we get a foliation with compact leaf on 2:9 x 5 2 

with homological data 

g = d(g- 1) + 1, a= aa, (3 = /3, r = d?y, o = b, a= a, b =db, l = dZ. 

Conversely, if g - 1, a,/, b, l are divisible by d, then these data are ob­
tained by pulling back a foliation with compact leaf via a d-fold cover. 

Therefore, below we only list data not coming from coverings. 

Example 8.2. (Family of solutions with trivial handles) 

(F1) For integers 0 ~ x < y, 0 ~ z set 

F1(x,y,z): 
g = (2z + 1)((2y + 1)2 - (2x + 1) 2)/4 + 1 
a= 2x + 1, (3 = -((2y + 1)(2z + 1), 
r = 2y + 1, o = (2x + 1)(2z + 1), 
a= (o + 1)/2, b = a1, 
l = (z + 1)(y- x)(1 + (2z + 1)(y- x)) 

It is easy to check that all equations are satisfied and that the congruence 
holds. Milnor's inequality is a little messy to write down, but it will 
hold if y is large when compared with x. For example, if z = 0, then 
y :::: 2x + 2, and if z > 0, then y :::: 2x + 1 will suffice. 0 8.2. 

Obviously, F1(x, y, z) comes from a covering, if and only if the the 
greatest common divisor of g- 1, a,/, l is greater than 1. 

Note that l > 0, so that L is not genus-minimizing in all these 
examples. Also the genus g of the base surface is always odd. In fact, we 
have observed in our computer calculations the following phenomenon: 
if a, b > 0 and L is not genus-minimizing, then g is odd, a > 0, and a 
is small when compared with g. Furthermore, if the data do not come 
from a covering, then a is odd and o is an odd multiple of a. 

Therefore, in this case, a, (3, /,and o must have the above form. Up 
to g = 90 all examples with l > 0 are in the family (F1) or cover an 
element of this family. 

Problem 8.3. Do all foliations with a compact leaf which is not 
genus-minimizing and representing a class with a, b :::: 1 belong to (F1) 
or cover a foliation from (F1) ? 

The description of the next family is slightly less direct than that of 
(F1). 

Example 8.4. (Family of solutions without trivial handles) 

(F2) This family is parametrized by a rational number x with 0 < 
x < 1/3, and for each such x by an arithmetic progression 
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for the genus g of the base surface E9 . The denominator and 
numerator of x make it into a 3-parameter family. Specifically, 
for given x, set 
a= xg + 1- 2x, b = xg/(1- 2x) + 1, and l = 0 . 

. Choose g > 1, so that a and b are positive integers, and then 
set 
o: = -g, f3 = -g + 2, 'Y = -g + 2, and 8 =g. 

Obviously, all equations and the congruence hold. In order that Milnor's 
inequality holds, g has to be sufficiently large. 

The arithmetic progression for g is obtained as follows: 
Let x = pjq, (p, q) = 1, q > 3p. Then for any k 2:: 0 set 

g = q'q + 2 + q(q- 2p)k, 

where 0 < q' < q- 2p solves q'q + 2 = 0 mod (q- 2p). Then a and b 
are positive integers. In order that Milnor's inequality holds we have to 
choose k large enough. 

Notice that in family (F2) o: is always negative, and the compact 
leaves are genus-minimizing. Furthermore, since o: and g -1 are coprime, 
no member is the result of a pull-back via a covering map of the base 
surfaces. 0 8.4. 

For (F2), there are no restrictions on the parity of g. In fact, in our 
computer calculations, solutions with l = 0 occur for every g > 2, and 
for odd g their number exceeds the number of solutions with l > 0 by a 
factor of at least 2. This is probably due to the fact that the foliations 
with genus-minimizing compact leaves occur more often as coverings. In 
fact, we do not know whether for large odd g the ratio of the number of 
solutions with l = 0 to the number with l > 0 has a limsup greater than 
0, once we discard foliations which are coverings. 

Problem 8.5. What can be said about this ratio? 

With regard to the number of classes o:{E9 } + (3{ S2 } , which occur as 
the Euler class of a foliation with a compact leafrepresenting a[E9 ]+b[S2 ] 

with a, b > 0, there are many more classes with o: < 0 than classes with 
o:> 0. 

Problem 8.6. What is the reason for this? 

With the usual meanings of a, b, a, we have mentioned above that 
for a, b > 0, as far as we know, the compact leaves of all foliations 
with o: > 0 are not genus-minimizing, while the one's with o: < 0 are 
genus-minimizing. 
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Problem 8. 7. Do the Euler classes of a foliation determine whether 
a compact leaf of this foliation is genus-minimizing in its homology class? 

Looking at Remark 7.5 we see that a given compact surface which 
is genus-minimizing in its homology class can be a leaf of foliations 
with different Euler classes. For example, if g > 2 and the surface 
represents [2:9 ] + [S2], there exist foliations with Euler class equal to any 
of2(1-g){I:9 }, 2(1-g){S2 }, -g{I:9 }+(2-g){S2 }, (2-g){I:9 }-g{S2 } 

having this surface as a compact leaf. 
There is also an occurence where leaves in the same homology class, 

one genus-minimizing, the other not, are leaves of foliations. These 
necessarily have distinct Euler classes. But up to coverings we have only 
one example for this: g = 19, a = 2, b = 10. One foliation is given by 
a = -21, f3 = -5, 1 = -15, 6 = 7, and l = 0, i.e., the leaf is genus­
minimizing. The other is given by a= 1, {3 = -15, 1 = 5, 6 = 3, and 
l = 28. 

So one might pose the following 

Problem 8.8. In general, does each homology class know its foli­
ated genus, i.e., the genus of a representing surface which is a leaf of a 
foliation on the manifold? 

In all our examples on M = 2:9 x I:h we have seen that genus­
minimizing leaves representing a[I:9 ] + b[I:h] can be chosen to be sym­
plectic submanifolds of M with its standard symplectic structure. 

Problem 8.9. If a surface L in M = 2:9 x S2 is genus-minimizing in 
its homology class and a leaf of a foliation, does there exist a symplectic 
foliation, i.e., a foliation such that all leaves are symplectic submanifolds 
of M with respect to some symplectic structure on A1, with L as a leaf? 
If it is not true, then, look for a condition which guarantees that L is a 
leaf of a symplectic foliation. 

This question might make sense for more general closed symplectic 
4-manifolds, but so far, we have not looked into this. 

C. Bounds of self-intersection numbers of compact leaves 
In Sections 6 and 7 we settled the question for which products of 

two surfaces there is a bound on the self-intersection numbers of compact 
surfaces which occur as leaves of a foliation. 

Problem 8.10. For which 4-manifolds M is the set of self-intersec­
tion numbers of compact leaves of foliations on A1 bounded? 
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For which 4-manifolds with positive second Betti number is the set 
of homology classes which are represented by some compact leaf of some 
foliation essentially bounded? 

Here, "essentially bounded" should be interpreted in some reasonable 
way. For example, like in our context: bounded when restricted to 
classes of non-zero self-intersection. 

It is premature to venture a guess whether among closed 4-manifolds 
admitting a 2-dimensional foliation with a compact leaf those with a 
bound on the self-intersection numbers of these leaves are more prevalent 
or not. In the small set of 4-manifolds that we considered they did occur 
less often. 

However, in the case of foliated bundles, the situation should be 
different. 

Problem 8 .11. Prove that for a given 2'. h- bundle over 2'. g, there 
is a bound for the set of self-intersection numbers of compact leaves of 
foliations transverse to the fibres. 

More strongly, for any given g and h, prove that there is a bound 
for the set of self-intersection numbers of compact leaves of any foliated 
L.h -bundle over l'.g. 

This problem is strengthened further by dropping the flatness con­
dition of the bundle. Then of course the bound should be larger. 

Problem 8.12. For given h and g, does there exist an upper bound 
for the self-intersection number of any multi-section of any L.h -bundle 
over l'.g? 

This is no longer a problem of foliations. 

Example 8.13. There exists a multi-section of 2'.2 x 2'.2, which 
covers both the base and the fibre twice. Since its normal and tangent 
bundles are isomorphic, its self-intersection number is -4. 

To prove the existence of such a multi-section, it is enough to find a 
pair of orientation preserving free involutions a and T on 2'.3 such that 
a o T has no fixed point. This is done as follows. 

InlR.3 = {(x,y,z)}, takeaspatialgraphf = S 2 n{(x+y)(x-y) = 0} 
consisting of four longuitudes connecting the north and south poles. We 
realize 2'.3 as the smooth boundary of a thin regular neighbourhood of 
r in JR.3. Then the involutions a and T on 2'.3 are defined as follows. a 
is the rotation (x, y, z) r---+ (x, -y, -z) around the x-axis by 1r restricted 
to 2'.3. T is the rotation around the great circle 5 2 n { (X + y) = 0} by 
1r. The two 1-handles around this great circle are invariant and rotated 
while the other two 1-handles connecting the regions close to the poles 
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are exchanged by T. In other words Tis the composition of the inversion 
of ~3 with respect to S 2 and the reflection at the plane x + y = 0. 

It is easy to verify that this pair of free involutions fulfills our re­
quirements. 

Then, the involutions u and T define two double coverings 

so that each involution is the non-trivial covering transformation. 
Now we define the multi-section as the image of the following map. 

Since uoT has no fixed point r.p is an embedding. Therefore it defines 
a multi-section with the required properties. D 8.13. 

We believe that this multi-section is the one with the largest self­
intersection number among all multi-sections of this product bundle. 
Also notice that Milnor's inequality prohibits this surface to be a leaf of 
a foliation on I;2 x I;z. 

Are there methods to prove the statement about the maximality of 
the self-intersection number? 

Of course, questions about the existence of multi-sections of surface 
bundles with certain properties can be interpreted as questions about 
the pointed mapping class groups of these surfaces. 

Many of the problems above have obvious generalizations to folia­
tions of higher dimension or codimension. But our methods are very 
specific for 2-dimensional foliations on 4-manifolds and so one needs 
some new ideas to proceed. Independent of this, we think it is impor­
tant and worthwhile to pursue the study of the subjects dealt with in 
this paper in other dimensions. On the other hand, it is true that there is 
still an abundance of problems that remain to be settled in dimension 4. 
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