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Stable length in stable groups 

Dieter Kotschick 

Abstract. 

We show that the stable commutator length vanishes for certain 
groups defined as infinite unions of smaller groups. The argument uses 
a group-theoretic analogue of the Mazur swindle, and goes back to the 
works of Anderson, Fisher, and Mather on homeomorphism groups. 

§1. Introduction 

In this paper we show that the stable commutator length vanishes 
for certain groups defined as unions of subgroups that have many con­
jugate embeddings that commute element-wise. The argument used is 
a group-theoretic analogue of the Mazur swindle. Informally, it can be 
paraphrased by saying that as the size of a table grows, it becomes eas­
ier to sort objects on its surface, so that commutation can be done very 
efficiently on a table of infinite size1. In the words of Poenaru [18]: "The 
infinite comes with magic and power." 

Let r be a group. The commutator length c(g) of an element g in 
the commutator subgroup [r, r] c r is the minimal number of factors 
needed to write g as a product of elements that can be expressed as 
single commutators. The stable commutator length of g is defined to be 

llgll = lim c(gn) . 
n---4CXJ n 

Direct proofs of the vanishing of the stable commutator length sometimes 
proceed by showing a lot more, namely that the commutator length itself 
is bounded. A prototypical argument for this in the context of home­
omorphism groups goes back to Anderson [2] and Fisher [11], and was 
later used and refined by Mather [16] and by Matsumoto-Morita [17]. 
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This argument uses an infinite iteration that leads to complicated be­
haviour near one point, and is therefore not suitable for the study of 
diffeomorphism groups. The argument we employ here is a variation on 
this classical one. It works for diffeomorphism groups because instead of 
an infinite iteration we do only a finite iteration, however it is important 
that the finite number of iterations can be taken to be arbitrarily large. 
This argument does not prove that the commutator length is bounded, 
it only proves the weaker conclusion that the stable commutator length 
vanishes. 

Bavard [5], using a Hahn-Banach argument influenced by that of 
Matsumoto and Morita [17], showed that the vanishing of the stable 
commutator length on the commutator subgroup is equivalent to the 
injectivity of the comparison map Hl(f;JR.)-+ H 2 (f;JR.), where Hi(f) 
denotes bounded group cohomology in the sense of Gromov. Another 
way to express this condition is to say that every homogeneous quasi­
homomorphism r -+ JR. is in fact a homomorphism. If r is a perfect 
group, then the stable commutator length is defined on the whole of r, 
and vanishes identically if and only if there are no non-trivial homoge­
neous quasi-homomorphisms from f toR 

Bavard's result suggests that the commutator calculus arguments 
discussed above should have a dual formulation in terms of quasi-homo­
morphisms. It is this dual formulation that we shall discuss, although we 
could equally well argue directly on the commutator side. Thus, what we 
prove for certain groups is that every homogeneous quasi-homomorphism 
is a homomorphism. Using Bavard's result this is equivalent to the 
vanishing of the stable commutator length. 

In Section 2 we give the algebraic mechanism behind the vanishing 
results we shall prove. Section 3 applies this mechanism to the stable 
mapping class group, the braid group on infinitely many strands, and 
the stable automorphism groups of free groups. In Section 4 we give 
applications to diffeomorphism groups, and in Section 5 we compare our 
methods and results to those of Burago, Ivanov and Polterovich [8]. 

We refer the reader to [5, 15] for background on quasi-homomor­
phisms. In fact, the proofs of the vanishing results below are somewhat 
reminiscent of the discussion of weak bounded generation in [15]. 

§2. The algebraic vanishing result 

A map f: f -+ JR. is called a quasi-homomorphism if its deviation 
from being a homomorphism is bounded; in other words, there exists a 
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constant D(f), called the defect off, such that 

if(xy)- f(x)- f(y)i::::; D(f) 

for all x, y E f. We will always take D(f) to be the smallest number 
with this property, i.e. it is the supremum of the left hand sides over all 
X andy E f. 

Every quasi-homomorphism can be homogenized by defining 

f(gn) 
cp(g) = lim -- . 

n-+oo n 

Then cp is again a quasi-homomorphism, is homogeneous in the sense 
that cp(gn) = ncp(g), and is constant on conjugacy classes. (Compare [5], 
Proposition 3.3.1.) Throughout this paper we shall only consider homo­
geneous quasi-homomorphisms. 

We begin with the following preliminary result. 

Lemma 2.1. Let cp: f ---> ~ be a homogeneous quasi-homomor­
phism. Then the following two properties hold: 

(1) If x, y E r commute, then cp(xy) = cp(x) + cp(y). 
(2) If cp vanishes on every single commutator, then cp is a homo­

morphism; 

Proof. By homogeneity we have the following: 

If x andy commute, then cp((xy)nx-ny-n) = 0 for every n, giving the 
first statement. 

Assume now that cp vanishes on single commutators. As 
(xy)nx-ny-n can be expressed as the product of ~ + c commutators, 
see [5], the right hand side of the formula is bounded above by !D(cp). 
However, taking the supremum of the left hand side over all x and y, 
we get the defect D(cp). Thus D(cp) ::::; !D(cp), showing that the defect 
vanishes, and cp is a homomorphism. Q.E.D. 

Here is the main mechanism for the vanishing theorems. 

Proposition 2.2. Let A c f be a subgroup with the property that 
there is an arbitrarily large number of conjugate embeddings Ai c r 
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of A in r with the property that elements of Ai and of Aj commute 
with each other in r whenever i =f. j. Then every homogeneous quasi­
homomorphism on r restricts to A as a homomorphism. 

Note that homogeneous quasi-homomorphisms are constant on con­
jugacy classes, so that the restriction of 'P to Ai is independent of i. 

Proof. By the second part of Lemma 2.1 we only have to prove 
that r.p([x, y]) = 0 for any x, y E A. Let Xi, Yi E f be the images of x 
andy under the embedding Ai cr. We have the following equalities: 

nr.p([x, y]) = r.p([x1, Yl]) + ... + r.p([xn, Yn]) 

= r.p([x1, Yl]· · · [xn, Yn]) 

= r.p([xl. · · Xn, Yl · · · Yn]) ' 

where the first one comes from the constancy of 'P on conjugacy classes, 
the second is the first part of Lemma 2.1 applied to the commuting 
embeddings, and the third follows directly from the commuting property 
of the em beddings Ai c r. On the right hand side 'P is applied to a 
single commutator in r, and therefore the right hand side is bounded in 
absolute value by the defect of 'P on r. However, if r.p([x, y]) =f. 0, then 
the left hand side is unbounded because by assumption we can make n 
arbitrarily large. Thus r.p([x, y]) = 0 for all x, y E A. Q.E.D. 

There are several ways in which this mechanism can be applied to 
obtain the vanishing of the stable commutator length in various groups. 
We try to give a general statement, in the hope of unifying several dif­
ferent applications of the argument. 

Theorem 2.3. Let r be a group in which every element can be 
decomposed as a product of some fixed number k of elements contained in 
distinguished subgroups A c r. If each A is perfect and has the property 
in Proposition 2.2, then the stable commutator length of r vanishes. 

Proof. As the subgroups A are assumed perfect, the restrictions of 
quasi-homomorphisms on r to A vanish, because by Proposition 2.2 they 
are homomorphisms. Therefore the value of a quasi-homomorphism on 
every element of r is bounded by k - 1 times the defect. But every 
bounded homogeneous quasi-homomorphism is trivial. Q.E.D. 

§3. Applications to discrete groups 

3.1. The stable mapping class group 

Let r~ be the group of isotopy classes of diffeomorphisms with com­
pact support in the interior of a compact surface ~~ of genus g with one 
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boundary component. Attaching a two-holed torus along the bound­
ary defines the stabilization homomorphism r~ --. r~+l· The stable 
mapping class group r 00 is defined as the limit 

roo= limr;. 
9 

For g 2: 3 the groups r~ are perfect, see [19], hence roo is also perfect. 
Recall that in [10] it was proved that the stable commutator length is 
non-trivial on every r~ with g 2: 2, see also [6, 7, 9, 15]. In contrast with 
this we have: 

Theorem 3.1. The stable commutator length for r 00 vanishes iden­
tically. 

Proof We apply Theorem 2.3 with k = 1. The subgroups A are the 
images of the r~. In detail, every element of roo is in the image of some 
r~ = A. This has arbitrarily large numbers of commuting conjugate 
embeddings in roo given by taking the boundary connected sum of an 
arbitrarily large number of copies of the surface of genus g with one 
boundary component. Any homogeneous quasi-homomorphism on roo 
restricts to (the image of) r~ as a homomorphism. However, for g 2: 3 
this group is perfect, and so the homomorphism vanishes. Q.E.D. 

Remark 3.2. Theorem 3.1 shows that the second bounded co­
homology of mapping class groups does not stabilize. This contrasts 
sharply with the Harer stability theorem [13] for the ordinary group 
cohomology. 

Remark 3.3. Theorem 3.1 fits in nicely with the form of the es­
timates for the stable commutator length obtained in [10, 7, 15]. The 
lower bounds given there for the stable commutator length of specific 
elements in r~ go to zero for g--> oo. A similar phenomenon seems to 
appear in the work of Calegari and Fujiwara [9]. 

Remark 3.4. The discussion in this subsection also applies to the 
stable mapping class groups. for surfaces with several boundary compo­
nents. 

3.2. The braid group on infinitely many strands 
Let Bn be the Artin braid group on n strands. Adding strands 

defines injective stabilization homomorphisms Bn ----> Bn+l· The braid 
group on infinitely many strands is 

n 
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Theorem 3.5. Any homogeneous quasi-homomorphism on the in­
finite braid group Boo is a homomorphism. 

Proof. We apply Proposition 2.2. The subgroups A are the En· 
Any two x, y E Boo are contained in some finite En = A. This has 
arbitrarily large numbers of commuting conjugate embeddings in Boo 
given by considering braids on n strands placed side by side. Any ho­
mogeneous quasi-homomorphism r.p on Boo therefore restricts to En as 
a homomorphism. Thus r.p( xy) = r.p( x) + r.p(y), showing that r.p is a 
homomorphism on B 00 • Q.E.D. 

We have chosen this formulation of the result because the braid groups 
have infinite Abelianizations, so that it does not make sense to speak of 
the stable commutator lengths of elements. The stabilization is compat­
ible with Abelianization, so that B 00 , like En for finite n, has infinite 
cyclic Abelianization. The conclusion of Theorem 3.5 is that every ho­
mogeneous quasi-homomorphism is a constant multiple of the Abelian­
ization homomorphism. 

For finite n, the braid groups do admit non-trivial homogeneous 
quasi-homomorphisms that are not proportional to the Abelianization 
map En ----+ Z, see [3, 12]. Thus Theorem 3.5 shows that the bounded 
cohomology of braid groups does not stabilize. The quotients Bn/C 
of finite braid groups modulo their centers have finite Abelianizations, 
so that all elements have powers that are products of commutators. 
Baader [3] proves some lower bounds for the stable commutator length 
of certain elements in En/C. These lower bounds tend to zero as n----> oo. 
This of course fits with Theorem 3.5. The corresponding homogeneous 
quasi-homomorphisms defined on Bn/C, and, by composition, on En, 
do not extend to the braid group on infinitely many strands. 

3.3. Automorphism groups of free groups 

The canonical homomorphisms Fn ----+ Fn * Z = Fn+l give rise to 
injective homomorphisms Aut(Fn) ----+ Aut(Fn+l)· Thus we define 

Aut00 (F) = UAut(Fn) . 
n 

Note that this is smaller than Aut(F00 ). 

Theorem 3.6. The stable commutator length for Au too (F) vanishes 
identically. 

Proof. The Abelianization of Aut(Fn) is of order 2, and is stable. 
Thus, up to taking squares, all elements in Aut(Fn) and in Aut00 (F) 
are products of commutators. We again apply Proposition 2.2. The 
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subgroups A are the Aut(Fn)· In detail, every element of Aut 00 (F) is 
contained in some Aut(Fn) = A. This has arbitrarily large numbers 
of commuting conjugate embeddings in Aut00 (F) given by embedding 
Fn * Fn * ... * Fn in some large FN. Although the elements in the differ­
ent copies of Fn do not commute, the induced embeddings of Aut(Fn) 
in Aut00 (F) do commute and are conjugate to each other. Any ho­
mogeneous quasi-homomorphism on Aut 00 (F) restricts to Aut(Fn) as a 
homomorphism. As the Abelianization of Aut(Fn) is finite, the homo­
morphism is trivial. Q.E.D. 

One could also consider the outer automorphism groups Out(Fn), 
and of course quasi-homomorphisms on these induce quasi-homomor­
phisms on Aut(Fn) by composition with the projection. However, there 
is no natural way of stabilizing the outer automorphism groups. 

Unlike for mapping class groups, no unbounded quasi-homomor­
phisms are known on the automorphism groups of free groups. The 
groups Aut(Fn) are analogous to the so-called extended mapping class 
groups, consisting of the isotopy classes of all diffeomorphisms of sur­
faces. The usual mapping class groups we considered in Theorem 3.1 
are index 2 subgroups of the extended mapping class groups. A single 
Dehn twist has non-zero stable commutator length in a mapping class 
group [10, 7, 15], but is conjugate to its inverse in the extended mapping 
class group [1], so that in this latter group its stable commutator length 
must vanish. By analogy with this phenomenon, it may be more promis­
ing to look for quasi-homomorphisms on the special automorphism group 
S Aut(Fn), rather than on Aut(Fn), where by S Aut(Fn) we denote the 
automorphisms preserving an orientation on the Abelianization zn of 
Fn. Theorem 3.6 also applies to the stabilized special automorphism 
groupS Aut00 (F). 

§4. Applications to diffeomorphism groups 

In this section we apply the algebraic vanishing result to some groups 
of diffeomorphisms. If M is a smooth closed manifold, we consider the 
identity component G = Diff0 (M) of the full diffeomorphism group. 
If M is open, we consider the identity component G = Diff8(M) of 
the group of compactly supported diffeomorphisms. (Sometimes this 
notation is redundant because the group of compactly supported dif­
feomorphisms may be connected.) In both cases we assume that the 
diffeomorphisms are of class cr with 1 ::::; r ::::; oo and r =f. 1 + dim(M). 
The classical results of Herman, Thurston, Epstein and Mather then 
ensure that G is a perfect group; see [4] and the references quoted there. 
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4.1. The full diffeomorphism groups 

We would like to prove that the stable commutator length vanishes 
on the diffeomorphism groups. Unfortunately, we can only achieve this 
goal in the following special cases: 

Theorem 4.1. The stable commutator length vanishes for the fol-
lowing diffeomorphism groups: 

(1) Diffg(D) for a ball D, 
(2) Diffg(D x M) for any M and a ball D of positive dimension, 
(3) Diffo(Sn) for any sphere, 
(4) Diffo(~n) for any exotic sphere of dimension#- 4. 

Proof. Let D be an n-dimensional ball, and G = Diffg(D) the 
group of diffeomorphisms of D with compact support in the interior of 
D. Fix an exhaustion of D by smaller nested balls D; so that each 
D; has closure contained in the interior of D;+1. If G; is the group of 
diffeomorphisms of D; with compact support in the interior of D;, then 
we have injective homomorphisms G; -+ Gi+1 induced by the inclusion 
D; C Di+1, and 

We now apply Theorem 2.3 with k = L The subgroups A are the G;. In 
detail, every element of G is contained in some G;. This has arbitrarily 
large numbers of commuting conjugate embeddings in G, because we 
can embed arbitrarily large numbers of disjoint (smaller) balls in the 
annulus D \ D;. Any homogeneous quasi-homomorphism on G then 
restricts to G; as a homomorphism. But this group is perfect, and so 
the homomorphism vanishes. This completes the proof of the first claim. 
The same argument works forD x A1 using the exhaustion by D; x A1. 

Now let G = Diff0 (Sn). We can compose any g E G with a suitable 
f11 E G supported in an open ball to achieve that f11 g has a fixed point. 
It follows that we can write f11g = fzh, with h having support in a 
ball around the fixed point, and fz having support in the complement 
of a (smaller) ball around the fixed point. Because the manifold is a 
sphere, this complement is again a ball. Using g = hfzh, we apply 
Theorem 2.3 with k = 3. Let A = Diffc(D) be the group of compactly 
supported diffeomorphisms of a ball. This is perfect and admits infinitely 
many conjugate commuting embeddings in G. 

The argument given for spheres also works for exotic spheres in 
dimensions n #- 4, because they are all twisted spheres obtained from 
two standard balls by gluing along the boundary [14]. Q.E.D. 
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After this paper had been submitted, Tsuboi [20] proved a much 
stronger result. He proved that Diff0 (M) is uniformly perfect for ev­
ery closed manifold, with the possible exception of even-dimensional 
manifolds having no handle decomposition without handles of middle 
dimension. The simplest M for which the question is unresolved, is 
T 2 . Because of Tsuboi's results, I have removed some material from the 
original version of this paper, which was concerned with the continu­
ity, with respect to the C0 topology, of potential homogeneous quasi­
homomorphisms on diffeomorphism groups. That discussion is rather 
delicate technically, and I hope to return to it elsewhere, unless it is 
rendered completely empty by a generalization of Tsuboi's work. 

4.2. Diffeomorphism groups preserving a symplectic or 
volume form 

The first statement in Theorem 4.1 can be phrased for the com­
pactly supported diffeomorphism group of Euclidean space IR.n instead 
of a ball D. However, the two cases are rather different if we consider 
diffeomorphism groups preserving a symplectic or volume form w, and 
we fix our conventions so that IR.n has infinite (symplectic) volume and 
a ball has finite volume. 

Let G = Diffg (JR.n, w) be the identity component of the group of 
compactly supported diffeomorphisms preserving w. This is not perfect 
because the Calabi invariant 

(1) 

is a non-trivial homomorphism. (See for example [4] for the definition of 
Cal.) By results of Thurston and Banyaga, see [4], its kernel is a perfect 
group. It follows that Cal is the Abelianization homomorphism. So far 
there is no difference between the finite and infinite volume cases, and 
we have the same statements if we replace (JR.n, w) by a ball of finite 
volume. 

Theorem 4.2. The stable commutator length vanishes on the kernel 
of the Calabi homomorphism in Diffg (JR.n, w). On Diffg (JR.n, w) every 
homogeneous quasi-homomorphism is a constant multiple of the Calabi 
invariant. 

Proof. As in the previous proof we can write the kernel of Cal as 

with each Gi consisting of those elements of G supported in a ball of 
radius i, say. Then each element of G is contained in some Gi, but this 
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Gi has arbitrarily large numbers of commuting conjugate embeddings 
given by disjoint Hamiltonian displacements of Di in ~n. Therefore 
we can apply Theorem 2.3 to conclude that every homogeneous quasi­
homomorphism vanishes on Ker Cal. 

Applying the same argument to G = Diffg (~n, w) with each Gi equal 
to Diffg(Di,w), we conclude that the restriction to Gi of any homoge­
neous quasi-homomorphism r.p on G is a homomorphism, and is therefore 
a constant multiple of the Calabi invariant. But any two balls in ~n are 
both contained in some larger ball, and therefore the restriction of r.p is 
the same multiple of Cal on all balls. Q.E.D. 

This argument clearly does not work in the finite volume case because 
the number of commuting conjugate embeddings one can construct is 
bounded in terms of the available volume. The abstract isomorphism 
type of the group of symplectic or volume-preserving diffeomorphisms 
of a ball is always the same. In particular it does not depend on the size 
or volume of the ball. Therefore one can always find arbitrarily large 
numbers of commuting embeddings of such a group in the corresponding 
group of a larger ball, or in itself, but these embeddings are conjugate 
only in the full diffeomorphism group, and not in the diffeomorphism 
group preserving w. 

§5. Comparison with results on quasi-norms 

In this section we compare our results on the non-existence of homo­
geneous quasi-homomorphisms on various stable groups to results about 
existence and non-existence of quasi-norms. The following definitions 
are due to Burago, Ivanov and Polterovich [8]. 

Definition 5.1. A function q: G -------> ~ on a group is called a quasi­
norm if it is almost subadditive, almost invariant under conjugacy, and 
unbounded. 

A group G is called unbounded if it admits a quasi-norm, and is 
called bounded otherwise. 

Here almost subadditive and almost invariant under conjugation 
means that there is a constant c such that 

q(xy) :::; q(x) + q(y) + c 

and 

for all x andy E G. 
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If cp is a non-trivial homogeneous quasi-homomorphism, then its ab­
solute value is a quasi-norm. Therefore boundedness of a group is an 
even stronger property than the non-existence of homogeneous quasi­
homomorphisms. A bounded group has finite Abelianization and van­
ishing stable commutator length. If the Abelianization is trivial, then 
the group is uniformly perfect [8]. 

Burago, Ivanov and Polterovich [8] prove boundedness of many dif­
feomorphism groups by an argument that is rather stronger than ours. 
In particular, they prove boundedness for the groups we considered in 
Theorem 4.1. An easy example that illustrates the difference between 
the vanishing mechanism in [8] and the one considered here is the fol­
lowing. 

Example 5.2. Consider the group G = Diffg (JR.n, w) from Theo­
rem 4.2. Then the function q which assigns to every g E G the (sym­
plectic) volume of its support is a quasi-norm which is non-trivial on 
the kernel of the Calabi homomorphism. Therefore this kernel is an 
unbounded group which nevertheless has vanishing stable commutator 
length. 

This also brings out another aspect of the difference between the 
finite and infinite volume cases mentioned earlier. If we take G = 
Diff8(D,w) with D of finite (symplectic) volume, then q is bounded 
and therefore not a quasi-norm. 

This idea of a quasi-norm defined by support size actually applies 
to all the discrete groups we considered in Section 3: 

Theorem 5.3. The following groups are unbounded: 

(1) 
(2) 
(3) 
(4) 

the stable mapping class group r 00' 

the braid group Boo on infinitely many strands, 
the stable automorphism group of free groups Au too (F), and 
the stable special automorphism group of free groups 
S Aut00 (F). 

Proof. Perhaps the case of the braid group is easiest to visualize. 
Define q: Boo ----> Z by sending a braid x to the smallest number k 
of strands needed to express it. These need not be the first k strands, 
but can be any k strands. The function q is clearly invariant under 
conjugation and is unbounded. It is also subadditive, because a set of 
strands used to express x and a set of strands used to express y can 
together be used to express xy. Thus q is a quasi-norm. 

On the stable mapping class group define q: roo ----> Z by map­
ping an element x to the smallest genus g of a compact surface with 
one boundary component on which a diffeomorphism representing the 
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isotopy class x can be supported. Again this does not have to be the 
embedding of 2:~ from the definition of the stabilization procedure, but 
can be any such subsurface of the infinite genus surface. By definition, 
this function is conjugacy-invariant. It is also not hard to see that it is 
unbounded, for example by considering the action of mapping classes on 
homology. To check (almost) subadditivity, one has to consider several 
cases depending on how compact surfaces with one boundary compo­
nent supporting representatives for x and y sit in the infinite genus 
surface. In all cases the union of these two subsurfaces can be enlarged 
slightly, without increasing the genus, to obtain a compact surface with 
one boundary component supporting a representative for xy. The genus 
of this surface is at most q(x) + q(y). Therefore q is in fact subadditive 
and a quasi-norm. 

The argument for Aut00 (F) and S Aut00 (F) is completely analo-
gous. Q.E.D. 
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