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A generalization of Chakiris’ fibrations

Hisaaki Endo

Abstract.

Chakiris [5] constructed examples of holomorphic Lefschetz fibra-
tions of genus 2 with separating singular fibers and proved a classifica-
tion theorem for such fibrations in the late 1970’s. We generalize some
parts of his construction topologically to give new examples of hyper-
elliptic Lefschetz fibrations of arbitrary genus with separating singular
fibers which include homeomorphic but non-diffeomorphic 4-manifolds.

§1. Introduction

According to remarkable works of Donaldson [6] and Gompf [14] (see
also [1]), there is a Lefschetz fibration over the 2-sphere with prescribed
fundamental group. The classification of all Lefschetz fibrations over the
2-sphere is not possible in nature. Many examples of Lefschetz fibrations
are given in terms of positive relations in mapping class groups (see {14],
[35], [4], [21], [15], [16], and [8]).

Hyperelliptic Lefschetz fibrations, which are (relative minimaliza-
tions of) double branched coverings of simple 4-manifolds (see [32], [12]),
include all Lefschetz fibrations of genus 1 and 2 and many important ex-
amples. It would be rather hopeful to classify hyperelliptic Lefschetz
fibrations over the 2-sphere. Siebert and Tian [32] conjectured that ev-
ery hyperelliptic Lefschetz fibration over the 2-sphere without separating
singular fibers is holomorphic. They solved it affirmatively in genus 2
case under assumption of monodromy transitivity [33]. Their conjecture
is closely related to a smooth analogue of an earlier theorem of Chakiris
[5] which asserts that every holomorphic fibration of genus 2 without
virtual reducible singular fibers is a fiber sum of three typical fibrations.
On the other hand, it does not seem to be known how many hyperelliptic
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Lefschetz fibrations with separating singular fibers exist. Matsumoto’s
genus 2 Lefschetz fibration [25] and its generalization in arbitrary even
genus due to Cadavid [4] and Korkmaz [21] are well-known examples of
such fibrations. Chakiris [5] also showed a mysterious classification the-
orem of Lefschetz fibrations of genus 2 with separating singular fibers,
which we would like to call the ‘1/19-theorem’.

In this paper we generalize some parts of Chakiris’ construction
topologically to give new examples of hyperelliptic Lefschetz fibrations
of arbitrary genus with separating singular fibers. In Section 2 we review
definitions and basic properties of Lefschetz fibrations and relations in
mapping class groups. In Section 3 we construct new positive relations
in hyperelliptic mapping class groups and in Section 4 we investigate
various properties of the corresponding hyperelliptic Lefschetz fibrations
over the 2-sphere. In particular, we exhibit infinitely many pairs of
homeomorphic but non-diffeomorphic hyperelliptic Lefschetz fibrations
with separating singular fibers.

The author is grateful to Y. Matsumoto for helpful suggestions on
Chakiris’ work and to D. Kotschick, S. Hirose, and Y. Sato for helpful
discussions and useful comments. He also thank the referee for various
helpful comments and suggestions.

§2. Lefschetz fibrations and positive relations

In this section we briefly review Lefschetz fibrations and relations in
mapping class groups.

2.1. Lefschetz fibrations and their monodromies

We first review the definition and basic properties of Lefschetz fi-
brations. More details can be found in Matsumoto [25] and Gompf and
Stipsicz [14].

Let ¥, be a closed oriented surface of genus g.

Definition 2.1. Let M be a closed oriented smoocth 4-manifold. A
smooth map f : M — S2 is called a Lefschetz fibration of genus g if it
satisfies the following conditions:

(i) f has finitely many critical values by,...,b, € S% and f is a
smooth fiber bundle over S? — {by,...,b,} with fiber PR

(ii) for each i (i = 1,...,n), there exists a unique critical point
pi in the singular fiber F; := f~!(b;) such that f is locally written
as f(z1,22) = 27 + 22 with respect to some local complex coordinates
around p; and b; which are compatible with orientations of M and S?;

(iii) no fiber contains a (—1)-sphere.
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Let M, be the mapping class group of X,, namely the group of
all isotopy classes of orientation-preserving diffeomorphisms of £,. We
follow the functional notation: for ¢,y € Mg, the symbol 1y means
that we apply ¢ first and then . We denote by F the free group
generated by all isotopy classes S of simple closed curves on 3. There
is a natural epimorphism @ : 7 — M which sends (the isotopy class of)
a simple closed curve a on 3,4 to the right-handed Dehn twist t, along
a. We often denote the image w(W) of a word W in the generators
S by W. We set R := Ker w and call each element of R a relator in
the generators S of M,. We put w(c) :=t---tii(c) € Sforc € S
and W =aér---ai! € F (a1,...,ar € S,€1,...,er € {£1}) and wV :=
w() - wles)eFforV=ci---cs€F(c1,...c5s €8S).

Let f : M — S? be a Lefschetz fibration of genus g as in the defi-
nition above. Since f restricted over S? — {b1,...,b,} is a smooth fiber
bundle with fiber ¥, we consider the homomorphism

x :m1(S? = {b1,...,b,}) — m(BDiff 4 ) = mo(Diff 1 5y) = M,

induced by the classifying map S? — {by,...,b,} — BDiff 1 &, which is
called the holonomy homomorphism (cf. Morita [28]) or the monodromy
representation of f. Let v; (i = 1,...,n) be the loop consisting of the
boundary circle of a small disk neighborhood of b; oriented clockwise
and a path connecting a point on the circle to the base point by € S2 —
{b1,...,b,}. We choose these loops 71, ..., v so that the composition
Y1+ +Yn is null-homotopic on S% — {by,...,b,} and any two of them
intersect only at bg. Thus we obtain a presentation

m1 (8% = {b1, - ba} bo) = (v, Tnlmr e = 1)

For eachi (i = 1,...,n), x(7:) is known to be a right-handed Dehn twist
t.; along some essential simple closed curve ¢; on ;. Hence we have a
positive relation

tcl"'tcn:X(’YI"'fYn):lEMg

or a positive relator ¢y --- ¢, € R associated to the Lefschetz fibration
f: M — S?. Each ¢; is called the vanishing cycle of the singular fiber F;.
F; is called non-separating (or irreducible, type 1) if ¢; does not separate
X, into two connected components and separating (or reducible, type II)
if ¢; separates X, into subsurfaces of genus 4 and g — h.

Suppose that g > 2. Kas [19] and Matsumoto [25] proved that there
exists a one-to-one correspondence between the isomorphism classes of
Lefschetz fibrations f : M — S2? and the conjugacy classes of homo-
morphisms x which sends each loop going around b; to a right-handed
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Dehn twist along an essential simple closed curve on Xy. Although the
positive relator ¢;---¢, € R actually depends on a choice of a loop

system (71,...,7n) on S% — {by,...,b,}, its equivalence class modulo
conjugations of all factors ¢y, ..., ¢, by a fixed element W of F :
€l en ~wler) e w(cn),

[SEEREE Ci Cig1 e Cp~CpL e c’i—l—l . Ci_+11 (Ci) ..... Cn,
cl ~~~~~ Ci . ci+1 ..... cn ~J Cl ooooo Cl (Ci+l) . cz EEEE R CTL
(i =1,...,n—1), is uniquely determined by the isomorphism class of the

Lefschetz fibration f : M — S2. Conversely, any positive relator p € R
can be realized as a relator associated to some Lefschetz fibration over
S52. We denote (the isomorphism class of) such a Lefschetz fibration by
M, — S2.

Let f: M — S? and f': M’ — S? be Lefschetz fibrations of genus
g and p,0 € R corresponding positive relators. Take regular values
bo, by € S? of f, f' and consider the fiber F' := f~1(bo), F’ := f'~1(b})
and their open fibered neighborhoods vF C M,vF’ C M’, respectively.
Using a fiber-preserving, orientation-reversing diffeomorphism ¢ : (M —
vF) — 0(M' — vF"), we can glue M — vF and M’ — vF’ together and
construct a new manifold M # g M’ which will admit a Lefschetz fibration
f#f: M#rpM' — 82 of genus g. We call this fibration a fiber sum of
f:M — S?and f': M’ — S2%. The diffeomorphism type of M# M’
and the isomorphism type of f#f’ might depend on the choice of the
diffeomorphism ¢. A positive relator corresponding to the fiber sum
f#f' can be written as o - w o' for some W € F which depends on the
choice of .

Let ¢ : £, — X, be (the mapping class of) a hyperelliptic involution,
an involution on ¥, with 2g 4 2 fixed points, and H, the centralizer of ¢
in Mg, which is called the hyperelliptic mapping class group. Note that
H1 = M; and Ha = My, while Hy, # M, for g > 3. We set SH .—
{a € S|ty € Hy}. We denote by F¥ the subgroup of F generated
by SH and put R¥ := Rn FH. A Lefschetz fibration f : M — S?
of genus ¢ is said to be hyperelliptic if its holonomy homomorphism y
can be chosen in the conjugacy class so that the image Im x is included
in Hy. If the canonical projection Hy; — Mo 2442 — S244+2 maps Imy
onto a transitive subgroup of Syg42, we say that the monodromy of
f is transitive, otherwise intransitive, where Moy 2442 is the mapping
class group of the 2-sphere with 2g + 2 marked points and Sag4 is the
symmetric group of degree 2g + 2.
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2.2. Basic relations in mapping class groups
We next review several relations in the mapping class group M, (cf.

[42], [21], and [8]).

The relator A = A(a) := a € R is called an identity relator, where
a is a null-homotopic simple closed curve on X,.

For (isotopy classes of) simple closed curves a and b, we denote their
geometric intersection nurmber by i(a,b). Let a and b be simple closed
curves on Y, and c the simple closed curve t3(a). The relation

te = tytaty

in M, is called the braid relation. (It follows from the braid relation
tiy(a) = tbtatb_l that 5(a) = bab~1l, y-1(a) = b~lab, and elementary
transformations keep positive relators being positive relators.) If

i(a,b) = n, we put

T, =T(a,b) :=bab~'c™* € R.

If i(a,b) = 1, we have another braid relation t, = t,t.t; !. This relation
together with the original relation t. = fptat, 1 yields Artin’s relation
tatpty = tptats.-

An ordered n-tuple (ci,...,c,) of simple closed curves on X, is
called a chain of length n if ¢; and ¢;4 1 intersect transversely at one point
(t=1,...,n —1) and other ¢; and ¢; never intersect. When the length
n is even (resp. odd), a regular neighbourhood of a chain (cy,...,¢p) is
a subsurface of ¥, which is of genus h = n/2 (resp. h = (n —1)/2) and
has one boundary component (resp. two boundary components). We
denote simple closed curves parallel to the boundary by d (resp. di and
d2). The relation

tag = (tcl to tczh)4h+2 (resp. ta, ta, = (tCI t t02h+1)2h+2 )

is called the chain relation of length n, or the even (resp. odd ) chain
relation (see Wajnryb [42]). We put

Czh = C(Cl, . ,Czh) = (01 - c2h)4h+2d—1 c R,
02h+1 = C(Cl, ey 02h+1) = (Cl C. C2h+1)2h+2di—1d;1 eR.

Remark 2.2. The even (resp. odd) chain relation above holds even
if we permute the factors of the chain:

(Co(1) *** Cozny)) ™ 2d™1 € R (resp. (¢r(1) -~ Cransn) " 2dy M dy ! €R),

where o € Syp, (resp. T € Sap41) is an arbitrary permutation (cf. Mat-
sumoto [24]). Hirose told the author an elementary proof of this fact.
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We need the following definition and lemma for constructions of
positive relators in the next section.

Definition 2.3 (Smith [35], cf. [8]). Let o = W 'W> € R be a
relator with W, and W5 positive words in F. Suppose that a positive
relator ¢ € R includes W, as a subword: ¢ = UW;V, where U and V
are positive words in F. Then we can construct a new positive relator
¢ = ¢V~loV = UW,LV in R. This operation ¢ +— ¢’ is called a o-
substitution to . If a positive relator < is obtained by applying a sequence
of o*!-substitutions to ¢, we denote it by ¢ = ¢ (mod p).

Lemma 2.4. Let (c1,...,¢) be a chain of length n on L4, The
following equivalence holds fork=1,... n—1andi=1,...,k+1.

(0102 : "Cn)i = (0102 . 'Ck)i : (Ck+10k : "Ck—i+2) : (Ck+20k+1 ce Ck—i+3)
----- (enCn-1-*-cn—it1) (mod Tp,T1)

Proof. Straightforward from the proof of Lemma 4.6 of [8]. Q.E.D.

§3. Hyperelliptic Chakiris relations

In this section we construct new examples of positive relators in the
hyperelliptic mapping class group H,. We first review basic relations in
Hg (cf. [3] and [8]).

Let (c1,...,c2g+1) be a chain of length 2g + 1 on X,. Suppose
that each ¢; is invariant under the hyperelliptic involution ¢. Hence the
right-handed Dehn twists t.,, ..., t,,,, belong to H,. The chain relator
Cogr1 = (€1 cagy1)?9F2d7 dy " of length 2g + 1 combined with two
identity relators A(dy) = dy and A(dy) = ds is a positive relator

CI = C2g+1A(d2)A(d1) = (Cl e 029+1)2g+2 S RH.

The chain relator Cag = (c1 - - - c24)*72d ™! of length 2g combined with
an identity relator A(d) = d is a positive relator

Ci := CagA(d) = (c1-- - c29)97? € R,
It is well-known that the images of

. 2 H
I:=cico--- C2gCog41C2g ** " C2C1 e F7,

J = (6102 s ng)2g+1 € FH

under w represent (the mapping class of) the hyperelliptic involution ¢
(see Birman and Hilden [3], p. 108, Equation (8), and [7], Lemma 4.13).
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3.1. Even genus

Suppose that g > 2 and g is even. We first consider the following
three elements of FH,

Py = ((cica- - cg)™!

“(cg41 - caca) - (Copa - cac3) - (cag -+ Cgs2Cgt1))?,
Qo = (c1ca -+ cagy1)?Th - (cg -+ - cac1 )92

e tegt e ¢y Cy1cqg - cac1) - (c3tcs
-1

-1 -1
~~~~~ (Cgi1Cyia ™" Cog Cag+1C2g " * " Cg12Cot1),
2g+2

1 —1
" Cay1Cg+2Cg+1 " C3C2)

Ro = (Cg B CQCl)
.(cl_l 1"‘Cg_ICg+1Cg"'0261)‘(62_163_1
-1 -1

-1
..... (cg+1cg+2 .. 62_(] c2g+102g PP Cg+26g+1) . (62g+1 “on CQCI

-1
.. cg+1cg+2cg+1 e 6302)
)7

Cy

Lemma 3.1. The words Fy, Qo, and Ry represent ¢,1, and ¢ in Hy,
respectively.

Proof. Using Lemma 2.4, we have

(ClCQ e C25)9+1 = (ClCQ e cg)g+l . (Cg+1 . e 0201) . (Cg+2 . e CBCQ)

----- (cag - -cgr1cg) (mod Tp, Ty).
We rewrite the right-hand side by using braid relations to obtain
(0102 e ng)g+1 = (ClCQ e cg)g+1 . (Cg+1 e 0302) . (Cg+2 [ C4C3)
~~~~~ (c2g -~ Coq2Cg41) - C1C2---¢g (mod Tp, T1).
Again from Lemma 2.4, we have
(Crea- - ag)? = (c1Ca )7 - (Cgu1 -+ C3C2) - (Cqpz - - CaC3)
<o (cag et egyacgr1)  (mod To, Th).

We combine the last two equivalences to obtain

J = (0102 . "ng)2g+1

= ((0102 ‘e Cg)g+1 . (cg+1 e 0362) . (Cg+2 N 0403)
.....(C2g,..cg+2cg+1))2 (mod T(),T])
= P,

Hence we have Py = J = 1.
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As is already mentioned, the image of
Ci = (0162 E ng+1)2g+2 S .7:H

under w is equal to 1 in H,. By virtue of Lemma 2.4 and Corollary A.2,
we have

(cre2- - cogi1)? = (crea - cg)*h - (cgin - c2c1) - (cgiz - e3c2)
""" (c2g+1 - cgr2cgt1) (mod To, T1)

= (cg--261)7F - (g1~ c2c1) - (Copa - C3C2)
""" (c2g+1 - cgr2cg+1) (mod Tp, Th).

It is easy to check by manipulating braid relations as Lemma 2.1 of [21]
that the following equivalence holds.

(cl‘lcgl . ..C;I)g+1 (cg41 -+ c2c1)
.(Cg+2...6302) ..... (02g+1~-~cg+2cg+1)
= (01_102_1 .. 'Cg_lcg+10g .. 0201) . (02—16;1 .. C;i109+2cg+1 . 0302)
----- (Cpt1Cara " Caq C2gr1Cag - Cgracgr1)  (mod To, T1)

Gathering these equivalences, we obtain
(0102 e c2g+1)g+1
= (Cg . CQC1)29+2 . (Cl_lcz_l R cg_l)g+1(Cg+1 e 6201) . (Cg+2 e 0302)
oo (Cag1tcrCgacg1)  (mod Ty, Th)

2g+2 -1 _—1 -1
942 (ert gt g egaicy e ezcn)

= (cg---Coc1)
(eg?

-1 -1 -1
e (cg+lcg+2 ©rCyy C2g4+1C2g " "¢ Cg+2Cg+1)  (mod Tp, Tt).

—1 -1
Cy " Cyi1Cy2Catl " C3C2)

We multiply both sides of the equivalence by (cicz---cog41)9"! and
conclude

Qo=C1 (mod Ty, Ty) and Qy=Ci=1 € H,.
It follows from the equivalence above that

RU = (CICQ - C2g+1)’(9+1) . QO . (029+1 .. 'C201)g+1

= (crea- - Cog41) "D - Cr - (coge1 - €2¢1)9TY (mod Tp, Th)

= (c162 -+ Cg41)7 - (Cage1 - cacr)?
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The element

D;:=[I,¢]=Ic;I7'e;t (i=1,...,29+1)

l

of FH is a relator of H,: D; € R (see Birman and Hilden [3], Theorem
8). Applying D;-substitutions repeatedly, we have

(0102 - 02g+1)g+1 . (62g+1 . Czcl)gﬂ

=1- (0102 e ng+1)g . (629+1 s (3261)9 (mod D1, NP D2g+1)

= 19" (mod Dy, ..., Dagy1).

We combine these equivalence to obtain

Ro = I*! (mod Ty, T1, Dy, ..., Dagy1) and Ro=T""'=

because g is even. This completes the proof of the lemma. Q.E.D.

Let d € S be the boundary curve of a regular neighborhood of
c1U---Ucy. We now define three positive words in the generators S H.

Pi= d-wlcgsr - -csca) - w(Ccag -+ Cgrator1)
(Cgr1rrCaea) e (Cog- e Coracasr) (W= (cica---cg)~ @),

Q= (crcz---cagr1)’t! - d-wy(cgr1) - wy(Cgua) -+ Wi (C2g+1);

R:= d-w(cg+1) wylcgs2) -+ Wi (Cogt1) - (C2g41 -+~ cact)? ™!

(Wz = (ci+g—1 e ci+1ci)_1 (l = 1, ey g + 1))
Theorem 3.2. The words P,Q, and R in FH are positive words
representing ¢, 1, and v in Hy, respectively.

Proof. We apply C L_substitutions to Py, Qo, and Ry and rewrite
them as follows.

Py = (Clcg ce- Cg)29+2 . (0102 e )—(9+1)

(cgt1-rrege) o (cag -+ Cgr2Cgs1)
(c1ca - eg)It - (Cgqr - e3ca) - - (Cag - CgraCqut)
= (c1c2+ - ¢g)?*? - (wlcge1) - wles)w(c2))

""" (wlezg) -~ wleg2)w(cg+1))

(Cqr1 - C30n) - (g CraCor1) (mod Tp)
=P (modC,),
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Qo = (c1c2 - Cag+1)9Th - (g -+ - cacy) 2972

“wy(Cg41) - wa(cga) oo Wg+1(62g+1) (mod T3,)
=Q (mod Cy),
Ro = (cg- - c2c1)®? -y (cgr1) - wa(cgra) -+ Wy (C2g+1)
“(Cagg1 -+ 0201)g+1 (mod Tr,)
=R (mod Cy).
Thus the proof is completed. Q.E.D.

The next corollary immediately follows from the theorem.

Corollary 3.3. The words P?,Q,R? PR,PI,PJ,RI,RJ in FH
are positive relators for Hg.

3.2. 0Odd genus

Suppose that ¢ > 3 and g is odd. We first consider the following
two elements of FH.

Qo = (crcz -+~ 2g41)97% - (cgo1 -+ - c201) 2972
(er eyt c;llcgcg_1 ~eger) - (eg eyt Cglcgﬂ—lcg + - c3C2)
-1 -1
..... ( +2cg+3 ng 029+102g e Cg+3cg+2),

— 2g+2
Ro = C1C2 - Cagy1 ¢ (Cg_l s 0261) g
-1 -1 -1 -1 -1 -1
. (C]. 02 "'Cg_lcgcg—l"’czcl) .(02 03 ...Cg cg+1cg...0302)

-1 -1 —1 g+1
(Cg+QCg+3 s 02g C2g41C2g " ° - cg+3cg+2) . (ng+1 s 0261) .

Lemma 3.4. Both of the words Qg and Ry are relators for Hg.

Proof. As is already mentioned, the image of
Cr = (c1ca- - cag41)%91% € FH

under @ is equal to'1 in Hy. By virtue of Lemma 2.4 and Corollary A.2,
we have

(crcz - cag41)? = (c1ea---cg—1)9 - (cg- - - cac1) - (Cgq1 -~ Cc3C2)
~(eag1 - Cg+3cg+2) (mod Ty, T1)
= (cg—1---c2c1)? - (cg -+~ cac1) - (Cgt1 -+ €aC2)
(

..... (ng+1 Cg+3cg+2) mod TOa Tl)
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It is easy to check by manipulating braid relations as Lemma 2.1 of [21]
that the following equivalence holds.

O R AR ORR L)
(Cqp1---C3c2) -+ (Cagi1 - Cga3Ces2)
= (crltest-- -cgllcgcg_l coecey) - (extegtee ¢, lcgr1cq - c3c2)
..... (CqtaCata " Coy C2g41C2g -~ Cqp3Cqy2) (mod To, Th)

Gathering these equivalences, we obtain

(C]CQ e C2g+1)g
= (cg-17c201)* 2 (e eg g l)T R (eg 1) - (g esca)
""" (cag41 -+ Cgy3cgy2) (mod Top, Th)

2042 (c7les !

= (eg—1 - C201) -c;}lcgcg_l -+ cocy)

—1 -1 —
(et g legricy e cser)

-1
(Cg+2cg+3 *Coqg C2g+1C2g " - Cg+3Cg+2) (mod Ty, Th).

We multiply both sides of the equivalence by (cicz -+ - cag41)?"2 and
conclude

Qo = (1 (mod T(),Tl) and —Q_O = E[ =1 € Hg.
It follows from the equivalence above that

Ry = (c1ca- - c2g41) 9T - Qo - (cagqr -+ cacr)9 T

=+ . . (cag+1 -+ -c2c1)9tt  (mod Ty, T1)

= (c162+ C2g41) T - (C2gur - c201)

= (0102 s 62g+1)

Applying D;-substitutions repeatedly, we have

(crea -~ cag41)9™h - (cogy1 - c201)9!

=1T- (CICQ ng+1) . (ng+1 e 6201)9 (IllOd Dl, ey D29+1)
Elg+1 (mod Dl,...,ng+1).

We combine these equivalence to obtain

g+1

R()EIg+1 (mOdT(),Tl,Dl,...,ng+1) and Ro——I

because ¢ is odd. This completes the proof of the lemma. Q.E.D.
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Let d € S¥ be the boundary curve of a regular neighborhood of
c1U---Ucg_1. Wenow define two positive words in the generators S

Q:= (cic2- ..02g+1)g+2 d-(cg-1- -oeger)?
wi(eg) - wy(Cgr1) o wypa(Cag1);
R:= cico---cag1-d-(cg—1--- cac1)?
“wy(cg) - walcgsr) o Wiz (C2g41) - (C2gt1 -~ c2c1)H!

(W; = C"lci_+11 e ci_+1g—2 (i=1,...,9+2)).

Theorem 3.5. Both of the words Q@ and R in FH are positive
relators for Hg.

Proof. We apply C; L_substitutions to Q¢ and Ro and rewrite them
as follows.

Qo = (c1e2- -+ czg+1)g+2 (eg—1- - 0201)29 (eg—1++- 0201)2
*Wh (Cg) * W (C!H-l) """ Wot2 (ng+1) (mOd T")
Q (mod Cy_1),

RO = c1C2 - 02g+1 . (Cg—l P 6261)29 . (cg_l e 0261)2
“w (cg) - walcger) o Wora (Cag41) - (C2g41 -+ c2c1)+ (mod Thy)
=R (mod Cy_q).
Thus the proof is completed. Q.E.D.

Let dyi,ds € SH be the boundary curves of a regular neighborhood
of c; U---Uc,.

Remark 3.6. Substituting the same words as Py, Qg, and Ry for
even genus by the inverse C ! of a chain relator Cy, we have the following
positive words for odd genus:

P = didé cw(Cgr1 - czcz) o wlCog e Coracott)

(Cgy1--rc3ca) e (cag+Cgracgr1) (W= (cico--- cg)‘(g“));
Q"= (c1c2---cg11)Tt - did] - wy (coin) - wu(Cgua) - Woir (C2g+1);
R = did3 - w,(cot1) - wy(cor2) - Wy (C2g41) - (C2g41 -+ cacr)? ™

(Wi = (Citg—1--ciprc)™! (i=1,...,g+ 1)),

which are not in 7. The words P,Q, and R in F are positive words
representing ¢, 1, and ¢ in Mg, respectively.
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§4. Generalized Chakiris fibrations

In this section we study various properties of hyperelliptic Lefschetz
fibrations arising from hyperelliptic Chakiris relations given in the pre-
vious section.

We denote the signature and the Euler characteristic of a compact
oriented smooth 4-manifold M by ¢ = Sign(M) and e, respectively. It is
easily seen that e = —4(g — 1) + n for a Lefschetz fibration f: M — S
of genus g with n singular fibers. We often denote by no (resp. ny)
the number of non-separating (resp. separating) singular fibers of f:
n="mng+ny.

Let (c1,...,c2g+1) be a chain of length 2g + 1 on 3,. Suppose that
each ¢; is invariant under the hyperelliptic involution ¢. Hence the right-
handed Dehn twists t,,...,t,,,, belong to H,.

Three hyperelliptic Lefschetz fibrations M2, M¢,, and Mg, = M 2
without separating singular fibers have been studied from various points
of view (see [25], [26], [34], [14], [32], [33], [2], [30], [7], and [8]). For
example, the number n of singular fibers, and the values of signature o
and the Euler characteristic e for these manifolds are calculated as in
the following table.

LF n =ng o e

M2 4(29+1) —4(g+1) 4(g+2)
Mc, | 2(g+1)(2g+1) | —2(g+1)? [ 2(29° + g+ 3)
Mcy, 49(29+1) | —4g(g+1) | 4(2¢°+1)

M2, My, and Mo, = M ;2 are known to be simply-connected, non-
spin, and have a (—1)-section. M2 and M¢, have transitive monodromy,
whereas M¢,, has intransitive monodromy.

Lemma 4.1 (cf. Wajnryb [42], Lemma 21, Auroux [2], Lemma 3.4).
Three fiber sums Mcz = #r2Mcy, Mpzo+2 = #r(g+1) M2, and M¢,, 2
= M, #r M2 are isomorphic as Lefschetz fibrations.

Proof. Using Corollary A.3 and applying‘elementary transforma-
tions repeatedly, we have

012 N 4g+4 (cieg -~ ng+1)29+2 . ((229+1 T C261)2g+2

2g+1_I_(

C1C2 * " C2g+1
2g+1

Cog+1 " C2C1) g

2g+1 2g+1

9L f(cogir - c2e1)9tt T

)
C1C - - 02g+1)
)
)29+1 - (C2g41 - “6201)294—1 i

(
(

~ (6102 crrC2g41
(

C1C2 * * C2g+1



264 H. Endo

where we use 1(¢;) = t(c;)=¢; i=1,...,2g+1).
We apply elementary transformations and Lemma 2.4 to obtain
JI ~ CI:

JI

2
= J.0102...C2g02g+102g...6201 ~ J(ClCQ"‘C2g+1)’J‘C2g+1"'6261

2g+1
= C1C2 " C2g41 - J- C2g41 " C2C1 ~ C1C2 - Cog41 - (0162 s 02g+1) g

= (1.
From this equivalence, we have
C2n (U2 =JIJI~J-1J- IP=J?=Cy-I?
as claimed. Q.E.D.

4.1. Even genus

Suppose that g > 2 and g is even. Let d € S¥ be the boundary curve
of a regular neighborhood of ¢; U---Uc¢,. We obtain positive relators
P2 Q,R? PR,PI,PJ,RI,RJ € RH and corresponding hyperelliptic
Lefschetz fibrations

Mpz, Mg, Mgz, Mpr, Mpr, Mp;, Mgy, MgJ

of genus g over S? from Corollary 3.3. These are non-spin 4-manifolds
because a component of a separating singular fiber represents a homol-
ogy class of square —1. Each of Mp2, Mg, Mpy, and Mp;, which does
not include the word R in its monodromy, has a smooth (—1)-section
which naturally comes from Cip or C; ~ JI (cf. Smith [36], Lemma
2.3). Mg, Mp2, Mpr, Mpr, Mr:, and Mg have transitive monodromy,
whereas Mp2 and Mp; have intransitive monodromy.
We first examine the fundamental groups of these manifolds.

Proposition 4.2. The fundamental group m (Mpz) of Mp2 is iso-
morphic to Zg, while the manifolds Mg, Mp2, Mpr, Mpr, Mps, Mg;,
Mgy are simply connected.

Proof. We orient ci,¢2,...,¢941 80 that ¢; - i1 =+1(i=1,...,

2g) and take oriented simple closed curves ey, es,...,e4 so that {cz,c4,

.., C2g, €1,€2,...,€q} is a symplectic basis of H1(X4;Z) (i.e. cai-€j =

dij, Coi - C2j = €;-¢; = 0(i,7 = 1,...,g)). Connecting these curves

to a base point * of ¥, by appropriate arcs, we consider them also

to be elements of m;(X,, %) which satisfy [c2, e1]{ca, €2] - - - [c29, €4] = 1.
Namely,

71 (Bg, %) = (c2,C4,...,Cag,€1,€2,...,€4]|[C2,€1][Ca,€2] - - - [Cag, €4])-
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Let i : ¥y < M, be the inclusion map from a general fiber into the
total space M,, where o = P%2,Q, R?, PR, PI, PJ,RI, RJ. The induced
homomorphism ix : 71 (Xg) — 71(M,) is surjective and the kernel of iy
includes the normal subgroup N of 7w (M,) generated by the vanishing
cycles of M, (cf. Amords et al. [1], Lemma 3.2). ‘

If o # P2, then M, has vanishing cycles ci,c¢o,...,c2,. We can
choose arcs connecting ci,c3,...,c29—1 to the base point * such that
c1 = et caq = ei__llcmeic;il (t =2,...,9) as elements of m1(X,, *).
Thus we obtain a presentation

71’I(Z:gv *)/N = <027 Cqy.nny 0297 €1,€2,..., eg I [027 61][04, 62] Tt [02g5 eg]7
€2,C4, ..., Cagq, efl,ei’_llcmeic;il (i=2,...,9),etc..)

= {1}.

Hence we have m1(M,) = {1}.

If o = P2, the kernel of iy coincides with N and m(Mp2) is iso-
morphic to m1(Xg, *)/N because Mp2 has a smooth (—1)-section which
naturally comes from a chain relation Cyg of length 2¢g (cf. Smith [36],
Lemma 2.3, Amorés et al. [1], Lemma 3.2). Since Mpz has vanishing

cycles cg,¢3, ..., c2q4, we obtain a presentation
7
771(29, *)/N = <627 C4y...,C2¢,€1,€2,...,€9 I [027 611[047 62] e [0297 89]7
—1 —1 /-
€2,C4,...,Coq, € 1C2:€iCo; (1 =2,...,9))
= <el>7
where N’ is the normal subgroup of m1 (£, *) generated by ¢3, ¢3, ..., cag.

Thus 71 (M,) is cyclic because there is a natural surjective homomor-
phism 7 (X4, %)/N" — m(Xy,%)/N = m(M,). The first homology
group Hi(Mpe2;Z) is isomorphic to H1(X4;Z)/No, where Ng := ND/N
and D := [m1(Xg),m1(Xg)]. Since czim1 = € —ei—1 (1 = 2,...,9),
wic) = —¢(i=2,....9), w(a) =c(i =g+2,...,29), wlcg+1) =
eg +eg—1 in Hy(X4;Z), we have

Hl(Mpz;Z) = Hl(Eg;Z)/N() = Z[el]/(Zel) = 7.
Hence 71 (Mp:2) is isomorphic to Zs. Q.E.D.

We next mention other invariants for our examples. The numbers
ng,ny of singular fibers, and the values of signature o and the Euler
characteristic e for the manifolds above are calculated as in the following
table. (By virtue of Proposition 4.2, these manifolds satisfy b3 = (e +
o)/2—1and b, =(e—0)/2 1))



266 H. Endo
LF g N4 o e
Mp2 447 2 -2(g? +1) 2(2g% — 2g + 3)
Mg 2(g +1)? 1| —(9°+29+3) 20°+7
Mgz 4g +1)° 2 | —2(¢° +29+3) [ 2(29° + 29 +5)
Mpr || 2262 +29+1)| 2 | —2(¢> +g+2) 4(g%> +2)
Mpy 2(g +1)2 1| —(6°+29+3) 297 + 7
Mpj 2g(3g + 1) 1 [ -3¢ +2g+1)] 692—29+5
Mpr || 207 +49g+2) [ 1 | —(¢®+49+5) | 29°+4g+9
Mpy [[2Bg% +3g+1) [ 1 | —-(8g° +49+3)| 6g°+29+7

by is always odd for these manifolds and it is greater than 1 except in
the case of Mpz, Mg, and Mp; for g = 2.

Remark 4.3. The values of signature of hyperelliptic Lefschetz fi-
brations in the table above are calculated by using the local signature
formula [27], [7] or by computing signature contributions of relators in
their monodromies [8]. Ozbagci’s signature formula [29] and these meth-
ods are suited for explicit computation of signature of Lefschetz fibra-
tions. For example, Hasegawa [17] and Yun [43] independently computed
signatures of Gurtas’ fibrations [15], [16] by using these formulae.

Remark 4.4. It is likely that Mg and Mp; are isomorphic as Lef-
schetz fibrations although the author could not relate them by elemen-
tary transformations.

We recall a theorem of Chakiris [5].

Theorem 4.5 (Chakiris’ 1/19-theorem [5], Theorem 4.9). Let M —
CP! be a holomorphic Lefschetz fibration of genus 2 with n > 19n. .

(1) If the monodromy is transitive, then M is isomorphic to Myy,
where W = IPRIQ"C} (p,q,7,s > 0, p = ¢ (mod 2)). In particular, M
is a fiber sum of copies of M2, Mc,, Mo, Mp2, and Mpg;.

(2) If the monodromy is intransitive, then M is isomorphic to My,
where W = P*J! (k,1 >0, k =1 (mod 2)). In particular, M is a fiber
sum of copies of Mcy,, Mp2, and Mp.

Although we do not give any proof of this theorem, we generalize
some lemmas in [5] which were used to prove the theorem.

We define an element of F# by
K = (d Wy (CQ+1) * W (Cg+2) """ Wot1 (029+1))2'

It immediately follows from the proofs of Lemma 3.1 for Qy € R¥ and
Theorem 3.2 for Q@ € R¥ that K is a positive relator for H,,.
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Proposition 4.6 (cf. Chakiris [5], ‘the second’ Lemma 4.8). Both
of the hyperelliptic Lefschetz fibrations Mgz = Mo#rMg and Mp2 are
isomorphic to a fiber sum Mg#rMc, = Mk, of Mg and M.

Proof. We apply elementary transformations to Q2 as follows.

Q% ~ (d-wy(cor1) walcgr2) - W (C2g+1) - (c102 -~ c2g41)71)?
~ (d-wy(cgr1) - wa(Cora) -+ Wy (C2g41))
(er1ez -+ e2g1) T - (uler) - wlea) - uleagra)) T
(U= (d-w,(cg+1)  wu(cgs2) -~ W1 (C2g41) - (C102 - C241)9TH) ™Y
= (d-w,(cge1) - walcgra) -+ Wy (C2g11))” - (cr02+ - - Cag11)29H?

= K'CIa

where we use y(c;) = _U(cil_: ¢ (t=g+1,...,29g+ 1) because U is

conjugate to @' and then U = 1 in H,.
We apply similar elementary transformations to R? as follows.

R* ~ (d-w,(cor1) - walCgea) -+ Woin (C2g41))°
- (cagg1 - 2e1) - (g-1(caga1) - -+ - p-1(c2) - p-1(c1))? T
= (d-wy(cgs1) - wylcgs2) - Wy (C2941))7 - (Cog1 -+ - c201)?9F?
~ (d-wy(cgs1)  wslcge2) oo Woin (C2g41))% - (Cr02 -+ cogy1)?9F?
= K -Ci,

where we use g-1(¢;) = R__l(ci) =uc)=c (i=g+1,...,2g+1) and

Corollary A.3. Q.E.D.

Remark 4.7. It is not difficult to show that Mg is isomorphic to
Cadavid-Korkmaz’ generalization, which we denote by Mck in [8], of

Matsumoto’s genus 2 Lefschetz fibration on S? x T2#4@2 (see [25],
Example B). Hirose told the author a combinatorial proof of this fact.
It is known that ng =29+ 2,n4y = 2,0 = —4, and e = 8 — 2g for Mg
(see [4], [21], and [8]).

Both of the hyperelliptic Lefschetz fibrations Mp; and Mp;s-1 have
6g° + 2¢g non-separating singular fibers and one separating singular fiber.
From the local signature formula [27], [7], they have the same signature
o0 = —(3g%+2g+1) and the same Euler characteristic e = 6g% — 2g + 5.
They are simply-connected and non-spin. It follows from Freedman’s
classification theorem that both Mp; and Mp;s-1 are homeomorphic to

(3¢%/2 — 29+ 1)CP*#(9g%/2 + 2)@2. However they are not isomorphic
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as Lefschetz fibrations because the monodromy of Mpy.—1 is transitive
while that of Mp is intransitive.

Theorem 4.8. If g > 4 and g is even, then Mpy, M1, and
(3¢%/2 — 2g + 1)CP? #(9¢%/2 + 2)@2 are mutually non-diffeomorphic.

Proof. We first note that b3 = 3¢%/2 —2g+ 1 > 1 and odd for
these manifolds. If g > 4, Mpjs-1 is isomorphic to a non-trivial fiber
sum Mpr#r(g/2 — 1)Mjz. Tt follows from a theorem of Usher [41] that
Mpre—1 is a minimal symplectic 4-manifold. Since bg’ > 1, Mgre-1 does
not contain any smooth (—1)-sphere as a consequence of Seiberg-Witten
theory [39], [40], [22] (cf. [14], Remark 10.2.4(a)). On the other hand,
Mp; has a smooth (—1)-section which naturally comes from a chain
relation Cyg of length 2g (cf. Smith [36], Lemma 2.3). Hence Mp; and
Mpgie-1 can not be diffeomorphic.

By Gompf’s theorem ([14], Theorem 10.2.18) Mp, (resp. Mpjs-1)
admits a symplectic structure wp s (resp. wrye-1). It follows from results
of Taubes [38] (cf. [14], Theorem 10.1.11) that the classes ¢, (Mpys,wpy)
(resp. £c1 (Mpro-1,wrre-1)) are Seiberg-Witten basic classes. On the
other hand, the 4-manifold (3¢g2/2 — 2g + 1)CP?*#(9¢%/2 + 2)@2 has
vanishing Seiberg-Witten invariants because it decomposes as the con-
nected sum of (3g%/2 — 2g)CP? and CP*#(9¢%/2 + 2)@@2 [23] (cf. [14],
Theorem 2.4.6). Hence Mp; (resp. Mpgro-1) is not diffeomorphic to
(3g2/2 — 2g + 1)CP*#(9¢2/2 + 2)CP-. Q.E.D.

Remark 4.9. Theorem 4.8 is a variant of Fuller’s theorem [11],
which states that #pgMp2, Mc,,, and (292 — 2g + 1)CP?#(6g% + 2g +
1)@2 are homeomorphic but mutually non-diffeomorphic for every g >
2 (see also [25], [13], and [7]). Fuller’s theorem can be reproved by the
same method as the proof of Theorem 4.8 without using Kirby calculus.

In contrast to Theorem 4.8 we show the following theorem about
fiber sums.

Theorem 4.10 (cf. Chakiris [5], ‘the first’ Lemma 4.8). The fiber
sum Mpyr2z = Mpj#pMp2 is isomorphic to the fiber sum Mpro+1 =
Mpro-1#rMy2 as Lefschetz fibrations for every even g > 2. In particu-
lar, these manifolds are diffeomorphic to each other.

We postpone the proof of this theorem to Appendix B.

Remark 4.11. Theorem 4.10 is a variant of Lemma 4.1. Such kinds
of stability for hyperelliptic Lefschetz fibrations under taking fiber sums
with copies of M2 were formulated by Auroux [2] and Kharlamov and
Kulikov [20].
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If g = 2, the manifolds Mp;, Mps, and K 3#@2 are homeomor-
phic to SCPQ#QO@FQ by Freedman’s classification theorem. The next
theorem was suggested by the referee.

Theorem 4.12. If g = 2, then Mpy, K3#@ﬁ2, and 3CP2#20@2
are mutually non-diffeomorphic.

Proof. 0 ¢ H?(K3;Z) is the only Seiberg-Witten basic class of K3
[10] (cf. [14], Corollary 3.1.15). The blowup formula for Seiberg-Witten
invariants [9] (cf. [14], Theorem 2.4.9) tells us that the only basic classes

of K3#CP are £, where E € H?(K3#CP ;Z) is the Poincaré dual
of the homology class of the exceptional sphere. On the other hand,
consider Mp; and its symplectic structure wpy. The classical adjunc-
tion formula implies that the canonical class Kpy = —ci1(Mpy,wpy)
of the symplectic manifold (Mpj,wpy) satisfies Kpy - F = 2, where
F € H?*(Mpy;Z) is the Poincaré dual of the homology class of the fiber.
Moreover, as observed in the proof of Theorem 4.8, Mp; has a smooth
(—1)-section and we have S - F = 1, where S € H?(Mpy;Z) is the
Poincaré dual of the homology class of the section. Taubes’ result [38]
(cf. [14], Theorem 10.1.11) shows that +£Kp are basic classes for Mp .
But the blowup formula shows that there must be other basic classes
+(Kpy — 25) which are distinct from +Kp; since they pair trivially
with F' (see [14], Exercise 10.1.20). Therefore Mp; is not diffeomorphic
to K34CP .

The manifold 3CP2#20@2 has vanishing Seiberg-Witten invariants
for the same reason as the proof of Theorem 4.8. Hence this manifold is
diffeomorphic neither to Mp; nor to K 3#@2. Q.E.D.

We notice that Mg; for g = 2 is not diffeomorphic to 3CIP2#20@2,
but we can not distinguish Mg from other two manifolds.

Problem 4.13. Determine whether Mpy and Mgy are diffeomor-
phic or not when g = 2. Is Mgy diffeomorphic to KS#@TP’Z ¢

Remark 4.14. Sato {30] listed the pairs (ng,n+) of numbers of
singular fibers possibly realized by some genus 2 Lefschetz fibration
with (—1)-sphere. Hirose [18] has constructed examples of genus 2
Lefschetz fibrations with (—1)-sphere which actually realize the pairs
(16,2), (18,1), and (28,1). If g = 2, the pairs (ng, n4) of numbers of sin-
gular fibers of the Lefschetz fibrations Mpz, Mg, Mpr, Mpr, Mpy, Mgt
are (16,2), (18,1), (26, 2), (18,1),(28,1),(28, 1), respectively. Mp2, Mg,
Mp1, Mp; also realize three pairs (ng,n4) in Sato’s table ([30], Table
1) because they contain (—1)-spheres. Mgy for g = 2 turns out to be



270 H. Endo

isomorphic to Auroux’s fibration X5 in [2] (see Appendix B). Sato told
the author that X5 admits no (—1)-section but contains a (—1)-sphere
as a ‘double section’. Hence Mg, also realizes the pair (28, 1).

Remark 4.15. Usher’s theorem [41], which is used in the proof of
Theorem 4.8 and is an affirmative solution to a conjecture of Stipsicz
[37], is proved also by Sato [31] when g = 2.

4.2. 0Odd genus

Suppose that ¢ > 3 and g is odd. Let d € S be the boundary
curve of a regular neighborhood of ¢; U---Ucy—1. We obtain positive
relators Q, R € R by Theorem 3.5. We also have positive relators for
‘H, defined by

Ky :=(c1ca- - cag41 - d - (cg—1 coey)?

i (Cg) - wa(Cg1) -+ wypa (c2g41))?,
K :=(c1ca -+~ cg41)%(d - (cgo1 -+~ c201)?

i (Cg) - wa(g1) - wypa (C2g1)),

which are constructed in the same way as K for even genus (see the
proofs of Lemma 3.4 for Qo € R¥ and Theorem 3.5 for Q € R¥).
Thus we obtain the corresponding hyperelliptic Lefschetz fibrations

Ale ]\’[R7 MK17 MK2

of genus g over S? with transitive monodromy. These are non-spin 4-
manifolds because a component of a separating singular fiber represents
a homology class of square —1. Each of Mg, Mk, , and Mg, has a
smooth (—1)-section which naturally comes from Cp (cf. Smith [36],
Lemma 2.3).

Proposition 4.16. The manifolds Mg, Mg, Mg,, and Mg, are
simply connected.

Proof.  Quite similar to the proof of Proposition 4.2. Q.E.D.

The numbers ng, n4 of singular fibers, and the values of signature o
and the Euler characteristic e for the manifolds above are calculated as
in the following table. (By virtue of Proposition 4.16, these manifolds
satisfy b = (e +0)/2—1and b; = (e —0)/2 —1.)

LF ng n4 o e
Mo and Mr [[2(>+4g+1) | 1T | —(g+2)% [2¢°+4g9+7
Mg, and Mg, 2(5g+ 1) 2 | —2(29+3)| 238g+4)
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The values of signature of hyperelliptic Lefschetz fibrations in the
table above are calculated by using formulae in [27], [7], or [8]. bF is
always odd for these manifolds and it is greater than 1.

Proposition 4.17. The four fiber sums M2 = Mo#rMg, Mp: =
Mp#rMp, Mi,0; = Mk, #rMc, (i = 1,2) of copies of hyperelliptic
Lefschetz fibrations Mg, Mg, Mc,, Mg, (i = 1,2) are isomorphic to
each other.

Proof. We apply elementary transformations to Q? as follows.

Q% ~ (creg -+ cagyr-d-(cgo1- - cge1)?
wy (Cq) - wa(Cgtr) - Wora(C2ga1) - (c102 - cogy1)?™)?

~ (creo- eagy1 - d- (cg_1 . ..0201)2

“wi(cg) - waleger) o Wyrz(€29+1))°
(ereg - e2g11) - (wler) ulea) - v(cag41))? ™!
(U :=(cica---cag41 - d- (Cg—1 - cac1)?
w1 (Cq) - wa(Cg1) oo Wyra(C2g+1) - (162 -~ Cag41)9T1)7Y)
= (c1ez- et d - (cg—1 ...0261)2 . Wl(cg) . Wz(ch) R

Wi (C2g41))? - (c1Ca - C2g41)?97

= K, (i,

where we use y(c;) = U(ci) = ¢; (i = 1,...,29 + 1) because U is
conjugate to @' and then U = 1 in H,.

Q? ~ (d- (cg—1- ..0201)2

“wi(cg) - wy(Cgt1) -+ W2 (C2g11) - (102 - Cog41)?7)?
~ (d- (cg-1---cac1)? - wy (cg) - wa(Cgir) - Wy (€2g+1))°
“(crcp - CZg+1)g+2 : (V(Cl) cy(ea) oo V(ng+1))g+2
(Vi=(d-(cg—1-- ce01)?
“wi(cq) walegtr) oo Woen (C2gy1) - (C102- - C2941)9%)7H)
= (d- (cg-1--c2c1)®  w,(cg) - wylcger) -+ Wyia(C2g41))°
. (0102 .. ng+1)2g+4

~ Ky (Cr,

where we use v(¢;) = V(ﬁ) =¢ (i =1,...,2g + 1) because V is
conjugate to Q7! and then V =1 in H,.
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We apply similar elementary transformations to R? as follows.

R*= (cicp- < eag41 - d - (Cg—1 ccpey)?

Wi (Cq) - wy(Ca1) - - Wypa (Cogr1) - (Cagr -+ - c2c1)9Th)?
~ (cicg 2941 d- (Cg1- ccpcr)?

“wy(cg) - wa(ege1)) oo Wiy (C2g+1))°

) (C2g+1 e 'Czcl)gH : (R-1(02g+1) """ r-1(c2) R—l(cl))g+1
= (c1cp- -+ Cogr1 - d- (g1 -+ cac1)?

wy(cg) - walcge1)) oo Wyt (C2g41))% - (Cagir -+ €201) 2972
= (cico- - Cogtr - d- (cg_l .. .0201)2

Wy (Cq) " walcge1)) o Wyer (C2g11))% - (crca - C2g41)% "2

= Ki-C,
where we use g-1(c¢;) = F_l(ci) =¢ (t=1,...,2g9 + 1) and Corollary
A3, Q.E.D.

Remark 4.18. The author does not know any explicit examples of
hyperelliptic Lefschetz fibrations of odd genus with separating singular
fibers other than Mg, Mg, Mk,, Mgk,, and fiber sums of their copies.
Mg (resp. Mg,) might not be isomorphic to Mg (resp. Mg, ) although
the author does not know any invariants which distinguish these fibra-
tions.

Let di,ds € S be the boundary curves of a regﬁlar neighborhood
of cp U---Ucy.

Remark 4.19. Substituting the same word as @y for even genus
by the inverse Cg ! of a chain relator C, twice, we have the following
positive word for odd genus:

K' = (d%dg W (cg+1) c W (Cg+2) """ Wot1 (0294-1))2

which is not in FH# (see Remark 3.6). This is a positive relator in M
and the corresponding Lefschetz fibration My is nothing but Cadavid-
Korkmaz’ fibration for odd genus, which we denote by Mcx in [8]. It is
known that ng = 29+ 10,n4 = 0,0 = —8, and e = 14 — 2g for Mk (see
[4], [21], and [8]).

§5. Concluding remarks

Hyperelliptic Lefschetz fibrations form a very special and beautiful
class of Lefschetz fibrations.. But it seems that there is much room to
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be studied. For example, a famous conjecture of Siebert and Tian [32]
for hyperelliptic Lefschetz fibrations without separating singular fibers is
only partially solved in genus 2 case. Moreover it is not clear whether all
hyperelliptic Lefschetz fibrations over the 2-sphere have been discovered.
On the other hand, hyperelliptic Lefschetz fibrations are rich enough
to include many explicit examples with interesting properties. For ex-
ample, generalizations of Matsumoto’s fibrations [25] and Chakiris’ fi-
brations [5] give examples of homeomorphi¢ but non-diffeomorphic 4-
manifolds which become diffeomorphic after taking fiber sums with only
one copy of M (see Remark 4.9, Remark 4.11, Theorem 4.8, and The-
orem 4.10). These examples together with stabilization theorems of
Auroux [2] and Kharlamov and Kulikov [20] seem to be ‘fiber sum ana-
logues’ of 4-manifolds which dissolve after taking connected sums with
only one copy of §? x S§? together with Wall’s stabilization theorem for
connected sums of simply-connected 4-manifolds with copies of S2 x S2.
If hyperelliptic Lefschetz fibrations are investigated very well, they
would be recognized as new fundamental 4-manifolds and might play
interesting roles such as elliptic surfaces in 4-manifold topology.

SAppendix A. A reversing lemma

Let (c1,¢2,. .., c,) be a chain of length n on ¥4 and Wy, W5 positive
words in the generators ci,co,...,c, € S. We write Wy = Wy if W) can
be transformed into W5 by replacing ¢;c;+1¢; with ¢;41¢;¢41, Ci41CiCit1
with ¢;eip16 for i = 1,...,n — 1, and ¢;¢; with ¢je; for i — j| > 1
repeatedly. This relation is an equivalence relation on the set of positive
words in the generators ci,¢a,...,¢,. It is not difficult to verify that
Lemma 2.4 is true even if we replace = (mod Tp, T1) with ~.

Lemma A.1 (Chakiris [5], Lemma 3.5). The following equivalence
holds.

(1o cn)" T x (e rce)™ (n=1,...,29).
Proof. We set Wy := (cica---c,)"t and Wa = (¢, -+ - c2cq)" !
forn=1,...,29. We prove W; = W, by induction on n.
If n = 2, then W is transformed into W5 as follows:
Wl = (0102)3 = C1C2Cj * C2C1C2 = C2C1C2 " C1C2C1 = (0201)3 = Wz.

Suppose that Wy = W, is valid for n — 1:

(crc2- "Cn~1)n ~ (Cn—l -e-cpep)”.
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We consider Wi and Wy for n. Applying Lemma 2.4 for ~ and using
the assumption, we have

Wl = (6102 e Cn)n+1 = (C162 o Cn)n ©C1C2 -+ Cp

n
~(c1c2 - cn1)" Cncac1 - C1C2 g
n
~ (Cn_l...czcl) *Cp**C2C1 - C1C2 " Cp.
Manipulating braid relations as Lemma 2.1 of [21], we transform the
right-hand side as follows:
n
(Cn—ln..czcl) -cn.o.c2cl .Clczuaocn
%Cn...CQCl . (Cn"'cBCz)n ’clc2"'cn

n—-1

:Cn...c2cl.(cn...c302) Cp*++C2Cy " Co"**Cp

Rcpcacr - (Cnee3ea) 2 (cp--rcac1)? o ca e
RCp €01 Cp- o3y (Cnv o Coer)™ e

~ (Cn ce 0201)n+1 = WQ.
‘We have thus shown W; ~ W5 as claimed. Q.E.D.

Let o0 € R be a relator including Wy = (cica - - - ¢,)"™! as a subword:
o = UWV (UV € F). We put ¢ := UWLV € F, where Wy =
(Cn e 0201)n+1.

Corollary A.2. The word o' is also a relator in R and o = o
(mod T(), Tl)

Proof. It immediately follows from the definition of ~ that W; =~
W, implies ¢ = ¢’ (mod Ty, T}) and then ¢’ € R. Q.E.D.

We set W1 = (cic2---¢,)" ! and Wy = (¢, - - cacy)™ ! for n =
1,...,2g again. Let p € R be a positive relator including W; as a
subword: ¢ = UW4V (U,V € F and U,V are positive). We put o :=
UW,V € F.

Corollary A.3. The word ¢’ is also a positive relator in R and
o~ ¢

Proof. The word ¢’ is obviously positive. From Corollary A.2, o =

o' (mod Ty, T1) and then ¢’ € R. We can show that Wy ~ Wy implies
o ~ ¢’ because

""Ci'ci+1'ci""N""Ci'ci_,_l(ci)’ci—i-l""

N""C1ci+1(ci)'ci'ci+1”":""Ci-i-l.ci'ci-‘}»l”.’
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fori=1,...,n—1 and
.ci.cj....N....Cj(ci).ci....:....Cj.ci....
for |i — j| > 1 by braid relations. Q.E.D.

§Appendix B. Proof of Theorem 4.10
It is easy to see that the image of
H :=cogy103g--- CQC%CZ < - CgC2g4+1 € FH

under w represents the hyperelliptic involution ¢.
We need the following lemma to show that PJI? ~ RI9*1L,

Lemma B.1 (cf. Chakiris [5], Lemma 4.7). The equivalence
o J ~ RH!

Cog+1

P

holds for every even g > 2.

Proof. 'We first notice that P- -1 J and RHY™" belong to RH

g+1
because w(P - C;glJrlJ) =t ey, =1 and w(RHI™Y) =9 = 1.

We use such elementary transformations as in the proof of Corollary
A.3 and cyclic permutations, which are expressed as compositions of ele-
mentary transformations, repeatedly in this proof. Using Corollary A.3,
Lemma 2.4, and manipulation of braid relations as Lemma 2.1 of [21],

we obtain the following long sequence of elementary transformations.

P 0591+1J
AR e C T “e2g)?9 T P~ esi, (€29 - cger)?9tL L P
~ et ((cag - - c2¢1)? - (CqCqor -+~ Cag)-
<o (o2 cgyr) - (cg...0201)9+1) . P
= cz‘glﬂ((@g rereae1)? - (Cglg—1 -+ Cog)-
R (6162...%“)) “(eg - ..0261)9-#1 . P
~ c;g1+1((02g coveger)?  (CgCg—1 vt Cg) et (crca -+ Cg+1)) - w-l.p
T et ((c2g - c2c1)? - (cgeg—1---c2g) - -+ (crez- - cg41)) - wt
'd'W(Cg+1"'0362) ..... W(CQg"‘Cg+20g+1)
(Cgp1 - CaC) e (Cog -+ CgraCqtn)
~ 1 ((ng A 6201)9 . (Cgcg—l . ng) ..... (8182 R Cg+1)) . W_l

Cag+1
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cwlCgsr - caea) e wlCag - CoraCesr)
“(Ccge1---c302) - (C2g - Cgt2Cg41) - (a-1p)—1(d)

~ epty ((02g++0201)7 - (cqlqms -+ eg) -+ (c1ca-+ - 1))
.(ch...Cng).....(029...Cg+20g+1).w—1
(Cgq1 - C3C2) e (Cog -+ CqraCasr) - d

~ (cpyC2g+1C2g—1 " - C2C1)?
(CaCgmt " Cog—1e3,C2941) - (Cq1Cg2 -+ Cag) - " (crez -
(Cgar - C30a) e (Cag *+* CgiaCart) - (12 )9t
(Cgq1 - C3Ca) et (Cog -+ CqraCas1) -

(n.b. a1 €29 = cagC2g+1)

~ (cpgC2g+1C2g—1 - - C2€1)7

(CqCqm1 -+ C2g—10p,Cag+1) - (Cgm1Cgn -~ Cag) -+ - (creg -
(cgr---cac1) - (Cgra---cacr) - (Cag -~ cac1)
ccg - (Cq_1Cq) - (CqaCq_1cq) - (crea---cy)
(Cgy1---Ca3C2) e (Cag - Cgracas1) - d

~ (C2gc2g+1c2g—1 - cacr)?
(CgCg—1 "+ Cag—103,C2g+1) - (Cq—1Cg—n - Cag) - -+ (c12-
'(Cg+1"‘C201) . (Cg+2"'0201)"" . (02g~~~0201)
ey (Cq1Cq) - (cacs---cq) - (cre2---cg)
(Cgy1Carn - Cag) - (c3ca---cqy2) - (caca---copr) - d

~ (02962g+102g—1 e '0201)9

 (CyCa1 -+ C2g—1esyCogt1) - (Cg1Cg_n -+ Cag) -+ (Crez -
(Cop1 - C201) - (Coun - CaC1) - - (Cag - C2c1)
(crca - Cog) - (crea - cgra) - (crca - cop1) - d

~ (cpyC2g+1C2g—1 "+ C2C1)?
(CyCqr +* Cag—1eayCogt1) - (Cg—1Cg_2 -~ Cag) -+ (c1p- -
(eag - CacPey - rCag) e (Cra - Cac3ey - Cgyn)

'(Cg-}_l"'CQC%C]_"’Cg_}_l)'d

~ (cagCag41C2g—1 - - C2€1)?

. (cgcg_l . .C2g_1029629+1) . (Cg—lcg—2 e C2g) PR (0102 e

2 2
. Cg+1 .. 'CQCICQ .. 'CQg . (02!]—1 . .026102 .. '629—1)

Cg+1)

Cqt1)

Cg+1)

Cg+1)

Cg+1)

Co+2)
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..... (cg+2-~~020301~--cg+2) . (CQH...ch%cl...ch) .d

~ (C2g C2g+1C2g—1 """ 0201)g
- (CgCat - Cag—1e2y Cag41C2g) * (Cg_1Cq—g -+~ Cag)- - (crea---cqra)
ey -chfCQ o (Cogo1 - ..020%02 S Cog-1)
..... (cg+2-~-020fcl--~cg+2) . (Cg-f-l"'CZc%Cl"‘cg%»l) -d

~ (cagC2g+1C2g—1 " €2€1)7 - (CgCq—1 "~ CagCagt1) - (Cg—1Cg—2 * +~ C2g)
..... (crca- - Caya) - Cq - “cal3cy - - Cag - (C2g—1 - cacicy - Cag-1)
..... (cg+2...¢2C§cl...Cg+2) . (Cgﬂ...cZqu...ch).d

~ (cagC2g4+1C2g—1 -~ C2C1)Y - Cog - CgyaCgi1 - (CgCq—1 -+ Cags1)
(Cgo1Cqg_n - Cag) -+ (crea- -+ Cgrz) - C10a - Cag
(Cago1- - CaCiCa- - Cag_n) - (Cga1 - CaCier - Cgyn) - d

~ (cgyC2g+1C2g—1 - C2C1)7 - Cag -+ - C2C1 - (Cgt1Cgy2 -~ Cagr1)
(CqCqm1 - Cag) -+ (Cacs -+ Cqra) - C1ea- - Cag
(cog1 -+ CacPcy - Cagn) e (Cga1---Cacdcr - Copn) - d

~ Cag -+ 201" (Cogp1Cag - €3C2)? - (Cg41Cgt2 -+ C2g41)
(CgCq1 -+ Cag) -+ - (CaCs -+ Capa)  C12- - Cag
(Cagy - CacPca - Cag) - ee (Cgr1---Cac3cy - Cgy1) - d

~ Cgp1 - Cac1 - (Cogr1C2g -+~ C3C2)Y - (Cg41Cg42 +* C2g41)

. (Cgcg—1'~'02g) ..... (0263"'Cg+2)‘0102"'629
. (C29_1 - 020%02 e cQg—l) ..... (cg+1 e C2C§C1 . Cg+1)
. CQg ..... Cg+3cg+2 . d

~ Cg1 a0 - (Cogp1Cag o €3C2)Y - (Coy1Cgp2 - C2g41)

(CqCgmt -~ Cag) -+ (c2¢3- - Cguz) - (C1C2- - Cgi1)

(Cag -+ CacPea - Cag) - co(CgparCacier - Copa) - d
~ (Cag+1 " CgaCqts) -+ - (c2g+1C2g) - C2g41

(Cqe1 - Cacr) - (Cora---C3C2) - " (Cags1 - C362)

(Cop1Catz - Caga1) < - (caCs - Cora) - (C1C2 -+ Cga1)

(c2g cocicy - cCg) (cgra- ccacley - “Cgy2) - d
~ (Cop1- - C2c1) - (Coin - Caa) - - (Caga1 -+ C3C2)

(Cgp1Corz - Cagir) o - (c2c3-+ - Cora) - (CrCa -+ Car1)

. (CQQ e CQC%CQ o e CZg) ..... (cg+2 e 020%01 P Cg+2)
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(Cag1 - CgiaCqss) -+ - (C2g11C2g) - C2g11 -

~ (Cgi1--C2c1) - (Copa---Cac) -+ - (Cag41 - Cas2Cas1)
cea - (caea) -+ (cq- - Caca)
(Cqt1Cgrz - Cager) - - - (cacs - Cgpa) - (102~ Cgi1)
(czq - caley - Cag) (cgra - calier - Cgt2)
“(Cag+1 - Cgracgs) - - (C2g+1C2g) * C2g41 - d

~ (Cgp1 - Cact) - (Copa - CaCa) -+ - (Coge1 -~ CgaaCat1)

ey (Cq1cq) - - (cacs -+ )

(Cap1Cgr2 - Cagsr) -+ - (Cacs - Cqra) - (C102- -~ Cgi1)
.(029...62@02...0257) . -~--(cg+2--~chfc1---cg+g)
“(C2g+1 - CgtaCyrs) o (cag+1C2g) - C2g41 - d

~ (Cgr1 - Cae1) - (Capa - CaCa) -+ - (Cags1 - CyaCqsn)
g (Cq1¢q) -+ (Cacs- g
(Cap1 - C201) - (Cgya---Caca) - (Cag41 -+ CgsaCat1)
(c2g - Czc§62 eCgg) e (Cgr2 - cacicy - - Co+2)
(Cog1 - CoraCqss) -+ - (Cags1C2g) - Cagi1 - d

~ (Cgy1---Cact) - (Copa---Caa) -+ - (Cogt1 - Cg42Cat1)
(Cop1 - C201) - (Cgyn---C3Ca) - - (Cag41 " CgsaCas1)
“C2g41 - (C2gC2g41) - -+ (Cg43Cq4a -+ Cag41)
.(ng...CQC’f’CQ...%) . -~-~(cg+2-~~chfc1--~cg+2)
(Cagi1 - CgraCqas) - (Cage1Cag) - Cagsr - d

~ (Cgy1 - Cac1) - (Copar-C3Ca) - - (Cage1 -+ CgsaCat1)
(Cop1 -+ C201) - (Cgan - C3Ca) + - (Cagt1- " CgsaCar1)

2 -1
'(ng+1...C2CIC2...02g+1)g .d

~ (Cgs1---cac1) - (Copa---caca) - (Cog+1 -+ Cgracyrr)

. (cg+1cg+2 "‘ng+1) ..... (0203...%) -(c1c2 ~~cg+1) CHIL .4
~ (cg - --C2c1)9+1 iy (Cgr1) - wy(Cgrz) v e Wg+1(c2g+1)

(Cgi1Catz - Coga1) - (Cacz---cq) - (c162- - copr) - HI - d
~ wy(Cgt1) - wy(Cgra) - oo Wi (C2g+1)

(Cgp1Carn - Coga1) -+ - (cacs---cg) - (crca--Caur)

(egrcpe)?THHIT . d (nb. go-i(e) = (i=1,...,9))
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~ wy(Cgr1) - walcgez) oo Wyt (C2g+1) - (C2g+1---coe1)?T - HI™ - d
~d-w, (Cg+1) W, (cg+2) ..... Wi (ng+1) . (62g+1 - 6201)9+1 . go9-1
=R.Hg9!

Thus the proof is completed. Q.E.D.

By virtue of Lemma 4.1, Corollary A.3, and Lemma B.1, we can
show the equivalence PJI? ~ RI9t! as follows.

PJI?=P-JI-I=P-Cp-c10p-CgqCh, 4 1Cag - C2C1
~ pey(cica -~ cagqa) - PCr-cagy1---cacy ~ H - PCh

~H-P- (C2g+1 "'0201)2g+2

2g+1
chg...czcl .HP.C29+1 . (CQg”'CZClcQg-I-l) g

~ HP - (gpy-1(cag -~ c201) - Cogy1 - (Cag -+ - C2C1C2g11) 29T

2g+2
~ HP - (cogCag41C2g—1 " C2¢1)*97T

~HP- (029+1 . c2_l+1(629) “Cog-1 CQCl)2g+2

g
2g9+2
~HP- (Cogy1 - cac1)?9? ~ HP: - G
~HP - ot
Cag41

(JH)~HP- -1 J-
2g9+1 2g9+1

~H-RH'. .. H~RH% ' .. H-H
2g9+1 2g+1

-1
= RH™ - cagr1- o1 (C2g) - C2g-1- - 20

-1
Cag+1

cC1C2 - C2g-1 " ok (02g) *C2g41 - H
~ RHg‘—l 1 C2gC2g—1 """ CQC%CQ T ng_102g639+1 -H
~ Cogy1 - H - RH9! “Cag - ..02c§02 e CogCagt1
~ H - RI{g~1 . (HRHg—l)*l(CQgJ'_]) cC2g 026%62 c 1 C29C2g4+1
=H- RHg_l -H ~ RH9+1 ~ C1C2 " C2g41 * RHY . C2g41 " C2C1
NR'R—l(CICQ"'C2g+1) ~H9~ng+1---6201
= RI9+!

This completes the proof of Theorem 4.10.
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