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§1. Introduction 

1.1. The Johnson-Morita filtration of the mapping class 
group 

Let M 9 be a closed oriented 2-manifold of genus g and r 9 be its 
mapping class group, that is, the group of isotopy classes of orientation­
preserving diffeomorphisms of M9 • Also, let Jr = 1rl(M9 ), and denote 

by Jr(k) the kth term in the lower central series of Jr, i.e. Jr(l) = 1r and 
Jr(k+l) = [1r, Jr(kl]. Then f' 9 acts on the quotient groups 1r j1r(k), and that 

action yields a representation pk : t g __, r~, where r~ < Aut ( Jr I Jr(k)). 
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With these conventions, p1 is the trivial representation and p2 is the 
symplectic representation. The kernels of these representations make 
what has been called the 'Johnson filtration' of f 9 , because they were 
studied by Johnson in [21, 20]. Subsequently they were developed by 
Morita in a series of papers [30, 31, 32, 33]. In particular, Morita studied 
the extensions of Johnson's homomorphisms to f', an_d so we refer to our 
representations as the Johnson-Morita filtration of r. 

Our work in this article is motivated by the case when M 9 is a Hee­
gaard surface in a 3-manifold W and elements of f' 9 are 'gluing maps' 
for the Heegaard splitting. One may then study W by investigating the 
image under the maps pk of the set of all possible gluing maps that yield 
W. Among the many papers which relate to this approach to 3-manifold 
topology are those of Birman [2], Birman and Craggs [3], Brendle and 
Farb [5], Broaddus, Farb and Putman [6], Cochran, Gerges and Orr [10], 
Garoufalidis and Levine [14], Johnson [17, 18, 19, 20], Montesinos and 
Safont [27], Morita [29], Pitsch [37], [38], and Reidemeister [40]. The 
papers just referenced relate to the cases k =1-4 in the infinite sequence 
of actions of f' 9 on the quotient groups of the lower central series, but 
the possibility is there to study deeper invariants of W, obtainable in 
principle from deeper quotients of the lower central series. The founda­
tions for such deeper studies have been laid in the work of Morita[30, 31], 
who introduced the idea of studying higher representations via crossed 
homomorphisms. It was proved by Day [11] that the crossed product 
structure discovered by Morita in the cases k = 3 and 4 can be general­
ized to all k, enabling one in principle to separate out, at each level, the 
new contributions. 

The invariants of 3-manifolds that can be obtained in this way are 
known to be closely related to finite type invariants of 3-manifolds [9, 14], 
although as yet this approach to finite type invariants opens up many 
more questions than answers. For example, it is known that the Rochlin 
and Casson invariants of 3-manifolds appear in this setting at levels 3 
and 4, respectively. It is also known that in general there are finitely 
many linearly independent finite-type invariants of 3-manifolds at each 
fixed order (or, in our setting, fixed level) k, yet at this moment no more 
than one topological invariant has been encountered at any level. 

The simplest non-trivial example of the program mentioned above 
is the case k = 2. Here f 9 acts on H 1(M9 ) = 1r/[1r,Jr]. The information 
about W that is encoded in p2 (¢), where 1> E Diff+(M9 ) is the Heegaard 
gluing map for a Heegaard splitting of W of minimum genus, together 
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with the images under p2 of the Heegaard gluing maps of all 'stabiliza­
tions' of the given splitting, is what we have in mind when we refer to a 
'symplectic Heegaard splitting'. 

The purpose of this article is to review the literature on symplectic 
Heegaard splittings of 3-manifolds and the closely related literature on 
linked abelian groups, with the goal of describing what we know, as 
completely and explicitly and efficiently as possible, in a form in which 
we hope will be useful for future work. At the same time, we will add a 
few new things that we learned in the process. That is the broad outline 
of what the reader can expect to find in the pages that follow. 

This article dates back to 1989. At that time, the first two authors 
had discussed the first author's invariant of Heegaard splittings, in [2], 
and had succeeded in proving three new facts : first, that the invariant 
in [2] could be improved in a small way; second, that the improved 
invariant was essentially the only invariant of Heegaard splittings that 
could be obtained from a symplectic Heegaard splitting; and third, that 
the index of stabilization of a symplectic Heegaard splitting is one. That 
work was set aside, in partially completed form, to gather dust in a filing 
cabinet. An early version of this paper had, however, been shared with 
the authors of [27] (and was referenced and acknowledged in [27]). Alas, 
it took us 18 years to prepare our work for publication! Our work was 
resurrected, tentatively, at roughly the time of the conference on Groups 
of Diffeomorphisms that was held in Tokyo September 11-15, 2006. As it 
turned out, the subject still seemed to be relevant, and since a conference 
proceedings was planned, we decided to update it and complete it, in 
the hope that it might still be useful to current workers in the area. 
When that decision was under discussion, the manuscript was shared 
with the third author, who contributed many excellent suggestions, and 
also answered a question posed by the first author (see §8). Soon after 
that, he became a coauthor. 

1.2. Heegaard splittings of 3-manifolds 

Let W be a closed, orientable 3-dimensional manifold. A Heegaard 
surface in W is a closed, orientable surface M of genus g ;;?: 0 embedded 
in W which divides W into homeomorphic handlebodies NUN, where 
N n N = 8N = 8N = M. For example, if W is the 3-sphere 

§ 3 = {(x1,X2,x3,x4) E ~4 1 xi +x~ +x~ +x~ = 1}, 

then the torus 

M = { (x1, x2, X3, X4) E § 3 I xi+ x~ = x~ + x~ = ~} 
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is a Heegaard surface. 

Proposition 1.1. Every closed orientable 3-manifold W admits 
Heegaard splittings. 

See [41], for example, for a proof. One will also find there related 
notions of Heegaard splittings of non-orientable 3-manifolds, of open 
3-manifolds such as knot complements, and of 3-manifolds with bound­
ary, and also an excellent introduction to the topic and its many open 
problems from the viewpoint of geometric topology. 

Since any Heegaard splitting clearly gives rise to others under home­
omorphisms of W, an equivalence relation is in order. 

Definition 1.2. Assume that W is an oriented 3-manifold, and 
write W = N U N = N' U N'. These two Heegaard splittings will be 
said to be equivalent if there is a homeomorphism F : W ---+ W which 
restricts to homeomorphisms f : N ---+ N' and f: N ---+ N'. Observe 
that our particular way of defining equivalent Heegaard splittings involve 
a choice of the initial handlebody N and a choice of an orientation on 
W. The genus of the splitting W =NUN is the genus of N. II 

There are 3-manifolds and even prime 3-manifolds which admit more 
than one equivalence class of splittings (for example, see [12, 4]), there 
are also 3-manifolds which admit unique equivalence classes of splittings 
of minimal genus (e.g. lens spaces and the 3-torus § 1 x§1 x§1 ), and there 
are also 3-manifolds which admit unique equivalence classes of Heegaard 
splittings of every genus. A very fundamental example was studied by 
Waldhausen in [46], who proved: 

Theorem 1.3 ([46]). Any two Heegaard splittings of the same, but 
arbitrary, genus of the 3-sphere § 3 are equivalent. 

After that important result became known, other manifolds were 
investigated. At the present writing, it seems correct to say that 'most' 
3-manifolds admit exactly one equivalence class of minimal genus Hee­
gaard splittings. On the other hand, many examples are known of man­
ifolds that admit more than one equivalence class of splittings. See, for 
example, [28], where all the minimal genus Heegaard splittings of certain 
Seifert fiber spaces are determined. 

If a three-manifold admits a Heegaard splitting of genus g, then it 
also admits of one genus g' for every g' > g. To see why this is the 
case, let N9 U N9 be a Heegaard splitting of W of genus g, and let 
T1 U 'i\ be a Heegaard splitting of the 3-sphere § 3 of genus 1. Remove 



Symplectic H eegaard splittings and l·inked abelian groups 139 

a 3-ball from W and a 3-ball from § 3 , choosing these 3-balls so that 
they meet the respective Heegaard surfaces in discs. Using these 3-balls 
to form the connected sum W #§3 , we obtain a new Heegaard splitting 
(N9 #Tr) U (N9 #Tr) of W ~ W #§3 of genus g + 1. This process is 
called stabilizing a Heegaard splitting. Note that Theorem 1.3 implies 
that the equivalence class of the new genus g + 1 splitting is independent 
of the choice of T1 and of f'1 , as subsets of § 3 , since all splittings of § 3 of 
genus 1, indeed of any genus, are equivalent. Iterating the procedure, we 
obtain splittings (N9 #T1 # · · · #T1) U (N9 #T1 # · · · #Tr) of W of each 
genus g + k, k > 0. 

Heegaard splittings of genus g and g' of a 3-manifold W are said to 
be stably equivalent if they have equivalent stabilizations of some genus 
g + k = g' + k'. In this regard, we have a classical result, proved in 1933 
by Reidemeister [39] and (simultaneously and independently) by James 
Singer [44]: 

Theorem 1.4 ([39], [44]). Any two Heegaard splittings of any closed, 
orientable 3-manifold W are stably equivalent. 

Remark 1.5. We distinguish two types of candidates for inequiva­
lent minimum genus Heegaard splittings of a 3-manifold. The first (we 
call it ordinary) is always present: two splittings which differ in the 
choice of ordering of the two handlebodies, i.e. N U N in one case and 
N U N in the other. Two ordinary Heegaard splittings may or may 
not be equivalent. The second are all examples which are not ordinary, 
e.g. the 'horizontal' and 'vertical' Heegaard splittings of certain Seifert 
fibered spaces [28]. In view of the fact that Theorem 1.4 was proved in 
1933, it seems remarkable that the following situation exists, as we write 
in 2008: 

• The only examples of inequivalent minimal genus Heegaard 
splittings of genus g of the same 3-manifold which can be 
proved to require more than one stabilization before they be­
come equivalent are ordinary examples; 

• The discovery of the first ordinary examples which can be 
proved to require more than one stabilization was made in 2008 
[15]. 

• While non-ordinary examples have been known for some time, 
at this writing there is no known pair which do not not be­
come equivalent after a single stabilization. For example, the 
inequivalent minimal genus Heegaard splittings of Seifert fiber 
spaces which were studied in [28] were proved in [42] to become 
equivalent after a single stabilization. 
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Note that ordinary examples can be ruled out by a small change in 
the definition of equivalence, although we have chosen not to do so, 
because the situation as regards ordinary examples is still far from being 
understood. II 

Keeping Remark 1.5 in mind, we have several classical problems 
about Heegaard splittings: 

• How many stabilizations are needed before two inequivalent 
Heegaard splittings of a 3-manifold become equivalent, as they 
must because of Theorem 1.4? Is there a uniform bound, which 
is independent of the choice of W and of the Heegaard surface 
aN= aN in W? 

• Can we use stabilized Heegaard splittings to find topological 
invariants of 3-manifolds? 

An example of a 3-manifold invariant which was discovered with the 
help of Heegaard splittings is Casson's invariant [1]. 

A Heegaard splitting of a 3-manifold W is said to have minimal 
genus (or simply to be minimal) if there do not exist splittings of W 
which have smaller genus. Our second problem involves Heegaard split­
tings which are not stabilized. Since it can happen that a Heegaard 
splitting of a 3-manifold W is non-minimal in genus, but is not the sta­
bilization of a Heegaard splitting of smaller genus (a complication which 
we wish to avoid), we assume from now on that wherever we consider 
unstabilized Heegaard splittings, we assume the genus to be minimal 
over all Heegaard splittings of the particular manifold. This brings us 
to another problem: 

• Can we find invariants of unstable Heegaard splittings, and so 
reach a better understanding of the classification of Heegaard 
splittings? 

Surprisingly, such invariants are very hard to come by, and little 1s 
known. 

1.3. Symplectic Heegaard splittings 

We begin by setting up notation that will be used throughout this 
paper. We will use a standard model for a symplectic space and for the 
symplectic group Sp(2g,Z). Let N9 be a handlebody. Then H 1 (aN9 ) 

is a free abelian group of rank 2g. Thinking of it as a vector space, 
the free abelian group H 1 (N9 ; Z) is a subspace. We choose as basis 
elements for the former the ordered array of homology classes of the loops 
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a 1, ... , a9 , b1, ... , b9 which are depicted in Figure 1. With our choices, 
the images of the ai under the inclusion map 8N9 ----+ N 9 are a basis for 
H1 (N9 ;Z). The algebraic intersection pairing(·,·) defines a symplectic 

... 

Fig. 1. Curves representing a canonical basis for HI(8N9 ) 

form on H 1 (8N9 ;Z), making it into a symplectic space. The matrix of 

intersection numbers for our canonical basis is J = ( _:}Ig ~:), where 

09 and I 9 are the g x g zero and identity matrices. 

Definition 1.6. Sp(2g, Z) is the group of all 2g x 2g matrices 1{ = 

( RS PQ) over Z which satisfy 

(1) 

where it denotes the transpose of 1{. Hence 1{ E Sp(2g, Z) if and only 
if its g x g blocks R, P, S, Q satisfy 
(2) 
RS, PQ, RP and SQ are symmetric, and RQ- SP = RQ- PS =I. 

Note that 1{ E Sp(2g, Z) if and only if it E Sp(2g, Z). II 
Lemma 1.7. The group f 9 (i.e. the image of the mapping class 

group under p2 ) coincides with Sp(2g, Z). 

Proof. The fact that elements of r 9 satisfy the constraints in (2) 
comes from the fact that topological mappings preserve algebraic in­
tersection numbers. The fact that every symplectic matrix is in the 
image of p2 can be proven by combining the classical fact that Sp(2g, Z) 
is generated by symplectic transvections with the fact that every such 
symplectic transvection is the image of a Dehn twist. This fact was used 
by Humphries, in his famous paper [16], to find a lower bound on the 
number of Dehn twists needed to generate the mapping class group. He 
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used the known fact that r g cannot be generated by fewer than 2g + 1 
transvections. Q.E.D. 

Lemma 1.8. Let A9 be the subgroup of matrices in r 9 which are in­
duced by topological mappings of 8N9 which extend to homeomorphisms 
of N 9 (the so-called handlebody subgroup). Then A9 coincides with the 
subgroup of all elements in r 9 with a g x g block of zeros in the upper 
right corner. 

Proof. By our choice of a basis for H 1 (8N9 ;7L), a topologically 
induced automorphism of H 1 (8N9 ; 7L) extends to an automorphism of 
H 1 (N9 ; 7L) only if it preserves the kernel of the inclusion-induced ho­
momorphism H 1 (8N9 ) ---r H 1 (N9 ), i.e. the subgroup generated by 
b1 , ... , b9 . Sufficiency is proved by finding generators for the group A9 , 

given in [34], and showing that each comes from a topological mapping 
on 8N9 which extends to a homeomorphism of N 9 . Explicit lifts are 
given in [2]. Q.E.D. 

In§ 1.2, we saw that every closed orientable 3-manifold admits Hee­
gaard splittings. Let us now choose coordinates to make this more ex­
plicit. Let N = N 9 be a standard model for an oriented handlebody of 
genus g, and let N = cp(N) be a copy of N, where¢ is a fixed orientation­
reversing homeomorphism. (Note that representative diffeomorphisms 
are always required to be orientation-preserving.) Choosing any element 
hE Diff+(8Ng), we may then construct a 3-manifold Was the disjoint 
union of N 9 and N9 , glued together by the rule¢ o h(x) = x, x E 8N9 . 

To stress the role of h we will write W = N 9 Uq,oh N9 . With these con­

ventions, if we choose h to be the identity map, the manifold W will be 
the connect sum of g copies of § 2 x § 1 . The mapping class group f 9 now 
means 7r0 Diff+(8N9 ). 

Now let A = A.9 denote the subgroup of f 9 consisting of mapping 
classes which have a representative which extends to a homeomorphism 
of N 9 . Note that every map of 8N9 which is isotopic to the identity 
extends, hence if one representative extends then so does every other 
representative, so A.9 is well-defined. 

Proposition 1.9. Equivalence classes of genus g Heegaard split­
tings of 3-manifolds are in 1-1 correspondence with double cosets in the 
sequence of groups f 9 mod A.9 . 
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Proof. Each Heegaard splitting of a 3-manifold determines a 
(non- unique) h E f' 9 for some g, and each h E f' 9 determines a 3-

• - - I - I 
mamfold W = N 9 Uq,oh N 9 • Suppose N 9 Uq,oh N 9 and N 9 Uq,oh' N 9 

are equivalent splittings of a 3-manifold W. Then there is an equiv­
alence F which restricts to equivalences J, f on N 9 , N9 and then to 
fo =!laNg' fo = flaNg· There is thus a commutative diagram 

h 
8N9 ----t 

¢ 
8N9 ----t 8N9 

lto lfo 
h/ 

8N9 
¢ 

8N9 8N9 ----t ----t 

Then h/ fo = ¢-1 fo¢h, hence h1 E AiiA. Conversely, if h1 E AiiA then 
h1 fo = ¢-1 fo1>h for some fo, ¢-1 fo1> E A. Let f, ¢-1 !1> be an extension 
of fo, ¢-1 fo¢ to N 9 • Define FINg = J, Fl&g =f. Q.E.D. 

For convenience, we will not distinguish between the diffeomorphism h 
and the mapping class it determines in r g. 

Corollary 1.10. Let W = N 9 Uq,oh N9 and let W 1 = N 9 , Uq,oh' N9 ,. 

Let s be any choice of gluing map for a genus 1 splitting of § 3 . Then 
W is homeomorphic to W 1 if and only if there are integers k, k 1 with 
g+~ = g1 +k1 so that h#ks is in the same double coset off' g+k mod A9 +k 

as h1#k's. 

Proof. This follows directly from Theorem 1.4. Q.E.D. 

Corollary 1.11. Let W be a closed, orientable 3-dimensional man­
ifold which is defined by any Heegaard splitting of genus g with Heegaard 
gluing map h. Then invariants of the stable double coset of h in f' 9 are 
topological invariants of the 3-manifold W. 

Proof. This is a direct consequence of Proposition 1.1, Proposi-
tion 1.9, and Corollary 1.10. Q.E.D. 

We pass to the action off9 on 7r1(8N9 )/[1r1(8N9 ),7r1(8N9 )], i.e. to 
the representation p2 : f' 9 ----+ r 9 . What information might we expect 
to detect about Heegaard splittings from the image p2 (h) of our gluing 
map h in f 9 ? 
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Definition 1.12. A stabilization of index k of H is the image of 
HE f g under the embedding f g -+ f g+k defined by bordering R, P, S, Q 
according to the rule 

This is a particular way of taking the direct sum of H E f g with the 
matrix :J E f 1 , which is the image under p2 of a Heegaard gluing map 
that defines § 2 . 

Define H, H' E f g to be equivalent (H c::: H') if H' E Ag HA and 
stably equivalent (H '::::' 8 H') if H and H' have equivalent stabilizations 
for some index k ~ 0. Equivalence classes are then double cosets in 
r g mod Ag and stable equivalence classes are double cosets in r g+k 
modulo Ag+k· 

A stabilized symplectic Heegaard splitting is the union of all stabi­
lizations of the double coset Ag HAg. II 

This brings us to the main topic of this article. Choose any h E f' g 

and use it to construct a 3-manifold Was above. Let H be the symplectic 
matrix that is induced by the action of h = p2 (h). 

Definition 1.13. A symplectic Heegaard splitting of the 3-manifold 
W = Ng Uq,oh Ng is the double coset Ag HAg C Sp(2g, Z), together 
with the double cosets of all stabilizations of H. A symplectic Heegaard 
splitting is minimal if it is not the stabilization of a symplectic Heegaard 
splitting of lower genus which is in the same double coset. II 

1.4. Survey of the literature 

The earliest investigation of Heegaard splittings were the proofs, 
by Singer [44] and Reidemeister [39] that all Heegaard splittings of 
an arbitrary 3-manifold are stably equivalent. Shortly after the publi­
cation of [39] Reidemeister asked about invariants of 3-manifolds that 
can be determined from a Heegaard splittings. His invariants are given 
in the paper [40]. He proves by an example (the Lens spaces) that the 
invariants he discovered distinguish manifolds which have the same fun­
damental group 1r1 (W), and so are independent of the rank and torsion 
coefficients of W. Reidemeister's invariants are determined from the ac­
tion of a Heegaard gluing map on H 1 (W; Z). We will explain exactly 
what he proved at the end of §6.4. 

Essentially simultaneously and independently of Reidemeister's 
work, Seifert [43] introduced the concept of a linking form on a 3-
manifold whose homology group has a torsion subgroup T, and studied 
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the special case when T has no 2-torsion, obtaining a complete set of 
invariants for linked abelian groups in this special case. His very new 
idea was that linking numbers could be defined not just in homology 
spheres, but also in 3-manifolds whose Z-homology group has torsion. 
Let W be a closed, oriented 3-manifold and suppose that the torsion 
subgroup T of H 1 (W; Z) is non-trivial. Let a, b be simple closed curves 
in W which represent elements of T of order a, {3 respectively. Since 
aa, {3b are homologous to zero they bound surfaces A, B C W. Let A· b 
denote the algebraic intersection number of A with b, similarly define 
B · a. The linking number >.(a, b) of a with b is the natural number 

1 1 
>.(a, b) = ;A· b = (ja ·B. 

Seifert's invariants are defined in terms of an array of integer determi­
nants associated to the p-primary cyclic summands ofT. The invariant 
depends upon whether each determinant in the array is or is not a qua­
dratic residue mod pk. His work is, however, restricted to the case when 
there is no 2-torsion. In the appendix to [43], and also at the end of 
[40], both Seifert and Reidemeister noted that their invariants are in 
fact closely related, although neither makes that precise. Both [40] and 
[43] are, at this writing very well known but it takes some work to pin 
down the precise relationship so that one can move comfortably between 
them. See §6.4. 

In [7] Burger reduced the problem of classifying linked p-groups 
(p ~ 2) to the classification of symmetric bilinear forms over Zpn. His 
procedure, together with Minkowski's work on quadratic forms [26] gives 
a complete set of invariants for the case p = 2, but they are inconve­
niently cumbersome. Our contribution here is to reduce Burger's in­
variants to a simple and useful set. Most of what we do is probably 
obtainable from Burger's work together with the work of O'Meara [36]; 
however, our presentation is unified and part of a systematic study, 
hence it may be more useful than the two references [7] and [36]. We 
note that Kawauchi and Kojima [22] also studied linked abelian groups 
with 2-torsion. They obtained a solution of the problem which is similar 
to ours, however, their goal was different and the intersection between 
their paper and ours is small. 

Invariants of Heegaard splittings, rather than of the manifold itself, 
were first studied in the context of symplectic Heegaard splittings, in [2]. 
Later, the work in [2] was further investigated in [27], from a slightly 
different perspective, with two motivations behind their work. The first 
is that they thought that linking forms in 3-manifold might give more 
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information than intersection forms on a Heegaard surface, but that is 
not the case. Second, they thought that, because a finite abelian group 
can be decomposed as a direct sum of cyclic groups of prime power 
order, whereas in [2] the decomposition was as a direct sum of a (in 
general smaller) set of cyclic groups which are not of prime power order, 
that perhaps there were invariants of unstabilized Heegaard splittings 
that were missed in [2]. The main result in [27] is that, with one small 
exception in the case when there is 2-torsion, the Heegaard splitting 
invariants in [2] cannot be improved. 

See [23] for an invariant of Heegaard splittings which is related in 
an interesting way to our work in this paper. The relationship will be 
discussed in §8 of this paper. 

1.5. Six problems about symplectic Heegaard splittings 

In this article we will consider six problems about symplectic Hee­
gaard splittings, giving complete solutions for the first five and a partial 
solution for the sixth: 

Problem 1: Find a complete set of invariants for stabilized sym­
plectic Heegaard splittings. 
The full solution is in Corollary 5.16, which asserts the well-known result 
that a complete set of invariants are the rank of H 1 (W; Z), its torsion 
coefficients, and the complete set of linking invariants. · 

Problem 2: Knowing the invariants which are given in the solu­
tion to Problem 1 above, the next step is to learn how to compute them. 
Problem 2 asks for a constructive procedure for computing the invariants 
in Problem 1 for particular 1i E f. The easy part of this, i.e. the compu­
tation of invariants which determine H 1 (W; Z), is given in Theorem 2.4. 
The hard part is in the analysis of the linking invariants associated to 
the torsion subgroup of H 1 (W; Z). See §6.2 for the case when p is odd 
and §6.3 for the case where there is 2-torsion. 

Problem 3: Determine whether there is a bound on the stabiliza­
tion index of a symplectic Heegaard splitting. We will prove that there 
is a uniform bound, and it is 1. See Corollary 5.22. 

Problem 4: Find a complete set of invariants which characterize 
minimal (unstabilized) symplectic Heegaard splittings and learn how to 
compute them. In Theorem 7.5 we will prove that the only invariant is 
a strengthened form of the invariant which was discovered in [2], using 
very different methods. Example 7.14 shows that we have, indeed, found 
an invariant which is stronger than the one in {2]. 
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Problem 5: Count the number of equivalence classes of minimal 
(unstabilized) symplectic Heegaard splittings. The answer is given in 
Theorem 7. 7. 

Problem 6: This problem asks for a normal form which allows one 
to choose a unique representative for the collection of matrices in an 
unstabilized double coset in r 9 (mod A9 ). We were only able to give a 
partial solution to this problem. In §7.5 we explain the difficulty. 

In §8 we go a little bit beyond the main goal of this paper, and 
consider whether the work in §3 of this paper can be generalized to the 
higher order terms in the Johnson-Morita filtration. As we shall see, the 
approach generalizes, but it does not yield anything new. 

§2. Symplectic matrices : a partial normalization 

Our task in this section is the proof of Theorem 2.4; which gives 
a partial solution to Problem 2 and tells us how to recognize when a 
symplectic Heegaard splitting is stabilized. 

2.1. Preliminaries 

We follow the notation that we set up §1. Let h be the gluing map 
for a Heegaard splitting of a 3-manifold W. We wish to study the double 
coset A9 hA9 c r. For that it will be helpful to learn a little bit more 
about the subgroup A9 . Recall that, by Lemma 1.8, the group A9 is the 
subgroup of elements in r 9 with a g x g block of zeros in the upper right 
corner. 

Lemma 2.1. (i) The group A9 is the semi-direct product of its 
normal subgroup 

n = { (! ~) I Z symmetric } 

and its subgroup 

~ = { (: A~ 1) I A unimodular}. 

(ii) Every element inn and every element in~ is induced by a home­
omorphism of 8X9 which extends to a homeomorphism of X 9 • 

Proof. (i) Since a general matrix ( "t .g) E A9 is symplectic, it fol­

lows from (2) that AD = I, hence A = v-l' so A E GL(g, Z). Since 
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( ~ }-1 ) E A9 , it follows that the most general matrix in A9 has the 
form: 

with Z = AC. But then (by (2) again) Z must be symmetric. A simple 
calculation reveals that the conjugate of any element in n by an element 
in A is in n. The semi-direct product structure follows from the fact 
that both I: and n embed naturally in A, and that they generate A. 

(ii) The reader is referred to [2] for explicit lifts of generators of n 
and I: to the mapping class group. Q.E.D. 

In several places in this article it will be necessary to pass between 
the two canonical ways of decomposing a finite abelian group T into 
cyclic summands. We record here the following well-known theorem: 

Theorem 2.2 (The fundamental theorem for finitely generated 
abelian groups). Let G be a finitely generated abelian group. Then the 
following hold: 

(i) G is a direct sum of r infinite cyclic groups and a finite abelian 
group T. The group T is a direct sum of t finite cyclic sub­
groups T(l) EEl ... EEl r(tl' where T(i) has order Ti. Each Ti divides 
Ti+l, 1 :::; i :::; t - 1. The integers r, t, T1 , ... , Tt are a complete set 
of invariants of the isomorphism class of G. 

Let p 1 , ... , Pk be the prime divisors of Tt. Then each integer 
Ti, 1 :::; i :::; t has a decomposition as a product of primes: 

(ii) T is also a direct sum of p-primary groups T(p1 ) EEl··· EEl T(pk)· 
Here each T(pd) decomposes in a unique way as a direct sum 
of cyclic groups, each of which has order a power of Pd. Focusing 
on one such prime Pd, 1 :::; d :::; k, the group T(pd) is a sum of 

l . J d e, d ez d e, d h h eye zc groups o or ers pd · ,pd · , ... ,pd · , w ere t e powers ei,d 
that occur are not necessarily distinct. That is, we have: 

(iii) Let Yi be a generator of the cyclic group of order Ti in (i) above. 
Let gi,d be a generator of the cyclic group of order p~i,d in (ii) 
above. Note that there may be more than one group with this 
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order. Then the generators gi,d and Yi, where 1 ::; i < t and 
1 ::; d ::; k are related by: 

The following corollary to statement (i) of Theorem 2.2 allows us to 
transform a presentation matrix for a finitely generated abelian group 
into a particularly simple form. 

Corollary 2.3 (Smith normal form, see, e.g., [34, Theorem II.9]). 
Let P be any g x g integer matrix. Then there exist U, V E GL(g, Z) 
so that UPV = Diag(1, ... , 1, T1 , ... , Tt, 0, ... , 0), where the Ti are non­
negative integers which are different from 1 and satisfying Ti [Ti+l for all 
1 ::; i < g. The diagonal matrix is called the Smith normal form of P. 
Additionally, the Smith normal form of a matrix is unique, so that in 
particular the torsion free rank r (the number of zeros in the diagona0 
and the torsion rank t are unique. The number of 1' s is the index of 
stabilization of the symplectic Heegaard splitting, which can vary. 

2.2. A partial normal form 

Theorem 2.4. Let 

(6) 

be the symplectic ma!rix associated to a given Heegaard splitting of a 
3-manifold W, where h is the Heegaard gluing map. Then: 

(7) 

(i) The g-dimensional matrix P is a relation matrix for H 
H 1 (W;Z). This is true, independent of the choice of H in 
its double coset modulo A9 . Different choices correspond to 
different choices of basis for H. 

(ii) The double coset A9 HA9 has a representative: 

0 0 0 I 0 0 
0 RPl 0 0 p(2) 0 

H'= 0 0 I 0 0 0 
-I 0 0 0 0 0 
0 sC2l 0 0 Q(2) 0 
0 0 0 0 0 I 
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where p(2) = Diag'(71 , ... ,7t) with the 7i positive integers sat­
isfying 7il7i+l for 1 :S i < t. In this representation the subma­
trix 

is symplectic. 
(iii) The t x t matrix p(2) is a relation matrix for the torsion sub­

group T of H, which is a direct sum of cyclic groups of orders 
7 1 , ... , 7t. The number r of zeros in the lower part of the diag­
onal of P(1) = Diag(1, ... , 1, 7 1 , ... , 7t, 0, ... 0) is the free rank 
of H and the number of 1' s is the index of stabilization of the 
splitting. In particular, a symplectic Heegaard splitting with 
defining matrix 7-£ E Sp(2g, Z) is unstabilized precisely when 
the diagonal matrix p(l) contains no unit entries. 

(iv) We may further assume that every entry Qij E Q(2) and every 
entry rij E R<2l is constrained as follows. Assume that i :S j. 
Then: 

Proof. Proof of (i). Apply the Mayer-Vietoris sequence to the de­
composition of the 3-manifold W that arises through the Heegaard split­
ting N9 U.p6 ii N9 . 

Proof of (ii). The proof is a fun exercise in manipulating symplectic 
matrices, but without lots of care the proof will not be very efficient. 

In view of Lemma 2.1, the most general element in the double coset 
of 7-£ = ( ~ ~ ) has the form 

where U, V are arbitrary matrices in GL(2,Z). 

Choose U, V E GL(t, Z) so that 

p(ll (I ffi U ffi I)(P)(I ffi V ffi I) 

Diag(1, 1, ... , 1, 71, 72, ... , 7t, 0, ... , 0) E GL(g, Z). 
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By Corollary 2.3, this is always possible. Let P(2) = Diag( T1 , T2 , ... , Tt) E 

GL(t, .Z). Using (9). we have shown that His in the same double coset 
as 
(10) 

Rn R12 R13 I 0 0 
R21 R22 R23 0 p(2) 0 

(1) _ (R(ll p(1))- R31 R32 R33 0 0 0 
H - sCI) Q(1) - Sn s12 S13 Qn Q12 Q13 

s21 s22 S23 Q21 Q22 Q23 

S31 S32 S33 Q31 Q32 Q33 

This is the first step in our partial normal form. 

It will be convenient to write H_( 1) in several different ways in block 
form. The first one is the block decomposition in (10). In each of the 
other cases, given below, the main decomposition is into square g x g 

blocks, and these blocks will not be further decomposed (although much 
later they will be modified): 

en A12 Bn 0 

) (11) H_(1l = A21 A22 0 0 

(*) Cn c12 Vn V12 

c21 c22 V21 V22 

where 

An= ( 
Ru R12 ) Bn = ( ~ 0 ), 
R21 nC2l , p(2) 

Cn = ( 
Sn s12 ) 
s2l sC2l ' ... 

A = ( R13 ) 
12 R23 ' 

A21 = ( R31 R:32 ) , A22 = (R33), ... 

In general, the blocks Rij, Aij, ... are not square, however R (2), S(2), pC2l, 

Q(2) are square t x t matrices. 

Now H_( 1) E f 9 , hence its g x g block satisfy the conditions (1) 
and (2). Working with the decomposition of H_(1) into the block form 
given in (10), one sees that because of the special form of B = ( 80' g), 
the 2(g- r) x 2(g- r) matrix ( ~,': g~~) also satisfies (1) and (2), now 
with respect to its (g - r) x (g - r) block. From there it follows (using 
Definition 1.6) that the matrix given in (10) is in the group f 2cg-r)· One 
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may then verify without difficulty that the augmented matrix 

(A~, 0 Bn n (12) M(2l I 0 
Cn 0 Dn 
0 0 0 

Rn R12 0 I 0 0 

R21 R(2) 0 0 p(2) 0 
0 0 I 0 0 0 

Sn s12 0 Qll Q12 0 

s21 S(2l 0 Q21 Q(2) 0 
0 0 0 0 0 I 

which has dimension 2g again, also satisfies the conditions (1) and (2), 
now with respect to its g X g block, and SO 7-{(2) is in f g· 

We will need further information about 7-{( 1) and M( 2 ). Return­
ing to (10), and using the right decomposition of 7-((ll, we now verify 
that conditions (1) and (2) imply the following relations between the 
sub blocks: 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

Q13 = Q23 = R31 = R32 = 0 

p(2) Q21 = Q12 

R12 p(2) = R21 

p(2) Q( 2) symmetric 

R(2)P(2) symmetric 

Qn, Rn symmetric 

Now observe that if ( i ~) E f 9 then (1) and (2) imply that 

(19) (A B)- 1 
= ( fj, -~) 

C D -C A . 

Using equation (19) to compute (M( 2l)- 1 , and making use of the 
conditions in (13)-(18), one may then verify that the product matrix 
(M(2l)- 17-{( 1) has a g x g block of zeros in the upper right corner. But 
then (M(2l)- 17-{( 1) E A9 , hence M(2l and 7-{( 1) are in the same double 
coset. 

Further normalizations are now possible. Since R 11 and Q11 are 
symmetric (by the symplectic constraints (2)) the following matrices are 
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in the subgroup n c A9 defined in Lemma 2.1: 

I 0 0 0 0 0 
0 I 0 0 0 0 
0 0 I 0 0 0 

-Qn -Q21 0 I 0 0 
-Q21 0 0 0 I 0 

0 0 0 0 0 I 

I 0 0 0 0 0 
0 I 0 0 0 0 
0 0 I 0 0 0 

-Rn -n21 0 I 0 0 
-ft12 0 0 0 I 0 

0 0 0 0 0 I 

Computing, we find that 

0 0 0 I 0 0 
0 nC2l 0 0 p(2) 0 

N1MC2lN2 = 0 0 I 0 0 0 

* * 0 0 0 0 

* sC2l 0 0 Q(2) 0 
0 0 0 0 0 0 

Since this matrix is in r 9 , its entries satisfy the conditions (1) and (2). 
An easy check shows that the lower left g x g box necessarily agrees with 
the entries in the matrix defined in the statement of Theorem 2.4. Thus 
H(2) = N 1M(2lN2 is in the same double coset as M(2l, H(l) and H. 
This completes the proof of (ii). 

Proof of (iii). In (i) we saw that in the partial normal form the ma­

trix Ig-r-t EB pC2l EB Or is a relation matrix for H. Since H is a finitely 
generated abelian group, it is a direct sum of t cyclic groups of order 
r 1 , ... , Tt and r infinite cyclic groups and g- r- t trivial groups. The 
g - r - t trivial groups indicate that the symplectic Heegaard splitting 
has been stabilized g- r- t times. That is, (iii) is true. 

Proof of (iv). We consider additional changes in the submatrix H(2) 

which leave the pC2Lblock unchanged. Note that by Lemma 2.1, any 
changes in the double coset of HC2l in r t can be lifted canonically to 
corresponding changes in the double coset of H' in r 9 , and therefore it 
suffices to consider modifications to the double coset of H(2) in rt. To 
simplify notation for the remainder of this proof, we set H(2l = ( ~ ~) 
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Choose any element ( ~ ~!) in the subgroup Ot of Sp(2t, Z). Then: 

( It Ot) (R P) = (R 
ZitS Q * 

( R P) (It Ot) = (R+PZ P) 
SQ Zit * Q 

Let Q = (%), R = (rij), Z = (zij)· Then ZP = (rjZij) and 
PZ = (riZij)· Therefore we may perform multiplications as above so 
that if i :=:; j then 0 :=:; qji < Tj and 0 :=:; rij < Ti. The fact that 7{(2) 

is symplectic shows that PQ and RP are symmetric. Therefore qij = 
(rj/ri)qji, rji = {rj/ri)rij· Thus the matrices Q and Rare completely 
determined once we fix the entries qji and rij which satisfy i :=:; j. This 
completes the proof of (iv), and so of Theorem 2.4. Q.E.D. 

Remark 2.5. As noted in §1.2, we made two choices when we de­
fined equivalence of Heegaard splittings: the choice of one of the two 
handlebodies as the preferred one, and the choice of a preferred orienta­
tion on the 3-manifold W. When we allow for all possible choices, we see 
that the symplectic matrix H. of Theorem 2.4 is replaced by 4 possible 
symplectic matrices, related by the operations of taking the transpose 
and the inverse and the inverse of the transpose: 

(
R(2) 

S(2) 
p<2J) (f?Pl 
Q(2) ' p(2) 

- p(2)) ( Q(2) 
f?_(2l ' - p(2) 

-s<2J) 
R(2) . 

Any one of the four could equally well have been chosen as a represen­
tative of the Heegaard splitting. These four matrices may or may not 
be in the same double coset. II 

2.3. Uniqueness questions 

There is a source of non-uniqueness in the partial normal form of 
Theorem 2.4. It lies in the fact that further normalizations are possible 
after those in (iv) of Theorem 2.4, but they are difficult to understand. 
By Lemma 2.1, we know that At is the semi-direct product of the normal 
subgroup Ot and the subgroup I:t that were defined there. We already 
determined how left and right multiplication by elements in Ot change 
H.' in the proof of part (iv) of Theorem 2.4. We now investigate further 
changes, using left (resp right) multiplication by matrices in I:t. 

Lemma 2.6. Assume that p(2) = Diag( r 1 , ... , Tt) is fixed, and that 
p(2 ) Q(2) = Q(2)p(2). Then there is a well-defined subgroup G of L:t x L:t, 
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determined by the condition that there exist matrices U, V E GL(t, Z) 
such that UP(2 ) = pC2lV. Equivalently, there exist symplectic matrices 
U, V E Et such that (U, V) E G ~ 

(
1(_{2) 

(20) U sC2l 
p(2)) 
Q(2) v = (~ 

(: 
0 ) (1(_(2) 

a-1 sc2) 

p(2) ) 
a-1 Q(2)"j)-1 . 

For later use, we also have that if (PC2l)-1 is the diagonal matrix 
whose ith entry is the rational number 1/Ti, then Q(2l(PC2l)-1 will be 
replaced by u-1(QC2l (PC2))-1 )u-1. 

Proof. The statement in (20) is a simple calculation. We need to 
prove that it determines a group. Suppose that (U1, Vi), (U2, V2 ) E G. 
Then UiPC2l = P(2lVi fori= 1, 2, so U1U2PC2l = U1PC2lV2 = pC2lV1 V2. 

Therefore (U1U2, V1V2) E G. Also, (PC2l)-1U!1 = V1- 1(PC2l)-1, which 
implies that (U!1 , Vi.- 1) E G, so G is a group. It is immediate that 
pC2l remains unchanged and that Q(2l(PC2l)-1 changes in the stated 
way. Q.E.D. 

Remark 2. 7. The condition UP(2) = p(2)V means that U is re­
stricted to t x t unimodular matrices which satisfy the condition: U = 
(uij), where Uji is divisible by Tj/Ti whenever j < i. There are no re­
strictions on Uij when j 2: i other than that the determinant luij I = ±1. 
II 

Remark 2.8. We were unable to find a nice way to choose U and V 
so as to obtain a unique representative of the double coset of a _symplectic 
Heegaard splitting, in the case when H is not torsion-free. The reason 
will become clear in §6: invariants of the matrix Q(2l(pC2l)-I, and so 
also a normal form, depend crucially on whether or not there is 2-torsion 
in the torsion subgroup T of H, and so a general rule cannot be easily 
stated. See also the discussion in §7.5. II 

§3. Presentation theory for finitely generated abelian groups 

We are ready to begin the main work in this article. In Section 1 
we described the topological motivation that underlies the work in this 
paper, namely we were interested in understanding all topological invari­
ants of a 3-manifold W and of its Heegaard splittings that might arise 
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through symplectic Heegaard splittings. In Theorem 2.4 we saw that 
the matrix associated to a symplectic Heegaard splitting gives a natural 
presentation of H 1 (W; Z). Therefore it is natural to begin our work by 
investigating the theory of presentations of abelian groups. Our goal is 
to understand, fully, that part of the obstruction to stable equivalence 
coming from a symplectic Heegaard splitting. 

We begin by introducing the two concepts of isomorphism and equiv­
alence of presentations. The rank of a presentation is defined and a 
concept of stabilizing a presentation (thereby increasing the rank) is in­
troduced. Most of this is aimed at Theorem 3.15, which gives necessary 
and sufficient conditions for an automorphism of H to lift to an auto­
morphism of the free group of a presentation. Theorem 3.15 implies 
Corollaries 3.16, 3.17 and 3.18, which assert (in various ways) that any 
two presentations of the same finitely generated abelian group which 
are of non-minimal equal rank are equivalent. From this it follows that 
at most a single stabilization is required to remove any obstruction to 
equivalence between two presentations. This does not solve Problem 
3, but it is a first step in the direction of this problem's solution. We 
remark that, by contrast, the usual proof of Tietze's Theorem on equiv­
alence of two particular presentations of an arbitrary finitely generated 
but in general non-abelian group shows that presentations of rank r, r' 
become equivalent after stabilizations of index r', r, respectively [25]. 

The latter half of the section focuses on presentations of minimal 
rank of a finitely generated abelian group. An "orientation" and a "vol­
ume" on H are defined. The determinant of an endomorphism h of 
abelian groups, and hence of a presentation 1r of an abelian group, is 
introduced. The key result is Theorem 3.26, which gives necessary and 
sufficient conditions for an isomorphism between two minimal presen­
tations to lift to the presentation level. Corollary 3.27 follows: two 
minimal presentations of H are equivalent if and only if they have the 
same volume on H. The section closes with two examples which il­
lustrate the application of Theorem 3.26 and Corollary 3.27 to explicit 
group presentations. 

In §7, we will apply the notion of "volume" to obtain invariants 
of Heegaard splittings. It turns out that associated to a symplectic 
Heegaard splitting is a natural presentation of the first homology group, 
and thus an induced volume. We will use the interplay between this 
volume and a linking form on the first homology group to find invariants 
of Heegaard splittings. 
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3.1. Equivalence classes of not-necessarily minimal pre­
sentations 

We begin our work with several definitions which may seem unnec­
essary and even pedantic; however, extra care now will help to make 
what follows later seem natural and appropriate. 

Definition 3.1. A free pair is a pair of groups (F, R) with R C F 
and F free abelian and finitely generated; its quotient is F j R. If H is 
a finitely generated abelian group, a presentation of H is a surjection 
1r : F ~ H, with F again a finitely generated free abelian group. The 
rank of a free pair and of a presentation is the rank of F. Direct sums of 
these objects are defined in the obvious way. The index k stabilization 
of a free pair (F, R) is the free pair (F E9 7!}, R E9 zk), and the index k 
stabilization of a presentation 1r : F ~ H is the presentation 1r E9 0 : 
FE9Zk ~H. II 

Definition 3.2. An isomorphism of free pairs (F, R), (F', R') is an 
isomorphism f : F ~ F' such that f(R) = R'. An isomorphism of 
presentations is a commutative diagram 

F _!!________, H 

F'~H' 

with f, h isomorphisms. If H = H', then we have the stronger notion of 
an equivalence of presentations, which is a commutative diagram 

with f an isomorphism. Two free pairs (resp. two presentations) are 
stably isomorphic (resp. stably equivalent) if they have isomorphic (resp. 
equivalent) stabilizations. If 1r : F ~ H, 1r1 : F' ~ H are both of 
minimal rank and stably equivalent, then we define the stabilization 
index of 1r, 1r1 to be the smallest index k such that 1r, 1r1 have equivalent 
stabilizations of index k. II 

Example 3.3. To see that equivalence and isomorphism of presen­
tations are distinct concepts, let F = Z and let H = Z5 with 1r : Z ~ Z5 

defined by 1r ( 1) = 1 and 1r' : Z ~ Z5 defined by 1r' ( 1) = 2. Then 1r and 
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1f1 are isomorphic because the automorphism h : Zs --+ Zs defined by 
h(l) = 2 lifts to the identity automorphism of Z. However, it is easy to 
see that 7f and 1f1 are not equivalent. II 

The standard 'elementary divisor theorem' concerning presentations 
of abelian groups may be phrased as follows: 

Proposition 3.4. Two free pairs are isomorphic if and only if they 
have the same rank and isomorphic quotients. For any pair (F, R) there 
is a basis fi ofF and integers mi so that { mdi I mi =/= 0} is a basis for 
R. The fi and mi may be chosen so that milmi+l for all i. 

Since we can always stabilize two pairs to the same rank, two pairs 
are stably isomorphic if and only if their quotients are isomorphic. 

We now investigate equivalence classes of presentations of a finitely 
generated abelian group H. 

Definition 3.5. If H is a finitely generated abelian group, its rank 
is, equivalently, 

• the minimal number of infinite and finite cyclic direct sum­
mands required to construct H 

• the minimal rank of a presentation of H 
• the number of torsion coefficients of the torsion subgroup T of 

H plus the rank of H/T. 

A presentation of minimal rank is simply called a minimal presentation. 

II 
Lemma 3.6. Every non-minimal presentation F ~ H is equivalent 

to a presentation of the form F' EB Z ~ H, where 1f1 is a presentation 
of H. Every presentation of H is a stabilization of a minimal one. 

Proof. Clearly, by stabilizing, H has a presentation of every rank 

~ rank H. Let F' L H be a presentation of rank (rank F- 1). By 
Proposition 3.4, the stabilization of j is isomorphic to F ~ H, say by a 
diagram of the form 

F 

F' EBZ 
jEBO _______, H 
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Hence 
F 

1 ~ f H 

~1 o( EBa) 
F' EEl Z 1 

is an equivalence, as desired. By induction, we conclude that every 
presentation of H is a stabilization of a minimal one. Q.E.D. 

In the next few lemmas, we will show that all presentations of H 
are stably equivalent and that the index of stabilization required is at 
most one. 

Lemma 3.7. Let n be the rank of rank (H/T) and letT= Tor (H). 
Then any presentation of H is equivalent to one of the form FEEJzn ~ H, 
where 1TIF is a presentation ofT and 1Tizn is injective. 

Proof. A presentation of the required type certainly exists and may 
be of any rank~ rank H. The proof that any presentation is equivalent 
to one of this form is similar to the proof of Lemma 3.6. Q.E.D. 

Lemma 3.8. Let h be an automorphism of H which acts trivially 
on T. Then for any presentation 1T : F ----+ H there is an automorphism 
f ofF so that 

F~H 

F~H 

commutes. 

Proof. By Lemma 3.7, our presentation is equivalent to the direct 

sum of presentations Fa ----+ T and zn .!::!..., zn, where H has been decom­
posed as T EEl Z". Representing elements of H by column vectors ( ; ) 
with t E T, z E Z'\ any automorphism h of H must be of the form 

where A : T ----+ T and C : Z" ----+ zn are automorphisms and B : 
Z" ----+ T is a homomorphism; by hypothesis, A = 1. If we lift B to a 
homomorphism B : zn ----+ Fa' then the endomorphism ( 6 !5 ) of Fa EEl zn 
is an automorphism which clearly induces ( 6 f5) on T EEl Z" = H, as 
desired. Q.E.D. 
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Definition 3.9. In the situation of Lemma 3.8, we say that f lifts 

h. II 

Corollary 3.10. Using the notation of the proof of Lemma 3.8, if 
h is any automorphism of H so that hlr lifts to Fa, then h lifts to F. 

Proof. Let g = (hlr) EB lzn. Clearly g lifts to Fa EB zn. Hence 
h o g- 1 = 1 on T, so hg- 1 also lifts. We conclude (hg- 1 ) o g lifts, as 
des~ed. Q.E.D. 

Definition 3.11. Let f : F----> F be an endomorphism. Since F is 
free abelian, we may represent f by a matrix with respect to any basis 
for F. We define the determinant ofF to be the determinant of any 
such matrix. Clearly det f is well-defined, up to sign, independent of 
the choice of basis. II 

Lemma 3.12. LetT be an abelian p-group for some prime p. Let 
1r : F ----> T be a presentation and let h : T ----> T be an automorphism. 
Then there is an endomorphism (which we are not claiming is an auto­
morphism) f : F ----> F lifting h so that p does not divide det f. 

Proof. Since F is a free abelian group, it is easy to construct an 
endomorphism f of F that lifts h, so the key point is to construct one 
so that p does not divide det(f). 

By Lemma 3.6, the presentation 1r is equivalent to 7raEB0k : FaEBZk ----> 

T with 7ra minimal (here possibly k = 0). Choose fa E End Fa so that 
7rafa = h1ra, and let f = fa EB lzk. By construction f lifts h, and we 
claim that p does not divide det f. 

Consider the canonical map T----> T jpT and the composite 1f'p : Fa ----> 

T ----> T /pT. Since T is an abelian p-group and since 7ra is minimal, we 
have rank TjpT = rank T = rank Fa. Hence ker7rp = pFa. Now h 
induces an automorphism hp ofT jpT and we have 

Fa/pFa ""' TjpT ---+ 

fv 1 hp 1 
Fa/pFa ""' TjpT ---+ 

Hence fP must be an isomorphism. This implies that p does not divide 
det f = det fa, for p divides det fa if and only if the induced map on 
Fa/pFa is not an isomorphism. Q.E.D. 
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Lemma 3.13. LetT be any finite abelian group, 1r : F ----+ T be a 
presentation ofT, and h : T----+ T be any automorphism. Then there is 
an endomorphism (which we are again not claiming is an automorphism) 
f: F----+ F lifting h so that (det f, ITI) = 1. 

Proof. Let p be a prime divisor of ITI. Suppose that pk is the 
highest power of p which divides IT I. Then Tp := T jpkT is an abelian 
p-group isomorphic to the p-component ofT, and h induces an auto­
morphism hp of Tp. By the previous lemma, there is an endomorphism 
fp ofF with p % det fp so that 

F 
1rp 

Tp ------+ 

1 hp 

1rp 
Tp ------+ 

commutes. Fixing a basis of F and representing fp as a matrix, we 
note that any matrix congruent to fP mod pk also induces hp on Tp. 
By the Chinese remainder theorem, there is a single matrix f so that 
f = fp mod pk for all primes p which divide ITI, that is to say, a 
single endomorphism f of F inducing hp on Tp for each such prime. 
Since det f = det fp mod pk, we have p /I det f for all such p, i.e. 
(detf, ITI) = 1. 

It remains to prove that f induces h on T. Since TP = T jpkT is a 
p-group isomorphic to the p-component ofT, it follows that the kernel 
of 1r : F ----+ T is precisely 

kern= n 
p divides ITI 

Hence 

This shows that f induces some automorphism ofT. But this automor­
phism induces hp on Tp for every p, so it must be h. Q.E.D. 

Lemma 3.14. LetT be a torsion group and lethE Aut (T). Then 
for any non-minimal presentation 1r : F ----+ T there is some f E Aut (F) 
which lifts h. 
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Proof. Since Jr is non-minimal, by Lemma 3.6 we may assume that 
Jr = Jr1 EB 0: F' EB Z--+ T. By Lemma 3.13, we may lift h to f E End F' 
with (detf,m) = 1, where m = ITI. Choose an integer 6 such that 
6 · det f = 1 mod m. Let d denote the endomorphism of Z defined by 
d(1) = 6. Then fEB 6 E End (F' EB Z) and det(f EB 15) = 1 mod m. 
Since the canonical homomorphism SL(r, Z) --+ SL(r, Zrn) is surjective, 
we may lift fEB 6 to f' E Aut (F' EB Z). More precisely, we can find some 
f' E Aut(F' EB Z) which (when considered as a matrix over Z) is equal 
to f EB 6 mod m. Since f EB 6 lifts h, the diagram 

commutes. Now m(F' EB Z) C ker(1r EB 0), since mx = 0 for all x E T. 
Note that by construction, f' =fEB 6 mod m, i.e. for each x E F' EB Z 
there is ayE F' EB Z such that f'(x) = (! EB J)(x) +my. Hence f' also 
lifts h. Q.E.D. 

Theorem 3.15. If h is any automorphism of H and if 1r: F--+ H 
is any non-minimal presentation of H, then h lifts to F. 

Proof. By Lemma 3.7, we may decompose F as F = Fa EB .zn, 
where IriFo : Fa --+ T is a presentation and Irlzn = 1 : zn --+ zn. The 
non-minimality ofF then implies the non-minimality of Fa. Hence by 
Lemma 3.14, we may lift hlr to Fa. Corollary 3.10 then implies that h 
lifts to F, as desired. Q.E.D. 

The following three results will be important later. They are imme­
diate consequences of Theorem 3.15. 

Corollary 3.16. If h: H--+ H' is an isomorphism and Jr: F--+ H, 
Jr 1 : F' --+ H' are non-minimal of equal rank, then h lifts to a presenta­
tion isomorphism. 

Corollary 3.17. All presentations of H are stably equivalent, and 
any of two presentations of non-minimal, equal rank are equivalent. 

Corollary 3.18. If Jr : F --+ H, Jr1 : F --+ H are two minimal 
presentations, then Jr, Jr1 have stabilization index 0 or 1. 

Example 3.19. To illustrate Corollary 3.18, recall Example 3.3. 
Two rank 1 presentations Jr, Jr1 of H = Z 5 were defined by Ir(1) = 1 and 
Jr1 (1) = 2. These are obviously inequivalent. We claim that they have 
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equivalent index 1 stabilizations 1r E9 0, n' E9 0, i.e. there exists some f 
so that the following diagram commutes: 

For example, we may define f by 

( z1 ) f--t ( 3 5) ( Z1 ) = ( 3zl +5z2 ) 
Z2 1 2 Z2 z 1 +2z2 

We then have 

3.2. Equivalence classes of minimal presentations 

We continue our study of presentations of finitely generated abelian 
groups by investigating equivalence classes of minimal presentations of 
finitely generated abelian groups. The main results are Theorem 3.26 
and Corollary 3.27, which give a complete invariant of equivalence of 
minimal presentations of H. 

First we recall the definition of the exterior powers of an abelian 
group H. From the kth tensor power Hk = H (59 ···(59 H we form a 
quotient by dividing out by the subgroup generated by all x 1 (59 · • • ® xk 

in which two Xi's are equal. This quotient is the kth exterior power of H, 
denoted by A k H. The image of an arbitrary tensor product x1 ® · · · ® Xk 
in A k H is denoted by x 1 1\ · · · 1\ Xk, and we have the usual law 

X1 1\ ···Xi 1\ Xi+l · · · 1\ Xk = -Xl 1\ · · · Xi+l 1\ Xi··· 1\ Xk· 

Also as usual, x 1 1\ · · · 1\ Xk = 0 if any Xi is a linear combination of the 
other terms, which implies that Ak H = 0 if k >rank H. 

Lemma 3.20. Let r = rank H and T be the smallest elementary 
divisor of the torsion subgroup T of H. If T = 0, we putT= 0. Then 
Ar H is cyclic of order T if T =/= 0, whereas ifT = 0, thenAr H is infinite 
cyclic. If x1, ... , Xr generate H, then X1 1\ · · · 1\ Xr generates Ar H. 

Proof. The case when T = 0 is well known, so we assume that 
T > 0. We prove the last statement first. Now, Ar H is generated 
by all Yl 1\ · · · 1\ Yr as the Yi range over H. But let Yi = I:;=l OOijXj 
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for integers aij. A straightforward check shows that y1 1\ · · · 1\ Yr = 

det(aij)(Xl 1\ ···I\ Xr)· 

Thus Ar H is cyclic. Elementary divisor theory tells us that H is 
the direct sum of r cyclic groups ZT;, where the Ti are the elementary 
divisors (Zo means Z here). If these cyclic summands have generators 
Xi, with Xl, say, of order T = T!, then e = Xl 1\ ... 1\ Xr generates Ar H, 
and Te = (Txl) 1\ x2 1\ · · · 1\ Xr = 0 since TX1 = 0. Thus IAr HI~ T. 

We must therefore prove that IAr HI ~ T. Consider the map d : 
Hr ---+ ZT defined by 

d(y1 0 · · · 0 Yr) = det(aij) mod T, 

where Yi = :L j aij x j. This is well defined, since if for some i we had 
Lj aijXj = 0 in H, then we must have aij = 0 mod T for all j, and 
hence det ( aij) = 0 mod T. The map d is also clearly onto (let Yi = xi). 
Finally, d kills all terms having two Yi 's equal, so it induces a map of 
Ar H onto ZT. Q.E.D. 

Definition 3.21. If H has rank r, an orientation of His a selection 
of a generator e of Ar H. A volume of H is a pair ±e of orientations 
of H. i.e. an orientation of H, determined up to sign. Observe that a 
free abelian group of rank r has Ar c::: Z and hence two orientations and 
only one volume, but if H has torsion, then it will in general have many 
volumes. II 

If f : H ---+ H' is a homomorphism between groups of the same rank 
r, then f induces a homomorphism Ar f: Ar H---+ Ar H' in the standard 
way; we will write simply f for Ar f. 

Lemma 3.22. Assume that H and H' both have rank r and that 
f : H ---+ H' is surjective. Let T and T1 be the smallest elementary 
divisors of H and H', respectively. Then T1 I T and if e is any orientation 
of H, then f(e) is an orientation of H'. 

Proof. Let X1, ... , Xr generate H, so cp = x1 1\ · · · 1\ Xr generates 
Ar H. There is thus some generator m of ZT so that e = mcp. But since f 
is onto, H' is generated by f(xl), ... , f(xr) and cp' = f(xl)l\· · ·1\f(xr) = 
f( cp) generates Ar H'. This shows that f : Ar H ---+ Ar H' is also surjective 
and hence that T 1 I T. We conclude that m is also a generator of zT,, 
and hence that e' = f(e) = mf(cp) = mcp' generates Ar H'. Q.E.D. 

If H, H' have specific orientations e, e' and f : H ---+ H' is a ho­
momorphism, then since e' generates Ar H' we have f(e) = me' for a 
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unique m E Z7 ,. We call m the determinant off (with respect to the 
orientations (), ()') and write f (e) = det f · ()'. If H, H' have only volumes 
specified, then det f is determined up to sign. If, however, H = H' 
and () = ()', then det f is independent of(); in fact, f : Ar H ---> Ar H' 
is just multiplication by det f E Z7 • Thus endomorphisms of H have a 
well-defined determinant, and it is easy to see that this definition is the 
classical one when H is free. More generally, we have: 

Lemma 3.23. Suppose 

F 
11" H ~ 

fl lh 
' 11" 

F' ~ H' 

commutes, where n, 1r1 are presentations and all groups have the same 
rank. Then if rp, rp' are orientations ofF, F' inducing orientations (), ()' 
of H, H', we have det h = det f mod T 1 • If no orientations are specified, 
then we measure det h with respect to the canonical induced volumes, 
and the above congruence holds up to sign. 

Proof. Observe that det f · rp' = f(cp) and that 

det h · ()' = h( ()) = hn( rp) = 1r 1 ( det f · cp') =mod T' det f · 1r1 ( cp') = det f · ()'. 

The final statement is obvious. Q.E.D. 

Note that if H = H', F = F' and 1r = n', then det f, det h and the 
congruence are independent of the orientations. 

The following two lemmas show that det behaves like the classical 
determinant. 

Lemma 3.24. Iff : (HI, ()I) ---> (Hz, ()2) and g : (H2, ()2) ---> 

(H3 , ()3 ) are homomorphisms of oriented groups so that all the Hi have 
the same rank, then if T 3 is the smallest elementary divisor of H3 we 
have det(gf) = (detg) · (detf) mod T3 . 

Proof. We calculate: 

det(gf) · ()3 = gf(()I) = g(detf · ()2) = detf · g(()2) = detf · detg · ()3· 

Q.E.D. 
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Lemma 3.25. Let F and G be abelian groups with F free, and let h 
be an endomorphism ofF EB G so that h( G) < G. Let g = hie and let f 
be the map on F = F~G induced by h. Then det h = det f · det g mod T, 

where T is the smallest elementary divisor of G (and hence of F EB G). 
In particular, if h is an automorphism, then det h = ± det g. 

Proof. Let m = rank F and n = rank G; then m + n = rank FEB G 
holds because F is free. Let x1, ... , Xm and Yl, ... , Yn be minimal sets 
of generators ofF and G; their union is then a minimal set of generators 
ofF EB G. By hypothesis, h(yi) = g(yi); also, h(xi) = f(x;) + e(x;) is 
the direct sum decomposition of h(x;), where e is some homomorphism 
F ____, G. Hence 

det h · (xl 1\ · · · 1\ Xm) 1\ (Yl 1\ · · · 1\ Yn) 
= (f(x1) + e(xi)) 1\ · · · 1\ (f(xm) + e(xm)) 1\ (g(yl) 1\ · · · 1\ g(yn)) 
= detg ·(!(xi)+ e(x!)) 1\ ···I\ (f(xm) + e(xm)) 1\ (y11\ · · · 1\ Yn). 

But since e(xi) is a linear combination of the y/s, the above reduces to 
just 

det g · (f(x!) 1\ ···I\ f(xm)) 1\ (y11\ ···I\ Yn) = det f · det g · (x1/\ ···I\ Yn) 

as desired. If his an automorphism, then det f must be ±1, proving the 
last statement. Q.E.D. 

Suppose now that F ~ H is a minimal presentation, so that rank F = 
rank H = r. Let ±<p be the unique volume on F, and let ±11 E /\r H be 
±1r( <p'); we call the volume ±11 the volume of (or induced by) the presen-

tation 1r. Suppose now that F ~ H is an equivalent presentation, i.e. 
there exists a diagram 

with f an isomorphism. If ±11' is the volume induced by 1r1 , we then 
have 

±11 = 7r(±<p) = 7!"1 f(±<p) = 7r1(± det f. <p1 ) = ± det f. 11'. 

But the fact that f is an isomorphism implies that det f = ±1, and 
hence, equivalent presentations have the same volume. This argument 
generalizes in the obvious way to prove the necessity in the following: 
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Theorem 3.26. Let 7f : F ---+ H, 1r1 : F' ---+ H' be two minimal 
presentations with volumes 8, ()' and let h: H---+ H' be an isomorphism. 
Then h lifts to an isomorphism f : F ---+ F' if and only if h(±B) = 
±()'; that is, if and only if det h = ±1 mod r where T is the smallest 
elementary divisor of H ~ H'. 

Proof. We first claim that it suffices to consider the special case 
when the two presentations are identical. Indeed, by Proposition 3.4 
the two presentations are isomorphic; i.e. there exists a commutative 
diagram 

n' 
F' -----> H' 

with both f' and h' isomorphisms. Since f' is an isomorphism, the map 
h' has determinant 1 and hence so does h o h'- 1 . If we could lift the 
automorphism h o h'- 1 to an automorphism f" ofF', then f := f" of' : 
F ---+ F' would be the desired lift of h. 

Hence let h be an automorphism of H with det h = ±1 and let F ~ 
H be any minimal presentation. The proof proceeds just as the proof of 
Theorem 3.15: if Tis the torsion subgroup of Hand F0 = 1r- 1 (T) and 
ho = h\r, then it still suffices to lift ho to F0 . Since His the direct sum 
of T and a free abelian group, the presentation F0 ---+ T is also minimal. 
Furthermore, the conditions of Lemma 3.25 hold here, so det h0 = ±1 
also. Thus it suffices to prove the theorem when H = T is a torsion 
group. 

Let \H\ = m. By Lemma 3.12 we may lift h to an endomorphism fo 
of F such that ( det fo, m) = 1; by Lemma 3.14, it follows that det fo = 
det h = ±1 mod r. Choose k such that k · det fo = ±1 mod m, where 
the sign here is to be the same as the one above, so that k = 1 mod T. 

We choose a basis e1, ... , er ofF (as in Proposition 3.4) so that H is 
the direct sum of the cyclic subgroups generated by Xi = 7r(ei) and x1 

has order T = m1. The endomorphism h ofF defined by e1 ~--+ ke1 , 

ei ~--+ ei for all i > 1 clearly induces the identity map on H, since 
k = 1 mod r. Hence foh still induces h on H, and its determinant 
is now det fo · det h = k det fo = ±1 mod m. Just as in the proof of 
Lemma 3.14, we conclude that there exists an isomorphism f ofF, with 
determinant ±1 (same sign!) such that f = foh mod m (we are here 
using the fact that GL(r, Z) maps onto all elements of GL(r, Zm) with 
determinant ±1). As in Lemma 3.14, f still induces h on H, and we are 
done. Q.E.D. 
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Lifting the identity automorphism gives: 

Corollary 3.27. Two minimal presentations of H are equivalent if 
and only if they induce the same volume on H. 

Here are some examples to show that calculations can actually be 
done with this machinery. 

Example 3.28. In Example 3.3 we gave an example of inequivalent 

minimal presentations, namely Z ~ Z5 and Z ~ Z5 . Now observe 
that r = 1, T = 5, A1Z5 = Z5; e = ±1, e' = 2(±1) = ±2 =!= ±1 mod 5. II 

Example 3.29. Let H = Z2n-1 EB Z~n with standard generators 
e1,e2,e3 and standard presentation Z3 ---+ H taking (1,0,0) f--+ e1, etc. 
Let the second presentation be given by 

(it is easily seen that this map is onto H). The former volume is ±e1 1\ 

e2 1\ e3 , the latter 

2 
1 
0 

-2) 0 = ±38. 
-1 

Since T = 2n-l here, the presentations are equivalent if and only if 
±3 = ±1 mod 2n-l, i.e. if and only if n :::;; 3 (the signs on 3 and 1 are 
independent) ·II 

§4. Symplectic spaces, Heegaard pairs and symplectic Hee­
gaard splittings 

As we noted at the start of the previous section, when a 3-manifold 
W is defined by a Heegaard splitting, then we have, in a natural way, 
a presentation of H 1 (W; Z). In fact we have more, because there is 
also a natural symplectic form associated to the presentation. In this 
section, our goal is to begin to broaden the concept of a presentation 
by placing additional structure on the free group of the presentation, 
and then to extend the results of Section 3 to include the symplectic 
structure. With that goal in mind we introduce symplectic spaces and 
their lagrangian subspaces, leading to the concept of a Heegaard pair. 
There are equivalence relations on Heegaard pairs analogous to those on 
free pairs (F, R). Just as we stabilized free pairs by taking their direct 
sums with (Zk, zk), we will see that there is an analogous concept of 
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stabilization of Heegaard pairs, only now we need direct sums with a 
standard Heegaard pair. At the end of the section (see Theorem 4.8) 
we will relate our Heegaard pairs to the symplectic Heegaard splittings 
that were introduced in §1. 

4.1. Symplectic spaces and Heegaard pairs 

To begin, we reinterpret the free group F of Definition 3.1, intro­
ducing new notation, ideas and structure in the process. 

Definition 4.1. A symplectic space is a finitely generated free abelian 
group V which is endowed with a non-singular antisymmetric bilinear 
pairing, written here as a dot product. Non-singular means that for each 
homomorphism o:: V----> Z there is an Xa E V (necessarily unique) such 
that o:(y) = Xa · y ('Vy E V). A symplectic or Sp-basis for V is a basis 
{ai,bi; 1 ~ i ~ g} such that ai ·aj = bi ·bj = O,ai ·bj = bij, 1 ~ i,j ~g. 
Every symplectic space has such a basis, and so is of even rank, say 2g. 
As our standard model of a rank 2g symplectic space we have X 9 = Z29 

with basis { a 1 , ... , a9 , b1 , ... , b9 } the 2g unit vectors, given in order. An 
isomorphism V ----> V which is form-preserving is a symplectic isomor­
phism. The group of all symplectic isomorphisms of V is denoted Sp(V). 

II 
Definition 4.2. Let B C V be a subset of a symplectic space V 

and define Bj_ = { v E V I v · b = 0 ('Vb E B)}. 

• A subspace B C V is symplectic if, equivalently, 
a) the symplectic form restricted to B is non-singular, or 
b) V=BffiBj_. 

• A subspace B C V is isotropic if, equivalently, 
a) x · y = 0 for all x, y E B, or 
b) B c Bj_. 

• A subspace B C V is lagrangian if, equivalently, 
a) B is maximal isotropic, or 
b) B = Bj_, or 
c) B is isotropic, a direct summand of V, and rank B 

~rank V. 

We shall omit the proof that these various conditions are indeed equiv­
alent. II 

Our next definition is motivated by the material in §1.2, where we 
defined symplectic Heegaard splittings. We will see very soon that our 
current definitions lead to the identical concept. 
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Definition 4.3. A Heegaard pair is a triplet (V; B, B) consisting of 
a symplectic space V and an ordered pair B, B of lagrangian subspaces. 
The genus of the pair is rank B =rank B = ~rank V. An isomorphism 
of Heegaard pairs (Vi; Bi, Bi), i = 1, 2 is a symplectic isomorphism f : 
v1 ........, v2 such that f(Bl) = B2, f(B1) = B2. II 

We now want to define a concept of "stabilization" for Heegaard 
pairs. If V has Sp-basis { ai, bi I i = 1, ... , g}, then the ai 's (and also the 
b/s) generate a lagrangian subspace. These two subspaces A, B have 
the following properties: 

(a) AEBB=V 
(b) the symplectic form induces a dual pairing of A and B, i.e. ai · a1 = 

bi · bj = 0, ai · bj = 6ij, 1 :s; i,j :s; g. 

Any pair of lagrangian subspaces of V satisfying these two properties 
with respect to some basis will be called a dual pair, and either space 
will be called the dual complement of the other. 

If X 9 is the standard model for a symplectic space, then the la­
grangian subspaces E 9 spanned by a 1 , ... , a9 and F9 spanned by JI, ... , f 9 

are a dual pair. We will refer to (X9 ; E 9 , F9 ) as the standard Heegaard 
pair. Note that in an arbitrary Heegaard pair (V; B, B) the lagrangian 
subspaces B, B need not be dual complements. 

If V1 and V2 are symplectic spaces, then V1 EB V2 has an obvious 
symplectic structure, and V1 and V2 are Sp-subspaces of V1 EB V2 with 
V1 = Vl and V2 = V/. This induces a natural direct sum construction 
for Heegaard pairs, with (V1; B1, Bl) EB (V2 ; B 2 , B2 ) = (V1 EB V2 ; B1 EB 
B 2, B1 EB B2 ). The stabilization of index k of a Heegaard pair is its 
direct sum with the standard Heegaard pair (Xk; Ek, Fk) of genus k. 
Two Heegaard pairs (Vi; Bi, Bi), i = 1, 2, are then stably isomorphic if 
they have isomorphic stabilizations. 

These concepts will soon be related to topological ideas. First, how­
ever, we will show that stable isomorphism classes and isomorphism 
classes of Heegaard pairs are in 1-1 correspondence with stable double 
cosets and double cosets in the symplectic modular group f, with respect 
to its subgroup A. 

Note that if A, B is a dual pair of V and U : B ........, B is a linear 
automorphism, then the adjoint map (U*)- 1 is an isomorphism of A= 
B*. Moreover (U*) - 1 EB U is a symplectic automorphism of V = A EB B. 

Lemma 4.4. If B C V is lagrangian, A C V is isotropic and 
A EB B = V, then A is lagrangian and A, B is a dual pair of V. Every 
lagrangian subspace has a dual complement. 
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Proof. Since A is an isotropic direct summand of V and rank A = 

rank V- rank B = ~rank V, it follows that A is lagrangian. Let now 
f : B ---+ Z be linear, and extend it to a : V ---+ Z by setting a(A) = 0. 
Then a(v) = x · v for some x E V. Since x ·A= 0 and A is maximal 
isotropic, we must have x E A, showing that A, B are dually paired and 
hence a dual pair of V. To prove the second statement, let b; be a basis 
of B. Since B is lagrangian it is a direct summand of V, so we may 
choose a homomorphism h: V---+ Z such that h(bl) = 1 and h(b;) = 0 
for i > 1. Let a 1 E V be such that a 1 · v = h ( v) for all v. Clearly the 
subgroup generated by a 1 and B is still a direct summand of V, so choose 
h : V---+ Z such that h(b2) = 1, h(al) = h(b;) = 0 (i -j. 2) and a2 E V 
realizing this map. Continuing in this way, we get finally a 1 , ... , a9 

such that a;, b; satisfy the laws of a symplectic basis and generate a 
direct summand of V. This direct summand has the same rank as V, 
so it equals V, and the group A generated by the a;'s is then a dual 
complement of B. Q.E.D. 

Proposition 4.5. Let A, B be a dual splitting and b; a basis of B. If 
a; is the dual basis of A defined by a; · bj = 15;1, then a;, b; is a symplectic 
basis of V. 

Corollary 4.6. If A, B and A', B' are two dual pairs of V, then 
there is an f E Sp(V) such that f(A) =A', f(B) = B'. 

Proof. Choose symplectic bases a;, b; adapted to A, B and a;, b; 
adapted to A', B'. Then the map defined by a; >--+ a; and b; >--+ b; is 
symplectic. Q.E.D. 

Corollary 4. 7. If B, B' are lagrangian, there is an f E Sp(V) such 
that f(B) = B'. 

Proof. By Lemma 4.4, B and B' have dual complements A and A'. 
By Corollary 4.6 we may find f E Sp(V) such that f(B) = B'. Q.E.D. 

4.2. Heegaard pairs and symplectic Heegaard splittings 

We are now ready to relate our work on Heegaard pairs to the double 
cosets introduced in §1. We follow notation used there. 

Theorem 4.8. The following hold: 

(1) Isomorphism classes of Heegaard pairs are in 1-1 correspon­
dence with double cosets in r mod A. Stable isomorphism 
classes of Heegaard pairs are in 1-1 correspondence with stable 
double cosets in r mod A. 
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(2) Let j: 8N9 -7 N 9 , ] : 8N9 -7 N9 , and let j*,]* be the induced 
actions on homology. 
Then the triplet (H1 (M;Z);kerj*,ker]*) is a Heegaard pair. 

(3) Every Heegaard pair is topologically induced as the Heegaard 
pair associated to a topological Heegaard splitting of some 3-
manifold. Moreover, equivalence classes and stable equiva­
lence classes of Heegaard pairs are topologically induced by 
equivalence classes and stable equivalence classes of Heegaard 
splittings. 

Proof. We begin with assertion (1). Let (V; B, B) be a Heegaard 
pair of genus g. Then by Corollary 4.6 we may find a symplectic isomor­
phism f : V -7 X 9 such that f(B) = F9 . Putting F9 = f(B), we then 
have (V; B, B) isomorphic to (X9 ; F9 , F9 ). Iff' : (V, B) -7 (X9 , F9 ) is 
another choice, with f'(B) = P;, then f' f- 1 (F9 ) = F9 , hence f' f- 1 E 

A. Then we see that the isomorphism classes of genus g Heegaard pairs 
correspond to equivalence classes of lagrangian subspaces F9 C X 9 , with 
F9 , P; equivalent if there is a map mE A such that m(F9 ) = P;. Now, 
we have seen that there is a map h E r such that F9 = h(F9 ), and 
h 1 ( F9 ) = h2 ( F9 ) if and only if h2 = hd for some f E A. Then each 
F9 can be represented by an element h E r and h, h' give equivalent 
subspaces F9 = h(F9 ), P; = h'(F9 ) if and only if there are JI, h E A 
such that h' = hhh. The set of all hhh, fi E A, is a double coset of 
f mod A. Then the isomorphism classes of Heegaard pairs of genus g 
are in 1-1 correspondence with the double cosets of r mod A. 

Direct sums and stabilizations of Heegaard pairs corresponds to a 
topological construction. If (Wi; Ni, Ni) (i = 1, 2) are Heegaard split­
tings, their connected sum (W1 #W2 ; N 1 #N2 , N1 #N2 ) is a Heegaard 
splitting whose abelianization to a Heegaard pair is readily identifiable 
as the direct sum of the Heegaard pairs associated to the summands. 
Moreover, if (§3 ; Yk, Yk) is a standard Heegaard splitting of genus k for 
§ 3 , its Heegaard pair may be identified with the standard Heegaard pair 
(Xk; Ek, Fk) of index k. This stabilization of Heegaard pairs is induced 
by the topological construction (W;N,N) -7 (W#§3 ;N#Yk,N#Yk)· 

In an entirely analogous manner to the proof just given for (1), stable 
isomorphism classes of Heegaard pairs correspond to stable double cosets 
in r mod A. 

Proof of (2): There is a natural symplectic structure on the free 
abelian group H 1 (M; Z), with the bilinear pairing defined by intersection 
numbers of closed curves which represent elements of HI(M; Z) on M. 
In fact, as claimed in (2) above, the triplet (H1 (M;Z);kerj*,ker]*) is a 
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Heegaard pair. To see this, let B = ker j*. Since x · y = 0 Vx, y E B, the 
subspace B is isotropic. Also, rank B =~rank HI(M;Z) =genus N = 
genus M. Hence B is lagrangian. Similarly, B is lagrangian. Therefore 
the assertion is true. 

Proof of (3): It remains to show that every Heegaard pair is topolog­
ically induced as the Heegaard pair associated to a topological Heegaard 
splitting of some 3-manifold, and also that equivalence classes and sta­
ble equivalence classes of Heegaard pairs are topologically induced by 
equivalence classes and stable equivalence classes of Heegaard splittings. 
To see this, let (V; B, B) be a Heegaard pair. By Theorem 4.8 we may 
without loss of generality assume that (V; B, B) is (X9 ; F9 , F9 ). Choose 
a standard basis for HI (A1; Z), with representative curves as illustrated 
in Figure 1. We may without loss of generality take one of these (say 
WI, ... , w9 ) to be standard and cut M open along WI, ... , w9 to a sphere 
with 2g boundary components wi, Wi ( i = 1, ... , g). Choose 2g addi­
tional curves VI' 0 0 0 ' Vg' WI' 0 0 0 ' Wg on M such that each pair Wi' wi is 
a canceling pair of handles, i.e. Wi 0 wi = 1 point, Wi 0 wj = wi 0 Wj = 0 
if i =/= j, and similarly for the Vi's. Then the matrices of algebraic inter­
section numbers 

uniquely determine a symplectic Heegaard splitting. This gives a natural 
symplectic isomorphism from HI (A1; Z) to X 9 . Also, since A1 is pictured 
in Figure 1 as the boundary of a handlebody N, our map sends HI (N; Z) 
to F9 . By Corollary 4.7 we may find hEr such that h(F9 ) ~ P9 . By [8] 
each h E f is topologically induced by a homeomorphism h : M ----> M. 
Let N be a copy of N, and let W be the disjoint union of N and R, 
identified along aN= M and aN = M by the map h. Then (W; N, N) 
is a Heegaard splitting of W which induces the Heegaard pair (V; B, B). 

In an entirely analogous manner, the correspondence between ( sta­
ble) isomorphism classes of Heegaard pairs and symplectic Heegaard 
splittings may be established, using the method of proof of Theorem 
4.8 and the essenyal fact that each h E A is topologically induced by a 
homeomorphism h : A1 ----> A1. Q.E.D. 

§5. Heegaard pairs and their linked abelian groups 

In this section we meet linked groups for the first time in our in­
vestigations of Heegaard pairs. We show that the problem of classifying 
stable isomorphism classes of Heegaard pairs reduces to the problem of 
classifying linked abelian groups. This is accomplished in Theorem 5.15 
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and Corollary 5.16. In Theorem 5.18 and Corollary 5.21 we consider the 
question: how many stabilizations are needed to obtain equivalence of 
minimal, stably equivalent Heegaard pairs? Corollary 5.22 asserts that 
a single stabilization suffices, generalizing the results of Theorem 3.15 
and Corollary 3.18. This solves Problem 3. 

The final part of the section contains partial results about classifying 
Heegaard pairs of minimal rank. Theorem 5.20 is a first step. The 
complete solution to that problem will be given, later, in Theorem 7.5. 

We will not be able to address the issue of computing the linking 
invariants in this section. Later, after we have learned more, we will 
develop a set of computable invariants for both stable and unstable 
double .cosets. 

5.1. The quotient group of a Heegaard pair and its natural 
linking form. Solution to Problem 1 

We now introduce the concept of the quotient group of a Heegaard 
pair. We will prove (see Theorem 5.5) that the quotient group of a 
Heegaard pair has a natural non-singular linking form. This leads us 
to the concept of a 'linked abelian group'. In Corollary 5.9 we show 
that, as a consequence of Theorem 5.5, the linked abelian group that is 
associated to a Heegaard pair is an invariant of its stable isomorphism 
class. Corollary 5.16 solves Problem 1. 

Lemma 5.1. Let (V; B, B) be a Heegaard pair and let C = {x E 

VI x · (B +B)= 0}. Then C = B n B. 

Proof. We have x E C if and only if x · ( B +B) = 0, which is true if 
and only if x · B = 0 and x · B = 0. Since B, Bare maximally isotropic, 
this is true if and only if x E Band x E B. Q.E.D. 

This lemma implies that, for lagrangian subspaces B, B, B', B', if 
B + B = B' + B', then B n B = B' n B'. 

Lemma 5.2. Every Heegaard pair (V; B, B) is a direct sum of Hee­
gaard pairs of the form (Vi; C, C) EB (V2 ; D, D) where C = B n B and 
DnD=O. 

Proof. Since BjC = Bj(B n B) ~ (B +B)/ B c Vj B, the group 
B / C is free and thus C is a direct summand of B. Thus B = C EB D 
for some subgroup D of B. Let now B* be a dual complement of B in 
V; the splitting C EB D of B then induces, dually, a splitting C* EB D* 
of B*, where C .l D* and D .l C* and where C and C* are dually 
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paired (by the symplectic form) and likewise D, D*. Thus VI = C EB C* 
and V2 = DEB D* are symplectic subspaces of V, with VI = Vl and 
V = VIEBV2 = CEBC*EBDEBD*. We claim that B c CEBDEBD*. Indeed, 
express bE Bas b = c+c*+d+d* with c E C, etc. Since B ~ C and B is 
isotropic, we have b·c' = 0 for all c' E C, i.e. (c+c*+d+d*)·c' = c*·c' = 0 
for all c' E C. But C, C* are dually paired, so c* must be zero. 

Hence we have C EB D EB D* ~ B ~ C. But this implies that B = 

C EB D, where D = B n (DEB D*) = B n V2 = V2 . We have now shown 
that: 

a) V =VI EB V2 
b) B = C EEl D with C = B n B C VI, D c V2 
c) B = c EEl D with D c v2 

Note that C = BnB = (CEBD)n(CnD) = CEB(DnD), so DnD = 0. 
To finish the proof, it suffices then to show that (VI; C, C) and (V2 ; D, D) 
are Heegaard pairs. The former is trivially so since VI = C EEl C*, and 
for the same reason, D is lagrangian in V2 . We must then show that D 
is lagrangian in V2 . It is certainly isotropic, since B = C EEl D is so. But 
let X E v2 be such that X. D = 0. We also have X. VI = 0 since VI j_ v2 
and hence x · B = x · ( C EEl D) = 0. Since B is maximally isotropic, 
X E B and hence B n V2 = D, showing D to be maximally isotropic in 
v2. Q.E.D. 

Lemma 5.3. Let (V; B,B) and (V; B,B') be two Heegaard pairs 
such that B + B = B + B'. If the first is split as in the previous lemma, 
then the second has a splitting of the form (VI; C, C) EEl (112; D, D'), where 
D n D' = o and D + D' = D + D. 

Proof. By Lemma 5.1, the fact that B + B = B + B' implies that 
C = B n B = B n B'. Examining the construction of Lemma 5.2, we 
see that since B and C are the same for both pairs, we may choose B* 
and D the same, and hence C*, D* and VI = C EEl C*, V2 = D EEl D* 
will also be the same. Thus the second pair has a splitting satisfying 
all the requirements except possibly the last. But we have D + D' = 

(B + B') n V2 = (B +B) n V2 = D +D. Q.E.D. 

We define the quotient of a Heegaard pair (V; B, B) to be the group 
H = V/(B +B). Clearly, isomorphic Heegaard pairs have isomorphic 
quotients. Furthermore, stabilization does not change this quotient ei­
ther, since 
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Thus the isomorphism class of the quotient is an invariant of stable 
isomorphism classes of pairs. We cannot conclude, however, that two 
Heegaard pairs are stably isomorphic if they have isomorphic quotients; 
there are further invariants. To pursue these, we need the following 
concepts. 

Definition 5.4. If T is a finite abelian group, a linking form on T is 
a symmetric bilinear Q/Z-valued form on T, where Q/Z is the group of 
rationals mod 1. More generally, a linking form on any finitely generated 
abelian group H means a linking form on its torsion subgroup T. A 
linking form A is non-singular if for every homomorphism r.p : T---+ QjZ, 
there is a (necessarily unique) x E T such that cp(y) = A(x, y) for all 
y E T. A group H will be called a linked group if its torsion subgroup is 
endowed with a non-singular linking form. II 

Theorem 5.5. The quotient group of a Heegaard pair has a natural 
non-singular linking form. 

Proof. Let the pair be (V; B, B), the quotient be H, and its torsion 
subgroup beT. Consider x, yET and suppose that mx = 0. Lift x, y to 
u, v E V; then mx = 0 implies that mu E B + B, say mu = b +b. Define 
A(x, y) to be ~(b · v) mod 1. Note that if ny = 0 and hence nv E B + B, 
say nv = c + c (c E B, c E B) then we have 

1 1 1 1 
A(x,y) = -(b·v) = -(b·nv) = -b· (c+c) = -b·cmod 1, 

m mn mn mn 

which gives a more symmetric definition of A(x, y). We now verify the 
necessary facts about A. 

a) Independent of the choice of b, b: if b + b = b' + b', then we have 
b' = b + o, b' = b - o, with 0 E B n B. But then n;n b' . c 
~n(b · c + o ·c) = ~nb · c, since 6 · c = 0. Similarly, A(x,y) is 
independent of the choice of c, c. 

b) Independent of the lifting u, v: a different lifting u' satisfies u' = 
u + bl + bl, so 

mu' = mu + m(b1 + b~) = (b + mbi) + (b + mbi), 

and hence 

1 1 
A(x,y) = -b· v = -(b+mb1) · v mod 1. 

m m 

Similarly, A(x, y) does not depend on the lifting v of y. 
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c) Independent of the choice of m: if m' x = 0 also, with m' u = b' + 1/, 
then mm'u = m'b + m'b = mb' + mb' and 

_!_(b'. v) = -1-(mb' · v) = b a) - 1-(m'b · v) = 2_(b · v) mod 1. 
m' mm' Y mm' m 

d) Bilinearity and symmetry: the first follows immediately from a). 
Then for symmetry, we have A(x, y) = ~n (b·c) and A(y, x) = ~n (c·b). 
But 

mn(u·v) = (mu)·(nv) = (b+b)·(c+c) = b·c+b·c = b·c-c·b = 0 mod mn, 

1 - 1 -
so -:;n;(b·c) = mn(c·b) mod 1. 

e) Non-singularity: this is equivalent to the statement that A(x, y) 
0 mod 1 for ally E T implies that x = 0 in T. 

Suppose then x E T and A(x, y) = 0 for all y E T, and let u 
be a lifting of x to V. Now by Lemma 5.2, our Heegaard pair is a 
direct sum (V1 ; C, C) EB (V2 ; D, D) with C = B n Band D n D = 0. 
Since the quotient Vi/(C +C) is free, V2 projects onto T and so the 
lifting of any torsion element may always be chosen in V2. If E is 
a dual complement of D in V2 , then in fact the projection V --+ H 
will take E onto T. Thus we may assume that u E E. If mx = 0 
in T then mu = d + d for some dE D, dE b. The hypothesis that 
A(x, y) = 0 mod 1, ally E Tis equivalent to d · v = 0 mod m for all 
v E V2. Since V2 is symplectic, this implies that d is divisible by m 
in V2, that is, d = md' for some d' E V2. Now clearly d' · D = 0, and 
hence d! E D since D is maximally isotropic. Thus we have mu = 

md' + d, d = m(u- d') and we conclude similarly that u- d' E D, 
say u- d' = d'. Thus u = d' + d' ED+ D, which implies that x = 0. 

Q.E.D. 

Remark 5.6. Note that the maximal isotropic nature of B, B was 
used only in proving e); the weaker assumption that they are only 
isotropic still suffices to prove a)-d) and thus construct a natural linking 
onH. II 

Lemma 5. 7. Let B C V be lagrangian, let B be isotropic of 
rank !rank V, and suppose that B n B = 0. Then B is lagrangian if 
and only if the induced linking form A on H is non-singular. 

Proof. We have already proved the necessity, so suppose that A is 
non-singular. By Definition 4.2, we need only show that B is a direct 
summand of V. This is equivalent to showing that V / B is torsion free, 
i.e. that for u E V, if mu E B for some nonzero m, then u E B. If then 
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mu E B and xis the image of u in H, then mx = 0 in H, sox is in the 
torsion group T. But then u lifts x and mu decomposes in B + B as 
0 + mu. Hence if y E Tis lifted to v E V, we get A(x, y) = ~(0 · v) = 
0 mod 1, i.e. ),.(x, y) = 0 for ally E T. By hypothesis, we have x = 0 in 
T, and hence u E B + B, say u = b +b. Since mu = mb + mb is in B, 
mb is also in B. But it is also in B, so must be zero, i.e. b = 0. Thus 
u =bE B. Q.E.D. 

We have shown that the quotient of a Heegaard pair has the struc­
ture of a linked group in a natural way; clearly, isomorphic Heegaard 
pairs have isomorphic linked quotients: the Heegaard isomorphism in­
duces an isomorphism on the quotients which preserves the linking. Let 
us see how the linked quotient behaves under stabilization. 

Lemma 5.8. The linked quotient of a stabilization of (V; B, B) zs 
canonically isomorphic to the unstabilized quotient. 

Proof. The canonical isomorphism of the quotients is induced by 
the inclusion V ~ VEBXk, and we identify the two quotients in this way. 
To see that the linking defined by the two pairs are equal, let x, y E T. 
Their liftings u, v in V EB Xk may be chosen to lie in V EB 0, since Xk 
projects to 0 in the quotient, and the splitting of mu may then be chosen 
to be (b, 0) + (b, 0). The stabilized linking number, defined thus, is then 
obviously the same as the unstabilized one. Q.E.D. 

Corollary 5.9. The linked abelian group is an invariant of the stable 
isomorphism class of a Heegaard pair. 

The remainder of this section is devoted to strengthening Corol­
lary 5.9 by showing that, in fact, two Heegaard pairs are stably iso­
morphic if and only if their linked quotients are isomorphic (see Corol­
lary 5.16). It is easily verified that two linked groups are link-isomorphic 
if and only if they have link-isomorphic torsion groups and, mod their 
torsion groups, the same (free) rank. 

Lemma 5.10. Let (V; B, B) be a Heegaard pair with B n B = 0, 
and let A be a dual complement of B. If A is the direct projection of B 
into A, then there is a symplectic basis a;, b; of V (a; E A, b; E B) such 
that: 

a) miai is a basis for A, for some integers m; =/= 0; 
b) miai + Lj nijbj is a basis for B, for some integers n;j such 

that nii/mi = nidmi. 
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Remark 5.11. Note that the hypothesis B n B = 0 is equivalent 
to the fact that the rank of B + B is equal to the rank of V, i.e. that 
the quotient is finite. II 

Proof. Since B n B = 0, the projection of B into A is 1-1, i.e. 

- - 1 
rank A = rank B = 2rank V = rank A. 

By Proposition 3.4, there is a basis ai of A such that miai is a basis 
of A, and m; f= 0 because rank A = rank A. Let b; be the dual basis 
of B = A*; then ai, b; is a symplectic basis of V. The inverse of the 
projection B ____, A takes m;a; into a basis of B, which must then be of 
the form b; = m;a; + Lk n;kbk for n;J E Z. But b; · bJ = 0 for all j, i.e. 
m;nJi - mjnij = 0 for all i, j. Q.E.D. 

Lemma 5.12. Let (V; B, B) and (V; B, B') be two Heegaard pairs 
such that B + B = B + B' and B n B = B n B' = 0. Then the linkings 
>., >.' induced on the common quotient H are identical if and only if 
there is an f E Sp(V) such that f (B) = B, f (B) = B', and such that 
the automorphism h of H induced by f is the identity map. 

Proof. Certainly the condition is sufficient. To prove the necessity, 
let A be a dual complement of Band let A, A' be the projections of B, 
B' into A. Note that A= An (B +B) and A'= An (B + B'). Hence 
A = A'. As in the previous lemma we choose an Sp-basis a;, b; with 
m;a; a basis of A= A', and corresponding bases 

b; = m;a; + L n;jbj of B 
j 

and "b; = m;a; + L n;jbj of B'. 
j 

Let {3;j = n;J;;:,n'J; the "symmetry" conditions of the previous lemma on 
the n;j, n~j imply that {3;j = f3Ji. Let x; be the image of a; in H. Since 
m;a; E B + B, when calculating .X(x;, xk) we may choose the B-part of 
the lift of x; to be - Lj n;Jbj, and we get 

Likewise we get >.'(x;, xk) = ':J,~. By hypothesis, for all i, k we have 

n;k = n;k mod 1 i.e. r:l.k = n;k -n;k = 0 mod 1· that is r:l.k is integral 
mi TTH ' fJz mi ' ' fJ'I-

as well as symmetric. Thus the transformation f : V ____, V which fixes 
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the bi and takes ai to ai + 2:1 f3i1b1 is easily seen to be symplectic. We 
have f(B) = B obviously, and 

j 

miai + L n~1 b1 = b~, 
j 

j 

so f(B) = B'. Finally, h(xi) is the image of f(ai) = ai + 2:1 f3ijbj, which 
is just x;; this shows that h = 1. Q.E.D. 

Lemma 5.13. With hypotheses as in the preceding lemma, but omit­
ting the assumption that B n B = B n B' = 0, the conclusion remains 
valid. 

Proof. Again we need only prove the necessity. By Lemma 5.3, we 
split (V; B, B) as (V1 ; C, C)EB(V2 ; D, D), where C = BnB = BnB', and 
(V; B, B') as (V1 ; C, C) EB (V2; D, D'). Since D + D = (B +B) n V2 = 
(B + B') n v2 = D + D', both the v2 pairs have the same quotient, 
namely the torsion subgroup T, and both these pairs define the same 
linking form. By the preceding lemma we have a map h E Sp(V2) such 
that h(D) = D, h(D) = D' and so that 

commutes. Let f = lv, EB h; then f satisfies the requirements. Q.E.D. 

Lemma 5.14. Let (V; B, B) and (V'; B', B') be Heegaard pairs of 
the same genus g, and let h : H __... H' be an isomorphism of the quotients 
(not necessarily linking-preserving). If g > rank H, then there is a 
symplectic isomorphism f : V __... V' lifting h such that f(B) = B' and 
f(B +B)= B' + B'. 

Proof. Let A, A' be dual complements of B, B'. Then the projec­
tions n, n' map A, A' onto H, H'. Since A, A' are free of rank g >rank H, 
we have non-minimal presentations A __... H, A' __... H', and hence by 
Theorem 3.15 there is an isomorphism p : A __... A' lifting h. Let q be 
the adjoint map of p on B = A* (i.e. q = (p*) -l); then f = p EB q is 
a symplectic isomorphism of A EB B = V to A' EB B' = V'. It clearly 
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still lifts h, which implies that f(B +B)= f(ker7r) = ker1r1 = B' + B'. 
Finally, f(B) = B' by the construction of f. Q.E.D. 

Theorem 5.15. Let (V; B, B) and (V'; B', B') be two Heegaard 
pairs of genus g and h : H -+ H' a link-isomorphism of their linked 
quotient groups. If g >rank H, then h lifts to a Heegaard isomorphism 
j: (V;B,B)-+ (V';B',B'). 

Proof. Lift h to f as in the previous lemma, and put B1 = f- 1(B'). 
Then (V; B, Bi) is a Heegaard pair and f maps it isomorphically 
to (V';B',B'). Note that 

so the quotient of (V; B, B1) is also H. Moreover, by construction the 
linking form on H induced by (V, B, Bi) is identical to the linking form 
induced by (V, B, B). By Lemma 5.13, there is a map g E Sp(V) such 
that g(B) = B, g(B) = B1 , and g induces the identity map on H. 
Hence the map fg also induces h: H-+ H', and fg(B) = B', fg(B) = 
f(Bl) = B'. Q.E.D. 

We are now ready to give our solution to Problem 1 of the introduc­
tion to this paper. 

Corollary 5.16. Two Heegaard pairs are stably isomorphic if and 
only if they have the same torsion free ranks, and their torsion groups 
are link-isomorphic; that is, if and only if they have isomorphic linked 
quotients. 

5.2. The stabilization index. Solution to Problem 3 

In this subsection we introduce the notion of a Heegaard presenta­
tion and define the genus of a Heegaard presentation. We return to the 
concept of the volume of a presentation of an abelian group, relating it 
now to Heegaard presentations. See Theorem 5.20. At the end of this 
section we give the solution to Problem 3 of the Introduction to this 
article. See Corollary 5.22. 

Definition 5.17. Let H be a linked group. A Heegaard presentation 
of H consists of a Heegaard pair (V; B, B) and a surjection 1r: V-+ H 
such that: 

a) ker1r=B+B 
b) the linking induced on H by means of 1r is the given linking on H. 
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The genus of the presentation is the given genus of the pair. We will use 
the symbol (V; B, B; 1r) to denote a Heegaard presentation. II 

Theorem 5.18. Every linked group H has a Heegaard presentation 
of genus equal to the rank of H. 

Proof. Let H = Fk EB T, where Fk is free of rank k and T is 
torsion. If (V; B, B; 1r) is a Heegaard presentation of T with genus 
equal to rank T, then taking the direct sum with (Xk; Ek, Ek; p) where 
p : Xk ---> Fk is a surjection with kernel Ek gives the required presen­
tation for H. Thus we need only prove the theorem for torsion groups 
T. Let V be symplectic rank of 2rank T and let A, B be a dual pair 
in V. Let 7TA : A ---> T be a presentation ofT, which is possible since 
rank A = rank T. We may, by Proposition 3.4, choose a basis ai of 
A such that miai is a basis of ker 7T A, and m; "I 0 since T is a torsion 
group. If b; is the dual basis of B, then ai, b; is a symplectic basis of V. 
Let now Xi = 7TA(a;); the xi's generate T, and the order of X; inTis 
mi. 

If now >. is the linking form on T, choose rational numbers qij rep­
resenting >.(xi,Xj) mod 1, which, since >.(x;,xj) = >.(xj,xi), may be 
assumed to satisfy qij = qji· Note that 

that is, miqij = nij is integral. 

We now define B C V to be generated by bi = m;ai + l:j nijbj. 
Clearly the map 7T : ai f--.* Xi, bi f--.* 0 is a surjection of V onto T, and its 
kernel is generated by miai and bi, or just as well by b; and b;. In other 
words, ker 7T = B + B. Observe that B is isotropic since 

Hence we have a linking >.' induced on T, as in Lemma 5.7, by the 
isotropic pair B, B. An easy calculation shows that >.' = >., and hence 
is non-singular by hypothesis. Now rank B is obviously = rank A = 
1 - - . . 
2 rank V, and B n B = 0: for 2::; ribi E B If and only If l:i rimiai = 0, 
i.e. if and only if ri = 0 all i (since mi "I 0). We now apply Lemma 
5.7 to conclude that B is lagrangian and so (V; B, B; 1r) is a Heegaard 
presentation ofT with genus equal to the rank ofT. Q.E.D. 

Our next goal is to show that a minimal Heegaard pair has a natural 
volume in the sense of §3.2. 
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Lemma 5.19. Let (V; B, B) be a minimal Heegaard pair of genus g 
with quotient H. Then for any two dual complements Ai of B (i = 1, 2) 
the two presentations Ai ---+ H induce the same volumes. We shall call 
this volume the volume induced by the Heegaard pair. 

Proof. The direct sum projection of V = A 2 EBB onto A 2 gives a 
map j : A1 ---+ A 2 , and j is an isomorphism. Clearly, 

commutes, so the presentations are equivalent and have the same vol­
ume. Q.E.D. 

We can strengthen Theorem 5.18 in the minimal volume case. 

Theorem 5.20. Let (Vi; Bi, Bi), (i = 1, 2) be minimal Heegaard 
pairs of genus g with quotients Hi and induced volumes ±ei, and let 
h : H 1 ---+ H 2 be a linking isomorphism. Then h lifts to a Heegaard 
isomorphism if and only if h is also volume preserving. 

Proof. Assume that g =rank H. The proof of Theorem 5.15 goes 
through exactly as is whenever we can lift h to f as in Lemma 5.14, and 
examining the proof of this lemma, we see that it also goes through as 
is if we can only lift h to an isomorphism p : A ---+ A' such that 

A -------> H 

A' _______, H' 

commutes. Since rank A = rank A' = g = rank H, the abelian groups H 
and H' have volumes e, 8' induced by these presentations, and Theorem 
3.26 tells us that h lifts if and only if h(±e) = ±8', as desired. Q.E.D. 

Corollary 5.21. Every Heegaard pair is isomorphic to a stabiliza­
tion of a Heegaard pair whose genus is equal to the rank of the quotient. 

Proof. Let (V; B, B) be of genus g and let its quotient be H of 
rank r. If g = r we are done. If g > r, then by Theorem 5.18 there is a 
Heegaard presentation of H of genus r, and then by Corollary 5.16, its 
stabilization of index k = g- r > 0 is isomorphic to (V; B, B). Q.E.D. 
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Problem 3 asked whether there is a bound, or even more a uniform 
bound on the stabilization index for arbitrary minimal inequivalent but 
stably equivalent pairs 1i1, 1i2 E r 9. 

Corollary 5.22. If two Heegaard splittings of the same 3-manifold 
W have the same genus, then their associated symplectic Heegaard split­
tings are either isomorphic or become isomorphic after at most single 
stabilization. In particular, if the genus of the Heegaard splitting is 
greater than the rank of H 1 (W; Z), then the symplectic Heegaard split­
tings are always isomorphic. 

Proof. Let h, h/ be Heegaard gluing maps of genus g for the same 
3-manifold. Let h, h' be their images in Sp(2g, Z). By Theorem 4.8 we 
know that the stable double cosets which characterize their stabilized 
symplectic Heegaard splittings are in 1-1 correspondence with isomor­
phism classes of associated stabilized Heegaard pairs. Let (V; B, B), 
(V'; B', B') be _th~ Heegaard pairs determined by h = p2 (h), h' = p2 (h/). 
The fact that h, h' determine the same 3-manifold W shows that there 
is a linking isomorphism H ---+ H' of their linked quotient groups. The­
orem 5.15 then asserts that, if g > rankH1 (W;Z), then there is a Hee­
gaard isomorphism (V; B, B) ---+ (V'; B', B'). In particular, the Hee­
gaard splittings are equivalent. By Theorem 5.18, every linked group 
H has a Heegaard presentation of genus equal to the rank of H. Thus, 
at most a single stabilization is required, and that only if the genus is 
minimal and the Heegaard pairs are not isomorphic. Q.E.D. 

§6. The classification problem for linked abelian groups 

We have reduced the problem of classifying symplectic Heegaard 
splittings to the problem of the classification of linked abelian groups. 
It remains to find a system of invariants that will do the job, and that 
is our goal in this section. 

6.1. Direct sum decompositions 

We begin by showing that the problem of finding a complete system 
of invariants for a linked group (H, >.) reduces to the problem of studying 
the invariants on the p-primary summands of the torsion subgroup T of 
H. 

Theorem 6.1 ([43]). Every linking form on T splits as a direct sum 
of linkings associated to the p-primary summands ofT, and two linking 
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forms are equivalent if and only if the linkings on the summands are 
equivalent. 

Proof. Let x, yET where x has order m andy has order n. Then 
>.(x, y) = >.(x, y + 0) = >.(x, y) + >.(x, 0), hence >.(x, 0) = 0. From this it 
follows that n>.(x, y) = >.(x, ny) = >.(x, 0) = O(mod 1) because ny = 0. 
By the symmetry of linking numbers, we also have m>.(x, y) = O(mod 1). 
Therefore >.(x, y) = -fii = *(mod 1) for some integers r, s. This implies 
that >.(x, y) = (m~n) (mod 1) for some integer t, where (m, n) is the 

greatest common divisor of m and n. Thus if x, y have order pa, qb 
where p, q are distinct primes, then >.(x, y) = 0. Thus the linking on 
T splits into a direct sum of linkings on the p-primary summands, as 
claimed. Q.E.D. 

In view of Theorem 6.1, we may restrict our attention to a summand 
T(pj) ofT of prime power order p;, where PJ E {p1,p2 , ... ,pk}, the set 
of prime divisors of the largest torsion coefficient Tt. This brings us, 
immediately, to a very simple question: how do we find the linking 
form on T(pj) from a symplectic Heegaard splitting? Our next result 
addresses this issue. 

Corollary 6.2. LetT be the torsion subgroup of H 1(W;Z). Let 
Q(2 ) = llqiJII and p(2 ) = Diag(r1,r2 , ... ,rt) be the matrices that are 
given in Theorem 2.4. 

(1) 

(2) 

(21) 

The txt matrix Q(2l(P(2))-1 = ll>.(yn YJ)II =II ~1 II determines 
J 

a linking on H. 
The linking matrices that were studied by Seifert in [43] are 
the direct sum of k distinct t x t matrices, one for each prime 
divisor Pd of Tt. Each summand represents the restriction of 
the linking in (1) to the cyclic summands ofT whose order is 
a fixed power of Pd· The one that is associated to the prime Pd 
is a matrix of dimension at most t x t: 

TiTjqij Tiqij 
>.(gid,9jd) =II ( ei,d)(peid) _II= II ( e,d)( eid) II 

pd d 7J Pd Pd 

Proof. (1) The easiest way to see that Q(2l(p(2))-1 is a linking on 
H is from the geometry. The matrix Q(2) records the number of appear­
ances (algebraically) of each homology basis element bi in h(bj)· The 
curves which represent the bi's bound discs Di in N 9 , and the curves 
which represent the h(bJ)'s bounds discs Dj in N9 . The 9i/s are inter­
section numbers of h(bj) with Di or of bi with Dj. Dividing by Tj, inter­
section numbers go over to linking numbers. Note that the submatrix 
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p(2)Q(2) is symmetric by (2), hence Q(2l(p<2l)-1 is likewise symmetric, 
as it must be because Q(2l(p<2l)-1 is a linking. 

(2) By Theorem 6.1, Tis a direct sum of p-primary groups T(p1) EB 
· · · EB T(pk)· From this it follows that the linking on T also splits as a 
direct sum of the linkings associated to T(p 1 ), ... , T(pk)· 

We focus on one such prime p = Pd· By Theorem 2.2 the p-primary 
group T(p) splits in a unique way as a direct sum of cyclic groups whose 
orders are powers of p, moreover the powers of p which are involved occur 
in a non-decreasing sequence, as in (4) of Theorem 2.2. The generators 
of these groups are ordered in a corresponding way, as g1,a, g2,a, ... , gt,d, 
where distinct generators gi,d, gi+l,d may generate cyclic groups of the 
same order, and where it is possible that the first q of these groups are 
trivial. As in the statement of Theorem 2.2, the generators gi,d and Yi are 
related by (5). The expression on the right in (21) follows immediately. 
There are k such matrices in all, where k is the number of distinct prime 
divisors of Tt. Q.E.D. 

6.2. Classifying linked p-groups when p is odd. Solution 
to Problem 2, odd p. 

In this section we describe Seifert's classification theorem for the 
case when all of the torsion coefficients are odd. Seifert studied the 
txt matrix >..(gi,g1) in (21) belonging to a fixed prime p = Pd· To 
explain what he did, we start with the inequalities in (4), but restrict to 
a subsequence of cyclic groups all of which have the same prime power 
order. We simplify the notation, using the symbols 

E1 = · · · = E1 < E2 = · · · = E2 < · · · < Er = Er = · · · Er 

in place of the powers ei,d which appear in ( 21). The linking matrix then 
divides into blocks whose size is determined by the number of times, 
denoted ti, that a given power, say Ei, is repeated. Among these, the 
blocks that interest us are the square blocks whose diagonals are along 
the main diagonal of the linking matrix. There will be r such blocks of 
dimension t1, ... , tr if r distinct powers p6 ; occur in the subgroups of T 
that are cyclic with order a power of p: 

* 
& 

(22) 
p'2 

The stars relate to linking numbers that we shall not consider further. 
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Theorem 6.3 ([43]). Two linkings of T(p) are equivalent if and 
only if the corresponding box determinants [A1[, [A2[, ... , [Ar[ have the 
same quadratic residue characters mod p. 

Summarizing, we can now give the promised solution to Problem 2 
in the case when T has no 2-torsion. 

Theorem 6.4. (1) We are given the gluing map h E r 9 for a 
H eegaard splitting of genus g of a 3-manifold W. Let 

H = l(h) = (~ ~) E Sp(2g,Z). 

(2) Use the methods described in the proof of Theorem II.9 of [34] to 
find matrices U, V such that UPV = p(l) = Diag(1, 1, ... , 1, T1 , T2 , 

... ,Tt,O, ... ,O). 
(3) Use the methods described in the proof of Theorem 2.4 to find the 

equivalent matrix H'. 
(4) Let y; be a generator of the subgroup of order T; ofT. Let Pl < 

P2 < · · · < Pk be the primes divisors of T1, T2, ... , Tt. Compute the 
elements g;1, using (5). Then compute the k symmetric matrices 

11>-(g;,g1)11, using (21) above. 

(5) Using the matrices 11>-(g;,gj)ll, determine the submatrices A1, ... , 
Ar that are shown in (22) above. Here each block matrix Aq belongs 
to a sequence (possibly of length 1) of cyclic subgroups of T(p) 
of like prime power order. The matrix Aq might be the identity 
matrix. Compute the quadratic residue characters mod p of the 
determinants [A1[, [A2[, ... , [Arl· Repeat this for each p. 

(6) By Corollary 5.16 and Theorem 6.3, the rank r, the torsion coef­
ficients T1 , ... , Tt and the complete array of quadratic reside char­
acters mod p are the complete set of topological invariants of the 
associated symplectic Heegaard splitting of W that is determined 
by H. 

6.3. Classifying linked p-groups, p = 2. Solution to Prob­
lem 2, p = 2. 

If (H, >.) is a linked p-group, we have seen that H may be decom­
posed into orthogonal summands B 1, each of which is a free Zpi -module, 
that is, a direct sum of some number r1 of copies of Zpi; r1 is the rank of 

B 1, and B 1 is the jth block. The rj's are as usual invariants of H alone. 
For odd p, the linking type of >.[B1 is an invariant of>., and these types 
(which are determined by a Legendre symbol) give a complete set of 
invariants. For p = 2, however, no such decomposition is possible; this 
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is due to the fact that the linking type of Bj is no longer an invariant. 
Here is a typical example of the kind of thing that can happen. 

Definition 6.5. An element x E H is said to be primitive if it 
generates a direct summand of H, or, equivalently, if x tJ. 2H. II 

Example 6.6. Let H = Z 2n-I EEl Z2n EEl Z2n, so H has rank 3. Let 

and consider the two linking forms A and A1 on H whose matrices with 
respect to the standard basis are 

(23) 

respectively, where ( 2}_, ) and ( 2;;:-~, ) denote 1 x 1 matrices. We claim 
that A ~ A1 • Indeed, let i! = ( e1, e2, e3) be the standard basis of H and 
put 

Now, we have: 

Since 3 is a unit in Z2n, it follows that f! = ( ei, e~, e~) is also a basis. 
Now, observe that 

A(e~, e~) = A(el, e!)- 8A(e2, e3) = 2:~1 
A(e;, e;) = A(el, e!) = 2

2
n 

A(e~,e~) = A(e1,e!) = 2
2
n 

A(e~,e;) = A(e1,e!)- 2A(e3,e2) = 0 

A(e~,e~) = A(e1,e1)- 2A(e3,e2) = 0 

A(e;, e~) = A(el, e!)- A(e2, e3) = _..!._ 
2n 

Thus A with respect to the basis e1 is equal to A1 with respect to the 
basis e. But 2~ C is not isomorphic to 2~ V as a linking on Z~n when 
n ;) 2. For example, A(x, x) = 0 has no primitive solutions for the 
second linking, whereas it does for the first. II 
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Our example shows that we must approach the case p = 2 in a 
different manner. Burger (see [7]) reduced the classification of linked 
p-groups to the classification of quadratic forms (more precisely, sym­
metric bilinear forms) over Zvn, and his procedure gives in theory at 
least a complete set of invariants, but for p = 2 they are inconveniently 
cumbersome. Our goal in this section is to reduce his invariants to a 
simple, manageable set and to demonstrate how to calculate them. We 
will proceed as follows: 

• In §6.3.1 we show how to decompose a linking form (in a non­
canonical way) into a direct sum of 3 types of basic forms. 

• In §6.3.2 we discuss a variant of the Burger's numerical invari­
ants. 

• Our variant of Burger's invariants cannot achieve arbitrary val­
ues. To determine the values they can achieve, we calculate the 
values of our numerical invariants on the basic forms. This cal­
culation will be the basis of the next step, given in §6.3.3. 

• Finally, in §6.3.4 we show that all the information in Burger's 
numerical invariants is contained in a simpler set of mod 8 
phase invariants together with the ranks of the various blocks. 

The section ends with several examples. 

6.3.1. Decomposing a linked abelian 2-group Strengthening a result 
of Burger [7], Wall [47] showed how to decompose a linked abelian 2-
group into an orthogonal direct sum of certain basic linking forms. In 
this section, we review this result and give a proof of Wall's theorem 
which builds on Burger's original ideas and which is better suited for 
computations. 

Definition 6. 7. The basic linking forms on a finite abelian 2-group 
are the following 

• The unary forms. These are the forms on Z2 j for j ?: 1 whose 
matrices are (;.; ) for odd integers a. 

• The two binary forms. These are the forms on (Z2J ) 2 for j ?: 1 
whose matrices are either iJ C or ij V, where C and V were 
defined in Example 6.6. II 

We can now state Wall's theorem. 

Theorem 6.8 (Wall, [47]). Let (H, >.) be a linked abelian 2-group. 
Then (H, >.) is isomorphic to an orthogonal direct sum (Ht, >.1) EB · · · EB 
(Hn, An), where the (Hi, Ai) are basic linking forms. 
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Proof. We will use the following well-known result about solving 
congruences mod pk. 

Lemma 6.9 (Hensel's Lemma [35, Theorem 2.23]). Let f(x) be 
a polynomial with integer coefficients, let p be a prime and let k 2: 2 
be an integer. Assume that the integer r is a solution to the equation 
f(x) = 0 (modpk- 1), and moreover assume that J'(r) i=- 0 modp. Then 
f(r+tpk- 1 ) = 0 (mod pk) for some (unique) integer t with 0 :::; t :::; p-1. 

The proof of Theorem 6.8 begins with a lemma: 

Lemma 6.10. Let H = Zp1 El:l Zp1 and let A be the linking form 
on H whose matrix with respect to the standard basis (e1 , e2 ) for H is 

211 ( 21 21,). Then ( H, >..) is isomorphic to the linking form whose matrix 
is 21j C if both m and n are odd and to the linking form whose matrix is 

2
11 V otherwise. 

Proof. Assume first that one of m and n (say m) is even. Observe 
that if a is an integer, then since A is defined by the matrix 211 ( 21 21,), 
we have: 

A((1, a), (1, a)) =2m+ 2a2n + 2a = 2(na2 +a+ m). 

Now, since m is even it follows that a = 1 is a solution to the equation 
na2 +a+ m = 0 mod 2, so Hensel's lemma implies that there is some 
odd integer ii so that nii2 + ii + m = 0 mod 2J. Set iJ = ( 1, a). Since A is 
nondegenerate, there is some w E H so that A( iJ, w) = 2~ . Let k be so 
that A(w, w) = 2k. The pair {iJ, w- kif} is then a new basis, and with 
respect to this basis A has the matrix 211 ( ~ 6), as desired. 

Now assume that both m and n are odd. By the same argument as 
in the previous paragraph (but solving na2 +a+ m = 1 mod 2i), we can 
assume that m = 1, so the matrix for A is 2

11 ( i 21, ). Set iJ = (1, 0), and 
for an arbitrary integer c define We = (c, 1- 2c). Observe that 

A(if,wc) = 2c+ (1- 2c) = 1. 

Moreover, 

Now, since n is odd it follows that c = 1 is a solution to 

(4n- 1)c2 + (1- 4n)c + n = 1 (mod 2), 
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so Hensel's lemma implies that there is some odd integer c so that 

(4n- 1)c2 + (1- 4n)c + n = 1 (mod 2i). 

It follows that ;>..(we;, we;) = 2. Observe that since cis odd the vectors 
v and we; form a basis, and with respect to this basis ).. has the matrix 

211 ( i ~ ), as desired. Q.E.D. 

We are ready to prove Theorem 6.8. For x E H, define the order of 
x to be the smallest nonnegative integer n so that 2nx = 0. Assume first 
that there is some primitive x E H of order j so that ;>..(x,x) = 2~ with 
a odd. Construct a basis x = x 1 , x2 , ... , x N for H. Observe now that 
for any 2::::; i ::::; N, we have )..(x, Xi)= # for some integer bi. Since a is 
odd, we can write bi =Cia mod 2i for some integer Ci. Set x~ =Xi- CiX. 
Observe that x = x 1 , x~, ... , xjy is a new basis for H, and that moreover 
(H, ;>..) has an orthogonal direct sum decomposition 

(x) EB (x;, ... , xjy). 

Since ).. restricted to (x) is the basic form with matrix ( 2~), we are done 
by induction. 

We can therefore assume that for all x E H, if j is the order of x 
then )..(x,x) = ;~ for some integer n. Fixing some primitive x E H of 
order j and letting n be the integer with )..(x,x) =;~,the fact that).. 
is non-singular implies that there is some y E H so that )..(x, y) = 211 • 

Necessarily y has order j, so we can write ;>..(y, y) = 22'}' for some integer 
m. Construct a basis x = z1, y = z2, Z3, ... , ZN for H, and for 3::::; i::::; N 
write A(x, Zi) = ~ and ;>..(y, Zi) = ~· Since the matrix er2;,) is 
invertible mod 2i, we can find integers ai and bi so that 

(2n 1 ) . (ai) = (-hi) 
1 2m bi -ki 

mod 2i. For 3 ::::; i ::::; N, set Z: = Zi + aix + biy, and observe that 
A(x, zD = ;>..(y, zD = 0. The linked group (H, ;>..) now has an orthogonal 
direct sum decomposition 

(x, y) EB (z~, . .. , zjy). 

Since ).. restricted to (x, y) is the linking form with matrix ( 2[' 2;, ), 

Lemma 6.10 says that it is one of the basic forms, and we are done by 
induction. This completes the proof of Wall's theorem. Q.E.D. 
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6.3.2. Burger's numerical invariants In [7], Burger constructs a com­
plete set of numerical invariants of a linked abelian p-group (H, .\). The 
following formulation of Burger's result was suggested by Fox in [13], 
and is manifestly equivalent to Burger's original formulation. Define the 
degree of an abelian p-group to be the smallest nonnegative integer n so 
that pnH = 0. 

Definition 6.11. Let (H, A) be a linked abelian p-group of degree 
n, and let a = Pkn for some 0 :::; k < pn. We then define N a (A) to be the 
number of solutions x E H to the equation A(x, x) =a. II 

Theorem 6.12 (Burger, [7]). Fix an abelian p-group H of degree 
n. Two linking forms A and A' on H are then isomorphic if and only if 
Na(A) = Na(A') for all a= ;, with 0:::; k < pn. II 

We now confine ourselves to the case p = 2. Fix a linked abelian 
2-group (H, A) of degree n. We shall use the notation E(z) for e21riz. 

Also, to simplify our formulas we shall denote A(x,x) by x2 . Observe 
now that if x E H, then x2 = 2";, where k is an integer which is well­
defined mod 2n. Hence if b E Z2n, then the expression bx2 = ~~ is a 
well-defined real number mod 1, so the number E(bx2 ) is well-defined. 
The following definition therefore makes sense. 

Definition 6.13. Forb E Z2n, define I\(A) := LxEH E(bx2 ). 

Observe that we clearly have the identity 

In other words, the numbers I\(A) are the result of applying the discrete 
Fourier transform (see [45]) to the numbers Na(A). In particular, since 
the discrete Fourier transform is invertible, it follows that the numbers 
I\(A) forb E z2" also form a complete set of invariants for linking forms 
on H. In fact, since fo(A) = LxEH 1 = IHI, we only need rb(A) for 
b # 0. 

However, there is a certain amount of redundancy among the fb(A). 
Indeed, set e = E(1/2n). Observe that e is a (2n)th root of unity and 
that the numbers fb(A) lie in QI(B). If a is any odd integer, then ea is 

another (2n)th root of unity, and e f--+ ea defines a Galois automorphism 
of Qi( B), which we will denote by ga. Consider a nonzero b E Z2n. Write 
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b = 2kbo, where bo is odd and k < n. Since 2nxZ is an integer for all 
x E H, we have 

We conclude that the set of all I\(>.) forb E Z2n can be calculated from 
the set of all i\k (>.) for 0 ~ k < n. This discussion is summarized in 
the following definition and lemma. 

Definition 6.14. Let >. be a linking form on H. For 0 ~ k < n, 
define rk(>.) := r2k(>.). II 

Lemma 6.15. The set of numbers rk(>.) for 0 ~ k < n form a 
complete set of invariants for linking forms on H. 

6.3.3. Calculating the numerical invariants for the basic forms By 
Theorem 6.8, we can decompose any linked abelian group into a direct 
sum of basic linking forms. The following lemma shows how this reduces 
the calculation of the numbers rk(>.) to the knowledge of the rk(·) for 
the basic forms. 

Lemma 6.16. If (H, >.) is the orthogonal direct sum A1 EB A2 with 
linkings >.i on Ai, then for 0 ~ k < n we have rk(>.) = rk(>.!) · rk(..\2)· 

Q.E.D. 

In the remainder of this section, we calculate the numbers rk(·) for the 
basic forms. Recall that C = ( ~ 6) and V = ( i ~ ). The calculation is 
summarized in the following proposition. 

Proposition 6.17. Define p = E(1/8) and 

s(a) = { 
1 mod 8 

-1 mod 8 
if a= 1 mod 4 
if a= -1 mod 4 
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Then for j 2: 1 and k 2: 0, we have 

• { 

2j if k ~ j 
0 if k = j- 1 

rk (;.;) = 2 H;+' pc;(a) if j- k ~ 2 and is even 

2 H~+' pa if j - k ~ 2 and is odd. 

• c { 22 j if k ~ j - 1 
rk(zj)= 2J+k+l ifk<j-1. 

• ( v) { 22 j if k ~ j - 1 
rk 2j = ( -1)Hk+l2j+k+l if k < J- 1. 

Proof of Proposition 6.17 for ( 2~). We begin with the case k 2: j. 
For these values of k, the number 2kx2 is an integer for all x E H, so 
E(2kx2 ) = 1 for all x E H. This implies that 

as desired. 

The next step is to prove the following formula, which reduces the 
remaining cases to the case a = 1 and k = 0: 

(24) fork< j 

We calculate: 

Since E( 2~~k) depends only on x mod 21-k, this equals 

as desired. 

To simplify our notation, define T k = r 0 ( 2
1k ) . We will prove that 

(25) { 
0 if k = 1 

T k = 2-kt-' p if k 2: 2 
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First, however, we observe that the proposition follows from Equations 
(25) and (24). Indeed, for k = j- 1 this is immediate. For k < j- 1 
with j - k odd, we have 

( a ) k .i..=tl.! Hk+l 
rk 2j = 2 ga(2 2 p) = 2 2 pa. 

Finally, for k < j -1 with j- k even, using the fact that J2pc:(±l) = 1 ±i 
we have 

as desired. 

The proof of Equation (25) will be by induction on k. The base 
cases 1 ~ k ~ 3 are calculated as follows: 

1 
T 1 = E(O) + E("2) = 1- 1 = 0 

T 2 = E(O) + E(~) + E(~) + E(~) = 1 + i + 1 + i = 2(1 + i) = 2../2p 

1 4 1 
T 3 = 2(E(O) + E(B) + E(B) + E(B)) = 2(1 + p- 1 + p) = 4p 

Assume now that k ~ 4. We must prove that T k = 2T k-2· To see this, 
note first that 2k-l + 1 is a square mod 2k. Indeed, 

(2k-2 + 1)2 = (2k-2)2 + 2k-l + 1 = 2k-l + 1 mod 2k 

when k ~ 4. Hence x2 ~---t (2k-l + 1)x2 defines a bijection of the set of 
squares modulo 2k. This implies that 

and hence 

( x2) =2 L E k . 
even x mod 2k 2 
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We conclude that 

Q.E.D. 

Proof of Proposition 6.17 for ( £ ) . Here H consists of all pairs ( x, y) 
with x, y E Z21. We begin with the case k ?: j - 1. For these values 
of k, the number 2k(x, y) 2 = 2k¥!- is an integer for all (x, y) E H, so 
E(2k(x, y) 2 ) = 1 for all (x, y) E H. This implies that 

(a) 2 · rk 21 = IHI = 2 1 , 

as desired. 

The next step is to prove the following formula: 

(26) rk ( ~) = 22k+2 fork< j- 1 
x,y 

We calculate: 

Since E( 21 ':L 1 ) depends only on x and y mod 21-k-l, this equals 

22k+2 """"' E (__3!j!_) 
L...- 2]-k-1 ' 

x,y mod 2J-k-I 

as desired. 

Define 

Uk= L EGn· 
x,y mod 2k 

By Formula (26), to prove the proposition it is enough to prove that 
Uk = 2k for k ?: 0. The proof of this will be by induction on k. The 
base cases k = 0, 1 are as follows: 

Uo = E(O) = 1, 

1 
U1 = E(O) + E(O) + E(O) + E( 2') = 1 + 1 + 1 - 1 = 2. 
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Assume now that k 2': 2. We will show that Uk = 4Uk_2. First, we first 
fix some y with 0 ::::; y ::::; 2k. Write y as 2r y0 with Yo odd, and suppose 
that y is not equal to 0 or 2k-l. This implies that r < k - 1 and that 
2k-r+l + 1 is odd. Using the fact that in the following sum the numbers 
xy0 are odd, we have 

= L E Gn E (2k-r-~~. 2ryo) 
odd x 

=I: EGnEc~o) =-I: EGn 
odd x odd x 

Thus 

L E Gn = 0 for ally# 0, 2k-l. 
odd x 

In particular, since k ~ 2, the number 2k-l is even and hence 

L EGn =O. 
odd x,odd y 

Also, 

L E Gn = L (E ( x2·kO) + E (X. ~:-l)) = L (1- 1) 
odd x,even y odd x odd x 

=0; 

by symmetry, 

L EGn =O. 
even x, odd y 

We have thus shown that Uk is equal to 

E Gn = L E c2x~~2y)) 
even x, even y x,y mod 2k~l 

L E c~~2) 
x,y mod 2k-l 

=4 L E(2~~2)=4Uk-2, 
x,y mod 2k- 2 

as desired. Q.E.D. 
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Proof of Proposition 6.17 for ( ~). The cases k ~ j - 1 are identi­
cal to the analogous cases for (g). Fork< j- 1, we use Lemma 6.16 
together with the isomorphism of Example 6.6 to conclude that 

But by the previously proven cases of Proposition 6.17, we have 

The proposition follows. 

if j - k is odd (since c:( -3) = 1 mod 8) 
if j - k is even. 

Q.E.D. 

6.3.4. Reduction to the phase invariants By Theorem 6.8, Lemma 
6.16, and Proposition 6.17, for any linked abelian group (H, A) the in­
variants rk(A) are either equal to 0 or to ( -/2)m p'~' for some m ~ 0 and 
some rp E 2:8 . The point of the following definition and theorem is that 
the -/2-term is purely an invariant of the abelian group H, and thus 
is unnecessary for the classification of linking forms (the re-indexing is 
done to simplify the formulas in Theorem 6.20. 

Definition 6.18. Let (H, A) be a linked abelian group of degree n. 

Then for 1 ~ k ~ n the kth phase invariant 'Pk(A) E 2:8 U { oo} of (H, A) 
is defined to equal oo if rk-I (A) = 0 and to equal rp E Z8 with 

rk-I (A) = p'~' 
lrk-I(A)I 

if rk-I (A) -1- 0. The phase vector rp(A) of>. is the vector( 'Pn (A), ... , 'PI (A)). 

Theorem 6.19. Fix a finite abelian group H of degree n. Then two 
linking forms AI and A2 on H are isomorphic if and only if 'Pk(AI) = 
'Pk(A2) for all1 ~ k ~ n; i.e. if and only if AI and A2 have identical 
phase vectors. 

Proof. Let rj be the ranks of the blocks Bj of H, and consider a 
linking· form A on H. We must show that for 0 ~ k < n the number 
rk(A) is determined by the ri and the phase invariants of A. First, we 
have rk(A) = 0 if and only if r.pk(A) = 0. We can thus assume that 
rk(A) -1- o, so 

rk(A) = (J2)Pkp'Pk+d>-l. 

We must determine Pk· By Theorem 6.8, we can write (H, A) as an or­
thogonal direct sum of copies of the basic linking forms. Fixing such a 
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decomposition, Lemma 6.16 and Proposition 6.17 say that the orthogo­
nal components of (H, >.) make the following contributions to Pk : 

• Every unary summand 2~ with j ~ k contributes 2j; binary 
summands contribute 4j. Thus the block Bj contributes 2jrj 
for all j ~ k. 

• There are no unary summands when j = k + 1, and each binary 
summand contributes 4(k + 1); thus Bk+1 contributes 2(k + 
1)rk+l = 2jr1 also. 

• For j > k + 1, each unary summand contributes j + k + 1 and 
each binary summand 2(j+k+1), so B 1 contributes r1(j+k+1). 

Adding these three sets of contributions gives us 

so Pk is a function of the ranks r1 alone, as desired. Q.E.D. 

The computation of the phase invariants is facilitated by the follow­
ing result, whose proof is immediate from Lemma 6.16 and Proposition 
6.17. 

Theorem 6.20. The phase invariants are additive under direct 
sums, and have the following values on the basic linking forms: 

~·(;)~{~a) 
all k, 

0 

if k > j 
if k =j 
if k < j and k - j is odd 
if k < j and k - j is even 

4(j + k) 
if k 2: j 
if k < j 

Before doing some examples, we record a definition we will need 
later. 

Definition 6.21. A linking form >. on a free Z2n module is even if 
>.(x, x) = ~~ for some integer k. Otherwise, is odd. We remark that>. is 
even if and only if any orthogonal decomposition of it into basic forms 
has no unary summands. II 

Example 6.22. Let us test the method on the linkings of Exam­
ple 6.6. 
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• u;,) EB ( 2n~I) gives cp = (0, oo, 1, 1, ... ) since a= c(a) = 1 and 

cpu;.) = o. 
• (f,.) EB ( 2;;-~1) gives 

cp = (0, 4, 0, 4, ... ) + (0, oo, 1, -3, ... ) = (0, oo, 1, 1, ... ), 

as desired. II 
1 3 3 1 . 

Example 6.23. -EB--1 ¢ -EB--1. The reason 1s: cp of the left 2n 2n- 2n 2n-
hand side is cp = (oo, 1, 1, 1, ... ) + (O,oo, -1, 3, ... ) = (oo, oo,0,4, ... ), 
and cp of the right hand side is cp = (oo, -1, 3, -1, ... )+(0, oo, 1, 1, ... ) = 
(oo,oo,4,0, ... ).11 

Example 6.24. 

( 1 3 5 ) 
cp 2n EB 2n-1 EB 2n-2 ( oo, oo, 0, 4, 0, ... ) + (0, 0, oo, 1, 5, ... ) 

( oo, oo, oo, 5, 5, ... ), 

(oo, -1, 3, -1, 3, ... ) + (0, oo, 1, 5, 1, ... ) 

+(O,O,oo, 1,1, ... ) 

(oo,oo,oo,5,5, ... ) 

(oo,oo,oo,1,1, ... ) 

Therefore the first two forms are isomorphic, and the third form is dif­
ferent from the first two. II 

Example 6.25. If Bj is odd for all j from 1 to n, then cp(,\) = 
(oo, oo, ... , oo); in particular, the class of,\ does not depend at all on 
the particular form of the individual blocks Bj. II 

6.4. Reidemeister's invariants 

As we have seen, the Seifert-Burger viewpoint gives us a family 
of topological invariants of a 3-manifold that are associated to H = 
H 1 (W, Z), yet are not determined by H. Moreover, their determination 
depends crucially on whether there is, or is not, 2-torsion in H. We have 
learned how to compute them from a symplectic Heegaard splitting. 

In 1933, the year that [43] was published, a paper by Reidemeister 
[40] also appeared. Moreover, there are remarks at the end of both [43] 
and [40] pointing to the work of the other. In particular, Reidemeister 
notes in his paper that Seifert's invariants are more general than his, as 
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they must be because a quick scan of Reidemeister's paper [40] does not 
reveal any dependence of his results on whether there is 2-torsion. We 
describe Reidemeister's invariants briefly. 

Referring to Theorem 2.2 and using the notation adopted there, 
Reidemeister defines the integers 7i,j = 7j/7i, where 1 ::; i < j::; t. Let 
Q(2) = (%) be the txt matrix in (8), where we defined the partial 
normal form of Theorem 2.4. Let Pim be a non-trivial prime factor of 
the greatest common divisor of (71,2 ,72 ,3 , ... ,7i,i+d· His invariants are 
a set of symbols which he calls Eim, defined as follows: 

0 if Pim divides qii, 

(27) qii/ Pim if Pim does not divide qii. 

Thus Eim is defined for every non-trivial prime divisor of the greatest 
common divisor of (71,2 , 7 2 ,3 , ... , 7i,i+I), and for every i = 1, ... , t- 1. 
He proves that his symbols are well-defined, independent of the choice of 
the representative 7i(2) within the double coset of 7i(2) in r t, by proving 
that remain unaltered under the changes which we described in §2.3. 
The fact that they are undefined when the greatest common divisor of 
( 71,2, 72,3, ... , 7i,i+I) is equal to 1 show that they do not change under 
stabilization. 

Remark 6.26. We remark that Reidemeister's invariants are in­
variants of both the Heegaard splitting and of the stabilized Heegaard 
splitting. Therefore, if one happened to be working with a manifold 
which admitted two inequivalent Heegaard splittings, it would turn out 
that their associated Reidemeister symbols would coincide. This illus­
trates the very subtle nature of the Heegaard splitting invariants that 
are, ipso facto, encoded in the higher order representations of the map­
ping class group in the Johnson-Morita filtration. Any such Heegaard 
splitting invariant is either a topological invariant (as is the case for Rei­
demeister's invariant), or an invariant which vanishes after sufficiently 
many stabilizations. We will uncover an example of the latter type in 
the next section. 

§7. The classification problem for minimal (unstabilized) sym­
plectic Heegaard splittings. 

Referring the reader back to Remark 1.5, it is clear that knowledge 
of a complete set of invariants of minimal symplectic Heegaard splittings, 
and the ability to compute them, are of interest in their own right. This 
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was our motivation when we posed Problems 4, 5 and 6 in §1.5. In this 
section we will solve these problems. 

Given two minimal Heegaard pairs with isomorphic linked quotient 
groups Hi and canonical volumes ±(}i, Theorem 5.20 tells us that the 
pairs are isomorphic if and only if there is a volume preserving linking 
isomorphism H 1 -+ H 2 . By hypothesis there is a linking isomorphism h, 
but it may not be volume preserving- det h may not equal ±1. Suppose 
f : H 1 -+ H 1 is a linking automorphism, that is, an isometry, of H1. 
Then hf is still a linking isomorphism, and det(hf) = det h · det f. Thus 
if det h =/= ±1, we may hope to change it to ±1 by composing it with 
some isometry of H 1 . This will be our approach, and it will give us a 
complete set of invariants for minimal Heegaard pairs. 

7.1. Statement of Results. Solutions to Problems 4, 5, 6. 

Let (V; B, B) be a minimal Heegaard pair with quotient H 0 . Choose 
any dual complement A of B and let 1r : A -+ H0 be the projection. Let 
H < H 0 be the torsion subgroup with associated linking form>., and set 
F = 1r- 1 (H). We thus have a minimal presentation 1r : F-+ H. If ei 
(i = 1, ... , r) is a basis for F, put Xi = 7r(ei)· We define a linking matrix 
for >. by choosing rational numbers Aij which are congruent mod 1 to 
>.(xi,Xj) for each i,j, subject to the symmetry condition Aij = Aji; we 
call such a choice a lifting of >.(xi,Xj)· 

Though the linking matrix for >. depends on choices, we can extract 
an invariant from it. The first step is the following theorem, which will 
be proven in §7.2. Let T be the smallest elementary divisor of H. 

Theorem 7.1. The number !HI det(Aij) is an integer, and its re­
duction modulo T is a unit in ZT which depends only on the isomorphism 
class of ( H, >.) and the isomorphism class of the presentation 7T : F -+ H. 

This theorem was first proven (by different methods) in [2]. In some 
cases, we can do better. We will need the following definition. 

Definition 7.2. The linking on H is even if for all x E H with 
TX = 0, we have x2 E ( ~) (here we have abbreviated x · x to x2 and ( ~) 
is the subgroup of IJJ/Z generated by ~ ). Otherwise the linking is odd. 

Remark 7.3. See Lemma 7.18 below to relate this to the definition 
of an even linking form on a 2-group defined in Definition 6.21. 

We will prove the following refinement of Theorem 7.1 in §7.3. 
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Theorem 7.4. Let 'f = T if A is odd and 2T if A is even. Then 
the reduction modulo 'f of IHI det(.A;j) depends only on the isomorphism 
class of ( H, A) and the isomorphism class of the presentation 1r : F ----+ H. 

At the end of §7.3 we give an example which shows that we have 
indeed found a stronger invariant than the one that was given in [2]. 

Corollary 3.27 and Lemma 5.19 say that the reduction modulo 'f 
of IHI det(Aij) is actually a well-defined invariant of (V; B, B), which we 
will denote by det(V; B, B). Our next theorem say that it is a complete 
invariant of minimal Heegaard pairs, solving Problem 4 of §1.5. 

Theorem 7.5. Let (Vi; B;, B;) (i = 1, 2) be minimal Heegaard 
pairs with linked quotients (H;, .A;). Then the pairs are isomorphic if 
and only if the linked quotients are isomorphic and det(V1 ; B 1 , Bl) = 
det(V2; B2, B2). 

Theorem 7.5 will be proven in §7.4. With Theorem 7.5 in hand, 
we will be able to count the number of isomorphism classes of minimal 
Heegaard pairs with linked quotients (H, .A), solving Problem 5 of §1.5. 
To make sense of that result, we will need the following lemma. 

Lemma 7.6. Consider an integer n E ::ZT. Then n 2 is well defined 
mod 'f. 

Proof. We may assume that our linking is even, so 'f = 2T. Then 
for a, b E ::Z we have 

which equals a 2 modulo 2T since 2T divides T 2 • Hence knowledge of a 
modulo T sufficies to determine a2 modulo 'f, as desired. Q.E.D. 

Denote the group of units in ::ZT by \U. In light of Lemma 7.6, it 
makes sense to define 

v'1 = {x E \U I x 2 = 1 modulo 'f}. 

Our result is the following; it will be proven in §7.4 as a byproduct of 
the proof of Theorem 7.5. 

Theorem 7. 7. The number of isomorphism classes of distinct min­

imal Heegaard pairs with linked quotients (H, .A) is 1ji-1. 

We close this chapter in §7.5 with a discussion of how our techniques 
give normal forms for symplectic gluing matrices, in certain situations. 
This was the problem that was posed in Problem 6 of §1.5. 
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7.2. Proof of lnvariance 1 

This section contains the proof of Theorem 7 .1. We will need several 
definitions. 

Let F be a free abelian group and R C F be a subgroup of equal 
rank. If ifJ, 'ljJ are orientations of F, R, then the inclusion map of R into 
F has an integral determinant, and this determinant's absolute value 
is well known to be (F : R) = IF I Rl (for example, choose a basis for 
F as in Proposition 3.4). Thus, given either ifJ or 'ljJ there is a unique 
choice of the other so that this determinant is positive. Orientations 
ofF, R so chosen will be called compatible. Note that a change in the 
sign of one orientation necessitates a change in the other also to maintain 
compatibility. An orientation ifJ ofF also induces a canonical orientation 
I{J* on the dual group F* = Hom( F, Z): choose any basis { ei} of F with 
e1 1\ · · · 1\ er = ifJ, then use the dual basis ofF* to define ifJ*. 

If H is any finite group, its character group is the additive group 
H* = Hom(H, QIZ). It is well known that H* is isomorphic to H, but 
not canonically so. This mirrors the relationship between a free (finitely 
generated) abelian group F and its dual (in the following, the * on a 
finite group indicates its character group, but on a free group indicates 
its dual). Also as in the free case, H** is canonically isomorphic to H. 

Suppose that F ~ H is a presentation of H with kernel R; we 
construct from it a canonical presentation of H* which we call the dual 
presentation. The group F* is a subgroup of F* ® Q = Hom(F, Q), 
namely, all maps f : F --> Q such that f(F) c Z. The fact that H 
is finite and hence rank R = rank F implies that R* is precisely the 
subgroup of maps f E F* ® Q such that f(R) C Z. Note that R* =:! F* 
in F* :29 Q. If f E R*, then f is a map of F into Q taking R into Z 
and so induces a map of FIR = H to QIZ. This element of H* we 
denote by 1r* (f); we have then that 1r* is a map R* --> H*. If v E H*, 
i.e. v : FIR--> QIZ, we can lift v to a map f : F--> Q since F is 
free, and clearly f ( R) C Z, so f E R* and 1r* (f) = v. This shows that 

R* ~ H* is a presentation of H*. The kernel of 1r* consists of all f 
such that f(F) c Z, that is, precisely F*. Note thus that the index 
(R* : F*) = IH*I = IHI = (F: R). 

Just as a choice of symmetric isomorphism F --> F* is the same 
as an "inner product" on F, so the choice of a symmetric isomorphism 

H ~ H* is the same as a linking on H: if we write x · y for the linking 
of x, y, then x · y is defined to be .>.(x)(y) E QIZ and conversely. The 
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fact that .A is an isomorphism corresponds to the non-singularity of the 
linking. 

If H is a linked group and F ~ H is a presentation of H, consider 
the diagram 

0 -----+ R -----+ F -----+ H -----+ 0 

0 -----+ F* -----+ R* -----+ H* -----+ 0. 

The fact that F is free implies the existence of a map L making the 
right square commute, and L induces K on R. We call L a lifting of .A, 
and it is well defined up to the addition of a map X : F ---> F*. If now 
we choose an orientation cp of F, it induces cp* on F* and compatible 
orientations '1/J, '1/J* on R, R*; it is easy to see that '1/J, '1/J* are also dual 
orientations. Furthermore, if F ---> H is minimal, then so is R* ---> H* 
and we get induced orientations (), ()* on H, H*. 

A change in the sign of cp uniformly changes the sign of all the other 
orientations. Thus the determinants det K, det L E Z and det .A E Z7 are 
all well defined and independent of the orientations. Furthermore, det .A 
depends only on .A and the presentation 1r. The connection between 
these determinants and that of Theorem 7.1 is given by the following 
lemma. 

Lemma 7.8. a) det L = det .A mod T 

b) detK = det£ 
c) If ( Aij) is a linking matrix as in Theorem 7.1, then it determines a 

lifting L : F---> R* and IHI det(.Aij) = det K = det L. 

Proof. a) is proved in Lemma 3.23; b) follows from the commu­
tativity of the left square and the fact that the determinant of both 
(compatibly oriented) R ---> F, F* ---> R* is jHj. It remains to prove 
c). Now the linking matrix (.Aij) is clearly just the matrix of a map 
L : F ---> F* 0 Q in terms of the basis { ei} of F used to define ( Aij) and 
its dual basis in F* 0Q, namely, L(ei) = Lj Aijej. Put Xi= n(ei) and 
denote the linking in H by the inner product dot; if then s = 2:: aiei is 
in R, we find 

I:>ijej(s) = L Aijllj =mod 1 L(xi · Xj)O:j 
j j 

X;· (~a;x;) ~ x;·n(s) ~ Omodl. 
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In other words, L(ei) takes R into Z for all i, that is, L(ei) E R* for 
all i, which means that L is actually a map from F to R*. By its very 
definition it is a lifting of .A. Let now s1, ... , Sr be a basis of R compatible 
with e1, ... , er ofF, and let Si = 2:1 Aijej; thus det(Aij) = I HI. We 
then find that 

K(si) = L(si) = L AijAjkek, 
j,k 

and since K(si) is in F*, the matrix A· (.Aij) is integral and its deter­
minant is det K = det A det(.Aij) = IHI det(.Aij ). Q.E.D. 

This lemma proves that IHI det(.Aij) is an integer whose mod T re­
duction only depends on the isomorphism class of 1r : F --+ H and 
the linking. The fact that it is a unit in Z7 follows from the fact that 
.A : H --+ H* is an isomorphism. 

7.3. Proof of Invariance 2 

We can assume that the linking form is even. Let the notation be as 
in the previous section. The first step is to prove that the lifts L which 
come from the symmetric linking matrices are symmetric in the sense 
that the induced map L* : R--+ F* is the map K. Let the ei, the si, 
and the matrix A be as in the proof of Lemma 7.8. We will determine 
the matrix of L in terms of the bases { ei} of F and { sT} of R*. Since 
Si = 2:1 Aijej, we have ej = I:i s; Aij so 

j j,k 

Thus the matrix of L is .AA t, and in the dual bases Si and e; the operator 
L * has matrix A.A t. Since ( Aij) was chosen to be symmetric, we have 
finally L * = A.A, which is the matrix of K. Note that two symmetric 
liftings of .A differ by a symmetric map F --+ F*. 

Our goal is to prove that modulo 2T the number det L is independent 
of the choice of a symmetric lifting of .A. By Theorem 7.1 and the 
fact that T is even, ( det L, 2T) = 1 and hence the matrix of L has a 
mod 2T inverse, that is, there is an integral matrix L - 1 such that LL - 1 = 
I mod 2T. Any other symmetric lifting of L js of the form L+X where X 
is a symmetric map F --+ F*. But note that R C T F and so F* C T R*; 
hence X = rY for some map Y : F --+ R*. Modulo 2r we then have 

det(L +X)= detL · det(I + L-1 X)= det L · det(I + TL- 1Y). 
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Lemma 7.9. If A is any square matrix and 7 > 1, then det(I + 
7 A) = 1 + 7Tr(A) mod 72 , where Tr(A) is the trace of A. 

Proof. In the expansion of det(1 + 7 A) only those monomials in­
volving at most one off-diagonal factor are non-zero mod 72 . A sin­
gle off-diagonal factor cannot occur, however, in any monomial, and so 
det(1 + 7A) = f};(l + 7Aii) mod 72 . The product is clearly equal to 
1 +7(LAii) mod 72 . Q.E.D. 

This lemma shows that 

But since det L = 1 mod 2, it follows that 7 det L = 7 mod 27. Hence 
since 27172 , we have 

Thus to prove the desired result it suffices to show that Tr(L -l Y) 
0 mod 2. We must now take a closer look at the matrices Land X. 

We choose the basis of F as in Proposition 3.4, so that si = miei 
(i = 1, ... , r) with m 1 = 7 and milmi+l· Let 2n be the highest power of 
2 dividing 7 (we notate this in the future by 2n II 7) and suppose that 
the same is true for m 1 through mb; that is, ;'n' is odd for 1 :::;; i :::;; b 
and even for i > b. Let ( Aij) be a (symmetric) linking matrix lifting 
Xi· Xj as before. The matrix A describing the basis { si} in terms of { ei} 
is now the diagonal matrix Diag(mi), and so the matrix of L is of the 
form (Lij) = (>.ij)At = (>.ijmj)· We claim that Lij is even fori :::;; b 
and j > b. Indeed, since Xi = 1r(ei) has order mi < mj we must have 
Aij = :;: for some integer N, and thus Lij = :;: mj = N:1 • But : 1 

is even ~henever i :::;; b and j > b. If we divide the coordin~te indice~ 
into two blocks with 1 :::;; i :::;; b in the first block and i > b in the 
second, then mod 2, the matrix L takes the form ( ~ ij ). The fact that 
det L = 1 mod 2 implies that det B = det D = 1 mod 2. 

Lemma 7.10. B is symmetric mod 2 and has zero diagonal mod 2. 

Proof. If i < j, then Bij = N~. But 2n II mi and 2n II mj, so :~ 

is odd and Bij = N mod 2. On the other hand, Bji = Ajimi = :;:, mi = 
N. Thus B is symmetric mod 2. Its diagonal term Bii is Aiimi where 
>-ri = x? mod 1. Now Xi is of order mi so 7-xi is of order 7, and 7" is 

odd. Thus ( n,:') 2 Aii = ( n,:' Xi) 2 mod 1, and the latter is in ( ~) by the 

assumption that >. is even, so we have ( n,:') 2 Aii = 2;' for some integer 
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N. Multiplying by T we get 7-(miAii) = n;:' Bii = 0 mod 2, which by 
the oddness of n;:' implies that Bii = 0 mod 2. Q.E.D. 

Lemma 7.11. Let X : F ----> F* C R* be symmetric. Then its 
matrix, written in the bases ei, s;, is congruent mod 2T to a matrix of 
the block form T ( ~ g ) , where U is symmetric. 

Proof. In the bases ei, e; the matrix of X is ( ~ ~) where U and 
W are symmetric, but in the bases ei, s; it is ( g, ~) Diag(mi). Since 
n;:' is odd for i ~ b and even for i > b, the block form of Diag(mi) is 
congruent mod 2T to ( r~b ~) where Ib is the identity matrix. Hence 
X =mod 2r ( ;~ 8) = T ( ~ 8 ). Q.E.D. 

Recall the map Y = ~X; by the above it is congruent mod 2 to 
(~g). We now calculate 

_ 1 _ (B o ) -1 (u o) 
L Y =mod 2 C D V 0 ( B- 1 o ) (u o) 

C' D-1 V 0 

( B- 1U 0) 
= C" 0 ' 

where the precise calculation of the matrices C', C" is unimportant to 
us. We are interested only in Tr(L - 1Y) = Tr(B-1 U) mod 2, where B, U 
are symmetric and B has zero diagonal. 

Lemma 7.12. Let B be a nonsingular symmetric matrix over Z2 

with zero diagonal; then its inverse has the same properties. 

Proof. We may lift B to an integral matrix B which is antisym­
metric, that is, fJt = -B. Since det B = 1 mod 2, the matrix fJ- 1 is 
rational and antisymmetric and 6 = fJ- 1 · det B is integral and anti­
sym~etric. Reduced mod 2, it is also an inverse of B, since B · 6 = 

det BI =I mod 2. This proves the lemma. Q.E.D. 

We can now see that the desired result follows from the above results 
and the following: 

Lemma 7.13. Let C, U be symmetric matrices over Z2 such that 
C has zero diagonal; then Tr(CU) = 0. 
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Proof. Tr(CU) = Li,j CijUji· We split this sum into three parts: 

Li<j + Li>j + Li=j· Now 

L:cijuji 

i<j 

2.: cjiuji by symmetry of c and u 

i<j 

2.: cij uji interchanging i, j; 
j<i 

thus Li<j + Li>j cancel over z2. But the last summand is Li ciiuii = 

0 since Cii = 0 for all i. Q.E.D. 

We close this section with an example showing that we have indeed 
found a stronger invariant. 

Example 7.14. Consider the matrices 

(( 0 -15) 
U - -15 0 

- ( -2 0 ) 
0 -2 

and 

They are easily seen to be symplectic and thus define Heegaard pairs as 
discussed in §4, namely (X2 ; F2 ,U(F2 ) or V(F2 )). The quotient groups 
are Z8 EB Z8 in both cases, with respective linking matrices k ( ~ 6 ) and 
k (~~),which are even, so 7 = 16. Multiplication by 3 in Z~ gives an iso­
morphism between the two linkings, so the pairs are stably isomorphic; 
furthermore, their determinants are both= -1 mod T(= 8). But these 
pairs are not isomorphic, since their respective determinants mod 7 are 
-1 mod 16 and -9 mod 16. II 

7.4. Proof of Completeness and a Count. 

We now prove Theorem 7.5, which says that our mod 1' determi­
nantal invariant is a complete invariant of minimal Heegaard pairs. A 
byproduct of our proof will be a proof of Theorem 7.7. As we observed 
in §5, we can assume that the the Heegaard pairs in question have finite 
quotients. Now, we have shown that our invariant is really an invariant 
of the linked quotient together with its induced volume, and it is easy to 
see that all such volumes occur. For a linked finite abelian group (H, .A) 
with a volume e, denote this determinantal invariant by det(.A, 8). Our 
first order of business is determine which volumes on (H, .A) have the 
same determinant, so fix a linked finite abelian group (H, .A) together 
with a minimal presentation F -+ H, and let T and 1' be defined as 
before. We begin with a lemma. 
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Lemma 7.15. In the commutative diagram 

n' 
F' -----+ H' 

let 1r, 1r1 be minimal presentations of the linked groups (H, >.) and (H', >.'), 
and let h be a linking isomorphism (we do not assume that f is an iso­
morphism). Then if det h is measured with respect to the induced vol­
umes on H, H', we have det(>., 1r) = (det h) 2 det(>.', 1r') mod f. 

Proof. Lemma 7.6 shows that the statement is meaningful. Let 
now { ei}, { ea be bases of F, F' respectively, and ( >.~j) be a linking 
matrix for H' in the basis {ea. Iff has matrix A, then the fact that 
h is a linking isomorphism implies easily that AX At is a linking matrix 
for H in the basis { ei}. Hence 

det(>.,1r) =mod r IHidet(Aij) = IHidetA2 det(>.~j) 

=mod r (det !)2 det(>.', 7r1). 

But by lemma 3.23 we have det f = ± det h mod T, so 

(det h) 2 = (det f) 2 mod f. 

Q.E.D. 

Corollary 7 .16. Let h be an isometry of H; then ( det h )2 = 1 mod f. 

This corollary restricts the determinant of an isometry to lie in Jl. 
The following is an immediate corollary of Lemma 7.15. 

Lemma 7.17. For any volume e on ( H, >.), we have 

det(>., me) = m 2 det(>., e) mod f 

for any m in 1U. 

In particular, det(>., me) = det(>., e) if and only if mE Jl. Observe 
that this immediately implies Theorem 7.7 : the set of volumes is in 
bijection with 1U I { ± 1}, and two volumes define isomorphic Heegaard 
pairs if and only if they are in the same coset of 1U I JI. 

We conclude that to prove Theorem 7.5, it is enough by Theorem 
5.20 to prove that everything in Jl is the determinant of an isometry. 
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We shall see that this problem can be solved in each p-component inde­
pendently and pieced together to get the general solution. As a technical 
tool, we will need the following result. 

Lemma 7.18. Let H be a linked group whose smallest elementary 
divisor T is even. Then the following statements are equivalent: 

a) Every x E H such that TX = 0 satisfies x2 E ( ~) (here we have 
abbreviated x · x to x 2 and ( ~) is the subgroup of Qj'll, generated by 

~). 
b) The lowest block of the 2-component of H is even (in the sense of 

Definition 6.21). 

Proof Let {Pi} be the primes dividing IHI, with P1 = 2, and let 
T = IliP~' (some of the ni's may be zero here, but n1 > 0). The group 
H splits as an orthogonal direct sum of its Pi components Hi, and every 
x E H can be written uniquely as x = l:i Xi with Xi E Hi. If Xi has 
order p~' then x has order Ili p~'. Thus if TX = 0 we must have ri ::::; ni 

for all i. Furthermore, x2 = l:i x~ and 

where Mi = Ilii'i P?. For odd primes (i.e. i > 1), the number Mi 
is even and so x~ E ( ~), but for i = 1 the number Mi is odd. Hence 
x 2 E ( ~) for all x satisfying TX = 0 if and only if x~ E ( ~) for all x1 E H 1 

satisfying 2n1 x 1 = 0. The lowest block B 1 of H 1 consists of elements all 
of which satisfy 2n1 x 1 = 0; their self linkings x~ are in ( 2~ 1 ) , and are 
in ( ~) if and only if they are in ( 2~ 1 ) • Thus in this case B1 must be 
even. Conversely, suppose B 1 is even. The group H 1 splits orthogonally 
into blocks B 1 E& B 2 E& • • • E& Bk where each Bi is a free 7l,2., -module, with 

n1 = 81 < 82 < · · · < 8k. If X1 E H1, write X1 = 2:::7=1 Yi, with Yi E Bi· 
We then have 2n1 x1 = 0 if and only if 2n1 Yi = 0 for all i, which is true if 
and only if Yi E 2s,-n1Bi for all i. Then xi= l:Yt (by orthogonality) 
and 

Yf E (22(s;-nl)) = (2s;-n1 )c (_2_) for all i > 1; 
2n1 2n1 2n1 

but yr E ( 2~ 1 ) also since B 1 is even; This concludes the proof. Q.E.D. 

Lemma 7.19. Ar H is naturally isomorphic to the direct sum of 
Ar Hp over allp which divide T. If() is an orientation (volume) on H 
then its projection Bp in Ar Hp is an orientation (volume) on Hp. 
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Proof. The tensor power HT splits into the direct sum H; over 
all p since Hp ® Hq = 0 if p =! q. Likewise, the kernel of HT ----> AT H 
splits into its p-component parts, and so we get a natural direct sum 
AT H = EBan PAT Hp· But if p f T then rank Hp < r and so AT Hp = 0, 
proving the first statement. Note that AT Hp is precisely the p-component 
of AT H, which is ~ Zpn if pn is the largest power of p dividing T. If 
now () E AT H, we may write () = LpiT Bp. Thus if() generates AT H, 
then Bp must generate AT Hp· Finally, if() is determined up to sign, so 
is Bp. Q.E.D. 

Suppose now that h : H ----> H is an isometry. Hence h takes each 
p-component into itself, so h splits into a direct sum of maps hp on Hp; 
conversely the maps hp define h on H. Furthermore, the action of h on 
AT H is just multiplication by det h mod T and hence the action of hp 
on AT Hp is also multiplication by det h. But it is also multiplication by 
det hp mod pn (where pn II T), since AT Hp ~ Zpn; in other words: 

Lemma 7.20. If h is an endomorphism of H, then det hp = det h 
mod pn for every p dividing T, where pn II T. Thus det hp is determined 
by det h. Conversely det h is determined by the values of det hp (the 
proof of this is by the Chinese Remainder Theorem). 

If H has linking A then, by virtue of the orthogonality of distinct 
primary components, A splits into the direct sum of linkings Ap on Hp. 
Thus h is an isometry of H if and only if hp is so for each p. Let now 

I1 n· 
T = iPi '. 

Lemma 7.21. JI mod T splits into the direct product of the groups 
JI mod p~'· 

Proof. Observe that e E JI mod T means that e E Z7 and e2 = 
1 mod f. This means that e2 = 1 mod p~', where ni = ni if Pi is odd 
or if Pi = 2 and A is odd, but ni = ni + 1 if Pi = · 2 and A is even, 
which by Lemma 7.18 is true if and only if .X2 is even. Hence e reduced 
mod p~' is in JI mod p~'. Conversely let ei E JI mod p~', that is 
ei E ZP7' be such that er = 1 mod p~'; by the Chinese Remainder 
Theorem again, there is a unique e E Z7 such that e = ei mod p~', and 
we find e2 = er = 1 mod p~' which implies e2 =: 1 mod f. Q.E.D. 

Corollary 7.22. An element a E JI mod T is the determinant 
of an isometry of (H, .X) if and only if its reduction mod p~' is the 
determinant of an isometry of (Hp,, Ap,). 

We have now reduced the proof of Theorem 7.5 to the proof of: 
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Lemma 7.23. Let H be a linked p-group with T = pn and e E 
JI mod pn. Then there is an isometry of H with determinant e. 

Proof. If A is odd, by [7] the linked group H has an orthogonal 
splitting of the form (x) EBHo, where (x) is the cyclic subgroup generated 
by an element x of order pn satisfying x2 = P"'n with p f u. The map h 
which takes x to ex and which is the identity on H 0 is then an isometry 
and its determinant is clearly e. So now let p = 2 and A be even. In this 
case, JI consists of all e mod 2n such that e2 = 1 mod 2n+1. There are 
four square roots of 1 mod 2n+1 (when n;?: 2), namely ±1 and 2n±1, but 
mod 2n these give only two distinct elements ±1 in JI. Thus we must 
simply exhibit an isometry with determinant -1 mod 2n. By Lemma 
7.18, the even nature .of A implies that the 2n-block of H is even. By 
the classification of linked 2-groups in §6.3, the linked group H has an 
orthogonal splitting of the form QEBH0 , where Q 9'! Z2n EBZ2n, generated 
by let us say x, y of order 2n, and where Q has a linking matrix equal to 
one of 2~ ( ~ 6 ) or 2~ ( I § ) mod 1. Clearly interchanging x and y is an 
isometry on either form, and extending by the identity on H 0 gives an 
isometry of H with determinant = -1 mod 2n. This proves the lemma 
and concludes the proof of Theorem 7.5. Q.E.D. 

7.5. Problem 6 

In Theorem 2.4 we found a partial normal form for the double coset 
associated to a symplectic matrix 1i, and in §2.3 we investigated its 
non-uniqueness. We raised the question of whether the submatrix QC2l 
could be diagonalized. In fact, the following is true: 

Proposition 7.24. Let W be a 3-manifold which is defined by a 
Heegaard splitting. Let H = H 1 (W; Z) and letT be the torsion subgroup 
of H. Let t be the rank ofT, so that T is a direct sum of cyclic groups 
of order T1, ... , Tt, where each Ti divides Ti+l· Assume that every Ti is 
odd. Then T is an abelian group with a linking, and there is a choice 
of basis for T such that the linking form for T is represented by a t x t 
diagonal matrix. 

Proof. Consider, initially, a fixed p-primary component T(p) ofT 
and its splitting T(p) = T1 EB · · ·EBTv into cyclic groups Tj of prime power 
order pe1. The T1 's may be collected into subsets consisting of groups 
of like order. Keeping notation adopted earlier, consider a typical such 
subset Tp+l' ... , Tp+k containing all cyclic summands of T(p) of order 
pi1-+ 1 . Let gp+l, . .. , gp+k generate these summands. Define a new linking 
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A1 on Tp+j (j = 1, ... , k) by the rule: 

(28) 
if i = j = 1 

if i = j = 2, ... 'k 

if i -1- j. 

There is an induced linking A' on T(p) obtained by direct summing the 
linkings on all of the cyclic summands, and thus an induced linking on T 
obtained by taking the orthogonal direct sum of all the p-primary sum­
mands. We will also denote this by A'. By Theorem 6.3, the linking on 
T is determined entirely by the quadratic residue characters of linkings 
on the p-primary summands ofT. It follows that (T, A') is equivalent as 
a linked group to (T, A). 

To complete the proof we need only note that by Theorem 2.2 the 
generators g;1 of the cyclic summands of prime power order determine 
the generators y; of the cyclic summands of order T1 , ... , Tt. This follows 
from (5) of Theorem 2.2. Therefore there is a t x t matrix which also 
defines A1, and A1 is equivalent to A. The proof is complete. Q.E.D. 

Remark 7.25. One might be tempted to think that Proposition 7.24 
implies that there is a matrix in the same double coset as the matrix 
1-i' in (7) of Theorem 2.4 in which the blocks p(2 ), Q(2) are both di-
agonal. Suppose we could prove that. Then for each j = 1, ... , t 
choose Tj' Sj so that Tjqj - TjSj = 1. Define RJ3 ) = Diag(rl' ... 'rt) 
and S(3) = Diag( s1 , ... , St). With these choices it is easy to verify that 

( ~!:~ ~;~~) is symplectic. If so, that would imply that R(2) and S(2) 

also are diagonal. However, while we have learned that there is a change 
in basis for T in which Q( 2) is diagonal, we do not know whether this 
change in basis preserves the diagonal form of the matrix p(Z). There­
fore we do not know whether it is possible to find a representative of 
the double coset in which all four blocks are diagonal. Proposition 7.24 
tells us that there is no reason to rule this out. The discussion in §2.3 
also tells us that it might be possible. On the other hand, the fact that 
such a diagonalization cannot always be achieved when there is 2-torsion 
tells us that the proof would have to be deeper than the work we have 
already done. II 

Example 7.26. In spite of the difficulties noted in Remark 7.25, 
we are able to construct a very large class of examples for which all 
four blocks are diagonal, even when there is 2-torsion. We construct our 
examples in stages: 
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• First, consider the case where our 3-manifold W(hp,q) is a lens 
space of type (p, q). Then W ( hp,q) admits a genus 1 Heegaard 
splitting with gluing map that we call hp,q, where p is the 
order of 1r1 (W ( hp,q)). The symplectic image of hp,q will be 
(~~),where rq- ps = ±1. 

• Next, consider the case when our 3-manifold W(h) is the con­
nect sum of g lens spaces of types (PI, q1), ... , (p9 , q9 ), so that it 
admits a Heegaard splitting of genus g. Think of the Heegaard 
surface as the connect sum of g tori. The restriction of the 
gluing map h to the ith handle will be hp, ,q,, so that the sym­
plectic image of the gluing map will be M = ( ~ G), where P = 
diag(p1, ... ,p9 ), R = diag(r1 , ... , r9 ), S = diag(s1, ... , s9 ), 

Q = diag(q1, ... , q9 ). 

• Finally, consider the class of 3-manifolds W(}h) of Heegaard 
genus g which are defined by the gluing map jli, where j is any 
element in kernel of the homomorphism pC2l : f' 9 -+ Sp(2g, Z). 
The fact that j has trivial image in Sp(2g, Z) shows that 
the symplectic image of the gluing map for w(Jli) will still 
be M. Thus we obtain an example for every element in the 
Torelli group, i.e. the kernel of pC2l, for every choice of integers 
(p1, qi), ... , (Pg, qg)· II 

§8. Postscript : Remarks on higher invariants 

In this section, we make a few comments about the search for in­
variants of Heegaard splittings coming from the action of the mapping 
class group on the higher nilpotent quotients of the surface group (i.e. 
the higher terms in the Johnson-Morita filtration). In this paper, our 
invariants have come from 3 sources: 

(1) The abelian group H 1 (W) of the 3-manifold W. 
(2) The linking form on the torsion subgroup of H 1 (W). 
(3) The presentation of H 1 (W) arising from the Heegaard splitting. 

With regard to (1), It is easy to see that there is a natural general­
ization. The classical Van Kampen Theorem shows that the Heegaard 
gluing map h determines a canonical presentation for G = 1r1 (W) which 
arises via the action of h on 1r. This action determines in a natural way 
a presentation for G / G(k), the kth quotient group in the lower central 
series for G. We do not know of systematic studies of these invariants 
of the fundamental groups of closed, orientable 3-manifolds. 
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With regard to (2) and (3), if 1r1 is the fundamental group of the 
Heegaard surface (which in this section we will consider to be a surface 
with 1 boundary component corresponding to a disc fixed by the gluing 
map - this will make 1r1 a free group), then H 1 (W) is the quotient 

of the abelian group 1rl/1ri2) by the two lagrangians arising from the 
handlebodies. The obvious generalization of this is a quotient of the 
free nilpotent group 1rl/1rik). Since it is unclear what the appropriate 
generalization of the linking form to this situation would be, one's first 
impulse might be to search for presentation invariants. 

Now, it is easy to see that the quotient of 1rl/1rik) by one of the 
"nilpotent lagrangians" is another free nilpotent group. Our presenta­
tion is thus a surjection 1r : N 1 ---+ N 2 , where N 1 is a free nilpotent group. 
The invariants of presentations of abelian groups arise from the fact that 
automorphisms of the presented group may not lift to automorphisms of 
the free abelian group. Unfortunately, the following theorem says that 
no further obstructions exist: 

Theorem 8.1. Let 1r : N1 ---+ N 2 be a surjection between finitely 
generated nilpotent groups, where N 1 is a free nilpotent group. Also, let 
¢ be an automorphism of N 2 . Then ¢ may be lifted to an automorphism 

of N 1 if and only if the induced automorphism ¢* of N 2ab can be lifted 

to an automorphism of N 1ab. 

The key to proving Theorem 8.1 is the following criterion for an 
endomorphism of a nilpotent group to be an automorphism. It is surely 
known to the experts, but we were unable to find an appropriate refer­
ence. 

Theorem 8.2. Let N be a finitely generated nilpotent group and let 
1j; : N ---+ N be an endomorphism. Then 1j; is an isomorphism if and 
only if the induced map 1/J* : Nab ---+ Nab is an isomorphism. 

Proof. The forward implication being trivial, we prove the back­
ward implication. The proof will be by induction on the degree n of 
nilpotency. If n = 1, then N is abelian and there is nothing to prove. 
Assume, therefore, that n > 1 and that the theorem is true for all smaller 
n. We begin by observing that since finitely generated nilpotent groups 
are Hopfian, it is enough to prove that 1j; is surjective. Letting 

N = N(l) r> N( 2 ) r> · · · r> N(n) r> N(n+l) = 1 
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be the lower central series of N, we have an induced commutative dia­
gram 

1 -----> N( n) -----> N -----> N IN( n) -----> 1 

1 
1 -----> N( n) -----> N ------> N IN( n) -----> 1 

Since NIN(n) is an (n-1)-step nilpotent group, the inductive hypothesis 
implies that the induced endomorphism of NIN(n) is an isomorphism. 
The five lemma therefore says that to prove that the map 

is surjective, it is enough to prove that the map 

is surjective. Now, N(n) is generated by commutators of weight n in 
the elements of N. Let {3 be a bracket arrangement of weight n and let 
{3(g1, ... , 9n) E N(n) with 9i EN be some commutator of weight n. Since 
'ljJ induces an isomorphism of NIN(n), we can find some !h, ... ,gn EN 
and h1, ... , hn E N(n) so that 

for all i. Hence 'ljJ maps {3(g1, ... ,gn) to {3(g1h1, ... ,gnhn)· However, 
since N(n) is central we have that 

so we conclude that {3(g1, ... ,gn) is in 'lj;(NCnl), as desired. Q.E.D. 

We now prove Theorem 8.1. 

Proof of Theorem 8.1. Let {g1, ... ,gk} be a free nilpotent gener­

ating set for N 1 , and let p be an automorphism of Nf'b lifting ¢*. Also, 

let ?h E Nf'b be the image of 9i· Now, pick any lift hi E N1 of p(gi). Ob~ 
serve that by assumption 1r(hi) and ¢(1r(gi)) are equal modulo [N2, N2]. 
Since the restricted map 7f : [N1, N1] ~ [N2, N2] is easily seen to be 
surjective, we can find some ki E [N1, N1] so that 1r(hiki) = ¢(1r(gi)). 
Since N 1 is a free nilpotent group, the mapping 
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induces an endomorphism¢ of N 1 which by construction lifts ¢. More­
over, Theorem 8.2 implies that ¢ is actually an automorphism, as de­
sired. Q.E.D. 

Remark 8.3. Theorem 8.1 does not destroy all hope for finding 
invariants of presentations, as there may be obstructions to lifting auto­
morphisms to automorphisms which arise "geometrically". However, it 
makes the search for obstructions much more subtle. Moreover, we note 
that in [23] Y. Moriah and M. Lustig used the presentation of n1 (W) 
arising from a Heegaard splitting to prove that certain Heegaard split­
tings of Seifert fibered spaces are in fact inequivalent. Their subsequent 
efforts to generalize what they did [24] show that the problem is difficult, 
and the final word has not been said on invariants of Heegaard splittings 
that arise from the associated presentation of n1 (W). II 
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