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Hydrodynamic limit and 
nonlinear PDEs with singularities 

Tadahisa Funaki 

Abstract. 

We shall discuss the derivation, via a scaling limit starting from 
large-scale interacting systems, of a certain class of nonlinear partial 
differential equations, especially with singular structures, such as the 
Stefan problem, the free boundary problem of elliptic type, an evolu­
tionary variational inequality and a stochastic partial differential equa­
tion with reflection. A family of independent Brownian particles is first 
taken up as a simple example to explain the idea behind the scaling 
limit. Then, we survey several results concerning two kinds of model: 
the interacting particle systems on zd called lattice gases and the 'V '{! 
interface model, which is a microscopic system for interfaces separating 
two distinct phases. The entropy method, which plays an essential role 
in the proof of the hydrodynamic limit, is explained in brief. 

§1. Introduction 

When we write down nonlinear partial differential equations (PDEs), 
the explanations are sometimes begun with a picture of underlying par­
ticle systems, such as the Laplacian ~ represents a diffusive motion of 
particles and a nonlinear term comes from interactions among them and 
so on. One of our goals, especially for those who are working in probabil­
ity theory, is to lay mathematically rigorous foundations to such picture 
starting from various large-scale microscopic interacting systems. In the 
process to achieve the goal, the basic role is played by the so-called local 
ergodicity or, in other words, the local equilibria. In a large-scale 
interacting system, after a (microscopically) long time passes, detailed 
informations of dynamics are, in a sense, averaged out and one can 
eventually observe only a slow motion of conserved quantities, which is 
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usually described by a nonlinear PDE at a macroscopic level of space 
and time. 

This procedure is customarily called the hydrodynamic limit. 
An approach via the entropies and their time-derivatives called the en­
tropy productions, which is rather universally applicable, was founded 
by Varadhan and his coauthors [25] in 1988, see also [28] which gives 
a good review of the theory of the hydrodynamic limit. Due to their 
method, several kinds of nonlinear PDE are derived from microscopic 
systems by now as we shall see below. The (relative) entropy measures 
the distance of the present states (at microscopic level) from the equilib­
rium ones (Gibbs measures) and acts as a Lyapunov function. Section 
6 gives a flavor of this method. 

Before starting our main discussions, Section 2 provides a simple 
example, i.e. a system of Brownian particles without interaction, and 
briefly explains how one can derive the macroscopic equation, i.e. heat 
(or diffusion) equation in this system, under a scaling limit which con­
nects microscopic to macroscopic levels due to the local ergodicity or 
the local equilibria held at microscopic level. Then, as well-studied in­
teracting systems, the present paper discusses the lattice gases and the 
\7 t.p interface model. 

Section 3 surveys the results on the lattice gases sometimes called 
Kawasaki dynamics, which are the discretization of interacting Brow­
nian particles, i.e. a system of particles performing random walks on zd 
with exclusion rule. It is discussed under the diffusive scaling limit the 
derivation of reaction-diffusion equation from Glauber-Kawasaki dynam­
ics (i.e. Kawasaki dynamics with creation and annihilation), nonlinear 
diffusion equation with a bulk diffusion coefficient characterized by a 
variational formula (Green-Kubo formula) and one or two phases' Ste­
fan problems with absorption or .reflection from Kawasaki dynamics 
with two types of particles. The derivation of an inviscid Burgers' equa­
tion under the hyperbolic scaling limit is also discussed. 

Sections 4 and 5 deal with the V t.p interface model, especially, 
considered over the wall or under the weak effects of additional self­
potentials. The results are classified into two types: 

(1) (Static theory, Section 4) For the corresponding equilibrium 
states (Gibbs measures), by establishing large deviation principles, one 
can deduce the asymptotic behavior of the measures and the limits are 
described by variational problems which characterize, for instance, Wulff 
shape, Winterbottom shape, free boundary problems (of Alt and 
Caffarelli's or Alt, Caffarelli and Friedman's type) and others. 
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(2) (Dynamic theory, Section 5) The corresponding dynamics are 
defined through the Langevin equation (of non-conservative or conser­
vative type; a kind of stochastic differential equation). The motion by 
mean curvature (MMC) with spatial anisotropy is derived under the 
hydrodynamic space-time scaling limit and the corresponding dynamic 
large deviation principle is obtained. Then, the hydrodynamic limit and 
the equilibrium fluctuation are discussed under a presence of hard walls. 
The limit is characterized by an evolutionary variational inequality, 
i.e., a nonlinear PDE with solutions conditioned to stay over the wall 
(i.e. the MMC with anisotropy and obstacle). The dynamic fluctuation 
is described by a stochastic PDE (PDE with random term) of Nualart 
and Pardoux type (SPDE with reflection) in one dimension. 

The results concerning the interacting particle systems (especially 
the so-called zero-range processes) and the 'Vr.p interface model are re­
viewed in the book [28] and the lecture notes [17], respectively. 

§2. An example- independent Brownian particles 

The historical reason that the scaling limit we are concerned is called 
the hydrodynamic limit may be understood by reminding the procedure 
of the derivation of hydrodynamic equations from the Boltzmann equa­
tion. It is a perturbative method known for a long time as Hilbert 
or Chapman-Enskog expansions [5] and its mathematical foundation 
was given by Ukai and others, [4], [42], [30]. In these expansions, the 
Maxwellian distributions play the role of local equilibria and the evolu­
tionallaw for the components of conserved quantities (i.e. mass, momen­
tum, energy) is governed by the hydrodynamic equations. However, the 
Boltzmann equation itself is derived already under certain scaling limit 
and the ergodicity was used in an essential way in the derivation. Our 
goal is to start with the particle systems at molecular level which under­
lie behind the Boltzmann equation. Such idea, at least in· the sense to 
try to discuss in mathematically rigorous manner, goes back to Morrey 
[31]. 

In order to explain the mathematical ·idea behind the hydrody­
namic limit, we introduce a simple model which is indeed almost trivial 
from the probabilistic point of view. Namely, as a microscopic particle 
system, we consider a system of independent Brownian particles 
{yi(s) = Yi + Bi(s)}i=l,2, ... , s 2: 0 in ~d with the position Yi(s) of ith 
particle starting at Yi· Let us introduce the corresponding macroscopic 
system {x1(t) := t'Yi(t/t'2)}i=l,2, ... by means of the (diffusive) scaling in 
time and space: t = E2s, x = Ey, where E represents the ratio of macro­
scopic and microscopic spatial lengths, which goes to 0 eventually. The 
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macroscopic density field (random measure on JRd) is associated with 
{x1(t)} by 

CXJ 

(2.1) ~;(dx) = EdLbxi(t)(dx), 
i=l 

i.e. for A C JRd, ~:(A) = Ed x Hi; xHf) E A} describes the total mass of 
particles inside the region A at macroscopic level; under the scaling, the 
mass of a single particle is also scaled as Ed. 

Macroscopic view point. We call u(x) an asymptotic density 
field (ADF) of a sequence of random measures {e(dx)} if a weak law 
of large numbers: (e,<p)--> (u,<p) holds as E l 0 in probability or in 
L 2-sense for all <p E C0 (JRd). 

Theorem 2.1 (Macroscopic formulation). If ~0 admits an ADF 
u0 (in L 1-sense), then {~t} defined by (2.1) also has an ADF u(t) (in 
L 2 -sense) which is a solution of the heat equation: 8ujat = 6.u/2 with 
initial condition u(O) = u0 . 

Proof. The proof is easy. In fact, we have 

i=l i=l 

= E[(~0 , <f!t)]--" (uo, <f!t) = (u(t), <p), 

as E l 0, where <f!t denotes the solution of the heat equation with initial 
value <p. Moreover, 

(2.3) E [ { (~:, <p) - E[ (~:, <p)]} 2] 

= E [ {Ed~ (~.p(xi(t))- E[<p(xi(t))])} 2] 

CXJ 

= E2d L E [ { <p(xi(t))- E[<p(xi(t))]} 2] 
i=l 

CXJ 

::; E2dLE [<f!2(xi(t))] = EdE[(~:,<p2)] ____, 0, 
i=l 

as E l 0. The second equality is from the independence of particles, 
while the last term tends to 0 because of (2.2). The proof is complete 
by combining (2.3) with (2.2). Q.E.D. 

Microscopic view point. We have the following characterization 
of all equilibrium states of independent motions (see, e.g. [11]): 
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Proposition 2.2. The equilibrium states of the independent Brow­
nian particles are necessarily superpositions of the Poisson point field 
{JLp} parametrized by the density p E [0, oo). 

Here, Jlp is a probability measure on the space: 

A = { ( = {y;}i=1,2, ... ; infinite but locally finite sets of points in ll~d} 

such that {JLp(~(A n () = k)}k=O,l,2, .. is Poisson distributed for A c 
JRd with mean piAl, where IAI stands for the Lebesgue measure of A, 
and {~(Aj n ()}j=l,2, ... ,n are mutually independent under Jlp if {Aj c 
JRd}j=l,2, ... ,n are disjoint. This proposition is related to the conservation 
law of particles' number under the time evolution {y;(s)};=1,2, ... of the 
independent Brownian particles. 

Microscopic state of {y;(s)}i=l,2, ... at macroscopic timet and space 
xis defined by the distribution v[,x of {Yi(t/E2)- x/E}i= 1,2, .. on A. We 
say in general that a sequence of families of measures { v~} xEffi.d on A is 
a local equilibrium state with profile p = p(x) if v~ weakly converges 
to the Poisson point field JL p( x) as E 1 0 for every x E lR d. 

Theorem 2.3 (Microscopic formulation). If {v0 x} is a local 
equilibrium state with profile u0 (and fulfills a certain integrability con­
dition), then {v[ x} is also a local equilibrium state and its profile u(t) 
is the solution o} the heat equation with initial data u0 . 

For the proof of Theorem 2.3, one may compute the limit of the 
Laplace transform of v[,x. The computation is easy because of the inde­
pendence of the particles. The details are omitted. 

The model treated here is quite simple, but suggestive in: 

(1) The macroscopic equation describes the change of the con­
served component in space and time. In particular, after a 
course graining, macroscopic quantities are projected only to 
such component. 

(2) The reason for this is due to the averaging effect based on the 
local ergodicity (from macroscopic point of view) or due to the 
establishment of the local equilibrium states (from microscopic 
point of view). 

In general, for interacting systems, it is expected that the microscopic 
formulation (as in Theorem 2.3) combined with the ergodicity of the 
equilibrium states in space implies the macroscopic formulation (as in 
Theorem 2.1). 

The hydrodynamic limit and the equilibrium fluctuation for inter­
acting Brownian particles were studied by Varadhan [43] (in one 
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dimension) and Spohn [37], respectively. In the interacting case, the 
Poisson point fields are replaced by the canonical Gibbs measures. 

§3. Lattice gases 

3.1. Independent random walks on a d-dimensional integer lattice zd 
(which is a special case of zero-range processes) are discussed in Chapter 
1 (an introductory example) of the book [28] instead of the independent 
Brownian particles. A configuration of particles on zd in such system is 

denoted by T) = {TJihEzd E zr, where Z+ = {0, 1, 2, ... }, with T/i indi­
cating the number of particles sitting on the site i E zd. The evolution 
rJ(s) = {TJ;(s)}iEZcJ,S 2: 0 of particles is specified by giving a constant 
rate of jumps of each particle to neighboring sites, for which the space­
time diffusive scaling is defined by 

~:(dx) =Ed L TJi(tjE2 )8<i(dx). 
iEZd 

Then, the macroscopic equation, obtained as the limit of~: as E 1 0, is the 
(linear) diffusion equation. The equilibrium states for the microscopic 

dynamics TJ( s) are the product measures, Poisson measures on zr. 
3.2. Random walks with exclusion rule, i.e., lattice gases on zd or 
sometimes called Kawasaki dynamics are one of the simplest interacting 
systems. The exclusion rule, that at most one particle can occupy each 
site at once, gives an interaction among particles. The configuration 

z" space is now replaced by {0, 1} . The macroscopic equation is the 
(linear) diffusion equation and the equilibrium states are the product 

measures, Bernoulli measures on {0, 1 }z". 
3.3. For the Kawasaki dynamics with creation and annihilation (Glauber­
Kawasaki dynamics), the macroscopic equation is the reaction-diffusion 
equation: 

au at =!'::l.u+f(u), uE [0,1], 

where 

f(u) = E 11"[(1- 2T)o)co(TJ)] 

and the equilibrium states are the Bernoulli measures flu parametrized 
by the density u E [0, 1], see [6]. 

The function c0 ( T)) 2: 0 represents a creation-annihilation rate at 
site i = 0 when the configuration is TJ· The scaling is taken in such 
a manner that the creation-annihilation rate (i.e. the time for Glauber 
part) is kept of 0(1). 
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3.4. We now consider the Kawasaki dynamics with general (finite­
range and translation-invariant) interactions satisfying the so-called de­
tailed balance condition (DBC, see Section 6) so that the system is 
symmetric and the equilibrium states are the canonical Gibbs mea­
sures {J-tu}uE[O,l] on {0, 1}2 d. The interaction comes into the jump 
rates { Ci,j ( T/)} of particles from i to j. Each particle looks around and 
the jump rate is determined depending on the surrounded environment, 
e.g., if crowded, then it moves slowly or if sparse, it moves quickly, or 
other way around. The macroscopic equation is the nonlinear diffu­
sion equation: 

(3.1) au= div{D(u)V'u} at 

The bulk diffusion coefficient D = (Dkk' (u)h9,k'·:5d (dx d matrix) is 
determined by a variational formula (which is equivalent to Green-Kubo 
formula): For~ E JRd, 

1 
(~, D(u)~) = 4x(u) 

x !_nf E~-'" [L co,i(T/) (~. i(Tli- ry0)- 1r0i L Tjj) 
2
] , 

f-/('7) lil=l jEZd 

where x(u) = LiEZd(EMu [TioT/i] - u2) is the compressibility, 1TOi is an 
exchange operator and Tj is a shift operator, see Funaki, Uchiyama and 
Yau [23] (the case where J-lu are the Bernoulli measures and discussed 
on the lattice torus), Varadhan and Yau [45] (general case either on zd 
or on finite box under mixing conditions). It is known by now that 
the matrix D(u) is positive definite (see [39]) and smooth enough as a 
function of u. Taking this model as an example, Section 6 outlines the 
entropy method which plays a basic role for establishing the so-called 
local equilibria. 
3.5. From Kawasaki dynamics with two types (A/B) of particles, one 
or two phases' Stefan problems can be derived under the diffusive 
scaling limit, see Funaki [15] for (a), (b) and Komoriya [29] for (c). 

(a) One phase Stefan problem with absorption (melting): The par­
ticle of type A is active, while the particle of type B is immobile. A dies 
when it meets B, while B disappears after receiving l'th visit of A. The 
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limit equation for the macroscopic density u of A particles is: 

~~ = D.PA (u) on .C(t) = { u(t, x) > 0}, 

u = 0 on I:(t) = a.C(t), 

CV=n·\7PA(u) on I:(t), 

where Vis the speed of I:(t) to the direction n (outer normal of a.C(t)), 
PA (u) is determined from the jump rate ci,J(TJ) (satisfying the gradient 
condition additionally) and C represents the latent heat. 

(b) Two phase Stefan problem with absorption: Both A and B are 
active and disappear when they meet intermediate immobile states. The 
macroscopic densities u A , u 8 of A and B-particles fulfill: 

.C(t) = {uA > O,u 8 = 0}, 

S(t) = {uA = O,u 8 > 0}, 

on I:(t) = a.C(t) = as(t), 

(c) Two phase Stefan problem with reflection: This is studied in one 
dimension for constant jump rates cA, c8 for A/B particles, respectively. 
Assume that, initially at time s = 0, the right/left hand sides of 0 are 
occupied only by A/B particles, respectively. Then, the limit is described 
by the equations: 

au 
at = CAD.u, X> a(t), 

au 
at = C8 b..u, X< a(t), 

1aui 1au 
a(t) = -CA;_;ax x=a(t)+ = -Ca;_;axix=a(t)-' 

aui au 
CA ax x=a(t)+ = CB ax ix=a(t)-' 
u(t, a(t)+) = u(t, a(t)- ), 

where the free boundary a(t), which separates A/B phases, moves in t. 
3. 6. Starting from the Glauber dynamics and others, Spohn [38] studied 
a pattern formed after proper scaling and derived the motion by mean 
curvature. The argument there is rather heuristic, but contains several 
suggestive conjectures. Presutti and others [8], [26] derived (isotropic) 
motion by mean curvature for the interfaces from the Glauber-Kawasaki 



Hydrodynamic limit and nonlinear PDEs 429 

dynamics. Since one can derive the reaction-diffusion equation from the 
Glauber-Kawasaki dynamics as we saw in Section 3.3 and the motion 
by mean curvature can be obtained from the reaction-diffusion equation 
under singular limit, these results are thought of as the two scalings are 
accomplished at once. In [7], [27], the motion by mean curvature was 
derived from the Glauber dynamics corresponding to the Kac's type 
potential with long range interaction. See a review paper by Giacomin 
et al. [24]. 
3. 7. So far, we have discussed symmetric dynamics under the diffusive 
scaling limit. From asymmetric exclusion process (Kawasaki dynamics) 
on Z (one dimension), one can derive a solution of the inviscid Burg­
ers' equation satisfying the entropy condition under the hyperbolic 
scaling limit: 

au a 
-+-{u(1-u)} =0. at ax 

See Varadhan [44] and Remark 5.1 in connection with the growing inter­
face model. These models have a close relation to the theory of random 
matrices, see, e.g. Sections 16.4 and 16.5 of [17]. Systems of conservation 
laws are obtained from lattice gases with two conserved quantities by 
Fritz and Toth [14], see also [13], [40], [41]. 
3.8. (non-Kawasaki type models) From Hamilton system with small 
noise, and with (modified) Hamiltonian growing at most linearly in mo­
mentum, Euler equation or that with Navier-Stokes correction are de­
rived, see [33]. 

§4. Static theory for the V !.fJ interface model 

4.1. Let us introduce the V!.(J interface model briefly. We are con­
cerned with a surface (interface) in JR.d+l, which separates two distinct 
pure phases, described by the height variables ¢ = { ¢i E JR. hEr mea­
sured from a reference hyperplane r located in JR.d. To avoid compli­
cations, we assume that the interface has no overhangs nor bubbles. 
The variables ¢ are microscopic objects, and the space r is discretized 
and taken as r = DN('= ND n zd), lattice torus 11'~( = (Z/NZ)d = 
{1, 2, ... , N}d) or zd. Here Dis a (macroscopic) bounded domain in JR.d 
and N represents the size of the microscopic system. 

An energy is associated with each height variable ¢ : r ---> JR. as the 
sum over all bonds (i,j) in r (or in r u a+r) 

H(¢) = Hl(¢) = 
(i,j)cr(or ru&+r) 
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and the equilibrium state (Gibbs measure) is defined by 

( 4.1) df.l = df.l~ = z-le-H(<P) II dc/Ji, 
iEr 

where z is a normalization constant and a+r = { i E zd \f; li- j I = 1 for 
some j E f} denotes the outer boundary off for f c zd. The potential 
Vis symmetric, smooth and strictly convex (0 <3 c_ ::; V" ::; 3 c+ < oo). 
Note that the boundary conditions 1/J = { 1/;;};Ea+r are required to define 
H ( ¢) and IL when r = D N. An infinite volume limit (thermodynamic 
limit) as r / zd exists when d 2: 3 and the limit measure fL has a long 
correlation. More information on the V' r.p interface model can be found 
in [17]. 

4.2. Our main interest is in studying the scaling limit, which passes 
from microscopic to macroscopic levels, defined by 

where [N x] stands for the integral part of N x( E JR. d) taken componen­
twise. The function hN is the macroscopic height variable associated 
with the microscopic ¢ : r ---+ JR. The surface tension cr = cr( u) is the 
macroscopic energy for a surface with tilt u E JRd determined by 

fL (tilt of hN "'u) "' exp{ -Ndcr(u)}. 
N~= 

Theorem 4.1. (Large Deviation, Deuschel, Giacomin and Joffe 
[9]) Consider the Gibbs measure JL~N on r = DN with 0-boundary con­
ditions 1/J; = O,i E a+nN. Then, the probability that hN is close to a 
given macroscopic surface hE HJ(D) behaves as 

where Z:,D(h) is the total surface tension of h defined by 

( 4.2) Z:,D(h) = l cr(V'h(x)) dx. 

This result is an analogue of Dobrushin, Kotecky and Shlosman [10] 
for the Ising model. 

Corollary 4.2. (Wall and constant volume conditions) For every 
v 2: 0, under the conditional probability JL~N ( ·fhN 2: 0, JD hN (x)dx 2: v), 
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the law of large numbers hN ---> hv (as N --+ oo) holds, where hv is the 
unique minimizer (called Wulff shape) of the variational problem 

min { 'ED(h); hE HJ(D), h ~ 0, l h(x)dx = v}. 

We add a weak self-potential term to the energy H~N(cjJ): 

H~~·w(cjJ) = H~N(cjJ) + L Q (~) W(c/Ji), 
iEDN 

having the boundary conditions '1/Ji = N f ( i IN) ' i E a+ D N determined 
from macroscopic function f : 8D --+ JR. (more precisely saying, defined 
on a neighborhood of 8D), where Q : D --+ [0, oo) and W : JR. --+ JR. 
satisfies a± = 3 limr->±oo W(r) such that a+ 1\ a_ ::::; W ::::; a+ Va...:. The 
Gibbs measure is associated and defined by 

dJ-L'Ij;,Q,W = z---1 e-Ht,:;·w (</>) II dc/Ji· 
DN 'lj;,Q,W 

iEDN 

Theorem 4.3. (Large Deviation, Funaki and Sakagawa [21]) As­
sume A := a+ - a_ ~ 0. Then, 

where 

JA(h) = y:,A (h) - inf y:,A (h'), 
D D h'EH}(D) D 

"Ei5(h) = 'ED(h)- A l Q(x)1{h(x):S:O} dx, 

and Hj(D) is the space of all hE H 1(D) having boundary conditions f. 

Corollary 4.4. The law of large numbers hN ---> hA (as N --+ oo) 
holds under J-Lt'~,w, if the minimizer hA of the variational problem 

min {'Ei5(h); hE Hj(D)} 

is unique. 

Remark 4.1. (1) The variational problem obtained in Corollary 
4-4 was studied by Alt and Caffarelli [1], Alt, Caffarelli and Friedman 
[2], Weiss [46] and others. The minimizer fulfills the free boundary 
problem of elliptic type and the corresponding free boundary condition 
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is called the Young's relation. 
(2) The case with two minimizers is studied by [18] in one dimension. 
The large deviation for the Gibbs measure with J-pinning (defined by 
(4.1) with d¢i replaced by eJJo(d¢i) + d¢i,J E JR) instead of weak self­
potentials is discussed by [21] in one dimension. 
(3) Bolthausen and Joffe [3] proved the law of large numbers for the 
Gibbs measure on the wall with J-pinning and quadratic potential under 
the constant volume condition in two dimension. The limit called Win­
terbottom shape is uniquely (except translation) characterized by a 
certain variational problem. 

§5. Dynamic theory for the V r.p interface model 

5.1. One can introduce microscopic dynamics (stationary and re­
versible under the Gibbs measure J.L) for the interfaces by the SDEs 
(Langevin equation) 

aH 
d¢i(s) = - a¢i (¢(s)) ds + hdwi(s), i E f, 

where {wi(s)}iEr is a family of independent Brownian motions and 

The goal is to discuss the space-time diffusive scaling limit for 
¢( s) = { cPi ( s )}iEr defined by 

N 1 2 
h (t,x) = NcP[NxJ(N t). 

Theorem 5.1. (Hydrodynamic Limit, Funaki and Spohn [22] on 
the torus 'll'd, Nishikawa [32] on D with boundary conditions) As N-+ oo, 
hN(t,x) --+ h(t,x). The limit h(t,x) is a unique weak solution of the 
nonlinear PDE (MMC with spatial anisotropy): 

(5.1) 
ah 
at (t) = div {V'u(V'h(t))} 

d a {au } = L:- -(\i'h(t)) . 
axk auk 

k=l 

The surface tension has the following properties: u E C 1 (JR d), \7 u 
is Lipschitz continuous and u is strictly convex. The PDE (5.1) can 
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be regarded as the gradient flow for E = E'fd or ED, the total surface 
tension ( 4.2) on ']['d or D: 

Theorem 5.2. (Dynamic Large Deviation, Funaki and Nishikawa 
[19] on 'll'd) The probability that hN (t) is close to h(t) behaves as 

P (hN (t) "'h(t), t :'S T) "' exp{ -Nd fr(h)}, 
N-+oo 

where h(t) = h(t, x) is a given motion of surface and 

1 {T { [8h ] 2 

lr(h) = 4 lo dt J'fd at - div {V1a(V1h(t))} dx. 

The relation to the static large deviation (Theorem 4.1) is given by 

where 

Sr(ii) = inf { Ir(h); h(T, x) = h(x)}. 

5.2. Dynamics on the wall are introduced by SDEs of Skorohod 
type: 

(5.2) 

subject to the conditions 

where f = f(t, x, h) is a given macroscopic external field. Note that 
£i(s) increases only when cPi(s) = 0. The unique invariant (stationary) 
measure (when f = 0, r = DN with 0-boundary conditions) is given by 
Jl~N (·I¢ 2: 0), which is reversible under the dynamics. 

Theorem 5.3. (Hydrodynamic Limit, Funaki [16] on 'll'd) As 
N--. oo, hN(t,x)------+ h(t,x). The limit h(t,x) is a unique solution of 
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the evolutionary variational inequality (MMC with reflection ( ob­
stacle)): 

2 ( ) 8h 2 ( . ') '<I (a) h E L 0, T; V , at E L 0, T; V , T > 0, 

(b) ( ~~ (t), h(t)- v) + (V'a(V'h(t)), V'h(t) - V'v) 

::; (f(t, h(t)), h(t)- v), a. e. t, "'v E V: v :2:: 0, 

(c) h(t,x) :2::0, a.e., 

(d) h(O, x) = ho(x), 

where V = H 1(1I'd), H = L 2(1fd), V' = H-1(1fd) and (·, ·) denotes the 
inner product of H (or Hd) or the duality between V' and V. 

Remark 5.1. Rezakhanlou [34], [35] derived a Hamilton-Jacobi equa­
tion under hyperbolic scaling from growing SOS dynamics (i.e. c/>i E Z) 
with constraints on the gradients (e.g. (V' ¢> )i ::; v). Related results were 
obtained by Evans and Rezakhanlou [12] and Seppiiliiinen [36]. 

Let us consider the equilibrium dynamics ¢>( s) on the wall in 
one dimension, i.e., ¢(s) is a solution of the SDE (5.2) with d = 1, r = 
{1, 2, ... , N -1 }, f = 0 and with 0-boundary conditions c/>o(s) = ¢>N(s) = 
0, and an initial distribution J..L~( ·I¢ :2:: 0). Macroscopic fluctuation 
field (around the hydrodynamic limit h(t,x) = 0) is defined by 

lPN (t, x) = VNhN (t, x) (:2:: 0), x E [0, 1]. 

Theorem 5.4. (Equilibrium Fluctuation, Funaki and Olla [20]) 
As N -+ oo, q>N (t, x) ===} ll>(t, x). The limit ll>(t, x) is a unique weak 
stationary solution of the stochastic PDE with reflection of Nualart and 
Pardoux type: 

811> 821!> • 
at(t, x) = q ax2 (t, x) + /2B(t, x) + ~(t, x), x E [0, 1), 

ll>(t,x) :2::0, lXJ 11 1l>(t,x)~(dtdx) = 0, 

ll>(t, 0) = ll>(t, 1) = 0, ~: random measure, 

where B(t, x) is a space-time white noise and 
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§6. Entropy method 

This section presents the heart of the entropy method, which was ex­
ploited by [25], for the macroscopic equation and the microscopic system 
in parallel, to observe the analogy between them. 

Entropy for macroscopic equation. Let us consider the nonlin­
ear diffusion equation ( 3.1) with positive initial data u( 0, x) = u0 ( x) > 0 
under the periodic boundary condition, i.e., on the torus 'TI'd. Note that 
the solution enjoys u(t, x) > 0 by the maximum principle and it holds 
the conservation law 

r u(t, x) dx = const in t. }yd 

For u = { u( x) > 0}, define the entropy 

H(u) = { u(x)logu(x)dx 
J.Jrd 

and the entropy production (the Dirichlet integral of yu) 
d 

I(u) = L r Dk,k'(u) ~fo ~fo dx. 
k,k'=l }yd Xk Xk' 

Jensen's inequality shows that H(u) 2': ulogu, where u = J"Td u(x)dx. 
Simple computations, using the integration by parts formula on 'TI'd and 
the conservation law, lead us to the following lemma. 

Lemma 6.1. The solution u(t) of the PDE (3.1) satisfies 

d 
dtH(u(t)) = ~4/(u(t)):::; 0. 

This lemma implies the H-theorem (the principle of increase of 
entropy): ~H(u(t)) is non-decreasing in t and limt~oo I(u(t)) = 0, 
since H(u(t)) is bounded below. Note that I(u) = 0 is equivalent to 
ofoj OXk = 0 (by the positive definiteness of D) so that u = const, 
which are the equilibrium solutions of (3.1). A similar argument works 
for the PDE (3.1) on D with smooth boundary oD under the boundary 
condition (D(u)\lu, n) = 0 at oD for the outward unit normal vector n. 
One may apply Gauss-Green theorem on D. 

Entropy for microscopic system. Let us consider the Kawasaki 
dynamics on the lattice torus 'TI'~ of side length N with configuration 

space XN = {0, l}T~. Its generator is given by 

LN = L Cb(rJ)1rb, 
b 
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where 1rb is an exchange operator defined for each bond b = (i, j) by 

with a configuration rl E XN obtained from rJ E XN by exchang­
ing the values of 'r/i and 'r/j· The jump rates cb(TJ) = ci,j(TJ) > 0 
of particles between two neighboring sites i and j satisfy the condi­
tions listed in Section 3.4 (on 'lfi,) (i.e. of finite-range independently of 
N, translation-invariant, DBC); the DBC (detailed balance condition) 
means that Cb(TJ)J..LN(TJ) = cb(TJb)J..LN(rl) for every b and T/ E XN with 
some J..lN E P(XN) = {probability measures on XN }. This implies the 
symmetry of LN under J..lN· 

Define the (relative) entropy of v E P(XN) by 

and its entropy production by 

Let vN(t) = 'Ptdf.lN be the distribution of the process (Kawasaki dynam­
ics) ryf: with the generator N 2 LN on XN, which is speeded up by the 
factor N 2 . 

Proposition 6.2. We have 

Proof. This inequality follows from 
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:'::: -4N2 { yf(jitLNyf(jit dp,N lxN 
= -4N2 JN(VN(t)). 

For the third line, we have used the conservation law: 

and the forward equation 
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note that L N = LN, which is symmetric with respect to P,N. For the 
fifth line, the elementary inequality 

(a- b)(loga -log b)~ 4( va- Vb) 2 , a, b > 0 

has applied. Q.E.D. 

Since 0 :'::: HN(v) :'::: CNd, by convexity of IN, 

(6.1) 

for the space-time average of {vN(t)}o<t<r: 

where Ti is the spatial shift operator. In particular, the estimate (6.1) 
proves that all limits as N --+ oo of VN restricted on a finite region 
(independently of N) are (finite-volume) canonical Gibbs measures. This 
guarantees the realization of the local equilibria in a weak sense. See 
[23], [28], [45] for details. 

The entropy method relevantly works also in the \7 'P interface model, 
see [22] for the proof of Theorem 5.1. 
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