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Weak KAM pairs and Monge-Kantorovich duality 

Patrick Bernard and Boris Buffoni 

Abstract. 

The dynamics of globally minimizing orbits of Lagrangian systems 
can be studied using the Barrier function, as Mather first did, or using 
the pairs of weak KAM solutions introduced by Fathi. The central 
observation of the present paper is that Fathi weak KAM pairs are 
precisely the admissible pairs for the Kantorovich problem dual to the 
Monge transportation problem with the Barrier function as cost. We 
exploit this observation to recover several relations between the Bar­
rier functions and the set of weak KAM pairs in an axiomatic and 
elementary way. 

§1. Introduction 

Let M be a compact connected manifold and consider a C 2 La­
grangian function 

L: TM X lR--> lR 

that satisfies the standard hypotheses of the calculus of variations, 

(L1) 

(L2) 

(L3) 

L(x, v, t + 1) = L(x, v, t) on TM x JR, 

a;VL(x,v,t) > 0 on TM X JR, 

lim L(x, v, t)/llvll = oo on M x R 
llvll-+oo 

It is standard that, under these assumptions, there exists a well-defined 
time-periodic continuous vectorfield E(x, v, t) on T M such that the in­
tegral curves of E satisfy the Euler-Lagrange equations associate to L. 
We assume in addition that this vectorfield generates a complete flow, 
and denote by rp the time-one flow, which is a diffeomorphism ofT M. 
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In this paper we show that the theory developed by Mather {11], 
Mafie [14] and Fathi [10] amounts for a large part to the analysis of the 
function A : M x M ----+ JR. defined by the expression 

A(x, y) =min ft L(r(t), ly(t), t)dt, 
'Y Jo 

where the minimum is taken on the set of C2 curves "( : [0, 1] ----+ M 
which satisfy "f(O) = x and "((1) = y. 

To emphasize this point of view, we develop an abstract theory based 
solely on an arbitrary continuous function A : M x M ----+ JR., where M is 
a connected compact metric space. We then define At = A and 

An(x, y) = min A(x, zt) + A(zt, z2) + ... + A(zn-t, y) 
Zt, ... ,Zn-lEM 

for all integers n ;;::: 2. It turns out that the family (An) is equicontinu­
ous and our only hypothesis on A is that the family (An) is uniformly 
bounded (this can be achieved by adding some constant to A). It then 
follows that the expression 

c(x, y) = liminf An(x, y) 
n-HXJ 

defines a continuous function c : M x M ----+ R 

and 

We call (¢o, ¢1) an admissible Kantorovich pair for c if 

Vy EM ¢t(Y) = min ¢o(x) + c(x, y) 
xEM 

Vx EM ¢o(x) = max¢t(Y)- c(x, y). 
yEM 

The first main result (Theorem 12) states that (¢0 , ¢1) is an admissible 
Kantorovich pair for c if and only if 

• ¢o(x) = maxyEM ¢o(Y)- A(x, y) for all x EM, 
• ¢t(x) = minyEM¢t(Y) +A(y,x) for all x EM, 
• and ¢o(x) = ¢t(x) whenever c(x, x) = 0. 

The second main result (Theorem 13) concern~ the minimization 
problem 

min [ A(x, y)dT}(x, y), 
"' lMxM 

where the minimum is taken on the set of Borel probability measures 
T} on M x M with equal marginal measures, that is, 7fo~(T]) = 7rt~(q) 
with 7fo and 1ft denoting the canonical projections on M. Among all 



Weak KAM pairs and Monge-Kantorovich duality 399 

admissible measures, the minimizing ones are shown to be exactly those 
supported on the set 

D = {(x,y) EM x MIA(x,y) +c(y,x) = 0}. 

This is also restated in the following way in Theorem 15. Let 
X= Mz be endowed with the product topology and denote by MT(X) 
the set of Borelian probability measures on X which are invariant by 
translation. Consider the minimization problem 

min . f A(x0 , xl)dv(x), 
vEMT(X) lx 

where a generic x E X is written x = ( ... , X-1, xo, XI, ..• ) • Then we 
show with the help of the Ergodic Decomposition Theorem that v in 
MT(X) is minimizing exactly when the push-forward of v by the pro­
jection x-; (xo, xl) is concentrated on D. 

The paper ends with the interpretation of these abstract theorems 
in the setting of the Aubry-Mather theory, recovering in this way some 
key results of [14, 11, 10]. 

§2. Monge-Kantorovich theory 

We present some standard facts of Monge-Kantorovich theory, first 
in the general case, and then when the cost satisfies some given assump­
tions. 

2.1. Generalities 

We recall the basics of Monge-Kantorovich duality. The proofs are 
available in many texts on the subjects, for example [1, 15, 16]. We 
assume that M and N are compact metric spaces, and that c(x, y) is a 
continuous cost function on M x N. Given Borel probability measures 
J.Lo on M and J.L1 on N, a transport plan between J.Lo and J.l1 is a measure 
on M x N which satisfies 

where 7ro : M x N -; M is the projection on the first factor, and 
71"1 : M x N-; N is the projection on the second factor. We denote by 
K(J.Lo, J.L1), after Kantorovich, the set of transport plans. Kantorovich 
proved the existence of a minimum in the expression 

(1) C(J.Lo,J.Ll)·= min f cdry 
ryE/C(IJ-o,l-£1) lMxN 
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for each pair (J.to, f..tl) of probability measures. The plans which realize 
this minimum are called optimal transfer plans. Let ¢0 be a real func­
tion on M and ¢1 a real function on N. The pair ( ¢o, ¢1) is called an 
admissible Kantorovich pair if it satisfies the relations 

¢1(y) =min ¢o(x) + c(x, y) and ¢o(x) = max¢1(y)- c(x, y) 
xEM yEN 

for all point x E M and y E N. Another discovery of Kantorovich is 
that 

(2) 

where the maximum is taken on the non-empty set of admissible Kan­
torovich pairs (¢0 , ¢1). This maximization problem is called the dual 
Kantorovich problem, the admissible pairs which reach this .maximum 
are called optimal Kantorovich pairs. The direct problem (1) and dual 
problem (2) are related as follows. 

Proposition 1. If TJ is an optimal transfer plan, and if ( ¢o, ¢1) is 
a K antorovich optimal pair, then the support of TJ is contained in the set 

{(x,y) EM x N such that cPl(Y)- ¢o(x) = c(x,y)}, 

which is a closed subset of M x N because ¢0 and ¢1 are continuous. 

Let us remark that the knowledge of the set of Kantorovich admis­
sible pairs is equivalent to the knowledge of the cost function c. 

Lemma 2. We have 

c(x,y) = max cPl(Y)- ¢o(x) 
(¢o,¢I) · 

where the maximum is taken on the set of Kantorovich admissible pairs. 

Proof. This Lemma is elementary and can be proved by easy ma­
nipulation of inequalities, see [4]. However, we present a short proof 
based on the non-elementary Monge-Kantorovich duality. Let us fix 
points x E M and y E N, and let f.-to be the Dirac measure at x and 
f..tl be the Dirac measure at y. There exists one and only one trans­
port plan between f.-to and f..tl, it is the Dirac measure at (x, y). As a 
consequence, we have c(x, y) = C(f..to, J.t1). Hence the equality above is 
precisely the conclusion of Kantorovich duality for the transportation 
problem between f.-to and f..tl· D 
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Proposition 3. Let (¢0 , ¢1 ) be an admissible pair, and let J.to be a 
probability measure on M. Then there exists a probability measure J.£1 on 
N such that the pair ( ¢0 , ¢1 ) is optimal for the transportation problem 
of the measure J.to onto the measure J.£1 

Proof. If J.to is the Dirac at x, then take a pointy such that ¢1 (y) = 
¢o(x) + c(x, y), and observe that the conclusion obviously holds if J.£1 is 
the Dirac at y. The set of measures J.to for which the conclusion holds 
(given ¢0 , ¢1) is clearly convex and closed (with respect to the weak 
topology), it contains the Dirac measures, hence it is the whole set of 
probability measures. 0 

2.2. Distance-like costs 

Kantorovich stated his duality theorem first in the case where M = 
N and the cost is a distance. Then, the dual problem take~ a simpler 
form that we now describe. In fact, it is not necessary to assume that 
the cost is a distance. It is sufficient to assume that, for all x, y and z 
in M, we have 

(Cl) c(x,z) ~ c(x,y) +c(y,z), 

(C2) c(x, x) = 0. 

A function ¢ : M--+ JR. is called c-Lipschitz if it satisfies the inequality 

¢(y)- ¢(x) ~ c(x, y) 

for all x andy in M. Note that, in the above and in what follows, we 
assume that M = N is a compact and connected metric space, and that 
c : M x M --+ JR. is a continuous cost function. 

Theorem 4. Assume that the cost c E C(M2,JR.) satisfies the as­
sumptions (Cl) and (C2). Then for each pair J.to, J.£1 of probability 
measures on M, we have 

C(J.to, J.£1) = max { ¢d(J.t1 - J.to) 
q, jM 

where the maximum is taken on the set of c-Lipschitz functions¢. 

This is a well-known direct rewriting of Kantorovich duality in view 
of the following description of admissible pairs. 

Lemma 5. If the cost satisfies (Cl) and (C2), then the Kantorovich 
admissible pairs are precisely the pairs of the form ( ¢, ¢), with ¢ c­
Lipschitz. 
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Proof. If ¢ is a c-Lipschitz function, then ( ¢, ¢) is an admissi­
ble pair. Indeed, let us prove for example that ¢(x) = miny ¢(y) + 
c(y, x). On the one hand, we have ¢(x) ~ ¢(y) + c(y, x) because ¢ 
is c-Lipschitz, hence ¢(x) ~ miny ¢(y) + c(y, x). On the other hand, 
¢(x) = ¢(x) + c(x, x) ~ miny ¢(y) + c(y, x). One can prove similarly 
that ¢(x) = maxy ¢(y) - c(x, y). It follows that (¢, ¢) is an admissible 
pair. Conversely, if ( ¢0 , ¢1) is an admissible pair, then ¢0 = ¢ 1 is a 
c-Lipschitz function. This is a special case of Lemma 6 below. D 

Let us now study costs which satisfy (Cl) but not necessarily (C2). 
It is then useful to define the set 

A:= {x E M,c(x,x) = 0} C M. 

Note that the restriction of the cost c to A x A obviously satisfies ( Cl) 
and (C2). In this more general case, we have: 

Lemma 6. Let c E C(M2 ,JR) satisfy (Cl). Let (¢0,¢1) be an ad­
missible pair. Then the functions ¢0 and ¢ 1 are c-Lipschitz. In addition, 
we have ¢0 ~ ¢ 1 with equality on A. 

Proof. Let us first prove that the function ¢ 1 is c-Lipschitz. Given 
x E M, there exists y such that ¢ 1 (x) = ¢0 (y) + c(y, x), and then, for 
each z, 

¢1 (x) = ¢o(Y) + c(y, x) ~ ¢1 (z)- c(y, z) + c(y, x) ~ ¢1 (z)- c(x, z). 

One can prove similarly that ¢0 is c-Lipschitz. 
We then have 

¢o(x) = max¢1(y)- c(x,y) ~ max¢1(x) = ¢1(x). 
y y 

because ¢ 1 is c-Lipschitz. If x E A, we have, in addition, 

¢o(x) = max¢1 (y)- c(x, y) ~ ¢1(x)- c(x, x) = ¢1(x). 
y 

D 
We now introduce another hypothesis which is certainly less natural 
than (Cl) and (C2), but is useful for the applications we have in mind. 
We assume that 

(C3) A =f. 0 and c(x, y) =min c(x, a)+ c(a, y) 
aEA 

for each x andy in M. Note that, under (Cl), (C3) is implied by (C2). 
The hypothesis ( C3) implies that each optimal transport can be factored 
through the set A. 
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Lemma 7. If the cost satisfies (CI) and (C3), then for each pair 
(J-Lo, p,1 ) of probability measures, there exists a probability measure p, sup­
ported on A and such that 

C(p,o, /LI) = C(p,o, J.L) + C(p, p,l) 

Proof. First note that C(p,0 , p,I) ~ C(p,0 , p,)+C(p,, p,t) is true for all 
Borelian probability measures p, on M. This can be seen as follows. Let 
rto and "11 be optimal transport plans for (p,o, p,) and (p,, JLI) respectively. 
Disintegrate rto with respect to 1!"1 and "11 with respect to 7ro: rto = 
JM rtozdJi(z) and "11 = JM 'fllzdp,(z) (see e.g. Theorem 5.3.1 in [2] for the 
disintegration theorem; here rtoz and "liz are seen as probability measures 
on M). Following Section 5.3 in [2], define the probability measure rt on 
M 2 by· 

rt(A X B)= JM rtoz(A)rt1z(B)dp,(z) 

for all Borelian subsets A, B C M. Then rt E K(Jio, p,t) and 

r cdry = r c(x, y)drtoz(x)drtlz(y)dp,(z) 1M2 1M3 
~ { {c(x,z)+c(z,y)}drtoz(x)drt1z(y)dp,(z) = { cdrto+ { cdrtl· 1M3 1M2 1M2 

Let us now prove the reverse inequality when p,0 and p,1 are Dirac 
measures supported in x and y. In this case, one can take for p, the 
Dirac measure supported at a, where a is any point such that c(x, y) = 
c(x, a)+ c(a, y). The general case is then deduced once again using the 
fact that, on M 2 , the set of probability measures is the closed convex 
envelop of the set of Dirac measures, so that we can approximate any 
optimal transfer plan in K(p,o, Jid by Dirac measures. 0 

Proposition 8. If the cost c E C ( M 2 , lR) satisfies ( Cl) and ( C3), 
then for each admissible pair ( ¢o, ¢1), there exists a function¢ : A --> JR, 
which is c-Lipschitz, and such that 

¢1 (a) = ¢o(a) =¢(a) 

for all a E A, 

(3) ¢ 1 (x) =min ¢(a) + c(a, x) 
aEA 

for all x E M and 

(4) ¢0(x) = max¢(a)- c(x,a). 
aEA 
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Conversely, given any c-Lipschitz function¢ on A, the functions <Po and 
¢ 1 defined by (4) and (3) form an admissible pair. In other words, there 
is a bijection between the set of admissible pairs and the set of c-Lipschitz 
functions on A. 

Proof The fact that ¢0 and ¢1 are c-Lipschitz and that, on A, 
¢0 = ¢ 1 :=¢results from Lemma 6. Let us prove (4), the proof of (3) 
being similar: 

(C3) 
<Po(x) = max¢1(y)- c(x, y) = max ¢1(y)- c(x, a)- c(a, y) 

y yEM,aEA 

=max ¢0 (a) - c(x, a) =max ¢(a) - c(x, a). 
aEA aEA 

Conversely, let ¢ be a c-Lipschitz function on A, and let ¢0 and ¢1 
be defined by (4) and (3). The reader will easily check that <Po and ¢1 
are c-Lipschitz, and that ¢1 ~ ¢ ~ <Po on A. We now prove that <Po ~ ¢1 
(and then that there is equality on A): 

<Po(x) - ¢1 (x) = max ¢(a) - c(x, a) -¢(b) - c(b, x) 
a,bEA 

~ max ¢(a)- ¢(b)- c(b,a) ~ 0 
a,bEA 

because ¢is c-Lipschitz on A. In order to check that the pair (¢0 , ¢1) 
is an admissible pair, we shall prove that 

<Po(x) = max¢1(y)- c(x,y) 
y 

and leave the other half to the reader. For each x in M, we have 

<Po(x) = max¢(a)- c(x, a)= max¢1(a)- c(x, a)~ max</Jt(Y)- c(x, y). 
aEA aEA yEM 

In order to obtain the other inequality, let us prove that 

¢1(Y)- <Po(x) ~ c(x,y) 

for all x an y in M. Indeed, we have 

<Pt(Y)- <Po(x) = min ¢(a)+ c(a, y)- ¢(b)+ c(x, b) 
a,bEA 

~ min c(b, a)+ c(a, y) + c(x, b)= minc(x, a)+ c(a, y) = c(x, y) 
a,bEA aEA 

by (C3). D 
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Since ¢0 and ¢1 are c-Lipschitz (Lemma 6), equations (3) and (4) 
imply 

¢1 (x) = min ¢1 (y) + c(y, x) and ¢o(x) = max¢o(y) - c(x, y) 
yEM yEM 

for all x EM. 

§3. Abstract Mather-Fathi Theory 

In this section, we consider a continuous function A(x, y): MxM--+ 
R Recall that M is a compact connected metric space. We shall build 
several functions out of A. First, we define the sequence of functions 
An(x, y) by setting A1 =A and 

An(x, y) =min A(x, z) + An-1(z, y) 
zEM 

= min A(x, zt) + A(zt, z2) + ... + A(zn-1, y). 
Z}, ... ,Zn-lEM 

Lemma 9. The functions An are equicontinuous. In addition, there 
exists a real number l and a positive constant C such that 

IAn(x, y) -lnl ~ C 

for all n E N and all x and y in M. 

Proof The function A is continuous, hence uniformly continuous, 
hence there exists a modulus of continuity 8 : [0, oo) --+ [0, oo) such that 
lime--+0 8(t:) = 8(0) = 0 and such that 

JA(x, y) - A(X, Y) J ~ 8(d(x, X)) + 8(d(y, Y)) 

for all x, y, X, Yin M. Clearly, for all n;;::: 2 and all z1 , ... , Zn- 1 EM, 
the function (x, y) --+ A(x, z1) + A(zt, z2) + ... + A(zn-1, y) is uniformly 
continuous, with the same modulus of continuity as A. Hence An is 
uniformly continuous with the same modulus of continuity as A because 
it is the infimum of functions having all the same modulus of continuity. 

Let us define the sequences Mn := max(x,y)EM2 An(x, y) and mn := 
min(x,y)EM2 An(x, y). It is clear that the sequence Mn is subadditive, 
i. e. that Mn+k ~ Mn + Mk for all nand kin N. In order to check this 
claim, we take x andy in M such that An+k(x, y) = Mn+k· Then there 
exists a point z in M such that 
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Similarly, the sequence mn is super-additive, i. e. mn+k ~ mn + mk. 
On the other hand, on view of the equicontinuity of An, there exists 
a constant C such that Mn- mn ~ C. Applying a standard result on 
subadditive sequences (see e.g. Lemma 1.18 in [5]), we obtain that Mnfn 
converges to its infimum M, and that mnfn converges to its supremum 
m. Then for each x andy, 

which implies that M = m and proves the Lemma. 0 

We make, on the function A, the hypothesis 

(Al) l = 0. 

Note that this hypothesis implies that A(x, x) ~ 0 for all x, and more 
generally that An ( x, x) ~ 0 for all x. Then, we can define a cost function 
c by the expression 

(5) c(x, y) = liminf An(x, y). 
n-+exl 

In view of Lemma 9, the function c takes finite values and is contin­
uous. We have c(x, x) ~ 0 and, by Lemma 11 below, c(x, y) + c(y, x) ~ 
c(x, x) ~ 0 for all x andy in M. 

Lemma 10. For each n EN, we have 

c(x, y) =min c(x, z) + An(z, y) =min An(x, z) + c(z, y). 
zEM zEM 

Proof. Let us fix n. Passing at the liminf (m-----* oo) in the inequal-
ity 

Am+n(X, y) ~ Am(X, z) + An(z, y), 

we obtain 
c(x, y) ~ c(x, z) + An(z, y). 

For the opposite inequality, let us notice that, for each m, there exists a 
point Zm in M such that . 

Let us consider an increasing sequence of integers mk such that the 
subsequence Zmk has a limit z and limk-+ao Amk+n(x, y) = c(x, y). At 



Weak KAM pairs and Monge-Kantorovich duality 407 

the liminf, we get, taking advantage of the equicontinuity of the functions 
An, 

c(x, y) ~ c(x, z) + An(z, y). 

This proves that 

c(x, y) = minc(x, z) + An(z, y). 
z 

The proof of the second equality of the statement is similar. 0 

Lemma 11. The cost function c satisfies (Cl) and (C3). 

Proof The triangle inequality is easily deduced from Lemma 10. 
Let us now prove (03). We first prove that, given x andy in M, there 
exists a point z in M such that c(x,y) = c(x,z) + c(z,y). Indeed, 
for each n in N, there exists a point Zn such that c(x, y) = c(x, zn) + 
An(Zn, y). Considering an increasing sequence of integers nk such that 
the subsequence Znk has a limit z, we obtain at the liminf along this 
subsequence that c(x, y) ~ c(x, z) + c(z, y) which is then an equality. 

By recurrence, there exists a sequence Zn E M such that, for each 
kEN, we have 

Note that L::':t c(Zi, Zi+I) = c(Zt, Zm+I) if 0 ~ f < m ~ k, where 
Zo = X and zk+l = y. 

Let Z be an accumulation point of the sequence Zn. For each E > 0, 
we can suppose, by taking a subsequence in Zn, that all the points Zn 
belong to the ball of radius E centered at Z. We conclude that, for each 
kEN, 

c(x, y) ~ c(x, Z) + (k- l)c(Z, Z) + c(Z, y)- 2(k + 1)8(t). 

This is possible only if c(Z, Z) ~ 28(t), and since this should hold for 
all Ewe conclude that c(Z, Z) ~ 0, hence c(Z, Z) = 0. We have proved 
the existence of a point Z E A such that c(x, y) = c(x, Z) + c(Z, y). 0 

Let us define, the two operators r± on the space C(M, JR) of con­
tinuous functions on M by the expressions 

and 

r-u(x) = min u(y) + A(y, x) 
yEM 

r+u(x) = maxu(y)- A(x,y). 
yEM 
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We have the following relation between the fixed points of these 
operators and the admissible pairs of the Kantorovich dual problem 
with cost c. Recall the definition A : = { x E M, c( x, x) = 0} C M. 

Theorem 12. Let A be a function satisfying (Al), and let c be the 
cost defined by (5). The pair (¢o, ¢1) of functions on M is a Kantorovich 
admissible pair (for c) if and only if 

• the function ¢o is a fixed point of y+, 
• the function ¢1 is a fixed point of y-, 
• ¢o = ¢1 on A. 

Finally, for each fixed point ¢1 of y-, there exists one and only one 
function ¢0 such that (¢0, ¢1) is an admissible pair. 

Proof. Let (¢0 , ¢1) be an admissible pair. Then we have the ex­
pression 

¢1 (y) = min ¢o(x) + c(x, y). 
xEM 

We obtain that 

y- ¢1 (z) = min ¢ 0 (x) + c(x, y) + A(y, z) 
x,yEM 

= min ¢o(x) + c(x, z) = ¢1 (z). 
xEM 

We prove in the same way that the function ¢0 is a fixed point of y+. 
Lemma 6 implies that ¢o = ¢1 on A. 

Conversely, let ( ¢0 , ¢1 ) satisfy the three conditions of the statement. 
We first observe that the functions ¢0 and ¢1 are c-Lipschitz. Indeed, 
we have, for each n, 

When n = 1, this is a direct consequence of the fact that ¢i is a fixed 
point of y±, and the general case is proved by induction. We get 

cPi(Y) - cPi(x) ~ lim inf An(x, y) = c(x, y). 
n-->cxo 

The function ¢ 1 being a fixed point of y-, for each n E N, there exists 
a point Yn in M such that ¢1(x) = ¢1(Yn) + An(Yn,x). Indeed, we can 
find successively Y1, y2, ... such that 

¢1(x) = ¢1(Y1) +A(y1,x) = ¢1(y2) +A(y2,Y1) +A(y1,x) 

= · · · = cP1(Yn) + A(yn, Yn-1) + ... + A(y1, x). 
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By definition of An, we get ¢1(x) ~ ¢1(Yn) + An(Yn,x). The reverse 
inequality has just been proved above. 

Let nk be a subsequence such that Yn, has a limit y. At the limit, 
we obtain the inequality 

¢t(x) ~ ¢t(y) + c(y, x), 

which is then an equality. We have proved that 

¢1(x) = min¢1(y) +c(y,x). 
yEM 

Let us call¢ the common value of ¢o and ¢1 on A. In view of (C3), we 
have 

¢1(x) = min ¢1(Y) + c(y, a)+ c(a, x) 
yEM,aEA 

=min ¢1 (a)+ c(a, x) =min ¢(a)+ c(a, x). 
aEA aEA 

One can prove in a similar way that 

¢o(x) = max¢o(a)- c(x,a) = max¢(a)- c(x,a). 
aEA aEA 

We conclude that (¢0 , ¢ 1) is an admissible pair by Proposition 8. This 
also proves the uniqueness claim. 

In order to prove the last part of the statement, let us consider a 
fixed point ¢ 1 of r-. Let us define the function ¢ 0 by 

¢o(x) = max¢1(a)- c(x,a). 
aEA 

Since the function ¢ 1 is c-Lipschitz (as seen above), we have ¢ 0 ~ ¢ 1. 
On the other hand, it is clear that ¢1 ~ ¢o on A. As a consequence, we 
have ¢0 = ¢ 1 on A. By Lemma 10, we have for all z E M that 

max¢0 (x)- A(z,x) = max ¢ 1(a)- c(x,a)- A(z,x) 
rEM xEM,aEA 

= max ¢I( a) - c(z, a) = ¢o(z). 
aEA 

Hence the function ¢ 0 is a fixed point of r+ and, as a consequence, the 
pair (¢0 , ¢1) is an admissible pair. 0 
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§4. Dynamics 

Let us define the subset 

D := {(x,y) EM x Ms. t. A(x,y) + c(y,x) = 0} C Ax A 

(see Lemma 10). We shall explain in two different ways that the Borel 
probability measures TJ on M x M which are supported on D and satisfy 
1To~(TJ) = 7r 1 ~(TJ) can be seen in a natural way as the analog of Mather 
minimizing measures in our setting. 

4.1. Construction via Kantorovich pairs 

We first expose a construction based on Kantorovich pairs. 

Theorem 13. Under the assumption (Al), we have 

min r A(x, y)dTJ(X, y) = 0, 
11 lMxM 

where the minimum is taken on the set of Borel probability measures 
TJ on M x M such that 1To~(TJ) = 7r 1 ~(TJ). The minimizing measures are 
those which are supported on D. 

Proof. Let us first prove that there exists a measure TJ on M x M 
which is supported on D and such that 7ro~(TJ) = 7l'I~(TJ). By Lemma 10, 
for each x0 E A, there exists a point x 1 in A such that (x0 ,x1 ) ED. 
Hence there exists a sequence x 0 , x 1 , x 2 , ... Xn, . . . of points of A such 
that (xn, Xn+d ED for each n. Let us now consider the sequence 

of probability measures on A x A. Every accumulation point (for the 
weak topology) of the sequence T/n satisfies the desired property. Since 
the set of probability measures on M x M is compact for the weak 
topology, such accumulation points exist. 

Consider a measure TJ on M x M which is supported on D and such 
that 7ro~(TJ) = 7l'I~(TJ). We have 

J A(x, y)drJ(x, y) = J -c(y, x)dTJ(y, x) ~ J ¢(y)- ¢(x)drJ(x, y) = 0, 

where ¢ is any c-Lipschitz function. 
On the other hand, let TJ be a probability measure on M x M such 

that 7ro~(TJ) = 7l'I~(TJ). Consider a function¢ which is A-Lipschitz. Such 
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functions exist, for example, take z2 ----+ c(z1, z2 ) for any z1 E J\,1 (see 
Lemma 10) or fixed points ofT~ or T+. We have 

(6) 0 = J cj;(y)- cj;(x)d17(x, y) ~ J A(x, y)d17(x, y). 

We have proved that the minimum in the statement is indeed zero, and 
that the measures supported on D are minimizing. There remains to 
prove that every minimizing measure is supported on D. 

It is clear that a measure 17 is minimizing if and only if, for each 
A-Lipschitz function ¢, there is equality in (6), which means that the 
measure 17 is supported on the set 

D1 = {(x,y) E M 2
1 

cj;(y)- cj;(x) = A(x, y) for all A-Lipschitz functions¢}. 

Let D 00 be the set of pairs (x0 , xl) such that there exists a sequence Xi, 
i E Z satisfying (xi, Xi+d E D1 for all i E Z (and of course with the 
given points x 0 and x1). 

We claim that D 00 C D. In order to prove this claim, let cj; be A­
Lipschitz. Observe that cj; is An-Lipschitz for all n E N and c-Lipschitz. 
If (x0 , xl) is a point in Doo, then there exists a sequence Xi, i E Z such 
that 

for each i < j in Z. If a is an accumulation point of the sequence xi at 
-oo, we get the equality 

for each j E Z and then, in the same way, c(a, a) = cj;(a) - cj;(a) = 0, 
hence a E A. Let ( ¢ 0 , ¢ 1) be a Kantorovich pair for c, so that both 
¢ 0 and ¢ 1 are A-Lipschitz (see Theorem 12). We get cj;l(a) = ¢o(a) 
(because a E A, see Theorem 12) hence cj;l(xj) = cJ;o (xj ). Since this 
holds for all Kantorovich pairs, we get that Xj E A (see Lemma 2). 
In other words, we have proved that D 00 C A x A. Now let (xo, xl) 
be a point of D 00 • We have x1 E A, and, since the function c(x1, .) 
is A-Lipschitz, we have the equality c(x1,x1)- c(x1,xo) = A(xo,xl). 
Recalling that c(x1, xl) = 0, we get c(x1, x0 ) + A(xo, xl) = 0, hence 
(x0 , xl) E D. The proof of the Theorem then follows from the next 
Lemma. 0 
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Lemma 14. If ry is a probability measure on M x M which is sup­
ported on DI and such that 1ro~ ( ry) = 7ri~ ( ry), then ry is concentrated on 
Doo· 

Proof. Let us set 11 = 7ro~ ( ry) = 7ri~ ( ry) and let 

be the set of points xo E M such that a sequence X-I, xo, XI exists, 
with (x-I,xo) E DI and (xo,xi) E DI. Clearly, we have fJ(7ro(DI)) = 
fJ(7ri(DI)) = 1 hence 11(XI) = 1. Let 

D2 = DIn (XI x XI) 

be the set of pairs (x0, x1 ) E M 2 such that there exist X-I, xo, XI, X2 
with (xi, Xi+I) E DI fori= -1, 0, 1. Let 

be the set of points xo EM such that a sequence X-2,X-I,Xo,XI,X2 
exists, with (xi,Xi+I) E DI for all -2 ~ i ~ 1. Since fJ(XI) = 1, we 
have ry(D2) = 1, hence 11(X2) = 1. By recurrence, we build a sequences 
Dn C M X M and Xn C M such that 

and 

Xn = 7ro(Dn) n 7ri(Dn) c M. 

By recurrence, we see that ry(Dn) = 1 and that /l(Xn) 
have 

Doo = n Dn 
nEZ 

hence ry(Doo) = 1. 

4.2. Ergodic Construction 

1. Now we 

D 

It is worth explaining that the preceding construction could have 
been performed in a quite different way, which does not use our theory 
of Kantorovich pairs, but relies on Ergodic theory, as the first papers of 
Mather. 

Consider X = Mz endowed with the product topology, so that X 
is a metrizable compact space. We shall denote by Mr(X) the set of 
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Borelian probability measures on X which are invariant by translation. 
More precisely, we denote by T : X ---+ X the translation map 

with bi = ai+l for all i E Z, so that Mr(X) is the set of probability 
measures v on X such that T~v = v. 

Theorem 15. We have 

min r A(xo, XI) dv(x) = 0. 
vEMT(X) lx 

The measure v is minimizing if and only if its marginal'T) = ('rro x 'iTI)~v 
is concentrated on D. 

Note that Theorem 15 is equivalent to Theorem 13 in view of the 
following: 

Lemma 16. Let 7) be a Borelian probability measure on M 2 such 
that 'iTo~ ( 7)) = 'iT I~ ( 7)). Then there exists a Borelian measure v on X that 
is T -invariant and such that 7) is its push-forward by the map X 3 x ---+ 

(xo, xi) E M 2 . 

Proof. This follows from the Hahn-Kolmogorov extension theorem 
(see e.g. Theorem 0.1.5 in [12], Lemma 10.2.4 in [7] and Theorem 12.1.2 
in [7]). Let n be the algebra of finite unions of subsets G of X of the 
type G = IIiEZGi where Gi f M for at most a finite number of indices 
i (the number depending on G) and every Gi is a Borelian subset of 
M. We first define the T-invariant probability measure v on n and 
then apply the Hahn-Kolmogorov extension theorem, which provides an 
unique extension to the Borel cr-algebra (by uniqueness, the extension 
is T-invariant). 

Let 7) = J M 7Jx 1 df-L(xi) be the disintegration of 7) with respect to the 
projection M 2 3 (x0 , xi) ---+ XI E M. In particular f-L = 'iTI~(7J) (see e.g. 
Theorem 5.3.1 in [2] for the disintegration theorem). Define form< n 

v( . .. X M X M X Gm X ... X Gn X M X M X ... ) 

1 dr]xm+I (xm) · · · dr]x, (xn_I)df-L(Xn)· 
Gm x ... xGn 

This is well defined because if Gm-I = M then 

1 dr]xm (xm_I)d7]x,+ 1 (xm) ... dr]x, (Xn-ddf-L(Xn) 
G,_,xG,x ... xGn 

1 dr]xm+I (xm) · · · dr]x, (Xn-I)df-L(Xn) 
Grn x ... xGn 
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and if Gn+1 = M then 

= r dryXm+l (Xm) · · · d'T/x,. (Xn-1)d'T/xn+l (xn)dJL(Xn+!) Jam. X ... XGn xG·n+l 

= la,.xM { la,.x ... xG,._, dryxm+l (xm) · · · dryxn (Xn-d} dryxn+l (xn)dJL(XnH) 

= lanXM {la,x ... xG,._, dryxm+l(xm) ... dryxn(Xn-d}dry(xn,Xn+1) 

= r { r d'T/x,+ 1 (Xm) ... d'T/xn(Xn-1)}dJL(Xn) Jan Jam.X ... XGn~l 

because JL = 7r1U('T/) = 7rou(ry). 
Clearly v(X) = 1 and v is T-invariant on n. D 

Although we have proved the equivalence between Theorem 15 and 
Theorem 13 we shall, as announced, detail another proof of Theorem 15. 

For x E X and every Borelian subset B, we define 

1 . 
TB(x) = lim - card{O:::::; j :::::; n- 11 Tl(x) E B} 

n-++oo n 

(when the notation is used, it is understood that the limit exists). A 
Borelian probability v on X is ergodic if and only if, for every Borelian 
subset B C X, there holds TB(x) = v(B) v-almost surely. 

Following Section Il.6 in the book by Maiie [12], there exists a Borel 
set E C X such that v(E) = 1 for each v E MT(X), and, for each x E E, 
the measure 

n-1 

Vx := lim ~ "'"""'8Ti(x) 
n-++oo n ~ 

j=O 

is well defined and ergodic, where the limit is understood in the sense 
of the weak topology, that is 

(7) 
n-1 

Vf E C(X, IR) { f dvx = lim ~ "'"""'f(Ti(x)). Jx n-+oo n ~ 
j=O 

Moreover Vx E MT(X) and x belongs to the support of Vx for all x E E. 
In addition, still following [12], we have that the function x ~---+ J fdvx 
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is v-integrable and T-invariant, and that 

(8) 

holds for every f E £ 1(X, v). Note that the measure Vx is the conditional 
probability measure of v with respect to the a-algebra of T-invariant 
Borel sets. 

We define the continuous function r : X ----+ lR by r(x) = A(x0 , xi). 
By standard convexity arguments, the following minimum is reached: 

a= min r r(x)dv(x). 
vEMr(X)}x 

Let us prove that a :( 0. Fix x0 E M. For all E > 0, we can find 
n ;;<: 1 and X1, ... , Xn E M such that 

1 n-1 

Xn = Xo and - L A(xj, Xj+l) < E 

n j=O 

(thanks to assumption (A1)). Let x = ( ... ,x0 , .•. ,xn,···) EX have 
periodic components with period nand define v E Mr(X) by 

1 n-1 

V=- L8Ti(x) 
n j=O 

where 8ri(x) is the Dirac measure at Tl(x). Then fx rdv < E, which 
proves that a:( 0 (because E can be chosen arbitrarily small). 

Let v E Mr(X) be any optimal measure. The equality 

shows that fx rdvx =a for v-almost all X E E. For such ax, we get 

(9) 
1 n-1 . 1 n-1 

0 ;;<:a= lim - ""'r(T1 (x)) = lim - """'A(x1 ,xJ+d· 
n-++= n L....- n-++= n L....-j=O j=O 

Assume for a while that x 0 rf. A. Then there exists a neighborhood U 
of x0 in M, 8 > 0 and N ;;<: 1 such that 

(10) An(Yo,zo) > 8 > 0 for all yo,zo E U and n ;;<: N 
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(we use here the equicontinuity of the functions An)· Setting fJ = {y E 

X I Yo E U}, we get 

- 1 
0 < vx(U) ~ liminf -card{O ~ j ~ n -1ixj E U}. 

n-++CX) n 

The first inequality is a consequence of the fact that x is in the sup­
port of Vx and the second one follows from (7) and the fact that the 
characteristic function of U is the supremum of an increasing sequence 
of continuous functions. We denote by (x1k : k ~ 0) the sequence of 
components of x in U (of non-negative index). We obtain (see (10)) 

- mN 
0 < vx(U) ~ liminf -.-

m-++=]mN 

and the contradiction 

1 Jm.N-1 

liminf-.- L A(x1,xJ+t) 
m-+CXJ ]mN j=O 

m-1J(k+l)N-1 

= liminf-.-1- L L A(xj,XJ+t) 
m-+CXJ JmN k=O j=JkN 

m-1 

~ lim inf -.-1- L AJ(k+l)N -1kN (xJkN, Xj<k+l)N) 
m-+CXJ ]mN k=O 

~ liminf ~J ~ Vx(U)JjN > 0 
m-+CXJ ]mN 

(compare with (9)). This contradiction shows that x0 E A for v-almost 
all x, that is, the marginal f.1 = 1r0~v is concentrated on A. 

Let us now check that a ~ 0. For contradiction, suppose a < 0. 
Then for x E E as above such that Vx E Mr(X) and f(vx) =a, we get 

0 > 
. 1 n-1 

a= r(vx) = hm - """'A(x1, XJ+t) 
n-++= n ~ 

j=O 

lim - 1-. (~ A(xj,XJ+1) + A(xn,xo)) 
n-++= n + 1 ~ 

j=O 

~ limsup-1-An+l(xo,xo). 
n-++= n + 1 

This contradicts l = 0 (see hypothesis (A1)). 
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We have proved that a= 0, and that every minimizing T-invariant 
measure v has its marginal J-L = n0~ v concentrated on A. Let us now 
prove that every minimizing measure v E Mr(X) is supported on {x E 

Xi A(x0 , xi) + c(xi, x0 ) = 0}. Let x belong to the support of v and 
observe that (see Lemma 10) c(xi, yl) ~ c(xi, y0 ) + A(y0 , yi) for all 
yo, YI E M. Therefore 

0 = fx c(x~, YI)- c(xi, Yo) dv(y) ~ fx A(yo, yi) dv(y) =a= 0 

and fx A(yo, YI)- c(xi, yi) + c(xi, yo) dv(y) = 0 

where the integrand is non negative. Hence c(x~, YI) = c(x1, Yo) + 
A(yo, yl) for v-almost all y. Since x is in the support of v, we get 
c(xi, XI) = c(xi, xo) + A(xo, xi). We have just seen that Yo E A for v­
almost ally. By the T-invariance of v, we also have y1 E A for v-almost 
all y. Since x is in the support of v, we therefore obtain XI E A and 
0 = c(xi, xi) = c(xi, xo) + A(xo, XI)· 

Finally let v E Mr(X) be concentrated on 

i5 = {y E X I A(yo, Yl) + c(yi, Yo) = 0} 

and let us prove that fx fdv = a. By (8) applied to the characteristic 

function of D, we get that vx(D) = 1 for v-almost all x E E. By (8) 
. applied to r, we see that it suffices to check that fx fdvx = a for all 

x E E such that Vx is concentrated on D. This follows from (C1): 

D 

§5. Aubry-Mather theory 

We now brl.efly explain the relations between our discussions and 
the literature on Aubry-Mather theory, and especially [11], [14] and [10]. 
From now on, the space M is a compact connected manifold and we con­
sider a C 2 Lagrangian function L : T M X IR ---> IR as in the Introduction. 
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In this context, we define A : M x M --+ JR. by 

A(x, y) =min [ 1 L('y(t), i'(t), t)dt, 
"~ lo 

where the minimum is taken on the set of C 2 curves 1 : [0, 1] --+ M 
which satisfy 1(0) = x and 1(1) = y. 

The function c defined by (5) is one of the central objects of Mather's 
theory of globally minimizing orbits, see [11]. He called it the Peierls 
barrier. It contains most of the information concerning the globally 
minimizing orbits, as was explained by Mather, see also [3]. The set A 
of points x E M such that c(x, x) = 0 is called the projected Aubry 
set. It is especially important because Mather proved the existence of 
a vectorfield X(x) on A whose graph is invariant under the Lagrangian 
flow cp. This invariant set is called the Aubry set. The analog of the 
Aubry set in our general theory is the set D defined in the beginning of 
section 4. 

The operators r± have been introduced by Albert Fathi in this 
context, see [8],[9] and [10]. He called Weak KAM solutions the fixed 
points of r-, and we call backward weak KAM solutions the fixed points 
of r+. He also noticed that, for each weak KAM solution c/Ji, there exists 
one and only one backward weak KAM solution ¢o which is equal to ¢1 
on the projected Aubry set. This is the main part of our Theorem 
12. Albert Fathi also proved Lemma 2 in this context. Our novelty in 
these matters consists of pointing out and using the equivalence with 
Kantorovich admissible pairs, which allows, for example, a strikingly 
simple proof of the important result of Fathi called Lemma 2 in our 
paper. The representation of weak KAM solutions given in Proposition 
8 was obtained by Contreras in [6]. 

The minimizing measures of Theorem 13 are the famous Mather 
measures, see [11]. To be more precise, we should say that there is a 
natural bijection between the set of minimizing measures in Theorem 
13 and the set of Mather measures. This bijection is described in [4]. 
In order to give the reader a clue of this bijection, let us recall that 
the Mather measures are probability measures on the tangent bundle 
TM, and that the minimizing measures of Theorem 13 are probability 
measures on M x M. Denoting by cp the time-one Lagrangian flow, 
and by 1r : T M --+ M the standard projection, we have a well-defined 
mapping ( 1r, 1r o cp )# from the set of probability measures on T M to the 
set of probability measures on M x M. This mapping induces a bijection 
between the set of Mather measures on T M and the set of minimizing 
measures of Theorem 13. 
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The part of Theorem 13 stating that the minimizing measures are 
precisely the measures supported on D is the analogous in our setting of 
the theorem of Mane stating that all invariant measures supported on 
the Aubry set are minimizing, see [13]. 
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