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§0. Introduction 

Let X be a smooth complex projective variety of dimension n. The 
Hodge conjecture is then true for rational Hodge classes of degree 2n- 2, 
that is, the degree 2n - 2 rational cohomology classes of X which are 
of Hodge type ( n - 1, n - 1) are algebraic, which means that they are 
the cohomology classes of algebraic cycles with Q-coefficients. Indeed, 
this follows from the hard Lefschetz theorem, which provides an isomor­
phism: 

from the fact that the isomorphism above sends the space of rational 
Hodge classes of degree 2 onto the space of rational Hodge classes of 
degree 2n- 2, and from the Lefschetz theorem on (1, I)-classes. 

For integral Hodge classes, Kollar [11], (see also [14]) gave examples 
of smooth complex projective manifolds which do not satisfy the Hodge 
conjecture for integral degree 2n- 2 Hodge classes, for any n :::> 3. The 
examples are smooth general hypersurfaces X of certain degrees in JP'n+l. 
By the Lefschetz restriction theorem, such a variety satisfies 

and 
H 2n-2 (X, Z) = Za, < a, H >= 1. 

Plane sections C of X have cohomology class [C] 
because 

degC = d =< [C],H >. 

Kollar [11] proves the following: 
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Theorem 1. Consider hypersurfaces X C JP'n+l of degree d, where 
n 2: 4. Assumed satisfies the property that pn divides d, for some integer 
p coprime to n!. Then for a general X, any curve C in X has degree 
divisible by p, hence its cohomology class is a multiple of pa. Thus the 
class a is not algebraic, that is, it is not the cohomology class of an 
algebraic cycle with integral coefficients. 

The condition on the degree makes the canonical bundle of X very 
ample, since the smallest possible degree available by this construction is 
2: 2n. It is thus natural to try to understand whether this is an artificial 
consequence of the method of construction, or whether the positivity of 
the canonical bundle is essential. 

Another reason to ask whether one could find examples above with 
Kodaira dimension equal to -oo is the remark made in [14] : 

Lemma 1. Let X be a smooth rational complex projective manifold. 
Then the Hodge conjecture is true for integral Hodge classes of degree 
2n- 2. 

(Note that the whole degree 2n- 2 cohomology of such an X is of 
type ( n - 1, n - 1), so the statement is that classes of curves generate 
H 2n- 2 (X,Z) for a rational variety X.) 

One can thus ask whether this criterion could be used to produce 
new examples of unirational or rationally connected, but non rational 
varieties (we refer to [5], [1], [9] for other criteria). Namely, it would suf­
fice to produce a smooth projective rationally connected variety which 
does not satisfy the Hodge conjecture for degree 2n - 2 integral coho­
mology classes. The main result of this paper implies that in dimension 
3, this cannot be done: 

Theorem 2. Let X be a smooth complex projective threefold which 
either is uniruled, or satisfies 

Then the Hodge conjecture is true for integral degree 4 Hodge classes on 
X. 

Remark 1. Recall [12] that a complex projective threefold is unir­
uled, that is swept out by rational curves, if and only if it has Kodaira 
dimension equal to -oo. Thus our condition is that either "'(X) = -oo 
or Kx =Ox and H 2 (X, Ox)= 0. 

Note that as an obvious corollary, we get the following: 
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Corollary 1. Let X be a smooth complex projective n-fold. Assume 
X contains a subvariety Y which is a smooth 3-dimensional complete in­
tersection of ample divisors, and satisfies one of the conditions in The­
orem 2. Then the Hodge conjecture is true for integral degree 2n - 2 
Hodge classes on X. 

Indeed, let j be the inclusion of Y into X. By Lefschetz restriction 
theorem, the map 

is an isomorphism. Thus the Hodge conjecture for integral Hodge classes 
of degree 4 on Y implies the Hodge conjecture for integral Hodge classes 
of degree 2n- 2 on X. • 

Note that in higher dimensions, there are two possible generaliza­
tions of the problem studied above. Namely, one can study the Hodge 
conjecture for integral Hodge classes in degree 4 or 2n-2. Both problems 
are birationally invariant, in the sense that the two groups 

Hdg 4 (X, 7l)/ < [Z] >, Hdg2n- 2 (X, 7l)/ < [Z] >, 

where < [Z] > denotes the subgroups generated by classes of algebraic 
cycles with integral coefficients, are birational invariants of a smooth 
complex projective manifold X of dimension n (see [14]). For both 
problems, it is clear that the assumption "uniruled" will not be sufficient 
in higher dimension to guarantee that the groups above vanish. Indeed, 
starting from one of Kollar's 3-dimensional example of a pair X, o: E 

H4 (X, 7l), where o: is a non-algebraic integral Hodge class (Theorem 1), 
we can consider the product 

y =X X lP'1, 

and both classes 
pr~o:, pr~o: U pr;([pt]) 

in degree 4 and 6 = 2n-2 respectively will give examples of non-algebraic 
integral Hodge classes. 

However, one may wonder if the analogue of Theorem 2 holds for X 
rationally connected, and for integral Hodge classes of degree 4 or 2n- 2 
on X, n =dim X. 

The proof of Theorem 2 uses the Noether-Lefschetz locus for surfaces 
S in an adequately chosen ample linear system on X. This leads to 
simple criteria which guarantee that integral degree 2 cohomology classes 
on a given S are generated over 7l by those which become algebraic 
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on some small deformation St of S. The Lefschetz hyperplane section 
Theorem allows then to conclude. 

In section 1, we state this criterion, which is an algebraic criterion 
concerning the infinitesimal variation of Hodge structure on H 2 ( S), for 
varieties X with H 2 (X, Ox) = 0. In section 2, we prove that this crite­
rion is satisfied for uniruled or K-trivial varieties with trivial H 2 (X, Ox). 
In the case of K-trivial varieties, the criterion had been also checked in 
[15], but the proof given here is substantially simpler. In section 3, a 
refinement of this criterion for uniruled threefolds with H 2 (X, Ox) of. 0 
is given and proven to hold for an adequate choice of linear system. 

Thanks. This work was started during the very interesting confer­
ence "Arithmetic Geometry and Moduli Spaces. It is a pleasure to thank 
the organizers for the nice atmosphere they succeeded to create. I also 
wish to thankS. Mori for his help in the proof of Lemma 4 and J. Starr 
for interesting discussions on related questions. 

§1. An infinitesimal criterion 

Let X be a smooth complex projective n-fold. Let j : S '-+ X be a 
surface which is a smooth complete intersection of ample divisors. Thus 
by Lefschetz theorem, the Gysin map: 

is surjective. 
We assume that the Hilbert scheme 7-i of deformations of S in X is 

smooth nearS. This is the case if Sis a smooth complete intersection of 
sufficiently ample divisors. The space H 0 ( S, N s; x) is the tangent space 
to 7-i at S. Let p: H 0 (S, Ns;x) --> H 1(S, Ts) be the Kodaira-Spencer 
map, which is the classifying map for the first order deformations of the 
complex structure on S induced by the universal family 1r : S --> 7-i of 
surfaces parameterized by 7-i. 

For u E H 1 (S, Ts) we have the interior product with u: 

u_j : H 1 (S, Ds) --> H 2 (S, Os ). 

The criterion we shall use is the following: 

Proposition 1. Assume there exists a A E H 1 ( S, Ds) such that the 
map 

(1.1) J.L>. : H 0 (S, Ns;x)--> H 2 (S, Os), 

J.L>.(n) = p(n)_j>., 
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is surjective. Then any class ex E H 2n- 2 (X, Z) is algebraic. 

Remark 2. Our assumptions imply immediately that the coho­
mology H 2n-2 (X, q is of type (n- 1, n- 1). Indeed, this last fact is 
equivalent to the vanishing of the space Hn(X, nl- 2 ). On the other 
hand, interpreting the map fl.>. above in terms of infinitesimal variations 
of Hodge structures on the degree 2 cohomology of the surfaces St pa­
rameterized by H, one sees that Imp,>. is contained in 

Thus the assumptions imply that this last map j* is 0, and as it is 
surjective by Lefschetz theorem, it follows that Hn(X, f2l- 2 ) = 0. 

Remark 3. The assumption of Proposition 1 is exactly the assump­
tion of Green's infinitesimal criterion for the density of the Noether­
Lefschetz locus (see [19], 5.3.4), which allows to conclude that real degree 
2 cohomology classes on S can be approximated by rational algebraic 
cohomology classes on nearby fibers St. It had been already used in [16], 
[17] to construct interesting algebraic cycles on Calabi-Yau threefolds. 

Proof of Proposition. We refer to [19], chapter 5, for more details 
on infinitesimal variations of Hodge structures. On a simply connected 
neighborhood U in H of the point 0 E H parameterizing S c X, the 
restricted family 

1r: Su----+ U 

is differentiably trivial, and in particular the local system 

Hi:= R 21r*Zjtorsion 

is trivial. Thus the locally free sheaf 

H 2 := Hi®Ou 

is canonically trivial, and denoting by H 2 the corresponding vector bun­
dle on U, we get a canonical isomorphism 

since the fiber of H 2 at 0 is canonically isomorphic to H 2 (S, C). Com­
posing with the second projection gives us a holomorphic map 

which on each fiber Hl = H 2 (St, q is the natural identification 
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Next the vector bundle H 2 contains a holomorphic sub bundle F 1 H 2 , 

which at the point t E U has for fibre the subspace 

F 1 H 2 (St) := H 2•0 (St) EB H 1•1 (St) c H 2 (St, C). 

We shall denote by 
Tl : F 1 H 2 ---+ H 2 (S, q 

the restriction ofT to F 1 H 2 . 

The key point is the following fact, for which we refer to [19], 5.3.4 : 

Lemma 2. For A E H 1 (St, Os, ), choose any lifting,\ E F 1 Hf of A. 
Then the surjectivity of the map 

P,>-.: H 0 (St, Nstfx)---+ H 2 (St, Os,) 

is equivalent to the fact that the map T1 is a submersion at A. 

Having this, we conclude as follows: First of all, we observe that 
the assumption of Proposition 1 is a Zariski open condition on A E 

H 1(S,0 5 ). Now, the space H 1(S,0 5 ) = H 1•1 (S) has a real structure, 
namely 

H 1•1 (S) = H 1•1 (S)Jll!. 0 C, 

where H 1•1 (S)Jll!. = H 1•1 (S) n H 2 (S, Ft). Thus if the assumption is satis­
fied for one A E H 1•1 (S), it is satisfied for one real A E H 1•1 (S)Jll!.. 

In the lemma above, choose for lifting ,\ the class A itself. Thus ,\ 
is real, and so is T1 (,\). As the assumption on A and the lemma imply 
that T1 is a submersion at >., so is the restriction 

Tl,Jll!. : H~' 1 ---+ H 2 (S, 'ft) 

of T1 to T1- 1 (H2 (S, Ft)). Here we identified T1- 1 (H2 (S, 'ft)) to 

Utcu F 1 H 2 (St) n H 2 (St, 'ft) = Utcu H 1•1 (St)Jll!. =: H~· 1 . 

As TI,Jll!. is a submersion at >., and Hl,l(S)Jll!. is a smooth real manifold, 
because it is a real vector bundle on U and U is smooth, I m T1 Jll!. contains 
a non-empty open set of H 2 (S,'ft). On the other hand ImT1 ,~ is a cone. 
~'e use now the following elementary lemma: 

Lemma 3. Let Vz be a lattice, and let C be a non-empty open cone 
in VJJI!. := Vz Q9 K Then Vz is generated over Z by the points in Vz n C. 

Proof. Vz n C is non-empty because VQ is dense, and C is a non­
empty open cone in VJJI!.. Let u E Vz, and let u' E Vz n C. For q a large 
integer, we have iu + u' E C, because Cis open. Then u + qu' := v' E 

Vz n C. Thus u = v'- qu' is in the sublattice generated over Z by the 
points in Vz n C. • 
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We apply Lemma 3 to Vz; = H 2 (S, Z)jtorsion and to C an open 
cone contained in Jmr1,JR. Thus we conclude that H 2(S, Z)jtorsion is 
generated over Z by classes o: E Jm r 1,JR. But by definition of r 1 , if an 
integral cohomology class o: E H 2(S, Z)jtorsion is equal to r 1,JR(.Xt), for 
some 

the corresponding class 

is equal to At in H 2 (St, JR). Thus the class 

is algebraic on St by Lefschetz theorem on (1, 1)-classes. 
The conclusion is that, under the assumptions of Proposition 1, the 

lattice H 2(S, Z)jtorsion is generated over Z by integral classes which 
become algebraic (i.e. are the class of a divisor) on some nearby fiber 
St. As the torsion of H 2 (S, Z) is algebraic, the same conclusion holds 
for H 2(S, Z). _ 

Finally, as the map j* : H 2 (S, Z) --+ H 2n-2(X, Z) is surjective, we 
conclude that H 2n-2(X, Z) is generated over Z by classes of 1-cycles in 
X. 

• 
§2. Proof of Theorem 2 when H 2 (X, Ox) = 0 

In this section, we assume that H 2(X, Ox) = 0 and X either has 
trivial canonical bundle or is uniruled. 

In case where X is uniruled, we have the following result: 

Lemma 4. Let X be a uniruled threefold. Then a smooth birational 
model X' of X carries an ample line bundle H such that 

Proof. As X is uniruled, X is birationally equivalent to a IQ­
Gorenstein threefold Y which is either a singular Fano threefold, or 
a Del Pezzo fibration over a smooth curve, or a conic bundle over a 
IQ-Gorenstein surface. Let us first prove the existence of an ample line 
bundle Hy on Y such that KvH'f < 0: 

a) If Y is Fano, - K y is ample, so we can take for Hy an integral 
multiple of -Ky. 
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b) Otherwise there is a morphism 

n:Y---+B, 

where B is Q-Gorenstein of dimension 1 or 2, and the relative canonical 
bundle K rr has the property that ~ K rr is a relatively ample Q-divisor. 
Let H 8 be an ample line bundle on B, and choose for Hy the Q-divisor 

where Eisa small rational number. As ~Krr is relatively ample, Hy is 
ample for small enough E. We compute now: 

H~Ky = (n* HB ~ EKrr) 2 (n* KB + Krr) 

= n* H~Krr ~ 2EKrrn* HB(n* KB + Krr) + 0(E2 ). 

If dim B = 2, the term n* H~Krr is negative, so that for small E, 

H~Ky < 0. 

If dim B = 1, the first term vanishes but the second term is equal to 
~ 2EK;n* H B and this is negative because ~ K rr is relatively ample. 

Let now Y, Hy be as above, and letT: X'---> Y be a desingulariza­
tion of Y. Thus X' is a smooth birational model of X. Then there is a 
relatively ample divisor E on X' which is supported on the exceptional 
divisor of T. Consider the Q-divisor 

H = T*Hy +EE, 

forE a sufficiently small rational number. Then we have Kx' = y* K y+ F 
where F is supported on the exceptional divisor ofT. This gives 

As y* H~F = 0, the dominating term is equal to 

y* H~T* Ky = H~Ky < 0. 

Thus for small Ewe have H 2 Kx' < 0. 

• 
From now on, we will, in the uniruled case, consider X' instead of 

X, which can be done since the statement of Theorem 2 is invariant 
under birational equivalence, and we will assume that H satisfies the 
conclusion of Lemma 4. 

Our aim in this section is to prove the following Proposition, which 
by Proposition 1 implies Theorem 2 for uniruled and Calabi-Yau three­
folds X with H 2 (X, Ox)= 0. 
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Proposition 2. Let X be a smooth projective uniruled or Calabi­
Yau threefold such that H 2 (X, Ox)= 0. Let H be an ample line bundle 
on X. In the uniruled case, assume that H satisfies H 2Kx < 0. Then 
for n large enough, and for S a generic surface in I nH I, there is a 
.X E H 1(S, fls) which satisfies the property that 

1-l>.: H0 (S, Os(nH))---+ H 2 (S, Os) 

is surjective. 

To see that this is a reasonable statement, note that in the K­
trivial case, the spaces H 0 ( S, 0 s ( nH)) arid H 2 ( S, 0 s) have the same 
dimension, since, if S El nH I, we have by adjunction 

H 0 (S,Ks) = H 0 (S,Os(S)) = H 0 (S,Ns;x), 

with H 0 ( S, K s) = H 2 ( S, 0 s) *. Thus the two spaces involved in Propo­
sition 2 have the same dimension. In the uniruled case, we have: 

Lemma 5. Assume X,H satisfies H 2Kx < 0, then for S El nH I, 
we have 

h0 (0s(S)) = h0 (Ks) + ¢(n), 

where ¢(n) = an2 + o(n2 ), a> 0. 

Proof. We have Ks = Kx(S)IS· Thus 

x(Os(S)) = x(Ks(-Kx)) 

1 2 
= x(Kxls) = x(Os) + 2(Kx1s- Kx1s(Kx1s + nHis)) 

1 
= x(Ks) + 2(nHK'Jc- nHKx(nH + Kx)). 

It follows that 

x(Os(S))- x(Ks) = -~n2H2Kx +affine linear term inn. 

On the other hand, for large n, the ranks 

h1 (0s(S)) = h2 (0x), h2 (0s(S)) = h3 (0x), 

h1(Ks) = h1(0s) = h1(0x), h2 (Ks) = C 

do not depend on n. It follows that we also have 

1 
h0 (0s(S))- h0 (Ks) = - 2 n 2 H 2 Kx +affine linear term in n, 

which proves the result with a= -!H2Kx > 0. • 
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By this Lemma, we conclude that in the K-trivial case and in the 
uniruled case, we can assume that we have for n large enough, and 
SEinH I, 

This makes possible the surjectivity of the map 

of (1.1), and also says that J..l>-. is surjective if and only if it has maximal 
rank. 

Another way to see this is to introduce 

The bilinear map 

(2.2) J..l: V x V'---> H 1(S, 0.8 ), 

J..L( v, v') = p( v')_jv 

and Serre's duality H 1(S,0.s) ~ H 1(S,0.s)* give a dual map 

q = J..l* : H 1 (S, 0.s) ---> (V Q9 V')* = H 0 (1P'(V) x IP'(V'), 0(1, 1)), 

given by 
q(>.)(v Q9 v') =<A, J..L(V X v1 ) > . 

As we have 
< >., p(v')_jv >=- < p(v')_j>., v >, 

where the <, > stand for Serre's duality on H 1 ( S, 0.8 ) on the left and be­
tween H 0 (S, Ks) and H 2 (S, Os) on the right, we see that q(>.) identifies 
to J..l>-. E Hom (V, V'*). 

Thus the condition that J..l>-. has maximal rank for generic >. is equiv­
alent to the condition that the hypersurface of IP'(V) x IP'(V') defined by 
q(>.) is non singular. 

We shall use the following criterion: 

Lemma 6. Given J..l as in (2.2), the generic hypersurface defined by 
q(>.) is non singular if the following set 

(2.3) Z = {(v,v') E IP'(V) x IP'(V'), J..L(v x v') = 0 E H 1(S,0.s)} 

satisfies 
dimZ < dim!P'(V'). 
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Proof. Assume to the contrary that the generic q(>.) is singular. 
Let 

Z' c IP'(H 1 (S, Os)) x IP'(V), 

Z' = {(>., v), q(>.) is singular at (v, v') for some v' E IP'(V')}. 

By assumption Z' dominates IP'( H 1 ( S, Os)). Clearly there is only one 
irreducible component Z~ of Z' which dominates IP'(H 1(S,r!s)). Let Z~ 
be the second projection of Z~ in IP'(V). 

As Z~ dominates IP'(H1 (S, Os)) we have 

dimZ~ ~ rkH1(S,Os) -1. 

On the other hand, the fiber of z~ over the generic point Vg of Zf is 
equal to 

Thus we have 

dim Z~ =dim Z~ + rk H 1(S, Os)- 1- rk J-lv 9 , 

where J-tvg: V'---> H 1 (S,Os) is the map v' f---7 p,(v9 x v'). 
The condition dim Z~ ~ rk H 1 ( S, Os) - 1 is thus equivalent to 

(2.4) dimZ~ ~ rkJ-tv0 • 

But on the other hand, the unique irreducible component Z0 of Z which 
dominates Zf has dimension equal to dim Zf + dim IP'(V') - rk J-lv9 and 
inequality (2.4) implies that this is ~ dim IP'(V'). • 

Our first task will be thus to study the set Z introduced in (2.3). To 
this effect, we degenerate the surface S E I nH I to a surface with many 
nodes. The reason for doing that is the following fact (cf [15]): 

Lemma 7. Let S ---> ll be a Lefschetz degeneration of surfaces St 
in I nH I, where the central fiber has ordinary double points x1, ... , x N 

as singularities. Then the limiting space 

which is a subspace of(H0 (So,Ks0 )®H0 (So,Os0 (nH)))*, contains for 
each i = 1, ... , N the multiplication-evaluation map which is the com­
posite: 
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As we want to use this lemma to bound the dimension of the space 
Z of (2.3) for a generic surface, it is natural to degenerate the generic 
surface to a surface with many nodes. To get surfaces with many nodes, 
we use discriminant surfaces as in [2]. We assume here that H is very 
ample on X, and we consider a generic symmetric n by n matrix A whose 
entries Aij are in H 0 (X, Ox(H)). Let OA := discr A E H 0 (X, Ox(nH)) 
and SA be the surface defined by OA. 

Theorem 3. (Barth [2]) The surface SA has N ordinary double 
points as singularities, with 

3 
Note that for large n, this grows like ~ H 3 while both dimensions 

h0 (K8 ), h0 (08 (nH)) of the spaces V, V' grow like h0 (0x(nH)), that is 
3 

like ~ H 3 by Riemann-Roch. 
Next we have the following lemma, which might well be known al­

ready, but for which we could not find a reference: 

Lemma 8. Let X be a smooth projective threefold, and H a very 
ample line bundle on X which satisfies the property that 

Hi(X, Ox(lH)) = 0, fori > 0, l > 0. 

Let SA E I nH I be a generic discriminant surface as above, and let W C 

X be its singular set. Then the cohomology group H 1 (X,Iw((n+2)H)) 
vanishes. 

Proof. Let G = Grass(2, n) be the Grassmannian of 2-dimensional 
vector subspaces of K := en. The matrix A as above can be seen as a 
family of quadrics Ax on JID(K) parameterized by x EX, the surface SA 
corresponds to singular quadrics and the singular set W parameterizes 
quadrics of rank n-2. Thus W is via the second projection in one-to-one 
correspondence with the following algebraic set: 

W := {(l,x) E G x X,Ax is singular along l}. 

Let £ be the tautological rank 2 quotient bundle on G, whose fiber at 
lis H0(0~1 (1)). £is a quotient of K* 0 Oc, and there is the natural 
map 

e: S 2 K* 0 Oc---+ K* 0£. 

Let 

(2.5) :F := Ime. 
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Clearly, a quadric A E 8 2 K* on JID(K) is singular along ~1_2! and only if 

it vanishes under the map e at the point l. Thus the set W is the zero 
locus of a section of the vector bundle 

which is of rank 2n -1 on G x X. Note that the cokernel of e identifies 
to 1\2 £ =: £where£ is the Plucker line bundle on G. Thus we have an 
exact sequence 

(2.6) 0 _____, :F _____, K* 0 £ _____, £ _____, 0 

on G. 
As W is the zero set of a transverse section of a rank 2n - 1 vector 

bundle on G x X, its ideal sheaf admits the Koszul resolution: 

2n-1 

0 _____, 1\ :F* ~Ox(( -2n + 1)H) _____, ... _____, :F* ~Ox( -H)_____, Iw _____, 0. 

Thus the space H 1(X,Iw((n+2)H)) = H 1(G x X,Iw0pr2((n+2)H)) 
is the abutment of a spectral sequence whose E 1-term is equal to 

i 

Hi(G x X, 1\ :F* ~ Ox((n + 2- i)H)), i ~ 1. 

By Kiinneth decomposition and the vanishing assumptions, these 
spaces split as: 

i 

Hi(G, 1\ :F*) 0 H 0 (X, (n + 2- i)H), n + 2- i > 0, 

i i 

Hi(G, 1\ :F*) 0 H 0 (X, Ox) EB Hi- 1 (G, 1\ :F*) 0 H 1 (X, Ox) 

i i 

EBHi- 2(G, 1\ :F*)0H2 (X, Ox )EBHi-3 (G, 1\ :F*)0H3 (X, Ox), i = n~2, 

i 

Hi-3 (G, 1\ :F*) 0 H 3 (X, (n + 2- i)H), n + 2- i < 0. 

The proof of Lemma 8 is thus concluded by the following lemma, which 
implies that the E 1-terms of the spectral sequence above all vanish. 

Lemma 9. On the Grassmannian G = Grass(2, n), the bundle :F 
being defined as in (2.5), we have the vanishings: 

(1) Hi(G, 1\i :F*) = 0, n + 2- i ~ 0, i ~ 1 
(2) Hi- 1 (G, 1\i :F*) = 0, n + 2- i = 0. 
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(3) Hi- 2 (G, 1\i :F*) = 0, n + 2- i = 0. 
(4) Hi- 3 (G, 1\i :F*) = 0, n + 2- i::; 0, i ~ 1. 

The proof of this last lemma is postponed to an Appendix. • 

As an immediate corollary, we get the following: 

Corollary 2. Under the same assumptions as in Lemma 8, the 
numbers 

rk H 1(X, Kx 0 Iw(nH)), rk H 1(X,Iw(nH)) 

are bounded by Cn2 for some constant C. 

Combining Corollary 2 with Riemann-Roch and Barth's Theorem 
3, we get the following corollary: 

Corollary 3. The spaces H 0 (X, Kx(nH)0Iw) and H 0 (X,Iw(nH)) 
have dimension bounded by cn2 for some constant c. 

We shall use the following consequence of the uniform position prin­
ciple of Harris: 

Lemma 10. Let A be generic and let W' C W be a subset of W = 
Sing SA. Then if 

H 0 (X,Kx(nH) 0Iw') -f= H 0 (X,Kx(nH) 0Iw), 

W' imposes card W' independent ·conditions to H 0 (X, Kx(nH)). Simi­
larly, if 

H 0 (X,Ox(nH) 0Iw') -f= H 0 (X,Ox(nH) 0Iw), 

W' imposes card W' independent conditions to H 0 (X, Ox(nH)). 

Proof. Indeed, we represented in the previou~roof the set W as 
the projection in X of a a-dimensional subscheme w of G X X, defined 
as the zero set of a generic transverse section of the vector bundle :F [8:1 

0 x (H) on G x X. One verifies that the uniform position principle 

[8] applies to W, and this allows to conclude that all subsets of W of 
given cardinality impose the same number of independent conditions to 
H 0 (X, Kx(nH)) or H 0 (X, Ox(nH)). This number is then obviously 
equal to 

Min (card W', a) 

where a= rk (rest: H 0 (X, Kx(nH))->H0 (W, Kx(nH)Iw ))), resp. 

a= rk (rest: H 0 (X, Ox(nH))->H0 (W, Ow(nH))) 

in the second case. 

• 
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From now on, we will treat separately the uniruled and the K -trivial 
cases. 

The uniruled case. We may assume (X, H) satisfies the inequality 
H 2 Kx < 0 of Lemma 4. We want to study the set Z of (2.3) for a generic 
surface S E I nH I, and more precisely the irreducible components Z' of 
Z which are of dimension ;::: dimJID(V'). 

Degenerating S to SA and applying Lemma 7, we find that the 
specialization Z~ of Z' is contained in 

Zo := {(v, v') E JID(VA) x JID(V~), vv(w = 0}, 

where 

Lemma 11. Z~ is contained in the union 

(2.7) JIDH0 (SA,KsA i&!Iw) x JID(V~) 

U JID(VA) x JIDH0 (SA, OsA (nH) i&l Iw ). 

Proof. We observe that Zo is a union of irreducible components 
indexed by subsets W' C W, with complementary set W" := W \ W': 

Zw' := JIDH0 (SA, KsA i&l Iw') x JIDH0 (SA, OsA (nH) i&l Iw" ). 

We use now Lemma 10: it says that if both conditions 

H 0 (X,Kx(nH) i&!Iw') #- H 0 (X,Kx(nH) i&!Iw), 

H 0 (X,Ox(nH) i&!Iw") #- H 0 (X,Ox(nH) i&!Iw) 

hold, then W' imposes card W' independent conditions to the linear sys­
tem H 0 (X, Kx(nH)) and W" imposes card W" independent conditions 
to H 0 (X, Ox(nH)). Thus the codimension of Zw' in JID(VA) x JID(V~) 
is equal to card W' + card W" = card W. But card W is equal to 
n(n:-l) H 3 by Theorem 3, while the dimension of VA= H 0 (SA, KsA) ~ 
H 0 (X, Kx(nH)) is equal to 

~n3 H 3 + ~n2 Kx H 2 + affine linear term in n 

by Riemann-Roch. 
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As KxH2 < 0, we conclude that for n large enough, if W' is as 
above, we have 

codim Z' < dimJP>(VA), 

and thus 
dim Zw' < dimJP>(VA.J 

Thus, for large n, the only components of Z0 which may have dimension 
~ dim JP>(VA_) are the two components JP>H0 (SA, KsA 0 Iw) x JP>(VA_) and 
JP>(VA) x JP>H0 (SA, CJsA (nH) 0 Iw ). • 

Corollary 4. Assume S is generic and Z' C JP>(V) x JP>(V') is an 
irreducible component of Z which has dimension ~ dim JP>(V'). Then 
either 

i) dimpr1(Z'):::; cn2 or 
ii) dimpr2(Z') :::; cn2, 

where c is the constant of Corollary 3. 

Proof. By Lemma 11, the specialization Z~ of Z' is contained in 
the union (2.7). As we have by Corollary 3 

dimJP>H0 (X,Kx(nH) 0Iw) < cn2 , dimJP>H0 (X,Iw(nH)) < cn2 , 

this implies that the cycle z~ satisfies: 

where 
h1 := pricl(CJil'(VA)(1)), h2 := pr:icl(CJ!l'(V,.;_)(1)), 

and [Z~] is the cohomology class of the cycle Z~. 
It follows that we also have 

We claim that this implies that i) or ii) holds. Indeed, as Z' is irreducible, 
there are well defined generic ranks k1, k2 of the projection pr11z', pr21z' 
respectively, which are also the generic ranks of the pull-back of the 
(1, 1)-forms priw1, pr:iw2 to Z', where Wi are the Fubini-Study (1, 1)­
forms on JID(V), JP>(V'). As the form 

is semi-positive on Z', the condition (2.8) implies that everywhere on Z, 
we have 
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As dimZ' 2:: 2cn2 and (pr1,pr2) is an immersion on the smooth locus of 
Z', this implies easily that either k1 = rk pr1 or k2 = rk pr2 has to be 
< cn2 , that is i) or ii). · • 

Corollary 5. With the same assumptions as in the previous corol-
lary, if (v, v') E Z', one has either 

i) rkJ.tv: V'----* H 1 (S,0.s) < cn2, or 
ii) rkJ.tv': V----* H 1(S,0.s) < cn2, 
where i) and ii) refer to the two cases of Corollary 4 and 

J.tv(·) = J.t(V l8l ·), f.tv'(·) = J.t(· l8l v'). 

Proof. Indeed, assume case i) of Corollary 4 holds. As dim Z' 2:: 
dim IP'(V'), the generic fibre of pr1 : Z' ----* IP'(V') has dimension > 
dim IP'(V') - cn2. But the generic fibre is, by definition of Z, equal 
to IP'(KerJ.tv)· Thus rankJ.tv < cn2. 

In case ii), we can do the same reasoning, as we have 

dim Z' 2:: dim IP'(V') 2:: dim IP'(V). 

• 
The proof that such a Z' does not exist, and thus, the proof of 

Proposition 2 in the uniruled case, concludes now with the following 
two Lemmas: 

Lemma 12. Let S E I nH I be generic, with n large enough. Let c 
be any positive constant. Then there exists a constant A such that the 
sets 

(2.9) 

(2.10) 

r = {v E IP'(V), rkJ.tv < cn2 }, 

r' = { v' E IP'(V'), rk J.tv' < cn2 }, 

both have dimension bounded by A. 

Lemma 13. Let A be any positive constant. Let S El nH I be 
generic, with n large enough (depending on A). Then the set 

B = {v E V, rk J.tv <A} 

reduces to 0. 

Indeed, we know by Corollary 5 that our set Z' should satisfy either 
pr1(Z') c r (case i) or pr2(Z') c f' (case ii). Thus by Lemma 12, one 
concludes that in case i), dimpr1(Z') ~A and in case ii), dimpr2(Z') ~ 
A, where A does not depend on n. 
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In case ii), it follows that dim Z ::; dim IP'(V) +A and as we have 
dim IP'(V) +A < dim IP'(V') by Lemma 5, this gives a contradiction. 

In case i), it follows, arguing as in the proof of Corollary 5, that for 
(v,v') E Z', one has rkpv <A. This is impossible unless Z' is empty by 
Lemma 13. Thus, assuming Lemmas 12 and 13, Proposition 2 is proved 
for uniruled threefolds with H 2 (X, Ox) = 0. • 

Proof of Lemma 12. Our first step is to reduce the statement to 
the case where S is a surface in IP'3 . This is done as follows: we choose 
once for all a morphism 

given by 4 sections of H, so that f*Olf'3(1) = H. We shall prove the 
result for surfaces of the form S = f- 1 (~), where ~ is a generic smooth 
surface of degree n in IP'3 . Let f s : S --+ ~ be the restriction of f to S. 
We have trace maps 

!s. : H 1 (S, fls(sH))--+ H1 (~, nE(s)), 

fs. : H 0 (S, Ks(sH))--+ H0 (~, KE(s)) 

for all integers s. We note now that the map p admits obvious twists 
that we shall also denote by p: 

Furthermore, we have similarly defined bilinear maps pE: 

All the maps p can be defined using the maps 

J: H 0 (S, Ks(lH)) <--+ H 1(S, 0 8 (( -n + l)H)), 

induced by the exact sequence (which is itself a twist of the normal exact 
sequence) 

0--+ fls( -nH)--+ n3..:- 1s--+ Ks--+ 0, 

twisted by lH, and then the product map 

The same is true for the maps f-LE. 
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As there is a commutative diagram of normal exact sequences 

___, Txis ___, Os(nH) ___, 0 

f* 1 II 
___, f*Tw'i s ___, 0 s ( nH) ___, 0 

where the bottom line is the normal bundle sequence of I; pulled-back 
to S, it follows that for v E H 0 (S, Ks(l)) and 7) E H 0 (I;, OL:(n)), we 
have: 

(2.11) 

Equation (2.11) implies that 

rk (J./fs.(v) : H 0 (I;, OE(n)) ___, H 1 (I;, rlE(l))) 

:S rk (J.Lv : H 0 (S, Os(n)) ___, H 1 (S, fls(l))). 

Let us now prove the first case of Lemma 12, namely for the set r. The 
second proof is done similarly. 

Starting from a sufficiently ample H, one finds that H 0 (X, Ox(4H)) 
restricts surjectively onto H 0 (Xu, OxJ4H)), for any u E lP'3 , where 
Xu:= f- 1 (u). 

We have the following Lemma: 

Lemma 14. The image rE of the composed map 

where l/ is the product, has dimension at least equal to -h dim r' where 

N := rk H 0 (X, Ox(4H)). 

Proof. Indeed, as the restriction map 

is surjective, if e; is a basis of H 0 (X, 0 x ( 4H)), the map 

is injective. Thus dim f :S N dim fE. 

• 
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On the other hand, if v E r, a E H 0 (X, Ox(4H)), we have 

rk J..lav <::; rk J..lv 

because J..Lav = DJ..lv. Thus we conclude that the following hold: 

for all WE fE. 
As N does not depend on n, it suffices to show the result for generic 

~ in lP'3 and for the product 

This last product is well known ( cf [19],6.1.3) to identify to the multi­
plication in the Jacobian ring of~: 

Thus we have to show that for generic ~' the set 

has dimension bounded by a constant which is independent of n. 
For this, we specialize to the case where ~ is the Fermat surface, that 

is, its defining equation is IJ =I:;~ Xj. The Jacobian ideal of~ is then 
generated by the x;- 1 ' and there is thus a natural action of the torus 
(IC*) 4 on the Jacobian ring RE, by multiplication of the coordinates by 
a scalar. The subspace 

rE c R~- 1 

is thus invariant under (IC*) 4 . Note that the fixed points of the induced 
action on lP'(R~- 1 ) are the monomials, and are thus isolated. It follows 
that we have the inequality 

dimfE <::; number of fixed points on fE. 

Thus we have to bound the number of monomials 

X X ioxilxi2xi3 . . . . 
I = o 1 2 3 , ~o + ~2 + ~3 + ~4 = n, 

such that 
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But the kernel of the multiplication by XI above is equal to the ideal 

X n-io sio + xn-i3 si3 
0 . . . 3 ' 

where 5 1 := H 0 (1F'3 ,0!P'3(l)), and thus has dimension< LkrkSik. 
Hence, if rk XI :::; cn2 , we must have 

(2.12) l..:rkSik =:::rkSn-cn2 , 

k 

with Lk ik = n. It is not hard to see that there exists an integer l > 0 
such that, if n is large enough and (2.12) holds for I, n, one of the i~s 
has to be =::: n- l. Thus the other ij's have to be non greater than l. 
This shows immediately that the number of such monomials is bounded 
by a constant independent of n and concludes the proof of Lemma 12 . 

• 
Proof of Lemma 13. The key point is the following fact from [6]. 

Proposition 3. Let X be any projective manifold and H be a very 
ample line bundle on X. Let A be a given constant, and for n > A, let 
M C H 0 (X, Ox(nH)) be a subspace of codimension:::; A. Then 

H 0 (X, Ox(H)) · M c H 0 (X, Ox((n + 1)H)) 

has codimension :::; A, with strict inequality if M has no base-point. 

Assume v E V satisfies the condition that rk f.iv < A. Let M := 

K er f.iv C H 0 (S, 0 8 (nH)). By Proposition 3, we conclude that if n >A, 
we have 

H 0 (S, Os(H)) · M c H 0 (S, Os((n + 1)H)) 

has codimension <A. Next, we consider for each l the map 

obtained as the composite of the twisted Kodaira-Spencer map 

H 0 (S, Os((n + l)H))-> H 1 (S, Ts(l)), 

and the contraction with v, using the contraction map 

We note that the kernel Ml of the map f.i~ contains 

M1 · H 0 (S, Os((l- 1)H)). 
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On the other hand, M 1 also contains the image of the map 

induced by the normal bundle sequence twisted by H. We may assume 
that H is ample enough so that H 0 (X, Tx(1)) is generated by global 
sections, and then M 1 has no base-point. Proposition 3 thus implies 
that if n > A, the numbers corank Mz are strictly decreasing, starting 
from l ~ 1. Hence we conclude that 

MA = H 0 (S, Os((n + A)H)). 

As n is large and A is fixed, we may assume that 

H 0 (X, Kx((2n- A)H)) 0 H 0 (X, Ox((n + A)H))--+ H 0 (X, Kx(3nH)) 

is surjective, and that the same is true after restriction to S. Thus we 
conclude that 

We use now the definition of MA, and the compatibility of the twisted 
Kodaira-Spencer maps and the maps _jv with multiplication. This im­
plies that for any P E H 0 (S, Kx((3n)H)Is), sending to 

P E H 1 (S, Ts(Ks(2nH))), 

via the map induced by the twisted normal bundle sequence 

0--+ Ts(Ks(2nH))--+ Txls(Ks(2nH))--+ Kx(3nH)Is--+ 0, 

we have 

(2.13) - 1 P_jv = 0 in H (S,rls(Ks(nH))). 

We have now a map 

induced by the exact sequence 

0--+ Ks--+ rlx(Kx(2nH))Is--+ rls(Ks(nH))--+ 0, 

and one knows ( cf [4]) that up to a multiplicative coefficient, one has 

(2.14) J(P _jv) =< v, ress(P) >, 
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where on the right, <, > is Serre duality between H 0 ( S, K s) and H 2 ( S, 0 s), 
and the Griffiths residue map 

(2.15) 

is described in [19], 6.1.2. The key point for us is that, because in our 
case H 3 (X, Ox) = 0 and because n is large enough, the residue map 
(2.15) is surjective, and thus (2.13) together with (2.14) imply that, for 
all ryE H 2 (S,Os), one has 

< ry,v >= 0, 

which implies that v = 0. • 
The Calabi-Yau case. Here X has trivial canonical bundle and 

satisfies H 2 (X, Ox) = 0. We use in this case a variant of Lemma 6. 
As Kx is trivial, the spaces V and V' are equal, and the pairing p, : 
V x V'---+ H 1 (S,Os) is symmetric. Thus, using Bertini, Lemma 6 can 
be refined as follows (cf [15]): 

Lemma 15. Let JL : V 0 V' ---+ H 1 (S, Os) be symmetric and q : 
H 1 (S, Os) ---+ S 2V* be its dual. Then the generic quadric in Im q is non­
singular if the following condition holds. There is no subset Z c lP'(V) 
contained in the base-locus of I m q and satisfying: 

rk JLv ::; dim Z, \lv E Z. 

We have to verifY that such a Z does not exist for generic S E I nH I, 
n large enough. Degenerating S to SA as before, the base-locus of I m q 
specializes to a subspace of the base-locus of Im qA. We now use Lemma . 
7, together with Corollary 3, to conclude that the base-locus of ImqA 
has dimension ::; cn2 , for some c independent of n. 

Thus the base-locus of Imq also has dimension bounded by cn2 , for 
genericS. 

By definition of Z, it follows that for v E Z one has 

Using Lemma 12, it follows that dim Z ::; A for some constant A 
independent of N. But then, for v E Z, one has 

which implies that Z is empty by Lemma 13. This concludes the proof 
of Proposition 2 when X is a Calabi-Yau threefold. • 
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§3. The case where H 2 (X, Ox)-=/= 0 

In this section, we show how to adapt the previous proof to the case 
where X is uniruled with H 2 (X, Ox) -=/= 0. 

In this case, a smooth birational model of X admits a map ¢ : 
X' ---t E, with generic fibre isomorphic to JP>l, where E is a smooth 
surface. Note that¢* sends H 3 (X, f!x) isomorphically to H 2(E, Oy;). 

We may assume that X' carries a line bundle H such that 

because there is a smooth birational model of X on which such an H 
exists, and by blowing-up this X' to an X with exceptional relatively 
anti-ample divisor E, we may assume that ¢ becomes defined, while 
an ii of the form r* H - tE with small f. will still satisfy the property 
ii2 .Kx < o. 

In the sequel X, H, ¢ will satisfy the properties above. For S a 
smooth surface in I nH I, we have the Gysin maps: 

¢*: H 1(S,r!8 ) ____. H 1 (E,r!y;), ¢*: H 2 (S,Os) ____. H 2 (E,Oy;), 

¢* : H 2 (S, Z) ____. H 2 (E, Z). 

We will denote by 

the respective kernels of these maps. The proof will use the following 
variant of Proposition 1: 

Proposition 4. Assume there is as E I nH I' and a A E H 1 ( s, ns )E 
such that the natural map 

defined as in (1.1} is surjective. Then the Hodge conjecture is true for 
integral Hodge classes on X. 

Proof. We consider a simply connected open set in I nH I parame­
terizing smooth surfaces and containing the point 0 E I nH I which ·is the 
parameter for S. We study the infinitesimal variation of Hodge structure 
on H 2(St, Z)E fortE B. 

By the same reasoning as in the proof of Proposition 1, the ex­
istence of A satisfying the property above implies that at some point 
A E H 1•1 (S)R,E, the natural map 
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1/J: H~:~ ----> H 2 (S, lR)I; 

is a submersion. Here on the left hand side, we have the real vector bun­
dle with fibre H 1•1 (St)IR,I; at the point t, and on each fibre H 1•1 (St)JR,I;, 1/J 
is the inclusion H 1•1 (St)JR,I; c H 2 (St, lR)I;, followed by the topological 
isomorphism H 2 (St, lR)I; ~ H 2 (S, lR)I;. 

This implies that the image of 1/J contains an open cone and we 
deduce from this as in the proof of Proposition 1 that H 2 (S, Z)I; is 
generated over Z by classes a which are algebraic on some nearby fiber 
St. 

Consider now the inclusion j : S ----> X. It induces a surjective Gysin 
map j. : H 2 (S, Z) ----> H 4 (X, Z) by Lefschetz hyperplane theorem. On 
the other hand, we have a commutative diagram of Gysin maps: 

H 2 (S,Z) 
¢. 1 

H 2 (L-, Z) 

!.!. H 4 (X, Z) 
¢. 1 

H 2 (L-, Z) 

From this and the previous conclusion, we deduce that the group 

is generated by classes of algebraic cycles on X. 
Proposition 4 is then a consequence of the following: 

Lemma 16. Let a be an integral Hodge class of degree 2 on L-. 
Then there is an algebraic 1-cycle Z on X such that a = ¢. ( [ Z]). 

Indeed, assuming this lemma, if a is an integral Hodge class on X 
of degree 4, ¢.a is an integral Hodge class of degree 2 on "L-, hence is 
equal to ¢. ( [ Z]) for some Z. Hence a - [ Z] belongs to K er ¢. and thus 
it is algebraic as we already proved. This proves the Proposition. • 

Proof of Lemma 16. We may assume by Lefschetz (1, 1) theorem 
and because 2:, is algebraic, that a is the class of a curve C C S which 
is in general position. Thus 

<Pc: Xc := ¢-1 (C)----> C 

is a geometrically ruled surface, which admits a section C' C Xc (see 
[3], or [7] for a more general statement). 

But then the curve C' c X satisfies ¢. [ C'] = [ C]. • 

By Proposition 4, the proof of Theorem 2 in case where X is uniruled 
and satisfies H 2 (X, Ox) =/=- 0 will now be a consequence of the following 
proposition. 
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Proposition 5. Let the pair (X, H) satisfy the inequality 

H 2Kx < 0. 

Then for n large enough, for S a generic surface in I nH I, there is a 
>. E H 1 (S, Osh: which satisfies the property that 

is surjective. 

The proof works exactly as the proof of Proposition 2 in the unir­
uled case. The only thing to note is the fact that the analogue of 
Proposition 13 still holds in this case, with V = H 0 (S, Ks)"E., V' = 
H 0 ( S, 0 s ( nH)). This is indeed the only place where we used the as­
sumption H 2 (X, Ox) = 0. 

In this case, we have an isomorphism 

so that for SeX a smooth surface 

where j is the inclusion of S into X. 
But the theory of Griffiths residues shows that the last kernel is 

precisely generated by residues ressw, w E H 0 (X, Kx(3nH)). Thus, 
the arguments of Lemma 13 will show in this case that if v E H 0 ( S, K 8 ) 

satisfies rank f..Lv :S A, where A is a given constant, and S E I nH I with 
n large enough, then 

v E (Ker j*)J., 

where ..l refers to Serre duality between H 0 (S, Ks) and H 2 (S, 0 8 ). But 
asKer¢*= Ker j*, we have 

Thus if furthermore v E H 0 (S, Ks)E, we must have v = 0 because 

• 
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§4. Appendix 

We give for the convenience of the reader the proof of the vanishing 
Lemma 9. Recall that we want to prove the vanishing of the spaces: 

(1) Hi(G, N :F*), n + 2- i ::;:: 0, i ::;:: 1 
(2) Hi~ 1 (G, N :F*), n + 2- i = 0. 
(3) Hi~2 (G, (\iF*), n + 2- i = 0. 
(4) Hi~3 (G,(\i:F*), n+2-i::;O. 

We use first the dual of the exact sequence (2.6) to get a resolution 
of 1\i F*: 

i~l 

.•. ---> (\ (K &J E*) &J £~ 1 ___, (\ (K &J E)* ---> (\ :F* ---> 0. 

This induces a spectral sequence converging to 

i 

Hi(G, (\ :F*), Hi~l(G, (\ :F*), Hi~z(G, (\ :F*), Hi~3(G, (\ :F*), 

whose E1 terms are 

i-s 

Case1 Hi+ 8 (G, (\(K &JE*) &J£~ 8 ), n +2::;:: i::;:: 1, i::;:: S::;:: 0, 

i-s 

Case2 Hi+s~ 1 (G, (\ (K &J E*) &J _c~s), i = n + 2, i::;:: s::;:: 0, 

i-s 

Case3 Hi+s~Z(G, (\ (K &J E*) &J _c~s), i = n + 2 i::;:: S::;:: 0 

i-s 

Case4 Hi+s~ 3 (G, (\ (K &J E*) &J _c~s), n + 2::; i, i::;:: s::;:: 0 

respectively. 
Let P c IP'(K) x G be the incidence scheme, so P is a lP'1-bundle 

over G. Let pri, i = 1, 2 denote the projections from P to IP'(K) and G 
respectively. Let H := pri0(1) and denote also by£ the pull-back of£ 
to P. Then pr2E* fits into an exact sequence: 

Thus the bundle 
i-s 
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admits a filtration whose successive quotients are line bundles of the 
form 

H-o: 0 (H 0 _c-l )!J 0 .c-s = H-o:+!J 0 _c-!J-s, 

where a+ f3 =i-s, a 2:: 0, f3 2:: 0. As we are interested in 

i-s i-s 

H*(G, 1\ (K 0 £*) 0 .c-s) = H*(G, R0pr2*(pr~(f\ (K 0 £*) 0 .c-s))), 

it suffices to study the cohomology groups 

H*(P, H-o:+!J 0 _c-!J-s), 

with -a + f3 2:: 0. These groups are equal to the groups 

which are partially computed in [18]. The conclusion is the following: 

Lemma 17. a) These groups vanish for*-/=- n- 2, 2(n- 2) and for 
f3 + s "5, n- 2. 

b) For* = n- 2, these groups vanish if-s-a+ 1 < 0. 
c) For*= 2(n- 2), these groups vanish if-s-a 2:: -n + 1. 

Case 1. Here * = i + s, and the following inequalities hold: 

(4.16) f3 2:: a 2:: 0, f3 + s 2:: n - 1 

and furthermore 
1 "5, i "5, n + 2, a + f3 = i - s. 

According to Lemma 17, in order to get a non trivial cohomology group, 
we have only two possibilities: 

a) i + s = n - 2, -s - a + 1 2:: 0. 
b) i + s = 2(n- 2), -s-a< -n + 1. 
In case a), we have f3 + s 2:: n- 1 and a+ f3 + 2s = i + s = n- 2, 

which is clearly a contradiction as a + s 2:: 0. 
In case b), we have f3 + s 2:: n- 1, a+ s 2:: nand thus 

2n- 1 "5, a+ f3 + 2s = i + s = 2(n- 2) 

which is clearly a contradiction. • 
Case 2. Now * = i + s - 1 and i = n + 2. We have again the 

inequalities (4.16) and furthermore 

i = n + 2, a + f3 = i - s. 
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By Lemma 17, in order to get a non trivial cohomology group, we have 
only two possibilities: 

a) i + s- 1 = n- 2, -s-a+ 1 ~ 0. 
b) i + s- 1 = 2(n- 2), s +a~ n. 
In case a), we have i = n + 2 and s ~ 0, hence i + s- 1 = n- 2 is 

impossible. 
In case b), we have i + s = 2n- 3, while s +a ~ n and (3 + s ~ n- 1 

give a + (3 + 2s = i + s ~ 2n - 1, contradiction. 

• 
Case 3. Now*= i+s-2 and i = n+2. We have again the inequal­

ities ( 4.16) and furthermore i = n + 2, a+ (3 = i-s. As before, in order 
to get a non trivial cohomology group, we have only two possibilities: 

a) i + s- 2 = n- 2, -s-a+ 1 ~ 0. 
b) i + s- 2 = 2(n- 2), s +a~ n. 
In case a), we have i = n + 2 and s ~ 0, hence i + s- 2 = n- 2 is 

impossible. 
In case b), we have i+s = 2n-2, while s+a ~nand (J+s ~ n-1 

give a+ (3 + 2s = i + s ~ 2n- 1, contradiction. 

• 
Case 4. Now*= i+s-3 and i ~ n+2. We have again the inequal­

ities ( 4.16) and furthermore i ~ n + 2, a+ (3 = i-s. As before, in order 
to get a non trivial cohomology group, we have only two possibilities: 

a) i + s- 3 = n- 2, -s-a+ 1 ~ 0. 
b) i+s-3=2(n-2), s+a~n. 
In case a), we have i ~ n + 2 and s ~ 0 thus i + s - 3 = n - 2 is 

impossible. 
In case b), we have i+s = 2n-1, while s+a ~nand (J+s ~ n-1 

give a + (3 + 2s = i + s ~ 2n - 1. Thus we must have the two equalities 

s + a = n, (3 + s = n - 1. 

This contradicts the fact that (3 ~ a. 

• 
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