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On time averaged optimization of dynamic 
inequalities on a circle 

Alexei Davydov 

Abstract. 

We analyze the maximum averaged profit for one parameter fam­
ilies of dynamic inequalities and profit densities on a circle. Generic 
singularities of the profit for stationary strategies are classified. They 
are shown to be stable. 

§1. Introduction 

A smooth function F on the tangent bundle T M of a smooth man­
ifold M defines a dynamic inequality: a tangent vector v E T M is an 
admissible velocity of the inequality if F(v) :::; 0. We consider only in­
equalities (called inequalities with locally bounded derivatives) such that 
the set of admissible velocities over any base point of M is compact. 
We identify the space of inequalities with the space of functions F. In 
particular, a family of inequalities is a family of functions. 

An admissible motion is an absolutely continuous mapping t f---> x(t) 
of the time axis segment to the manifold M with the derivative x(t) 
belonging to the convex hull of the admissible velocities in the fiber over 
x(t) (whenever the derivative exists). 

Given a continuous profit density function f : M f---> R, an admissible 
motion x, x = x(t), on the interval [0, T], T > 0, provides the profit 

T 

P(T) = J f(x(t))dt and the averaged profit A(T) = P(T)jT. 
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An important well known control problem is to find an admissible 
motion providing the maximum averaged profit on the infinite horizon, 
that is when T----+ oo, [1], [7], [14]. Such a motion is called optimal. 

V.I.Arnold suggested a new approach to the problem based on the 
singularity theory methods. He proved that a constant map (=stationary 
strategy): x(t) = x 0 E M for any t, or periodic motions can be optimal 
[2] (see also [1], [3]). The case studied by Arnold is a reasonable model 
for cyclic process with a prescribed trajectory in multidimensional phase 
space. An example of this process is a motion along the closed route 
with the velocity depending on a chosen control. 

In the present paper we follow this approach and analyze an analog 
of Arnold's model [2] defining admissible velocities by a dynamic inequal­
ity. We classify generic singularities of the maximum averaged profit 
provided by stationary strategies in one parameter families of dynamic 
inequalities and profit densities on the circle. We use r- equivalence: 
two germs of functions have the same singularity if their graphs are 
diffeomorphic via a parameter diffeomorphism, that is via a difeomor­
phism, which respects the natural projection to the parameter sending 
any fiber to a fiber. We prove also the stability of these singularities with 
respect to small perturbations: an object has stable singularity, if any 
sufficiently close object has equivalent singularity and the corresponding 
equivalence diffeomorphism can be taken close to the identity. 

For multidimensional parameter or phase space the classification 
problem remains open. 

This paper was completed during my visit to Departamento de Ma­
tematica Aplicada e Centro de Matematica de Universidade do Porto. 
The author is very thankful to the staffs of the department for a good 
scientific atmosphere and the nice working conditions and to Helena 
Mena Matos for useful discussions. 

§2. Classification of singularities 

In this section the main results are stated. We consider only one 
parameter families of inequalities and densities on the circle. The phase 
variable and the parameter are denoted by x and p, respectively. A 
generic or typical object is an object from an open dense subset of the 
space of objects endowed with smooth or sufficiently smooth fine topol­
ogy. 
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2.1. Stationary domain and shadows 

Clearly, a point of the phase space is a stationary strategy if and 
only if the zero level set of the dynamic inequality over this point con­
tains both non-positive and non-negative velocities. Denote by P_ and 
P+ the subsets of this level set which consists of non-positive and non­
negative velocities, respectively. Hence, the set of all stationary strate­
gies (=stationary domain) of an inequality is the intersection of the 
images (=shadows)rr(P_),rr(P+) of these subsets parts the natural pro­
jection 1r: (x,x,p) f--+ (x,p) along the velocity axis. 

We denote stationary domain by S and its intersection with the fiber 
P =Po by Spo· 

Using the results of [4], [10], [11], [12], [13] on generic singulari­
ties of restrictions of projections to submanifolds and submanifolds with 
boundary and taking into account that the sets P _ and P + have the 
same boundary, we prove the following 

Theorem 2.1. The gerrn of the stationary domain of a generic 
dynamic inequality at any boundary point is fiber diffeomorphic to the 
gerrn at the origin of one of the following (eight) sets 

(1) 1) x;::: 0; 2±) p;::: ±x2; 3±) p;::: ±lxl; 4±) x :=:: ±lpl; 5) x :=:: PIPI 

Moreover the stationary domain of generic family is stable. 

Remark 1. The theorem holds for a subset in the space of inequality 
families which is open in fine C3-topology and dense in fine c=-topology. 

Theorem 2.1 is proved in Subsection 3.1 

2.2. Maximum profit for stationary strategies 

The maximum averaged profit As for stationary strategies is a so­
lution of the extremal problem 

(2) As(P) = maxf(x,p) 
xESp 

over the set of all stationary strategies for parameter value p. 

Theorem 2.2. Any gerrn of the profit As for a generic pair of 
families of inequalities and profit densities is r - equivalent to the gerrn 
at the origin of one of the eight functions listed in the second column of 
Table 1. 

Remark 2. The third column of Table 1 contains more precise in­
formation on the equivalence used. Singularities 1-5 can be reduced 



38 Alexei Davydov 

Table 1 
No Sing. Eq. Conditions 
1 0 R+ unique optimal strategy either of 

type 1) with fx :1 0 or an interior 
one of S 

2 IPI R+ unique optimal strategy either of 
type 4_) or the competition of 
two strategies with singularity 1 

2_ -IPI R+ unique optimal strategy of type 
4+) 

3 PIP I R+ unique optimal strategy of type 
1) with fx = 0 

4 .;p R+ unique optimal strategy of type 
2+) 

5 0, p ~ 0 R+ unique optimal strategy of type 
3+) 

6 10, p<O r competition of two strategies 
1+.JP, p~O with singularity 1 and 4 

7 { 0, p<O r competition of two strategies 
1, p~O 

with singularity 1 and 5 

to normal form by a R+ -equivalence, which is a particular case of r­
equivalence: the diffeomorphisms acts on each fiber just by a shift de­
pending on a parameter [5]. 

The fourth column contains description of the type of strategy, and 
the type of singularity of the stationary domain from Theorem 2.1. 

Theorem 2.2 is proved in Subsection 3.2. 

§3. Proofs 

Here Theorem 2.1 and Theorem 2.2 are proved sequentially. 

3.1. Singularities of stationary domain 
If a family of inequalities has no stationary strategies then this is 

also true for any family of inequalities sufficiently close to the given one 
in the fine C0-topology. 

Consider the case when the stationary domain is not empty. The 
zero level of a generic family of inequalities is non-critical. It is a smooth 
(hyper)surface. The restriction T of the natural projection 1r along the 
velocity axis to this level is a proper map due to the imposed "locally 
bounded derivatives" condition. 
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J. Mather's theory for restrictions of projections [11] imply that for 
a generic family of inequalities the map r is LR-stable . Moreover, it 
can have only Whitney fold and pleat singularities (as a map between 
two dimensional manifolds [10]). Hence, in a generic case the set C of 
critical values of the map r is either empty or a smooth curve with cusps 
and transversal self-intersections. 

LR-stability and transversality theorems imply that in a generic case 
the set C and its singularities take typical position with respect to the 
natural fibering over the parameter space. Consequently, sets C for a 
generic inequality and an inequality sufficiently close to it are parameter 
diffeomorphic (via a diffeomorphism close to the identity). For all the 
detailes which we omit here see [8], where a similar result is proven. 

The stationary domain is the intersection of shadows of the sets P _ 
and P+. Clearly, for a generic family of inequalities, the boundary of 
shadows belongs to the union of the set C and the intersection I of the 
zero section x = 0 with zero level of the family of inequalities. Similar 
arguments show that in a generic case the union CUI is also stable (with 
respect to parameter difeomorphisms). So, generic stationary domain 
and its local singularities are stable. Now we classify these singularities. 

According to [10], a generic shadow of two dimensional manifold 
with boundary near any its boundary point in appropriate smooth local 
coordinates u, v takes the form of one of the three sets 

a) u?: 0 or b) v ::=; lui, or else c) v?: uiul 

near the origin. 
The first singularity occurs either at a Whitney fold critical point 

of the map r outside the zero section x = 0, or at a regular point of the 
map r which belongs to the zero section. 

For a generic family of inequalities, the second singularity is a transver­
sal superposition of two singularities of the first type. Finally, the third 
singularity occurs at a Whitney fold critical point of the map r which 
belongs to the zero section x = 0. 

Hence, the first and the third singularities are local (completely 
defined by the germ at a single point of the zero level of the family 
of dynamic inequalities), and the second singularity is defined by two 
germs. 

To classify generic singularities of stationary domain one needs to 
study the singularities of the intersection of shadows of the subsets P + 
and P_. 

These intersections yield singularities a) - c)at the point which be­
longs to the interior of one of these shadows and to the boundary of the 
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other. For a generic family of inequalities, we get a transversal superpo­
sition of these singularities when the point belongs to the boundaries of 
shadows but its critical inverse images in the zero level of the family are 
distinct. Due to the dimensions, only a superposition of two singularities 
of first type with transversal intersection of the boundaries is generic. 
In this case we obtain the normal form v 2:: lui at the origin (up to a 
diffeomorphism). 

Singularity of the type c) appears simultaneously on the boundaries 
of shadows of P _ and P +. In a generic case, this is possible only when 
the intersection of these shadow are defined by germ of the zero level 
of the family of inequalities at the same point. Here the boundary of 
the intersection of shadows is determined by the set I, as it is easy to 
see. Hence, this gives normal form c) of the stationary domain (up to a 
diffeomorphism). 

Taking into account all possible different generic position with re­
spect to the natural fibering over the parameter of the singularities a) 
- c) we get exactly the list (1) of the theorem (up to parameter diffeo­
morphisms). 

Theorem 2.1 is proved. 

3.2. Singularities of maximum profit 

Without loss of generality one can think that some stationary do­
main with typical singularities from the list (1) is fixed. A boundary 
point of the domain is called singular if at this point the singularity of 
the boundary is not 1) from this list. Due to Theorem 2.1 singular points 
of the boundary form a discrete set. 

Lemma 3.1. For a generic pair of one parameter families of in­
equalities and densities the derivative of the family of densities along 
the phase variable does not vanish at singular points of the boundary of 
the stationary domain. 

This lemma follows immediately from the stability of the stationary 
domain and Thorn transversality theorem. It implies 

Corollary 1. For a generic pair of one-parametric families of in­
equalities and densities a singular point of the boundary of stationary 
domain does not provide maximum averaged profit for stationary strate­
gies if at this point this domain has singularity 2_) or 3_) from the list 
{1). 

Corollary 2. For a generic pair of one parameter families of in­
equalities and densities and a singular point (x,p) of the boundary of 
stationary domain the germ at the point p of the maximum averaged 
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profit provided by stationary strategies which are sufficiently close to the 
strategy (x,p) is the germ at the origin of one of the four functions 

(3) 

up toR+ -equivalence if at this point this domain has singularity 2+), 3+), 
4±) and 5) from the list (1), respectively. 

Thus to finish the proof of Theorem 2.2 one needs to study the 
singularities of the maximum averaged profit for stationary strategies 
which are provided either by 

(a) an interior point of the stationary domain, or 
(b) by a boundary point where the domain has singularity of type 

1) from the list ( 1), or else 
(c) by the competition of different stationary strategies. 
Consider these three cases sequentially. For the first two cases let 

( xo, Po) be the unique stationary strategy providing the profit As (Po). 
Case (a). For a generic family f of profit densities with one param­

eter at least one of the derivatives fx, fxx and fxxx at any point is not 
zero due to Thorn transversality theorem. So if the strategy (x0 ,p0 ) is 
an interior point of the stationary domain then at this point one has 
to have fx = 0 and fxx < 0. Due to continuity off and closeness of S 
that implies that near the point p0 that maximum is provided by the 
values of the family of densities on the set fx = 0. Due to implicit func­
tion theorem near the point ( x0 , p0 ) this set is smoothly embedded curve 
x = X(p) with some smooth map X, X(po) = xo, due to fxx(xo,Po) < 0. 
Hence the germ (As,Po) is the germ of smooth function f(X(p),p) at 
p0 . So it is R+ -equivalent to the germ of the zero function at the origin. 

Case (b). Let the point (x0 ,p0 ) be the boundary point of the sta­
tionary domain with the singularity 1) from the list (1). Again due to 
Thorn transversality theorem at least one of the derivatives f x and f xx 
does not vanish in a generic case. 

When the derivative fx(xo,Po) is not zero then the germ (As, Po) is 
the germ of the restriction of the family f to the boundary of the sta­
tionary domain near the point (xo,Po). Thus as above the germ (As, Po) 
is the germ of a smooth function and it is R+ -equivalent to the germ of 
the zero function at the origin. 

If the derivative fx(x0 ,p0 ) is zero then as above in the case of an 
interior point the derivative f xx ( x 0 , Po) has to be negative. Due to Thorn 
transversality theorem the differential of the restriction of the derivative 
f x to the boundary do not vanish at the point ( xo, Po) in a generic 
case. Consequently the profit As near the point Po is the maximum of 
the restrictions of the density family to the boundary of the stationary 
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domain and to the part of the curve fx = 0 of local maximums of the 
densities that belongs to the stationary domain. 

At the point p0 this boundary (the curve, respectively) is transversal 
to the natural fibering over the parameter due to the type 1) of singu­
larity of the boundary (the inequality fxx(xo,Po) < 0, respectively). 
Besides these boundary and curve do not tangent at this point because 
the differential of the restriction of the derivative fx to the boundary do 
not vanish at this point. That implies that the profit As has singularity 
at the point p0 provided by discontinuity of the second derivative, and 
the germ (A., Po) is R+ -equivalent to the germ of function PIP I at the 
origin. 

Case (c). Due to multi jet transversality theorem in a generic case 
for a value p0 of the parameter there can appear competition only of 
two stationary strategies. Moreover the germ of the problem at one of 
them 8 1 has to provide the singularity 1 from Table 1. For the other 
strategy 8z the value of the profit density is either equal or greater then 
one at the first. Otherwise there is no any competition. Consider these 
two subcases consequently. 

In the first sub case the germ of the problem at the other strategy has 
to be also of type 1 from Table 1 due to multi jet transversality theorem. 
Moreover at the value Po the derivatives of best profits defined by the 
germs of the problem at the strategies 8 1 and 8 2 are different. Hence 
the competition gives singularity 2 from Table 1 up to R+ -equivalence. 

In the second subcase the best averaged profit A82 for stationary 
strategies defined by the germ of the problem at the point 82 can not 
provide the singularity 1 from Table 1, or the 4±) and 5) from the list (3). 
Otherwise there is no any competition of strategies 8 1 and s2 at the point 
Po· Thus at the point Po the profit A82 can have up to R+ -equivalence 
only the singularity either 2+) or 3+) from the list (3). Consequently 
the maximum averaged profit for stationary strategies has at the point 
Po the singularities 6 and 7 from Table 1, respectively. 

The stability of singularities of maximum averaged profit for sta­
tionary strategies with respect to small perturbations of generic problem 
follows from transversality theorems. 

Finally, the stability of stationary domain up to small perturbation 
of generic inequality follows from the LR-stability of the map T [11] and 
the stability of intersection of zero level of the inequality with the zero 
section of tangent bundle. 

Remark 3. Besides the well-known singularities IPI, max{O, 1 + y'P} 
of competition of strategies [2], [5], [8], [9], in the problem studied only 
one new generic singularity 7 from Table 1 appears. As we see above 
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it is the result of the typical competition of the singularity 1 with the 
singularity 5 from this table. 
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