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Nikulin’s K3 surfaces, adiabatic limit of equivariant
analytic torsion, and the Borcherds ®-function

Ken-Ichi Yoshikawa

Abstract.

In this note, we prove that the “adiabatic limit” of the equivari-
ant analytic torsion of a Nikulin’s K3 surface converges to the value
of norm of the Borcherds ®-function at its period point after a certain
renormalization.

§0. Introduction

Let m: M — B be a submersion of compact Riemannian manifolds.
Let gy and gp be Riemannian metrics on M and B, respectively. For
0 <€ < o0, set gue := gm + e lm*gp. Let T(gm) be a geometric
object depending on the metric gas. The limit of T(gpr,e) as € — 0 is
called the adiabatic limit of 7. The adiabatic limits of various geometric
objects have been studied by many authors. In this note, we study a
variant of this problem. (Although we will not discuss here, the work of
Berthomieu-Bismut ([B-B]) seems to be very related to our subject.)

Let m: X — P! be an elliptic K3 surface. Let ¢: X — X be a holo-
morphic involution acting non-trivially on canonical forms on X. Let kx
and rp1 be Kihler classes on X and P!, respectively. By Yau ([Ya)]), the
Kahler class kx, := kx + e l7n*kp1 carries uniquely a Ricci-flat Kahler
form w,. We study the equivariant analytic torsion ([Bi]) of (X, ¢, w,)} as
€ — 0 in the case where (X, ¢) is a class of K3 surfaces studied by Nikulin
(IN]). As a result, we recover the Borcherds ®-function of dimension 26
restricted to a certain locus of dimension 10.

Although we talked a little about the adiabatic limit of the invariant
introduced in [Yo] at the conference, we will focus on that subject in this
short note.
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§1. Nikulin’s K3 surfaces

Let X be a K3 surface with canonical bundle Kx. Let nx €
H°(X,Kx) be a nowhere vanishing holomorphic 2-form on X. Then
H?(X,Z) equipped with the intersection pairing is isometric to the K3-
lattice

(11) Lg3:=UpU®U® Eg & Eg,

where U = ((1] [1)) and Eg is the negative definite lattice associated with
the Cartin matrix of type Eg. An isometry ¢: H?(X,Z) = L3 is called
a marking of X, and the pair (X, ¢) is called a marked K3 surface.

Set

(1.2) Q= {[z] e P(Lg3 ® C); {z,z) =0, (z,Z) > 0}.

For a marked K3 surface (X, @), the point [¢(nx)] € P(Lxs ® C) is
called the period of (X, ¢). Then one can verify that [¢(nx)] € Q.

Definition 1.1. Lett: X — X be a holomorphic involution acting
non-trivially on H(X, Kx), i.e., t*nx = —nx. The pair (X, ) is called
a Nikulin’s K3 surface if the (*-invariant part of H?(X,Z) is isometric
to the lattice A := U @ Eg(2). Here Fg(2) denotes the lattice of rank 8
whose intersection form is twice of that on Fg.

Nikulin’s K3 surfaces are constructed as follows:

Let C;,Cy C P? be two smooth cubic curves in general position.
Then C; meets C; transversally at 9 points; C; N Cy = {p1,p2,-,D9}-
Let P2[9] — P? be the blowing-up of P? at these 9 points. Then P2[9] is
the blowing-up of the base points of the pencil spanned by Cy, Cs.

Fix homogeneous polynomials f;(z), f2(z) defining C;, Cs, respec-
tively. Then P2[9] admits the elliptic fibration 7: P2[9] — P! with fiber
m (s : t) = {[z] € P?% sfi(z) + tf2(z) = 0}. Hence, P?[9] is a rational
elliptic surface.

Let Cy,C, C P? [9] be the proper transform of Cy, Cs, respectively.
Then the divisor C~'1 +C~'2 is the member of the double anti-canonical sys-
tem | —2Kp2(g)]. Let X¢, 1¢, be the double covering of P?[9] with branch

divisor C + Cy. Let oy 10,1 Xcy+c, — Xcy+c, be the non-trivial cov-
ering transformation. By the canonical bundle formula, X¢,1+¢, is a
K3 surface. By the rationality of P2[9], vc,1c, acts non-trivially on
H°(Xc,+¢y, KXo, 1c, ) Since the fixed point set of ¢, 4¢, is identified
with C; + Cs, it follows from Nikulin’s classification of the fixed point
set ([N, Th. 4.2.2]) that (X¢, 4+, Loy +0,) is a Nikulin’s K3 surface.
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Let 7o, +¢, 1 Xcy+0, — P! be the elliptic fibration associated to the
linear system |Cy|. Since the image of every member of |Cy| by tc, +c,
is again a member of |Cy|, there exists an involution ip1 on P! such that

Xcy+o, —— P2[9]

(1.3) TC1+Cy | =
Pt — P!
q
is a commutative diagram, where p: X¢, v, — P2[9] = X¢,10,/t0,4Co
and q: P! — P! = P!/ip: are the natural projections.

§2. The moduli space of Nikulin’s K3 surfaces
Define an involution Ix on Lg3 by
(2.1)  Ix(a,b,c,z,y) = (a,—b,—c,y,x) (a,b,ce U, z,y € Eg).

Then A is the invariant part of I5. Let L be the anti-invariant part of
I5. Then L is the orthogonal complement of A in g3, and

(2.2) L=UaU® Es(2).

Let (X, ¢) be a Nikulin’s K3 surface. Since the embedding A — L3
is unique up to an automorphism of L3, there exists a marking ¢ of
X such that ¢ ov* 0o ¢! = Iy. A marking with this property is called
a marking of a Nikulin’s K3 surface. By Definition 1.1, the period of a
marked Nikulin’s K3 surface lies in the following subset of €:

(2.3) Qp :={[z] e (LR C); (z,z) =0, (z,Z) > 0}.

Then Q4 consists of two connected components QX, each of which is
isomorphic to a symmetric bounded domain of type IV of dimension 10.
However, the period mapping omits the divisor Dp of Q4 described as
follows: For | € L with [2 := (I;1) < 0, set H; := {[z] € Qa; (x,1) = 0}
Let Dp be the discriminant locus of Q4:

(24) DA = U Hd.
deL,d?=-2

Let O(L) be the isometry group of the lattice L. Then O(L) acts
naturally on Q4 and preserves Dy. In [Yo, Th.1.8], we proved:

Theorem 2.1. The coarse moduli space of Nikulin’s K3 surfaces
is isomorphic to the analytic space M := (Qx\D4)/O(L) via the period
mapping.
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83. The restriction of the Borcherds ®-function to 2,

In [Bo|, Borcherds introduced a remarkable automorphic form on
the 26-dimensional symmetric bounded domain of type IV associated
with the even unimodular lattice 11326 := U © U @ Eg @ Eg ®© Eg. His
automorphic form is called the Borcherds ®-function and is denoted by
®. We refer to [Bo, Th.10.1 and §10 Example 2] for more details about
the Borcherds ®-function.

Since L C II; 9, one can restrict the Borcherds ®-function to 4.
This automorphic form on 2, is denoted by ®4:

(3.1) By = B|g,.

Then we proved in [Yo, Lemma 8.5] that ®, is an automorphic form on
Qp of weight 12 with zero divisor Dp.

Fix a vector £ € L ® R such that ¢2 > 0. The pointwise length of
®, is defined by

_ 12
(32)  [@lP() = (ﬁ%) B (2] € ).

Then ||®4]|? is an O(L)-invariant C*°-function on Q4 and is regarded
as a function on M§.

84. Equivariant analytic torsion of Nikulin’s K3 surfaces

In [Bi], Bismut established the foundations of the theory of equiv-
ariant analytic torsion and equivariant Quillen metrics. Here, we recall
his construction in the simplest case. We refer to [Bi] for more details
about equivariant analytic torsion and equivariant Quillen metrics.

Let Y be a compact Kahler manifold. Let 8: Y — Y be a holomor-
phic involution. Let Zs C Aut(Y’) be the subgroup generated by 6. Let
vy be a Zo-invariant Kihler metric on Y. Let O, be the d-Laplacian
acting on (0, g)-forms on Y with respect to vy. Let o(0J,) be the spec-
trum of 0. For A € o(0y), let E4(A) be the vector space of eigenforms
of Oy with eigenvalue A. Then Z, preserves E4(\).

For g € Z; and s € C, set (4(9)(s) := X reo@, )\ (03 TH(91E,(0)A*
Classically, (;(g)(s) converges absolutely when Res > dimY, admits a
meromorphic continuation to C, and is holomorphic at s = 0.

Definition 4.1. For g € Z,, the equivariant analytic torsion of
(Y,vy) is defined by

(4.1) log 72, (Y, 1v)(9) := Y _(=1)7*'¢;(9)(0).

920
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When g = 1, 72,(Y, 7y )(1) coincides with the Ray-Singer analytic
torsion of (Y, ~y) and is denoted by 7(Y,~yy) .

5. The adiabatic limit of 77, for Nikulin’s K3 surfaces
8 2

Let (X,t¢) be a Nikulin’s K3 surface. Let C; + C3 be the set of
fixed points of «. Then C; and Cs are mutually disjoint elliptic curves.
Let [(X,¢)] € MY be the O(L)-orbit of the period of (X,:). By the
O(L)-invariance of |®]|, the value ||®4([X,¢])|| makes sense.

Let m: X — P! be the elliptic fibration associated with the free
linear system |C;|. Then the image of an arbitrary fiber of = by ¢ is
again a fiber of 7, and ¢ induces an involution ip1 on P! verifying (1.3).

Let kx be an t-invariant Kéhler class on X. Let xp1 be a Kahler
class on P!. For 0 < € < 400, set

(5.1) Ke = Kx + € ‘¥ Kp1.

Then {K¢}o<e<+oo i8S a family of t-invariant Kahler classes on X. Notice
that the Kahler class on the fiber induced from k. is independent of
e. By Calabi-Yau ([Ya]), there exists uniquely an ¢-invariant Ricci-flat
Kaéhler form w, in k:

(5.2) Ric(we) =0, *we =we, [wWe] = Ke (0 < e < 400).

Let Vol(X,w.) := [y w?/2! be the volume of (X,w,). Let F €
H(X,Z) be the class of fibers of m: X — PL. Set Vol(F, k|r) := [ KlF
and Vol(P!, kp1) := Jp1 k1. By (5.1) and the projection formula, we get

(5.3)  Vol(X,we) = Vol(X, ) + € *Vol(F, x| ) Vol(P*, kp1).
The following is the main result of this note:

Theorem 5.1. There exists a constant C # 0 depending only on
the lattice A such that

(54)  lim 7z, (X,w)() - Vol(X,we) = Cl|@a(((X, ))II 5.

Proof. For 7 € H, let A(1) = €™ [],.0(1 — €>"7)24 be the
Jacobi-A function. Set ||A(7)|? := (Im 7)'2|A(7)|2, which is a SLy(Z)-
invariant function on H. Let [C;] € H/SL2(Z) be the period of the ellip-
tic curve C;. By the SLy(Z)-invariance of ||A(7)||, the value ||A([C])]]
is independent of the choice of a representative of [C;] in H.
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By [Yo, Th.5.2 and Th. 8.7], there exists a constant C # 0 depend-
ing only on the lattice A such that

2
72, (X, we) (1) - Vol (X, we) [ [ 7(Cir welc,) - VOU(F, kel )
(5.5) "ZI
= Callea(((X, DI~ E - TTIA(CI.
=1

By [G-W, Th.5.6], the family of Kéhler forms {we|c; Jo<e<1 con-
verges in arbitrary C*-topology to the flat Kihler form w¢, on C; with
Kahler class k|c,. Hence, we deduce from the anomaly formula for
Quillen metrics that

(5.6) liné 7(Ci,welc,) = 7(Cs,we,),  Vol(F, ke|r) = Vol(C;,we,).

Since we, is flat, Kronecker’s limit formula yields that

6.7 7(Cirwe,) - Vol(Crywe,) = [22A((G]) 7.
The result follows from (5.5), (5.6), (5.7). Q.E.D.
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