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Abstract. 

In this paper we show that a conjecture of Lusztig on distin
guished involutions is true for the affine Weyl group of type An. 

§1. Springer's formula and Lusztig's Conjecture 

1.1. Let (W, S) be a Coxeter group with S the set of simple reflections. 
Let H be the Heeke algebra of (W,S) over A= Z[q~,q-~] (q~ an 
indeterminate). Then His a free A-module with a basis {Tw}wEW and 
multiplication relations 

(Ts - q)(Ts + 1) = 0 if s E S, 

if l(wu) = l(w) + l(u), 

where l : W ----> N is the length function. 
In 1979, Kazhdan and Lusztig published a paper [KL] in which the 

famous Kazhdan-Lusztig polynomials are introduced, which are uniquely 
defined by the following properties. For each x in W, there exists a 
unique element 

(here :::; is the Bruhat order on (W, S)) such that 
(1) Cx is invariant under the ring involution H ----> H defined by q~ ----> 

1 T r-1 q-2, w--> w-1> 

(2) Py,x are polynomials in q with degree less than or equal to Hl(x)
l(y) - 1) if y :::; X and y =/:- x, and Px,x = 1. 
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Py,x are the famous Kazhdan-Lusztig polynomials, which play a 
great role in Lie Theory. 

1.2. Suppose that y :s:; x and y =f. x. We then can write 

Py,x = p,(y, x)q!(l(x)-l(y)-l) +lower degree terms. 

The coefficients p,(y, x) are important for understanding the Kazhdan
Lusztig polynomials and Kazhdan-Lusztig cells. We are interested in 
properties of the coefficients p,(y,x). We set p,(x,y) = p,(y,x) if p,(y,x) 
is defined. 

Assume that (W, S) is an affine Weyl group or a Weyl group. The 
following formula is due to Springer (see [Sp, S2]), 

(a) p,(y,x) = L Dy-l,x,d + L /y-l,x,J1f(f). 
dEVo /EV1 

We need explain the notations. Write 

Define 

CxCy = L hx,y,zCz, 
zEW 

a(z) = min{i EN I q-4hx,y,z E Z[q-!] for all x,y E W}. 

If for any i, q-4hx,y,z f/. Z[q-!] for some x,y E W, we set a(z) = oo. It 
is not clear that whether there exists a Coxeter group (W, S) such that 
a(z) = oo for some z E W. 

From now on, we assume that the function a : W --+ N is bounded 
and (W, S) is crystallographic. Obviously, when W is finite, the function 
a is bounded. Lusztig showed that the function a is bounded for all affine 
Weyl groups (see [Ll]). Following Lusztig and Springer, we define Dx,y,z 
and lx,y,z by the following formula, 

a(z) a(z)-1 

hx,y,z = lx,y,zQ_2_ + Dx,y,zQ-2 - + lower degree terms. 

Springer showed that l(z) 2: a(z) (see [L2]). Let o(z) be the degree 
of Pe,z, where e is the neutral element of W. Then actually one has 
l(z)- a(z)- 2o(z) 2: 0 (see [L2]). Set 

Vi = {z E W il(z)- a(z)- 2o(z) = i}. 

The number 1r(z) is defined by Pe,z = 1r(z)q6(z) + lower degree terms. 
The elements of V 0 are involutions, called distinguished involutions 

of (W, S) (see [L2]). Moreover, in a Weyl group or an affine Weyl group, 
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each left cell (resp. right cell) contains exactly one element of V0 , see 
(L2]. 

Example: Let S' be a subset of S such that the subgroup W' of W 
generated by S' is finite. Then the longest element of W' is in V0 . 

1.3. Comparing with the set Vo, we know very little about the set 
V1 . From the formula of Springer, we see that the set V1 is important 
for understanding the coefficients J..L(Y, x). Lusztig has an interesting 
conjecture for describing the set V1. For stating the conjecture we need 
the concept of cell. 

We refer to [KL] for the definition of left cell, right cell and two-sided 
cell. For elements w, u in W we shall write w "'u (resp. w "'u; w "' u) 

L R LR 
if w and u are in the same left (resp. right; two-sided) cell of W. Now 
we can state the conjecture of Lusztig (see(L3, S2]). 

Conjecture: Let z E W. Then z is in V1 if and only if there exists 
some din Vo such that z "' d and J..L(z, d) =f. 0. 

LR 

To go further, we need some properties of 'Yx,y,z and 6x,y,z· The 
following are some properties of /w,u,v (see [L2] for (a)-( d) and [Ll] for 
(e)). 

(a) If 'Yw u 'II is not equal to 0, then w rv u-1 , u rv v and w rv v. In 
' ' L L R 

particular we have w rv u rv v if 'Yw u 'II is not equal to 0. 
LR LR '' 

(b) 'Yw,u,v = 'Yu,v-1,w-1 and 'Yu-1,w-1,v-1 = lw,u,v• 

(c) Let d be in Vo. Then 'Yw,d,u =f. 0 if and only if w = u and w L d. 

Moreover 'Yw,d,w = /d,w-1,w-1 = 'Yw-1,w,d = 1. 

(d) w"' u-1 if and only if 'Yw u v is not equal to 0 for some v. 
L '' 

(e) The positivity: as a Laurent polynomial in q~, the coefficients of 
hw,u,v are non-negative. In particular, 'Yw,u,v and 6w,u,v are non-negative 
for all w, u, v in W. 

The following property is due to Springer, see [Sp] or [S2]. 
(f) If w rv u and 6w u 'II =f. 0, then w rv v and u rv v. 

LR '' R L 

1.4. The observations of this subsection are due to Shi, Springer and 
Lusztig. 

We can see easily that the "only if' part of the conjecture in subsec
tion 1.3 is true. If z is in V1. then we can find some d in V0 such that 
z "'d (or equivalently, z-1 "'d, note that d = d- 1 ). By 1.3 (c), we have 

R L 
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'Yz-l,d,z-1 = 1. By the positivity (see 1.3 (e)) and Springer's formula 
(see 1.2 (a)), we see that p,(z, d) f:. 0. This observation and argument 
are due to Shi, see [S2] 

Moreover, for z E Wand d E 'D0 , if p,(z, d) f:. 0, z "' d and z r£ z-1 , 
LR L 

it is easy to prove that z is in 'D1 . Now we argue for this. We have 

p,(z, d) = L hz-l,d,d' + L 'Yz-l,d,J7r(f). 
d' E'Do fE'D1 

By 1.3 (c), 'Yz-l,d,f f:. 0 implies that f = z-1 • Note that z is in 'D1 

if and only if z-1 is in 'D1. If z is not in V~, then we have p,(z, d) = 
L:d'E'Do hz-l,d,d'· But if hz-l,d,d' f:. 0, by 1.3 (f), we then have z-1 ';i d' 

and d "' d'. Thus we must have d' = d since each left cell contains 
L 

only one element of V 0 . So we must have z-1 "' d. Since p,(z, d) = 
R 

p,(z-I, d-1 ) = p,(z-1 , d), applying the same argument to z-1 we can 
see that z "' d. In conclusion, we have z "' z-1, i.e., z "' z-1 . This 

R R L 
contradicts z rf z-1 • Therefore we must have z E 'D1 . Essentially this 

L 
observation and argument are due to Springer, see [S2] and [Sp]. 

The conjecture was also proved for Weyl groups by Lusztig with the 
following two exceptions (1) W is of type E7 and a(z) = 512, (2) W is 
of type E 8 and a(z) = 4096 (see [L3]). In this paper we shall prove the 
following result. 

Theorem 1.5. Let (W, S) be an affine Weyl group of type An, then 
the conjecture of Lusztig in subsection 1.3 is true. 

We need some preparation to prove the theorem. 

§2. Proof of Theorem 1.5 

We shall need the star operations introduced by Kazhdan and Lusztig 
in [KL]. 

2.1. For w in W, set L(w) = {s E S I sw ~ w} and R(w) = {s E 
S I ws ~ w }. Lets and t be inS such that st has order 3, i.e. sts = tst. 
Define 

DL(s, t) ={wE WI L(w) n {s, t} has exactly one element}, 

DR(s, t) ={wE WI R(w) n {s, t} has exactly one element}. 

If w is in D L ( s, t), then { sw, tw} contains exactly one element in 
DL(s, t), denoted by *w, here*= {s, t}. The map: DL(s, t)---+ DL(s, t), 
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w---+ *w, is an involution and is called a left star operation. Similarly 
if w E DR(s, t) we can define the right star operation w ---+ w* = 
{ws,wt} n DR(s,t) on DR(s,t), where*= {s,t}. The following are 
some properties proved in [KL]. 

Let s and t be in S such that st has order 3 and set * = {s, t}. 
Assume that y, ware in DL(s, t). We have 

(a) 

(b) 

1-L(y,w) = 1-L(*y, *w). 

y "' w if and only if *y "' *w. 
R R 

(c) W"-'*W. 
L 

(d) 

(e) 

Let*= {s,t}. Assume that y,w are in DR(s,t). We have 

1-L(y,w) = 1-L(y*,w*). 

y "' w if and only if w* "' y*. 
L L 

(f) w"' w*. 
R 

2.2. Recall that we have assumed that (W, S) is crystallographic and 
the function a : W ---+ N is bounded. The following results (a-d) are 
proved in [X, section 1.4] and the assertion (e) is due to Shi (see [C, 
Theorem 1.10]). 

Let s, t, s', t' be inS such that both st and s't' have order 3. Assume 
that w is in DL(s,t) nDR(s',t'). Set*= {s,t} and*= {s',t'}. Then 

(a) *w is in DR(s', t') and w* is in DL(s, t). Moreover, we have *(w*) = 
(*w)*. We shall write *w* for *(w*) = (*w)*. 

(b) (*w)- 1 = (w- 1)* and (*w*)-1 = *(w-1)* 

Let s, t, s', t' be as above and * = {s, t} and*= {s', t'}. Suppose 
that w is in DL(s, t) and u is in DR(s', t'). Let v be in W such that 
v "'u and v "'w. Then 

L R 

(c) We have v E DL(s, t) n DR(s', t'), so *v* is well defined and we have 
hw,u,v = h•w,u*, •v•, see subsection 1.2 for the definition of hw,u,v. 

Lets, t, s', t', s", t" be inS such that all st, s't' and s"t" have order 
3. Suppose that w is in DL(s, t) n DR(s", t") and u is in DL(s"' t") n 
DR(s',t'). Set*= {s,t},# = {s",t"}, and*= {s',t'}. Let v be in W 
such that vis in DL(s, t) n DR(s', t'). Then we have 

.(d) 'Yw,u,v = 'Y•w#, #u•, *v* · 
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(e) Let w be in W such that w = w-1 . If w is in DL(s, t) or in DR(s, t), 
then *w* is well defined for* = { s, t}. Moreover, if w is in 'D0 , then *w* 
is also in 'D0 • 

Lemma 2.3. Lets, t be inS such that st has order 3, z in W and 
d in 'Do such that z "' d. Assume that 8z-1 d d = 0 and 1-l(z, d) # 0. 

LR '' 
Then 
(a) z is in 'D1 and !-l(z, d)= n(z). 
(b) If z "'z-1 "'d and *z* is well defined for*= {s, t}, then *z* is in 

L L 
'D1 and !-l(*z*, *d*) = n(*z*) = n(z) = !-l(z, d). 

Proof. (a) Using Springer's formula 1.2 (a) and 1.3 (f), we see 

1-l(Z, d) = Dz-l,d,d + L 'Yz-l,d,J11"(j). 

fE1J1 

Now 8z-l,d,d = 0, so we get 

!-l(z,d) = L 'Yz-l,d,J11"(j). 

JE1J1 

By 1.3 (c), 'Yz-l,d,J # 0 implies that f = z- 1 and 'Yz-l,d,J = 1. Hence 
z-1 is in 'Db or equivalently z is in 'D1 , and !-l(z,d) = rr(z- 1 ) = n(z). 

(b) According to 2.1 (a) and 2.1 (d), we have !-l(* z*, *d*) = !-l(z, d) # 
0. By 2.2 (e), *d* is in 'D0 . By Springer's formula 1.2 (a), 1.3 (f) and 
2.2 (b), we have 

!-l(*z*, *d*) = D·(z-l)•,•d•,•d• + L "Y•(z-l)•,•d•,J1l"(j). 

fE1J1 

We need prove 8•(z-l)•,•d•,•d• = 0. By 2.1 (b-e), 2.1 (e-f) and 2.2 (c), 
h•(z-l)•,•d•,•d• = h(z-l)•,•d,d, SO 

By Springer's formula 1.2 (a) and 2.2 (b), we have 

!-l(*z, *d)= L D(z-l)*,*d,d' + L 'Y(z-l)*,*d,J7r(f). 

~E'Do fE~ 

By 2.1 (a), !-l(*z, *d)= !-l(z, d), so 

!-l(*z, *d)= 1-l(z, d)= L D(z-l)•,•d,d' + L 'Y(z-l)•,*d,J7r(f). 

d'E'Do 



Characterization of the Set V1 489 

By 2.2 (d), we know that 'Y(z-l)•,•d,/ = 'Yz-l,d,f· Thus, 'Y(z-l)•,•d.f -:f. 0 
implies that f = z-1 and 'Y(z-l)•,•d,/ = 1. By (a), we also have J.L(z, d)= 
1r(z)·= 7r(z-1). As a consequence, we must have t5(z-l)•,•d,d' = 0 for any 
d' in 'Do. Therefore, t5•(z-l)•,•d•,•d• = 0. Since *d* is in Vo (see 2.2 
(e)), by 1.3 (c), we know 'Y•(z-l)•,•d•,f -:f. 0 implies that f = *(z-1)* 
and 'Y•(z-l)•,•d•.f = 1. Therefore *(z-1)* = (*z*)-1 and *z* are in V1 . 

Moreover we have J.L(z, d) = J.L(*z*, *d*) = 7r(*(z- 1)*) = 1r(*z*). The 
lemma is proved. 0 

2.4. Now we can prove the theorem. When n = 1, Theorem 1.5 is 
clearly true. Now assume that n ~ 2. By the discussion in 1.4, we only 
need to prove that for some d E V 0 , if z "' z-1 "' d and J.L(z, d) -:f. 0, 

L L 
then z E V1 . According to [Sl, 18.3.2], there exists a sequence of right 
star operations such that its composition sends z (resp. d) to some z'w 
(resp. yw) for the longest element w of a parabolic subgroup of W 
and such that z'w "' w (resp. yw "' w). Using 2.2 (a), we can apply 

L L 
the corresponding (in the same order) left star operations to z'w (resp. 
yw). Then we obtain some element xw (resp. w, here 2.2 (e) is needed) 
such that xw"' (xw)-1 "'w. By 2.1 (a) and 2.1 (d), clearly we have 

L L 
J.L(xw, w) = J.L(z, d) -:f. 0. Note that for x1 and x2 in a Coxeter group, we 
have R(x1) = R(x2) (resp. L(x1) = L(x2)) if X1 and x2 are in the same 
left (resp. right) cell of the Coxeter group, see [KL]. By 2.1 (b) and 2.1 
(e), we have R(z'w) = R(yw) = R(xw) = L(xw) = R(w) = L(w). Thus 
it is obvious that Oxw,w,w = 0. By Lemma 2.3 (a), we see that xw is in 
V1 . By Lemma 2.3 (b) we know that z is in V 1 . The theorem is proved. 
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