Advanced Studies in Pure Mathematics 40, 2004 Representation Theory of Algebraic Groups and Quantum Groups pp. 483-490

On the Characterization of the Set \mathcal{D}_{1} of the Affine Weyl Group of Type \tilde{A}_{n}

Nanhua Xi
Dedicated to N. Iwahori

Abstract

. In this paper we show that a conjecture of Lusztig on distinguished involutions is true for the affine Weyl group of type \tilde{A}_{n}.

§1. Springer's formula and Lusztig's Conjecture

1.1. Let (W, S) be a Coxeter group with S the set of simple reflections. Let H be the Hecke algebra of (W, S) over $\mathcal{A}=\mathbf{Z}\left[q^{\frac{1}{2}}, q^{-\frac{1}{2}}\right]\left(q^{\frac{1}{2}}\right.$ an indeterminate). Then H is a free \mathcal{A}-module with a basis $\left\{T_{w}\right\}_{w \in W}$ and multiplication relations

$$
\begin{gathered}
\left(T_{s}-q\right)\left(T_{s}+1\right)=0 \quad \text { if } s \in S \\
T_{w} T_{u}=T_{w u} \quad \text { if } l(w u)=l(w)+l(u)
\end{gathered}
$$

where $l: W \rightarrow \mathbf{N}$ is the length function.
In 1979, Kazhdan and Lusztig published a paper [KL] in which the famous Kazhdan-Lusztig polynomials are introduced, which are uniquely defined by the following properties. For each x in W, there exists a unique element

$$
C_{x}=q^{-\frac{l(x)}{2}} \sum_{y \leq x} P_{y, x} T_{y}
$$

(here \leq is the Bruhat order on (W, S)) such that
(1) C_{x} is invariant under the ring involution $H \rightarrow H$ defined by $q^{\frac{1}{2}} \rightarrow$ $q^{-\frac{1}{2}}, \quad T_{w} \rightarrow T_{w^{-1}}^{-1}$,
(2) $P_{y, x}$ are polynomials in q with degree less than or equal to $\frac{1}{2}(l(x)-$ $l(y)-1)$ if $y \leq x$ and $y \neq x$, and $P_{x, x}=1$.

[^0]Revised July 11, 2002.
$P_{y, x}$ are the famous Kazhdan-Lusztig polynomials, which play a great role in Lie Theory.
1.2. Suppose that $y \leq x$ and $y \neq x$. We then can write

$$
P_{y, x}=\mu(y, x) q^{\frac{1}{2}(l(x)-l(y)-1)}+\text { lower degree terms }
$$

The coefficients $\mu(y, x)$ are important for understanding the KazhdanLusztig polynomials and Kazhdan-Lusztig cells. We are interested in properties of the coefficients $\mu(y, x)$. We set $\mu(x, y)=\mu(y, x)$ if $\mu(y, x)$ is defined.

Assume that (W, S) is an affine Weyl group or a Weyl group. The following formula is due to Springer (see [Sp, S2]),
(a)

$$
\mu(y, x)=\sum_{d \in \mathcal{D}_{0}} \delta_{y^{-1}, x, d}+\sum_{f \in \mathcal{D}_{1}} \gamma_{y^{-1}, x, f} \pi(f)
$$

We need explain the notations. Write

$$
C_{x} C_{y}=\sum_{z \in W} h_{x, y, z} C_{z}, \quad h_{x, y, z} \in \mathcal{A}=\mathbf{Z}\left[q^{\frac{1}{2}}, q^{-\frac{1}{2}}\right]
$$

Define

$$
a(z)=\min \left\{i \in \mathbf{N} \left\lvert\, q^{-\frac{i}{2}} h_{x, y, z} \in \mathbf{Z}\left[q^{-\frac{1}{2}}\right]\right. \text { for all } x, y \in W\right\}
$$

If for any $i, q^{-\frac{i}{2}} h_{x, y, z} \notin \mathbf{Z}\left[q^{-\frac{1}{2}}\right]$ for some $x, y \in W$, we set $a(z)=\infty$. It is not clear that whether there exists a Coxeter group (W, S) such that $a(z)=\infty$ for some $z \in W$.

From now on, we assume that the function $a: W \rightarrow \mathbf{N}$ is bounded and (W, S) is crystallographic. Obviously, when W is finite, the function a is bounded. Lusztig showed that the function a is bounded for all affine Weyl groups (see [L1]). Following Lusztig and Springer, we define $\delta_{x, y, z}$ and $\gamma_{x, y, z}$ by the following formula,

$$
h_{x, y, z}=\gamma_{x, y, z} q^{\frac{a(z)}{2}}+\delta_{x, y, z} q^{\frac{a(z)-1}{2}}+\text { lower degree terms. }
$$

Springer showed that $l(z) \geq a(z)$ (see [L2]). Let $\delta(z)$ be the degree of $P_{e, z}$, where e is the neutral element of W. Then actually one has $l(z)-a(z)-2 \delta(z) \geq 0$ (see [L2]). Set

$$
\mathcal{D}_{i}=\{z \in W \mid l(z)-a(z)-2 \delta(z)=i\}
$$

The number $\pi(z)$ is defined by $P_{e, z}=\pi(z) q^{\delta(z)}+$ lower degree terms.
The elements of \mathcal{D}_{0} are involutions, called distinguished involutions of (W, S) (see [L2]). Moreover, in a Weyl group or an affine Weyl group,
each left cell (resp. right cell) contains exactly one element of \mathcal{D}_{0}, see [L2].

Example: Let S^{\prime} be a subset of S such that the subgroup W^{\prime} of W generated by S^{\prime} is finite. Then the longest element of W^{\prime} is in \mathcal{D}_{0}.
1.3. Comparing with the set \mathcal{D}_{0}, we know very little about the set \mathcal{D}_{1}. From the formula of Springer, we see that the set \mathcal{D}_{1} is important for understanding the coefficients $\mu(y, x)$. Lusztig has an interesting conjecture for describing the set \mathcal{D}_{1}. For stating the conjecture we need the concept of cell.

We refer to [KL] for the definition of left cell, right cell and two-sided cell. For elements w, u in W we shall write $w \underset{L}{\sim} u($ resp. $w \underset{R}{\sim} u ; w \underset{L R}{\sim} u)$ if w and u are in the same left (resp. right; two-sided) cell of W. Now we can state the conjecture of Lusztig (see[L3, S2]).

Conjecture: Let $z \in W$. Then z is in \mathcal{D}_{1} if and only if there exists some d in \mathcal{D}_{0} such that $z \underset{L R}{\sim} d$ and $\mu(z, d) \neq 0$.

To go further, we need some properties of $\gamma_{x, y, z}$ and $\delta_{x, y, z}$. The following are some properties of $\gamma_{w, u, v}$ (see [L2] for (a)-(d) and [L1] for (e)).
(a) If $\gamma_{w, u, v}$ is not equal to 0 , then $w \underset{L}{\sim} u^{-1}, u \underset{L}{\sim} v$ and $w \underset{R}{\underset{\sim}{\sim}} v$. In particular we have $w \underset{L R}{\sim} u \underset{L R}{\sim} v$ if $\gamma_{w, u, v}$ is not equal to 0 .
(b) $\gamma_{w, u, v}=\gamma_{u, v^{-1}, w^{-1}}$ and $\gamma_{u^{-1}, w^{-1}, v^{-1}}=\gamma_{w, u, v}$.
(c) Let d be in \mathcal{D}_{0}. Then $\gamma_{w, d, u} \neq 0$ if and only if $w=u$ and $w \underset{L}{\sim} d$.

Moreover $\gamma_{w, d, w}=\gamma_{d, w^{-1}, w^{-1}}=\gamma_{w^{-1}, w, d}=1$.
(d) $w \underset{L}{\sim} u^{-1}$ if and only if $\gamma_{w, u, v}$ is not equal to 0 for some v.
(e) The positivity: as a Laurent polynomial in $q^{\frac{1}{2}}$, the coefficients of $h_{w, u, v}$ are non-negative. In particular, $\gamma_{w, u, v}$ and $\delta_{w, u, v}$ are non-negative for all w, u, v in W.

The following property is due to Springer, see $[\mathrm{Sp}]$ or [S2].
(f) If $w \underset{L R}{\sim} u$ and $\delta_{w, u, v} \neq 0$, then $w \underset{R}{\sim} v$ and $u \underset{L}{\sim} v$.
1.4. The observations of this subsection are due to Shi, Springer and Lusztig.

We can see easily that the "only if" part of the conjecture in subsection 1.3 is true. If z is in \mathcal{D}_{1}, then we can find some d in \mathcal{D}_{0} such that $z \underset{R}{\sim} d$ (or equivalently, $z^{-1} \underset{L}{\sim} d$, note that $d=d^{-1}$). By 1.3 (c), we have
$\gamma_{z^{-1}, d, z^{-1}}=1$. By the positivity (see 1.3 (e)) and Springer's formula (see 1.2 (a)), we see that $\mu(z, d) \neq 0$. This observation and argument are due to Shi, see [S2]

Moreover, for $z \in W$ and $d \in \mathcal{D}_{0}$, if $\mu(z, d) \neq 0, z \underset{L R}{\sim} d$ and $z \underset{L}{\nsim} z^{-1}$, it is easy to prove that z is in \mathcal{D}_{1}. Now we argue for this. We have

$$
\mu(z, d)=\sum_{d^{\prime} \in \mathcal{D}_{0}} \delta_{z^{-1}, d, d^{\prime}}+\sum_{f \in \mathcal{D}_{1}} \gamma_{z^{-1}, d, f} \pi(f)
$$

By 1.3 (c), $\gamma_{z^{-1}, d, f} \neq 0$ implies that $f=z^{-1}$. Note that z is in \mathcal{D}_{1} if and only if z^{-1} is in \mathcal{D}_{1}. If z is not in \mathcal{D}_{1}, then we have $\mu(z, d)=$ $\sum_{d^{\prime} \in \mathcal{D}_{0}} \delta_{z^{-1}, d, d^{\prime}}$. But if $\delta_{z^{-1}, d, d^{\prime}} \neq 0$, by $1.3(\mathrm{f})$, we then have $z^{-1} \underset{R}{\sim} d^{\prime}$ and $d \underset{L}{\sim} d^{\prime}$. Thus we must have $d^{\prime}=d$ since each left cell contains only one element of \mathcal{D}_{0}. So we must have $z^{-1} \underset{R}{\sim} d$. Since $\mu(z, d)=$ $\mu\left(z^{-1}, d^{-1}\right)=\mu\left(z^{-1}, d\right)$, applying the same argument to z^{-1} we can see that $z \underset{R}{\sim} d$. In conclusion, we have $z \underset{R}{\sim} z^{-1}$, i.e., $z \underset{L}{\sim} z^{-1}$. This contradicts $z \underset{L}{\nsim} z^{-1}$. Therefore we must have $z \in \mathcal{D}_{1}$. Essentially this observation and argument are due to Springer, see [S2] and [Sp].

The conjecture was also proved for Weyl groups by Lusztig with the following two exceptions (1) W is of type E_{7} and $a(z)=512$, (2) W is of type E_{8} and $a(z)=4096$ (see [L3]). In this paper we shall prove the following result.

Theorem 1.5. Let (W, S) be an affine Weyl group of type \tilde{A}_{n}, then the conjecture of Lusztig in subsection 1.3 is true.

We need some preparation to prove the theorem.

§2. Proof of Theorem 1.5

We shall need the star operations introduced by Kazhdan and Lusztig in [KL].
2.1. For w in W, set $L(w)=\{s \in S \mid s w \leq w\}$ and $R(w)=\{s \in$ $S \mid w s \leq w\}$. Let s and t be in S such that st has order 3, i.e. sts $=t s t$. Define

$$
\begin{aligned}
& D_{L}(s, t)=\{w \in W \mid L(w) \cap\{s, t\} \text { has exactly one element }\} \\
& D_{R}(s, t)=\{w \in W \mid R(w) \cap\{s, t\} \text { has exactly one element }\}
\end{aligned}
$$

If w is in $D_{L}(s, t)$, then $\{s w, t w\}$ contains exactly one element in $D_{L}(s, t)$, denoted by ${ }^{*} w$, here $*=\{s, t\}$. The map: $D_{L}(s, t) \rightarrow D_{L}(s, t)$,
$w \rightarrow{ }^{*} w$, is an involution and is called a left star operation. Similarly if $w \in D_{R}(s, t)$ we can define the right star operation $w \rightarrow w^{*}=$ $\{w s, w t\} \cap D_{R}(s, t)$ on $D_{R}(s, t)$, where $*=\{s, t\}$. The following are some properties proved in [KL].

Let s and t be in S such that st has order 3 and set $*=\{s, t\}$. Assume that y, w are in $D_{L}(s, t)$. We have
(a) $\mu(y, w)=\mu\left({ }^{*} y,{ }^{*} w\right)$.
(b) $y \underset{R}{\sim} w$ if and only if ${ }^{*} y \underset{R}{\sim}{ }^{*} w$.
(c) $w \underset{L}{\sim}{ }^{*} w$.

Let $*=\{s, t\}$. Assume that y, w are in $D_{R}(s, t)$. We have
(d) $\mu(y, w)=\mu\left(y^{*}, w^{*}\right)$.
(e) $y \underset{L}{\sim} w$ if and only if $w^{*} \underset{L}{\sim} y^{*}$.
(f) $w \underset{R}{\sim} w^{*}$.
2.2. Recall that we have assumed that (W, S) is crystallographic and the function $a: W \rightarrow \mathbf{N}$ is bounded. The following results (a-d) are proved in [X , section 1.4] and the assertion (e) is due to Shi (see [C, Theorem 1.10]).

Let $s, t, s^{\prime}, t^{\prime}$ be in S such that both $s t$ and $s^{\prime} t^{\prime}$ have order 3. Assume that w is in $D_{L}(s, t) \cap D_{R}\left(s^{\prime}, t^{\prime}\right)$. Set $*=\{s, t\}$ and $\star=\left\{s^{\prime}, t^{\prime}\right\}$. Then
(a) ${ }^{*} w$ is in $D_{R}\left(s^{\prime}, t^{\prime}\right)$ and w^{\star} is in $D_{L}(s, t)$. Moreover, we have ${ }^{*}\left(w^{\star}\right)=$ $\left({ }^{*} w\right)^{\star}$. We shall write ${ }^{*} w^{\star}$ for ${ }^{*}\left(w^{\star}\right)=\left({ }^{*} w\right)^{\star}$.
(b) $\left({ }^{*} w\right)^{-1}=\left(w^{-1}\right)^{*}$ and $\left({ }^{*} w^{\star}\right)^{-1}={ }^{\star}\left(w^{-1}\right)^{*}$

Let $s, t, s^{\prime}, t^{\prime}$ be as above and $*=\{s, t\}$ and $\star=\left\{s^{\prime}, t^{\prime}\right\}$. Suppose that w is in $D_{L}(s, t)$ and u is in $D_{R}\left(s^{\prime}, t^{\prime}\right)$. Let v be in W such that $v \underset{L}{\sim} u$ and $v \underset{R}{\sim} w$. Then
(c) We have $v \in D_{L}(s, t) \cap D_{R}\left(s^{\prime}, t^{\prime}\right)$, so ${ }^{*} v^{\star}$ is well defined and we have $h_{w, u, v}=h_{*} w, u^{\star}, v^{*}{ }^{*}$, see subsection 1.2 for the definition of $h_{w, u, v}$.

Let $s, t, s^{\prime}, t^{\prime}, s^{\prime \prime}, t^{\prime \prime}$ be in S such that all $s t, s^{\prime} t^{\prime}$ and $s^{\prime \prime} t^{\prime \prime}$ have order 3. Suppose that w is in $D_{L}(s, t) \cap D_{R}\left(s^{\prime \prime}, t^{\prime \prime}\right)$ and u is in $D_{L}\left(s^{\prime \prime}, t^{\prime \prime}\right) \cap$ $D_{R}\left(s^{\prime}, t^{\prime}\right)$. Set $*=\{s, t\}, \#=\left\{s^{\prime \prime}, t^{\prime \prime}\right\}$, and $\star=\left\{s^{\prime}, t^{\prime}\right\}$. Let v be in W such that v is in $D_{L}(s, t) \cap D_{R}\left(s^{\prime}, t^{\prime}\right)$. Then we have
(d) $\gamma_{w, u, v}=\gamma_{*} w^{\#}, \# u^{\star},{ }^{*} v^{\star}$.
(e) Let w be in W such that $w=w^{-1}$. If w is in $D_{L}(s, t)$ or in $D_{R}(s, t)$, then ${ }^{*} w^{*}$ is well defined for $*=\{s, t\}$. Moreover, if w is in \mathcal{D}_{0}, then ${ }^{*} w^{*}$ is also in \mathcal{D}_{0}.

Lemma 2.3. Let s, t be in S such that st has order 3, z in W and d in \mathcal{D}_{0} such that $z \underset{L_{R}}{\sim} d$. Assume that $\delta_{z^{-1}, d, d}=0$ and $\mu(z, d) \neq 0$. Then
(a) z is in \mathcal{D}_{1} and $\mu(z, d)=\pi(z)$.
(b) If $z \underset{L}{\sim} z^{-1} \underset{L}{\sim} d$ and ${ }^{*} z^{*}$ is well defined for $*=\{s, t\}$, then ${ }^{*} z^{*}$ is in \mathcal{D}_{1} and $\mu\left({ }^{*} z^{*},{ }^{*} d^{*}\right)=\pi\left({ }^{*} z^{*}\right)=\pi(z)=\mu(z, d)$.

Proof. (a) Using Springer's formula 1.2 (a) and 1.3 (f), we see

$$
\mu(z, d)=\delta_{z^{-1}, d, d}+\sum_{f \in \mathcal{D}_{1}} \gamma_{z^{-1}, d, f} \pi(f)
$$

Now $\delta_{z^{-1}, d, d}=0$, so we get

$$
\mu(z, d)=\sum_{f \in \mathcal{D}_{1}} \gamma_{z^{-1}, d, f} \pi(f)
$$

By 1.3 (c), $\gamma_{z^{-1}, d, f} \neq 0$ implies that $f=z^{-1}$ and $\gamma_{z^{-1}, d, f}=1$. Hence z^{-1} is in \mathcal{D}_{1}, or equivalently z is in \mathcal{D}_{1}, and $\mu(z, d)=\pi\left(z^{-1}\right)=\pi(z)$.
(b) According to 2.1 (a) and 2.1 (d), we have $\mu\left({ }^{*} z^{*},{ }^{*} d^{*}\right)=\mu(z, d) \neq$ 0. By 2.2 (e), ${ }^{*} d^{*}$ is in \mathcal{D}_{0}. By Springer's formula 1.2 (a), 1.3 (f) and 2.2 (b), we have

$$
\mu\left({ }^{*} z^{*},{ }^{*} d^{*}\right)=\delta_{*}\left(z^{-1}\right)^{*}, d^{*} d^{*} d^{*}+\sum_{f \in \mathcal{D}_{1}} \gamma_{*}\left(z^{-1}\right)^{*},{ }^{*} d^{*}, f \pi(f) .
$$

We need prove $\delta_{*\left(z^{-1}\right)^{*}, * d^{*}, d^{*}}=0$. By 2.1 (b-c), 2.1 (e-f) and 2.2 (c), $h_{*}\left(z^{-1}\right)^{*},{ }^{*} d^{*},{ }^{*} d^{*}=h_{\left(z^{-1}\right)^{*}, * d, d}$, so

$$
\delta_{*}\left(z^{-1}\right)^{*},{ }^{*} d^{*},{ }^{*} d^{*}=\delta_{\left(z^{-1}\right)^{*}, * d, d}
$$

By Springer's formula 1.2 (a) and 2.2 (b), we have

$$
\mu\left({ }^{*} z,{ }^{*} d\right)=\sum_{d^{\prime} \in \mathcal{D}_{0}} \delta_{\left(z^{-1}\right)^{*},{ }^{*} d, d^{\prime}}+\sum_{f \in \mathcal{D}_{1}} \gamma_{\left(z^{-1}\right)^{*},{ }^{*} d, f} \pi(f) .
$$

By $2.1(\mathrm{a}), \mu\left({ }^{*} z,{ }^{*} d\right)=\mu(z, d)$, so

$$
\mu\left({ }^{*} z,{ }^{*} d\right)=\mu(z, d)=\sum_{d^{\prime} \in \mathcal{D}_{0}} \delta_{\left(z^{-1}\right)^{*},{ }^{*} d, d^{\prime}}+\sum_{f \in \mathcal{D}_{1}} \gamma_{\left(z^{-1}\right)^{*},{ }^{*} d, f} \pi(f) .
$$

By 2.2 (d), we know that $\gamma_{\left(z^{-1}\right)^{*},{ }^{*} d, f}=\gamma_{z^{-1}, d, f}$. Thus, $\gamma_{\left(z^{-1}\right)^{*},{ }^{*} d, f} \neq 0$ implies that $f=z^{-1}$ and $\gamma_{\left(z^{-1}\right)^{*},{ }^{*} d, f}=1$. By (a), we also have $\mu(z, d)=$ $\pi(z)=\pi\left(z^{-1}\right)$. As a consequence, we must have $\delta_{\left(z^{-1}\right)^{*}, * d, d^{\prime}}=0$ for any d^{\prime} in \mathcal{D}_{0}. Therefore, $\delta_{*\left(z^{-1}\right)^{*},{ }^{*} d^{*},{ }^{*} d^{*}=0 \text {. Since }{ }^{*} d^{*} \text { is in } \mathcal{D}_{0} \text { (see } 2.2 ~}^{\text {. }}$ (e)), by 1.3 (c), we know $\gamma_{*}^{*}\left(z^{-1}\right)^{*},{ }^{*} d^{*}, f \neq 0$ implies that $f=^{*}\left(z^{-1}\right)^{*}$ and $\gamma_{*}\left(z^{-1}\right)^{*},,^{*} d^{*}, f=1$. Therefore ${ }^{*}\left(z^{-1}\right)^{*}=\left({ }^{*} z^{*}\right)^{-1}$ and ${ }^{*} z^{*}$ are in \mathcal{D}_{1}. Moreover we have $\mu(z, d)=\mu\left({ }^{*} z^{*},{ }^{*} d^{*}\right)=\pi\left({ }^{*}\left(z^{-1}\right)^{*}\right)=\pi\left({ }^{*} z^{*}\right)$. The lemma is proved.
2.4. Now we can prove the theorem. When $n=1$, Theorem 1.5 is clearly true. Now assume that $n \geq 2$. By the discussion in 1.4 , we only need to prove that for some $d \in \mathcal{D}_{0}$, if $z \underset{L}{\sim} z^{-1} \underset{L}{\sim} d$ and $\mu(z, d) \neq 0$, then $z \in \mathcal{D}_{1}$. According to [$\mathrm{S} 1,18.3 .2$], there exists a sequence of right star operations such that its composition sends z (resp. d) to some $z^{\prime} w$ (resp. $y w$) for the longest element w of a parabolic subgroup of W and such that $z^{\prime} w \underset{L}{\sim} w($ resp. $y w \underset{L}{\sim} w)$. Using 2.2 (a), we can apply the corresponding (in the same order) left star operations to $z^{\prime} w$ (resp. $y w)$. Then we obtain some element $x w$ (resp. w, here 2.2 (e) is needed) such that $x w \underset{L}{\sim}(x w)^{-1} \underset{L}{\sim} w$. By 2.1 (a) and 2.1 (d), clearly we have $\mu(x w, w)=\mu(z, d) \neq 0$. Note that for x_{1} and x_{2} in a Coxeter group, we have $R\left(x_{1}\right)=R\left(x_{2}\right)$ (resp. $L\left(x_{1}\right)=L\left(x_{2}\right)$) if x_{1} and x_{2} are in the same left (resp. right) cell of the Coxeter group, see [KL]. By 2.1 (b) and 2.1 (e), we have $R\left(z^{\prime} w\right)=R(y w)=R(x w)=L(x w)=R(w)=L(w)$. Thus it is obvious that $\delta_{x w, w, w}=0$. By Lemma 2.3 (a), we see that $x w$ is in \mathcal{D}_{1}. By Lemma 2.3 (b) we know that z is in \mathcal{D}_{1}. The theorem is proved.

Acknowledgement: The author is very grateful to the referee for carefully reading and for helpful comments.

References

[C] C. D. Chen, Cells of the affine Weyl group of type D_{4}, J. Algebra, 163 (3) (1994), 692-728.
[KL] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165-184.
[L1] G. Lusztig, Cells in affine Weyl groups, in "Algebraic groups and related topics", Advanced Studies in Pure Math., vol. 6, Kinokunia and North Holland, 1985, pp. 255-287.
[L2] G. Lusztig, Cells in affine Weyl groups, II, J. Alg. 109 (1987), 536-548.
[L3] G. Lusztig, Letter to T. A. Springer, 1987.
[S1] J.-Y. Shi, Kazhdan-Lusztig cells of certain affine Weyl groups, LNM 1179, Springer-Verlag, Berlin, 1986.
[S2] J.-Y. Shi, The joint relations and the set \mathcal{D}_{1} in certain crystallographic groups, Adv. in Math. 81 (1990), 66-89.
[Sp] T. A. Springer, Letter to G. Lusztig, 1987.
[X] N. Xi, The based ring of two-sided cells of affine Weyl groups of type \tilde{A}_{n-1}, Mem. of AMS, No. 749, vol. 157, 2002.

Institute of Mathematics
Chinese Academy of Sciences
Beijing 100080
China

[^0]: Received March 11, 2002.

