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On tensor categories attached to cells 
in affine Weyl groups 

Roman Bezrukavnikov 

Abstract. 

This note is devoted to Lusztig's bijection between unipotent 
conjugacy classes in a simple complex algebraic group and 2-sided 
cells in the affine Weyl group of the Langlands dual group; and also 
to the description of the reductive quotient of the centralizer of the 
unipotent element in terms of convolution of perverse sheaves on 
affine flag variety of the dual group conjectured by Lusztig in [L4]. 
Our main tool is a recent construction by Gaitsgory (based on an idea 
of Beilinson and Kottwitz), the so-called sheaf-theoretic construction 
of the center of an affine Heeke algebra (see [Gal). We show how this 
remarkable construction provides a geometric interpretation of the 
bijection, and allows to prove the conjecture. 

§1. Introduction. 

Let G be a split simple algebraic group. Let W be the correspond­
ing extended affine Weyl group; thus W is the semi-direct product of 
the Weyl group Wt and the lattice of coweights of G. Let J be the 
corresponding asymptotic affine Heeke algebra [L2]. Recall that J is an 
algebra over Z, and it comes with a basis tw parametrized by W. The 
group W is the union of two-sided cells [Ll], and the algebra J is the 
direct sum of algebras, J = ffiJc, where f runs over the set of two-sided 
cells, and Jf. is the span of tw, -w E f. Let also W f C W be the set of 
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minimal length representatives of double cosets Wt\W/Wt. Let Jf be 
the span of tw, w E W f, and J { = J f n Jc. It follows from the result of 
[LX] that Jf C J, J{ C J£ are -subalgebras. 

Let LG be the Langlands dual group (over an algebraically closed 
field of characteristic zero). In [L3] Lusztig constructed a bijection be­
tween two-sided cells in Wand unipotent conjugacy classes in LG; for a 
2-sided cell r we will denote by Nc E LG a representative of the unipo­
tent conjugacy class corresponding to r. In [L4] the based algebras J£, 
Jf are realized as Grothendieck groups of certain semisimple monoidal 
(tensor without commutativity) categories, which we denote respectively 
by A9 A[ (thus A{ is a monoidal subcategory in A£). The categories 

Ac, At are defined as subcategories of the category of (semisimple) per­
ve~se sheaves on the affine flag manifold of G; the monoidal structure is 
provided by the truncated convolution, see Zoe. cit. 

The following conjectural description of the monoidal categories Ac, 
At (and hence of based rings Jc, J!) was proposed in [L4], §3.2. L;t 
Z-= ZLa(N£) be the centralize; ofN£ in LG. For any two-sided cell 
r there should exist a finite set X with a Z action, such that A£ is 
equivalent to the category Vect;8 (X x X) of semisimple Z-equivariant 
sheaves on X x X, with monoidal structure given by convolution. The 
finite set X should contain a preferred point x E X fixed by Z; thus 
the monoidal category V ect;s (X X X) contains a monoidal subcategory 
Vect;8 ( {(x, x)}) = Rep88 (Z) (the category of semisimple finite dimen­
sional representations of Z). This subcategory should be identified with 
At c Ac. 

- In this note we (extend and) prove the part of the above conjecture 
which asserts the equivalence At = Rep88 (Z) (see [BO] for further re­
sults in this direction). The pro~f is based on a recent construction by 
Gaitsgory (following an idea of Beilinson and Kottwitz), see [Ga]. 

Recall that the link between representations of LG and perverse 
sheaves on affine Grassmanian of G is provided by the so-called geo­
metric version of the Sa take isomorphism (the idea going back to [LO] 
is developed in [Gi] and [MV]; see also [BD]). The classical Satake iso­
morphism is an isomorphism between the spherical Heeke algebra IHisph 

of G(O)-biinvariant functions on G(F), and the ring R(LG), where R 
stands for the representation ring, and F :J 0 is a non-archimedian local 
field and its ring of integers. Its geometric (or categorical) version is an 
equivalence of tensor categories between Rep(LG) and the category of 
"spherical" perverse sheaves on the affine Grassmanian (the more precise 
statement is recalled in section 3.1 below). 
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Further, a theorem of Bernstein (see e.g. [LO], Proposition 8.6) 
asserts that the center of the Iwahori-Matsumoto Heeke algebra IHI is 
also isomorphic to R(LG). The main result of [Ga] provides a geo­
metric (categorical) counterpart of this isomorphism. More precisely, it 
defines a monoidal functor from Rep( LG) to the Iwahori-equivariant de­
rived category of l-adic sheaves on affine flags; the corresponding map of 
Grothendieck groups induces the imbedding R(LG) = Z(IHI) ~ IHI. This 
functor enjoys various favorable properties; it also carries a canonical 
unipotent automorphism !.JJt (the monodromy). 

The idea of the present note is that one can identify certain subquo­
tient categories of perverse sheaves on affine flags related to a 2-sided 
cell f with Rep(H) for a subgroup H C Z(Nc), in such a way that the 
canonical action of Rep( LG) constructed in [Ga] is identified with the 
tautological action of Rep(LG) on Rep(H) 

V: W f--+ Res~c(V) 0 W; 

moreover this requirement fixes the identification with Rep( H) uniquely. 
Then the monodromy automorphism !.JJt provides (by Tannakian formal­
ism) a unipotent element N E LG, commuting with H. This element 
lies in the conjugacy class attached to f by Lusztig. 

With these tools in hand, Lusztig's conjecture becomes an exercise 
in Tannakian formalism (at least modulo some powerful Theorems of 
Lusztig on the structure of asymptotic Heeke algebras). 

I want to point out that at several places in this paper we use "as 
a black box" results of Lusztig on asymptotic Heeke algebras to check 
a categorical property of perverse sheaves on affine flags. In Remarks 
4, 7 we discuss a possible plan for replacing some (though not all) of 
these uses by a direct geometric argument (in other words, for providing 
a geometric proof of Lusztig's results). 

§2. Preliminaries on tensor categories 

In this section we collect some (more or less standard) technicalities 
needed in the main argument. 

2.1. Central functors 

Definition 1. Let A be a monoidal category, and l3 be a tensor 
(symmetric monoidal) category. A central functor from l3 to A is a 
monoidal functor F: l3--+ A together with an isomorphism 

(1) ax,Y : F(X) 0 Y ~ Y 0 F(X) 
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fixed for all X E B, YEA, subject to the following compatibilities. 
i) ax,Y is functorial in X, Y; 
ii) For X, X' E B the isomorphism ax,F(X'} coincides with the com­

position 

F(X) ® F(X') ~ F(X ®X') ~ F(X' ®X) ~ F(X') ® F(X) 

(where the middle isomorphism comes from the commutativity con­
straint in B, and the other two from the tensor structure on F). 

iii) For Yi, Y2 E A and X E B the composition 

coincides with ax,Y1 ®Y2 • 

iv) For Y E A and X1. X2 E B the composition 

F(Xl)®ax2,Y F{Xl) ® Y ® F{X2) ax1,y®F(X2) 

Y ® F(XI) ® F(X2) = Y ® F(X1 ® X2) 

coincides with ax1 ®X2,Y· 

Remark 1. 1 For a monoidal category A its center Z(A) is de­
fined as the category of pairs {X, a), where X E A, and a = (ay) is 
a collection of isomorphisms ay : X ® Y ~ Y ® X, subject to certain 
compatibilities (see e.g. [Ka], XIII.4). Then Z(A) turns out to carry a 
natural structure of a braided monoidal category. If A is the category 
of representations of a Hopf algebra A, then Z(A) is identified with the 
category of representations of Drinfeld's double of A. 

One can check that a central functor from a (symmetric) tensor 
category B to a monoidal category A is the same as a monoidal functor 
from B to Z(A), which intertwines commutativity in B with the braiding 
in Z(A). 

2.2. Reconstructing a subgroup from the restriction func­
tor 

Proposition 1. Let k be an algebraically closed field. Let A be a 
k-linear abelian monoidal category with a unit object li such that End(ll) = 
k. We assume that the product in A is exact in each variable. 

Let G be an algebraic group over k, and Rep(G) be the category of 
its finite dimensional algebraic representations. Let F : Rep( G) -+ A be 

1 I thank Drinfeld who pointed out the content of this remark to me. 
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an exact central functor. Suppose that any object Y E A is isomorphic 
to a subquotient of F(X) for some X E Rep( G). 

Assume also2 that k is uncountable and H om(X, Y) is finite dimen­
sional for X, Y E A. Then there exists an algebraic subgroup H C G, 
and an equivalence of monoidal categories cP: Rep(H)::::::::;A, such that 

F S:! cP o ResZ. 

The subgroup H C G is defined uniquely up to conjugation. 

Proof. The group G acts on itself by left translations, making the 
space O(G) of regular functions on G an algebraic G-module, thus an 
ind-object of Rep(G). Let Oa denote this ind-object. It is a ring ind­
object, i.e. we have a multiplication morphism m : Oa ® Oa -t Oa 
satisfying the usual commutative ring axioms. For a ring ind-object ? 
we will write m 7 for the multiplication morphism m 7 :?®? -t?. Let 
3 s;; F(Oa) be a maximal left ideal subobject, i.e. 3 is a maximal 
proper sub ind-object in F(Oa) satisfying 

(2) 

Then 3 is also a right ideal subobject, i.e. we have 

(3) m(.:J ® F(Oa)) C 3; 

indeed, commutativity of Oa, and property (ii) in the definition of a 
central functor show that 

and property (i) yields the equality 

mF(Qa) l:r®F(Qa) o O'Qa,.7 = mF(Qa) IF(Qa)®:T• 

which implies (3). 
Set OH = F(f2a)/3. (2), (3) imply that OH is a ring ind-object of 

A. Thus the category of 0 wmodule (ind)objects in A is well-defined. 
We will denote this category by OH -mod, call its objects OH-modules, 
and write HomQH instead of HomQH-mod· 

Then 0 H - mod is an abelian category, and 0 H E 0 H - mod is 
a simple object. Thus K = EndQH(OH) is a division algebra, and 
V f-+ V ® K 0 H is an equivalence between the category of (right) finite 

2 These assumptions are not necessary, and are imposed to shorten the 
proof. 
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K-modules and the full subcategory in OH- mod generated by OH 
under finite direct sums and subquotients; we denote the latter category 
by OH- modfr. 

Lemma 1. We have K = HomA(ll, OH) = k. 

Proof. OH is a unital ring object since 0 0 is, i.e. the unit ~: ll ~ 
0 H is fixed. The map ¢ 1--4 ¢o ~ provides an isomorphism EndQH ( 0 H) ~ 
HomA(ll, OH ), with inverse isomorphism given by i 1--4 mQH o(i®IdQH). 
Thus the first equality is clear. 

To check the second one, notice that the cardinality of a basis of a 
division algebra K over an algebraically closed field k is not less than the 
cardinality of k (indeed, for x E K, x (/. k the elements (x- A)-I, A E k 
are linearly independent). However, 0 0 is a countable union of objects 
of Rep(G), hence HomA(ll,F(00 )) is at most countable dimensional. D 

Corollary 1. a) For any X E A we have X ®OH E OH -modfr, 
i.e. X® OH ~ V ®k OH for some finite dimensional k-vector space V. 

b} The functor 4.> H : A -t V ect given by 4.> H : X 1--4 H om(ll, X ® 
0 H) is exact, admits a structure of a monoidal functor, and we have a 
canonical isomorphism of monoidal functors 

(4) 

where 4.>a : Rep( G) -t V ect is the fiber functor. 

Proof. a) Let first X= F(Y) for Y E Rep( G). We have an isomor­
phism of 0 0 -modules Y ® 0 0 ~ 4.>a(Y) ®k 0 0 , hence an isomorphism 
of F(00 )-modules 

Replacing each side of the last equality by the maximal quotient on 
which F(~) acts through OH we get an isomorphism of 0H-modules: 

Since any X E A is a subquotient of F(Y) for some Y E Rep( G) we 
see that the Owmodule X® OH E OH -mod is a subquotient of 
4.>a(Y) ®k OH E OH- modfr, hence also lies in OH- modfr. 

Proof of (b). Notice that (a) together with Lemma 1 imply that 
X® OH = 4.>H(X) ®k OH canonically for X EA. This shows exactness 
of 4.> H, and also establishes monoidal structure on 4.> H, because we have 
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Finally, the isomorphism 

for X E Rep( G) yields (by applying F, and taking the maximal quotient 
on which 0 0 acts through 0 H) an isomorphism 

hence an isomorphism ( 4). D 

We can now finish the proof of Proposition 1. According to §2 of 
[DM], a functor ifJ H as in Corollary 1 (b) above yields a bialgebra A, an 
equivalence of monoidal categories WH : ComodA ~A, a morphism of 
bialgebras ¢ : 0( G) ----+ A and an isomorphism of monoidal functors 

Since any object of A is a subquotient of F(X) for some X E Rep(G), 
the morphism¢: O(G) ----+A is surjective. Thus A= O(H) for a Zariski 
closed subsemigroup H C G. Thus Proposition 1 follows from the next 
Lemma. D 

We state the next Lemma in a slightly greater generality than needed 
for our application (since the proof is the same). 

Lemma 2. Let G be a group scheme of finite type over a Noether­
ian ring k. Then a closed subsemigroup scheme H C G is a subgroup 
scheme. 

Proof. 3 We must check that for any commutative k-algebra R the 
subsemigroup H(R) C G(R) is a subgroup. It is enough to check this 
for R of finite type over k. For g E H(R) let L9 : GR ----+ GR be the 
(left) multiplication by g (here the subindex R denotes base change to 
R). Then L 9 (HR) <:;;; HR; we want to check that in fact L9 (HR) = HR. 
But otherwise HR ;;? L 9 (HR) ;;? L~(HR) ;;? ... is an infinite decreasing 
chain of closed subschemes in GR, which constradicts the fact that GR 
is Noetherian. D 

Remark 2. In this Remark we outline an alternative argument, 
which is shorter than the proof of Proposition 1 presented above, but 
uses a deep Theorem of Deligne [De2], and proves a weaker statement 
(which is still sufficient for our applications). 

In the situation of Proposition 1 assume that char(k) = 0, and also 
that rigidity on the target category A is given. (In view of Remark 3 

3 1 thank Dima Arinkin, to whom this proof is due. 
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below this weaker statement is sufficient for our application.) Then one 
can show first that there exists a unique commutativity constraint on 
A compatible with one in B; thus B is a Tannakian category. Now a 
Theorem of Deligne ([De2] Theorem 7.1) says that for an algebraically 
closed field k of characteristic 0, a k-linear Tannakian category A admits 
a fiber functor, and is identified with the category of representations 
of an algebraic group, provided that for any object X E A we have 
An(X) = 0 for large n (where An stands the n-th exterior power). If an 
object Y is a subquotient of X, then An(Y) is a subquotient of An(X), 
in particular An(X) = 0 => An(Y) = 0. Thus A satisfies the conditions 
of Deligne's Theorem, and hence A= Rep( H) for an algebraic group H 
by that Theorem. The tensor functor F: Rep( G)~ A= Rep(H) yields 
by Tannakian formalism a homomorphism H ~ G; since any object of 
Rep(H) is a subquotient of F(X) for X E Rep( G), this homomorphism 
is injective. 

2.3. Auxiliary Lemmas 
The next two Lemmas will be used in establishing, respectively, 

exactness of the product in a monoidal category, and existence of a unit 
object. 

For a category A (an abelian or a triangulated category) we will 
write K(A) for the Grothendieck group of A. For an object X E A we 
will denote its class by [X] E K(A). 

Lemma 3. Let A be an abelian category with all objects having 
finite length. Let 0 denote a functor A x A ~ A which is linear and 
mid-exact in each variable. For an object X E A let X ss denote the 
semisimplification of X. Let X, YEA be two objects satisfying 

(5) 

Then (5) remains true when X, Y are replaced by a subquotient. More­
over, if X', Y' are subquotients of respectively X, Y and 0 ~ X" ~ 
X' ~ X"' ~ 0 is an exact sequence, then the sequence 0 ~ X" 0 Y' ~ 
X' 0 Y' ~ X"' 0 Y' ~ 0 is exact. 

Proof. For a, f3 E K(A) let us write a :::; f3 if f3- a is a class of 
actual (as opposed to virtual) object. Then for any short exact sequence 
0 ~ xl ~ x2 ~ x3 ~ 0 we have 

(6) 

for any Y, with equality being true iff the sequence 0 ~ X 1 0 Y ~ 
X2 0 Y ~ X3 0 Y ~ 0 is exact. Hence the first statement implies the 
second. 
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By induction in Jordan-Hoelder series we see that [X® Y] ~ [X88 ® 
Y 88 ] for any X, Y. Moreover, if for subquotients X', Y' of X, Y the 
strict inequality [X' ® Y'] < [X188 ® Y188 ] holds, then successive use of 
(6) shows that [X® Y] < [X88 ® Y 88 ], which contradicts (5). 0 

Lemma 4. Let A be an abelian category, I : A --t A be a functor, 
and e : I=::::+ I o I be an isomorphism. Let us say that an object X E A 
is fixed by I if there exists an isomorphism tx : X -I(X) such that 

(7) I(tx) = elx· 

Assume that I is exact, and I( X)=/=- 0 for X=/=- 0. Then 
a) If all objects of A are fixed by I, then I ~ I d. 
b) A subquotient of an object fixed by I is fixed by I. 

Proof. Since I is exact, and kills no objects, it is injective on mor­
phisms. It follows that for given X an isomorphism tx satisfying (7) is 
unique if exists. Also,£= (tx :X --t I(X)) defines a morphism of func­
tors Id --t I on the full subcategory of I-fixed objects, because I(t) = e 
is a morphism of functors I--t Ioi. This proves (a). To check (b) it suf­
fices to see that for anI-fixed object X, and any subobject j: Y <-+X 
the images of imbeddings I(j) : I(Y) <-+I( X) and tx o j : Y <-+I( X) 
coincide; indeed, then the induced isomorphisms ty : Y=::::+I(Y) and 
tx;Y : XjY=::::+I(X/Y) are respectively sub and quotient of tx, hence 
satisfy (7). But then it is enough to see that images of I o I(j) and 
I(tx o j) coincide. Since I(tx o j) = elx oi(j) =I oi(j) o ely the proof 
is finished. 0 

§3. Notations and recollections 

3.1. General notations 

Let G be a split simple algebraic group over Z. Let F = lFq((t)) be a 
local field of prime characteristic, and 0 = lF q [[t]J be its ring of integers. 4 

Let I C G(O) C G(F) be an Iwahori subgroup. There eXist canonically 
defined group schemes K, I over lFq (of infinite type) such that K(lFq) = 
G(O), I(lFq) =I; and an ind-group scheme G with G(lFq) = G(F). We 
also have ind-varieties :Ff. = G/1 and Qt = G/K. More precisely, :Ff., 
Qt are direct limits of projective varieties with transition maps being 
closed imbeddings, and :Ff(lFq) = G(F)/I, Qt(lFq) = G(F)/G(O). 

4 As usual one could replace IF q by an algebraically closed field of charac­
teristic zero; then we would have to work with Hodge D-modules instead of 
mixed sheaves in the proof of Lemma 7 below. 
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The orbits of I on F£, 9t are finite dimensional, and isomorphic 
to affine spaces; they are sometimes called Schubert cells. As before, 
Wf is the Weyl group of G, and W is the extended affine Weyl group. 
Then W is identified with the set of Schubert cells in F£. For w E W 
(respectively w E W /W f) let F fw, 9tw be the corresponding Schubert 
cells. 

Let D 1 = D 1 (F£) be the 1-equivariant derived category of l-adic 
sheaves on Ffw (l =I= p), and 'P1 (F£) c D 1 be the full subcategory of 

q 

perverse sheaves (here the subscript iF denotes extension of scalars from 
q 

lF q to the algebraic closure iF q). 
The convolution product, which we denote by *, defines a functor 

D1 x D1 ____. D1 , which provides D1 with the structure of a monoidal 
category. 

3.2. Central sheaves 

Let 'Pgt be the category of K equivariant perverse sheaves on 9t. It 
is known ([LO], see also [Ga] for an alternative proof and a generaliza­
tion) that for X, Y E 'Pgt the convolution X* Y lies in 'PQt· Further, 
convolution endows 'Pgt with the structure of a monoidal category, and it 
naturally extends to a structure of a commutative rigid tensor category 
with a fiber functor; the resulting Tannakian category is equivalent to 
the category Rep( LG) of algebraic representations of the Langlands dual 
group LG over Qz (see [Gi], [MV], at least for an analogous statement 
over C, and also [BD]). We will identify Rep(LG) with 'PQt· 

In [Ga] a functor Z : Rep(LG) = 'Pgt ____. P 1 (F£) was constructed. 
It enjoys the following properties (properties (i), (ii), (iv) are checked in 
[Ga], and property (iii) is checked in Appendix below). 

i) n * o Z ~ id, where n : F£ ____. 9t is the projection. 
ii) (Exactness of convolution) For F E 'Pr;t, g E 'P we have g * 

Z(F) E 'P. 
iii) (Compatibility with convolution and centrality) Z is a central 

functor from the tensor category 'Pgt to the monoidal category D 1 in 
the sense of definition 1 above. 

iv) (Monodromy) A unipotent automorphism !))1 of the functor Z is 
given, !JJ1z(F) E Aut(Z(F)); it is called the monodromy automorphism 
(for reasons explained in [Ga]). It satisfies 

(8) 

where we identified End(Z(F * F')) = End(Z(F) * Z(F')) by means of 
(iii). 
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3.3. Serre quotient categories 

The set of isomorphism classes of irreducible objects in P is in bi­
jection with W. For w t; W let L.., be the corresponding irreducible 
object; more presicely, we set 

(9) . (-[ . ] (dimFlw)) Lw = Jw!* Qlz d1mFlw 2 , 

where iw denotes the imbedding Flw <--t F£, and Qlz is the constant 
sheaf (the Tate twist by dim[lw will be essential later when we will 
work with mixed sheaves). 

Recall that a Serre subcategory in an abelian category is a strictly 
full abelian subcategory closed under extensions and subquotients. If 
A is an abelian category, and B is a Serre subcategory, then the Serre 
quotient A/ B is again an abelian category. If every object in A has finite 
length, then B is uniquely specified by the set of (isomorphism classes 
of) irreducible objects of A which lie in B. 

Let f C W be a two-sided cell. Set W<c = U f 1i W<c = U f'; 
- f:.'<f:. -- f.':::;f. 

here ~ is the standard partial order on the set of 2-sided cells (see [L 1]), 
and we write f' < f instead of f 1 ~ f & £1 =/= f. 

For a subsetS C W let P~ denote the Serre subcategory ofP1 whose 
set of (representatives for isomorphism classes of) irreducible objects is 
{Lw, wE S}. We abbreviate P~£ = P{v$"' P~£ = P{v<"' 

Let P£ denote the Serre quotient category P~£/P~£· 

§4. Truncated convolution categories 

4.1. Truncated convolution and action of the central sheaves 

Let Dt(F£), D~c(F£) be the full triangulated subcategories of 

D1 (F£) co~~isting of c~mplexes with cohomology in, respectively, P~c' 
P~c· From the definition of a two-sided cell it follows that Dt, D~c ~;e 
stable under convolution with any object of D 1 , i.e. X E D~~' Y E D 1 

=?X* Y E D~c' and the same for D~c· --
In particul~, for X, Y E P~c we have Hi(X * Y) E P~c' and the 

image of Hi(X * Y) in Pf depend; canonically only on the im~ge of X, Y 
in P£. Thus the formul~ 

defines a bilinear functor P£ x P£ --+ P£. 
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Recall that for a two-cided cell f. a non-negative integer a(f) is de­
fined (see [Ll]); and we have Hi(X * Y) E P~£ for i > a(f.), X E P~£' 
y E pi. 

For X, Y E P: we define their truncated convolution X • Y E P: 
by X • Y = Haf.E.l(X * Y) mod P~e· For semisimple X, Y this coincides 
with the definition in [L4]. -

Also, for :FE PQr the exact functor g f---+ g*Z(:F) preserves P~£ and 

P~e• hence induces an exact functor from Pg_ to itself (denoted again by 
g ~ g * Z(:F)). 

4.2. The monoidal category Ag_ 
Proposition 2. Let Ae be the strictly full subcategory of P: con­

sisting of all subquotients of Lw * Z(:F), wE f., :FE PQr· Then -
a) The restriction of • to Ag_ x Ag_ takes values in Ag_, and is exact 

in each variable. 
b) It equips Ae with a structure of a monoidal category; the object 

lie = E9 Ld, where d runs over the set of Dufto involutions in f., is a unit 
- d 

object of (Ag_, •). 

Remark 3. It seems possible to check that the monoidal category 
Ar,. is rigid, i.e. for X E Ag_ the "dual" object X' is defined together with 
morphsisms ev : X • X'---+ lie, and 6 : lie ---+ X' • X satisfying the usual 
compatibilities (see e.g. [De2], 2.1.2). -Here X' has the following geo­
metric interpretation. The category pi has a canonical anti-involution 
£:pi ---+ (PI)op induced (loosely speaking) by the morphism i : G---+ G, 
i: g f---+ g-1 . Then 

(10) X'~ V(L(X)) 

canonically, where V stands for Verdier duality. (We neither use nor 
prove this fact here). 

Proof of the Proposition. a) It follows from the definitions that • 
is right exact in each variable. We will deduce that it is exact on Ar,. 
from a result of Lusztig on asymptotic Heeke algebras. (The argument 
will use this result of Lusztig and mid-exactness of •, but not its right 
exactness; see also Remark 4 below). 

The group K(Pe) has a natural structure of an associative algebra; 
the product on K(Ar,.) is denoted by • and is defined by 

[Lw1 ]• [Lw2 ] = [Lw1 • Lw2J 

for irreducible objects Lw1 , Lw2 E Ac. Thus K(Ac), • is the asymptotic 
Heeke algebra Jg_, cf. [L4]. The clas;es of simple ~bjects Lw E Pr,. form 
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a standard basis of this algebra; the standard notation for elements of 
this basis is tw = [Lw] E J£ = K(P£). 

The key step is the next 

Lemma 5. For {/t, (h E Pgr and simple objects Lw11 Lw2 E A£ 
we have 

Proof. The Lemma is a consequence of [L2], 2.4. Let us recall the 
statement of loc. cit. 

To formulate it we need some notations. Set A = Z[v, v- 1]; thus 
the affine Heeke algebra 1i is an A-algebra (the algebra lHI mentioned 
in the introduction is given by lHI = 1i ®A C, where v ~--+ q112 E C). 
Let Cw E 1i, w E W be the Kazhdan Lusztig basis of 1i. Let also 
1is,_f., 1i<f. be A submodules in 1i generated by Cw with w running over 
the corresponding subset of W. According to the definition of a two­
sided cell the A-submodules 1is,_f., 1i<f. are two-sided ideals in 1i. Thus 
1ic := 1i<cf1i<c is a bimodule over 1i. Let S : He --+ Jc ®z A be 
th~ isomo~phism-of A-modules, which sends Cw into tw = [Lw] E Jc C 

J£ ® A. Let us transport the structure of an 1i-bimodule to J£ ® A by 
means of S; denote the resulting action by h1 ® h2 : x ~--+ h1 * x * h2 , 

ht' h2 E 1i, X E J£ ® A. 

Fact 1 ([L2], 2.4). a} Thus defined right (respectively, left} action 
of1i on J£ ®A commutes with the canonical left (resp., right} action of 
J£ on J£ ®A. In other words, extending the • product to an A-algebra 
structure on J£ ® A, we get 

(12) 

b) The map ¢£ : 1i --+ J£ ® A defined by 

(13) 

(where d runs over the set of Duflo involutions in f) is an algebra ho­
momorphism. 0 

We deduce Lemma 5 from (12). In fact we will use only specializa­
tion of (12) at v = 1, and only for h in the center of 1i. 

Fix the homomorphism A--+ Z sending v to 1, and setH= 1i®AZ ~ 
Z[W]. The structure of an 1i-bimodule on J£ ®A yields a structure of 
H-bimodule on J9 which we also denote by ht ® h2 : x ~--+ ht * x * h2. 
Thus (12) holds for x, y E Jf. and h1 , h2 E H. 
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We have a standard isomorphism K(P1 ) = K(D1 ) ~ H = Z(W] 
compatible with the ring structure, where the product in K(D1 ) is de­
fined by means of convolution: [X]* [Y] =[X* Y]. 

Let X = tw1 = [Lw,J, Y = tw2 = [Lw2 ] E K(P[) = J£.; and hi = 
[Z(Qi)] E K(P1 ) = H, i = 1, 2; then we claim that the left-hand side 
of (11) equals the left-hand side of (12), and the right-hand side of (11) 
equals the right-hand side of (12). 

Indeed, the statement about the right-hand sides follows from the 
definitions. 

To check the statement about the left-hand sides we rewrite 

(Z(9I)*Lw.)•(Lw 2 *Z({h)) = Ha(z(QI)*Lw, *Lw2 *Z(92)) mod P~f. 

= Ha(Z(QI) * (Lw, * Lw2 ) * Z(92)) mod P~f.· 

By 3.2 (ii) above, convolution with Z(9) is exact for g E Pgt, thus the 
right hand side in the last equality equals Z(QI)*Ha(Lw 1 *Lw2 )*Z(92), 
hence its class equals h1 * ( tw1 • tw2 ) * h2. 0 

The last Lemma together with Lemma 3 imply exactness of •IAcxAc 

in each variable, and part (a) of the Proposition. - -

Remark 4. It may be possible to get an alternative proof of exact­
ness of • product, not appealing to Lusztig's result (12), by establishing 
rigidity in Ac by direct geometric considerations as in Remark 3 above. 
(Recall that for an abelian tensor category rigidity implies exactness of 
tensor product, cf. [DM], Proposition 1.16.) 

Proof of Proposition 2(b). Associativity of truncated convolution 
follows from associativity of convolution, and equality Hi(X * Y) = 0 
mod P~f. fori> a(£), X, Y E P~f.' because 

(X • Y) • Z ~ H2a(X * Y * Z) mod P~£ ~ X • (Y • Z) 

canonically. Also, the properties of the functor Z imply that 

canonically. The right hand side of the last equality lies in Ac; also, 
exactness of •IAcXAc implies that if xi E Pt is a subquotient of Lw; * 
Z(9i), i = 1, 2, then -X1 •X2 is a subquotien( of (Lw 1 •Lw2 ) * Z(9I * 92)· 
Thus Ac is stable under the •-product. Let us check that llc is a unit 
object i~ A£. Lusztig proved (see [L4], 2.9) that -

(14) 
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(15) w Ef. 

Fix isomorphism (14) arbitrarily; it suffi.cies to show that any object of 
Ac is fixed by the functors Iz : X 1--+ lie • X, and Ir : X 1--+ X • [c in the 
se~se of Lemma 4 above. We have s~n that these functors ar; exact, 
and (15) shows that it kills no object. Also, it is easy to see that (15) 
can be chosen to satisfy (7); hence all semisimple objects of Ac are fixed 
by Iz, Ir. Finally, (15) yields an isomorphism -

for Q E 'Pgt, which is easily seen to satisfy (7) if (15) does, and similarly 
for Ir. Thus any object of A:_ is a subquotient of an object fixed by 
Iz, Ir, and Lemma 4 shows that Iz, Ir are isomorphic to the identity 
functor, hence [f. is a unit object. D 

4.3. Tannakian category Ad 

Let dE f be a Dufl.o involution. Then by [L4], 2.9 we have 

(16) 

Let Ad C A£ C P: be the strictly full subcategory consisting of all 
subquotients of Ld * Z(:F), :FE 'Pgt· Let a functor Resd : Rep(LG) = 
'Pgt - Ad be defined by Resd(Q) = Ld * Z(Q). 

Lemma 6. a} Ad C Ac is a monoidal subcategory, and Ld C Ad 
is a unit object. 

b) Resd has a natural structure of a central functor. 
c) 001 induces a tensor automorphism of Resd (to be denoted by OOld)· 

Proof. a) The first statement follows from 

and exactness of •lAc. In view of (16), in order to check that Ld is a 
unit object we have only to show that 

for X E Ad ( cf. the proof of Proposition 2 (b)). It also follows from 
[L4], 2.9 that 

Ld' •Ld = 0 

if d' =f. dare different Dufl.o involutions in f. Hence La' • (Ld * Z(Q)) f::! 

(Ld' •Ld) *Z(Q) = 0, and by exactness ohiA,. it follows that Ld' *X= 0 
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for X E Ad· Thus for X E Ad we have 

This proves (a). 

X ~ ll£. X = EB Ld' • X = Ld • X. 
d'E£ 

(b), (c) follow immediately from, respectively, properties (iii) and 
(iv) stated in section 3.2. 0 

§5. Main result 

Recall that if G1 :J G2 are algebraic groups over a base field k, 
and N E G1 (k) is an element which commutes with G2 , then N defines 
a tensor automorphism of the restriction functor Resg~ : Rep(G1 ) --+ 

Rep(G2 ). We denote this automorphism by AutN. 

Theorem 1. There exists a pair Hd, Nd, where Hd C LGQ1 is an 

algebraic subgroup, and Nd E LG(Qt) is a unipotent element commut­
ing with Hd; an equivalence of tensor categories ll>d : Rep(Hd) ~ Ad, 

and an isomorphism Res~~ ~ ll>d o Resd, which intertwines the tensor 
automorphisms AutNd and 9Jtd. 

The pair (Hd, Nd) is unique up to conjugacy. 

Remark 5. Rigidity (duality) in ~ can most probably be inter­
preted geometrically, and is given by (3) above. 

Proofofthe Theorem follows directly from Lemma 6 and Proposition 
1. 0 

Below k will denote an algebraically closed field, char(k) = 0. As 
before, for an algebraic group Hover k we will write R(H) for its repre­
sentation ring, and set R k (H) = R( H) 0 k. For s E H ( k) we will denote 
the corresponding character of R(H) (or of Rk(H)) by Xs : R(H)--+ k, 
Xs([V]) = Tr(s, V). 

Recall the bijection between two-cided cells in W and unipotent 
conjugacy classes in LG(k) constructed by Lusztig in [13]. For a two­
sided cell f we let N£ E LG(Q1) denote a unipotent element in the 
corresponding conjugacy class. 

Theorem 2. FordE f the conjugacy classes of elements Nd and 
N£ coincide. 

Proof. We will need a characterization of the bijection f +-> Nc. 
We set J~ = Jc @z k, Jik = 1i @z k. -

For a u~pote~t element N E LG(k) fix a homomorphism 'YN 
SL(2) --+ La defined over k, such that N = -y(E), where E E SL(2, k) 
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is the standard unipotent element. Let sB£(2) E S£{2, k[v, v-1]) be 
the diagonal matrix with entries v, v-\ and define an element s'fv E 
LG(k[v, v-1]) by 

s'fv = /'N{sh(2)). 

Recall the homomorphism¢£: 1i---+ J£ ® Z[v, v-1], see {13). 
We will also make use of the isomorphism (due to Bernstein) 

{17) 

where Z('H) is the center of 'H. 

Fact 2. [L3] a) The center of J;, z(J;) is isomorphic to the al-
gebra R_k(ZLa(N£)) = R_k(ZLa(/'NJ).- -

b) The homomorphism ¢c sends the center Z('H) into Z(Jc) ®z A. 
c) Lets be a semisimple element of ZLG(k) bN£-). It defines ~ charac­

ter Xs : Z{ J£) ---+ k, and, by extension of scalars, a character x~ : Z( J£)® 
A---+ k[v,v--:-1]. The character Xs = x~ o {¢£1Z('H)): Z('H)---+ k[v,v- 1 ] 

defines a semisimple conjugacy class 0 8 C LG(k(v)). 
Then f2s 3 s'fv£_ · s. 

Notice that if N, N' are non-conjugate unipotent elements, then 
s'fv · s is not LG(k(v))-conjugate to s'fv, · s' .for any s E ZLG(k)(N), 
s' E ZLG(k)(N'). 

Thus, in view of Fact 2(d), to prove Theorem 2 it suffices to check 
that setting k = Qz we get 

{18) 

for some Sconst E LG(k). 
The key step in the proof of Theorem 2 is the next Lemma. 
We keep notations of Theorem 1. In particular for a Duflo involution 

dE f we have a subgroup Hd C LGQ1 with an equivalence Rep(Hd) ~ 
Ad C A£; thus the Grothendieck group 'R(Hd) = K(~) is a subalgebra 
in Jc = K(Ac)· 

For V E Rep(LG) the nilpotent endomorphism log(rotd) = log(Nd) 
yields a filtration {the Jacobson-Morozov-Deligne filtration, see [Del], 
1.6, and also [BB], 4.1) on Resd(V) ~ cl>d(V). Let gri(Res~~(V)) E 
Rep(Hd) denote the i-th associated graded subquotient of this filtration. 

Lemma 7. We have an equality in Jdv,v- 1 ]: 

(19) ¢£(B([V])) = L L vi[gri(Res~~(V))] 
d 

(where ¢c is as in {13)). 
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Proof of the Lemma. Let D~ be the 1-equivariant derived category 
q 

of l-adic sheaves on :Fi, and n;,.ix = D;,.i.,(:Fi) c D~ be the subcate-• 
gory of mixed complexes, see [BBD], 5.1.5. Let Pfnix C n;,.ix be the full 
subcategory of perverse sheaves. Then n;,.ix is a monoidal category; and 
we have a natural functor (pull-back under the morphism Ffw ---+ :Fi) 

q 

n;,.ix ---+ D1 . The functor Z factors through a functor Rep( L G) ---+ P mix, 
which will be denoted by the same letter; thus for V E Rep(LG) the per­
verse sheaf Z(V) is obtained by taking the nearby cycles functor from a 
weight zero irreducible perverse sheaf. 

We have a standard homomorphism of abelian groups T: K(D;,.i.,) 
---+ 1i characterized by T([iw! (F)]) = Tw where :F is a weight zero 1-equi­
variant sheaf on :Fiw, and Tw is an element of the standard basis of 'H. 
We have also T([Lw]) = Cw where the mixed sheaf Lw is defined by (9). 
It satisfies 

T([X * Y]) = T([X]) · T([Y]). 

For V E Rep(LG) we have T([Z(V)]) = B([V]) (cf. [Ga], 1.2.1). 
Then it follows from the definitions that 

cP.r_(B[V]) = S(T(Z(V) * ffiLd) mod 'H<f), 
d 

where S: 'H~f/'H<f=:::;.J£ 0 Z[v, v- 1] is the isomorphism sending Cw to 
tw• 

Any X E Pfnix carries the canonical weight filtration (see [BBD]); let 
gri(X) denote the i-th associated graded subquotient of this filtration. 
Then [grJX))lies in the Z-span of viCw. 

In particular, 

Thus to check (19) it is enough to ensure that the filtration on <I>d(V) 
induced by the weight filtration on Z(V)*Ld coincides with the canonical 
(Deligne) filtration associated to the nilpotent endomorphism log Nc E 
End(<I>d(V)). -

We claim that a stronger statement holds. Namely, we claim that 
the canonical filtration on Z(V) * Ld associated to the logarithm of 
monodormy coincides with the weight filtration (this implies the desired 
statement, as canonical filtration associated to a nilpotent endomor­
phism is compatible with passing to a Serre quotient category). Since 
Z(V) * Ld is obtained by nearby cycles from a pure weight zero perverse 
sheaf (cf. [Ga], Proposition 6), the latter statement is a particular case of 
a general Theorem of Gabber et. al. on coincidence of monodormic and 
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weight filtrations on nearby cycles of a pure sheaf, see [BB], Theorem 
5.1.2. [] 

Remark 6. The proof of Lemma 7 is the only place in this note 
where we have to work with l-adic sheaves on a scheme over the finite 
field IFq, rather than over Fq (the latter could be safely replaced by 
constructible sheaves on the corresponding complex variety). 

Corollary 2. Let </Jd : Z('Ji) -t R(Hd) ®A C Jg_ ®A be the ho­
momorphism given by z t--t z * td. For a semisimple s E Hd(k) consider 
the character x~ : R(Hd) -t k[v, v- 1] obtained from Xs : R(Hd) -t k by 
extension of scalars. The character Xs =X~ o (</Jd) : Z('Ji) = R(LG) -t 

k[v, v-1] defines a semisimple conjugacy class in LG(k(v)). 
This conjugacy class contains the element s'f:vd · s. [] 

Proof of Theorem 2. Let M be an irreducible J~ module on which 
the idempotent td E Jc acts by a nonzero operator.- The commutative 
subalgebra K(Acl)k = "1?_k(Hd) C tdJ~td acts on the finite dimensional 
vector space tdM, with unit element td acting by identity; let u E tdM 
be an eigen-vector. The corresponding character Xu: R(Hd) -t k comes 
from an element s,. E Hd(k); by Corollary 2 the center Z('Ji) acts on 
the vector u E ¢~(M) by the character Xs,.·s](.ra• which shows (18). [] 

5.1. 

We now restrict attention to the unique Duflo involution in f n W f; 
we call it df. 

Theorem 3. a) The set of simple objects of Adf is {Lw I w E 
wt nf}. 

b) Hdi contains a maximal reductive subgroup of the centralizer 
ZL0 (Nd)· 

Remark 7. A statement stronger than that of Theorem 3(b) is 
proved in [B], Corollary 2: we show there that in fact Hdi = ZLa(Nc)· 
The argument of [B] does not use the "nonelementary" result ab;-ut 
asymptotic Heeke algebras cited in Fact 3 below (the proof of this result 
in [L3] relies on the theory of character sheaves). 

Proof of the Theorem. The set of irreducible objects of Ad consists 
of those Lw, which are subquotients of Z(V)*Ld for some V E Rep(LG). 
Identifying JQ = K(.AJ we get [Z(V)*Ld] = B(V)*tdlv=1; since B(V)* 
td = td * B(V) E tdf · Jg_ · tdJ = J{ we see that indeed any subquotient 

of z (V) * Ld has the form Lw' w E f n w f. 
To check that Lw E Adt for all w E W f n f, it suffices to check that 

for any proper subsetS£; fnWf there exists V such that B(V) *td does 
not lie in the span of tw, w E S. This follows from the next Lemma. 
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Let ¢[ : Z(1i) ---+ Jf ®A be the homomorphism z 1---7 z * tdt. 

Lemma 8. For any proper subalgebra J' C (Jf)k we have im(¢{) 
cf._ J' ® k(v). 

We will deduce the Lemma from another result of Lusztig (see Re-
mark 7 above). 

Fact 3. Let J! c Jc be the span of {tw I wE Wf n ~}. 
Then Jf = tdt .-Jf · t~t is a subalgebra. 
The m;;p z 1---7 z•tdt induces an isomorphism between Z(Jc)®k and 

Jf ® k (recall that k is a characteristic zero field). -

Proof of Lemma 8. Comparing Fact 3 and Fact 2(a) we can identify 
(J!) ® k = Rk(ZLa(N£)) = Rk(ZLa(TNJ). 

- If the image of ¢t is contained in Ji ® k[v, v- 1 J for J' £; (J!) ® k, 
then for some non-co;jugate semi-simple elements s1 , s2 E ZLa(k) (N£) 
we have Xs 1 o ¢[ = Xs2 o ¢[. This means that s1 · s'N is conjugate to 

- - .£ 

s2 · s'Nc in LG(k(v)); this is well-known to be impossible. 0 

P;:oof of Theorem 3(b). Comparing Facts 2 and 3 we see that there 
exists an isomorphism flus : (J!) ® k=::+Rk(ZLa(N£)), such that for 
s E ZLG(k) (Nc) we have X~ o flu; o ¢df = Xsv . 

- Ndf 

By part (a) of the Theorem we have also an isomorphism Igaitsg : 
Jf=::+R(Hd), and, by Corollary 2 for s E Hd(k) we have X~ o Igaitsg o 
ifJ~f = Xsv · 

Ndf 

The proof of (a) shows that for two different characters Xl, X2 : Jf ---+ 

k we have Xl o ¢dt =f. X2 o ¢dt; hence for s E HJ 8 we have Xs o I1;;,s = 
Xs · Igaitsg, i.e. the isomorphism Igaitsg ®koij·;,; : Rk(Z(N£)) ---+ Rk(Hd) 
coincides with the natural restriction map. Thus statement (b) of the 
Theorem follows from the next Lemma. 

Lemma 9. If a homomorphism i : H1 ---+ H2 of algebraic groups 
over an algebraically closed field k of characteristic zero induces an iso­
morphism Rk(H2)=::+Rk(H1 ) then it induces an isomorphism of maxi­
mal reductive quotients Hfed=::; H2ed. 

Proof. Since Rk(H) = Rk(Hred) for an algebraic group H, we can 
replace H1, H2 by Hfed, H2ed, and assume that H1, H2 are reductive. 
It is clear that i is injective (otherwise i sends a nontrivial semisimple 
conjugacy class in H1 to identity of H 2 , which contradicts the fact that 
characters separate semisimple conjugacy classes). 

Let us first check that i induces an isomorphism of connected com­
ponents of identity Hf ~ H~. 
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It is easy to see that for a (not necessarily connected) reductive 
group H the connected component of identity in Spec(Rk) is described 
by Spec(Rk)0 = C/Ns(C), where C CHis a maximal torus. Hence H 1 

and H2 have a common Cartan T, and theimageofthe map Ns;(T)/T--+ 
Aut (T) does not depend on i = 1, 2. It is enough to check that the image 
of Nso(T)/T in Aut (T) does not depend on i either. 

s~ take X E Nsl (T). It is easy to see that Adxlr E im(Nso(T)/T) 
iff Adxlso is an inner automorphism of Hp. However the lat'ter con­
dition is ~quivalent to dim((Hi/AdHi)x) = dim((Hi/AdHi)0 ), where 
(Hi/ Ad Hi)x is the connected component of the class of x. (This is so 
because dim(gF), where F is a generic automorphism of a reductive Lie 
algebra g in a fixed coset modulo inner automorphisms, is maximal when 
the coset is trivial). Since dim((Hl/AdH1)x) = dim((H2 /AdH2 )x) we 
get the statement. 

To finish the proof it remains to see that i induces a bijection on 
the set of connected components, i : Hl/Hf:::::::;,H2 /H~. For this it is 
enough to prove the statement of the Lemma for finite groups H 11 H 2 • 

Then it is known as Jordan's Lemma, see e.g. [Se], Lemma 4.6.1. 0 
Theorem 3 is proved. 0 

Corollary 3. The semisimple monoidal category At, whose set of 

irreducible objects is {Lw I w E f n Wf}, and the monoidal structure is 
provided by truncated convolution {see [L4]), is equivalent to the cate­
gory of representations of Z['tf(N£), the maximal reductive quotient of 
ZL 0 (N£). 

Proof. Theorem 3(a) implies that At is the category of semisimple 
objects in Adt. The latter is identified with Rep(Hdt) by Theorem 
1, thus A[ ~ Rep(Hd,Jd). In view of Theorem 3(b) we have Hd_Jd 

ZI';f(Ndt ), and by Theorem 2 Ndt is conjugate to N£. 0 

The statement of the Corollary was conjectured in [L4], §3.2. 
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