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Levy Processes Conditioned to Stay Positive and 
Diffusions in Random Environments 

Hiroshi Tanaka 

Abstract. 

Some general properties of Levy processes conditioned to stay 
positive are studied. As an application, which is our main concern, 
a result of localization is obtained for diffusion processes in Levy 
environments. 

§1. Introduction 

We discuss a problem of localization of diffusion processes in Levy 
random environments. For this we must first prepare some general prop­
erties of Levy processes conditioned to stay positive, which were studied 
intensively by Bertoin [1, 2] and Chaumont [4, 5]. Some of our results 
in § 2 may also be found in [1] and [5] but our method is more or less 
analytical and different from theirs. 

Let W denote the space of real valued right continuous functions on 
[0, oo) with left limits and vanishing at 0. For an element w of W we 
write w = (w(t), t 2: 0) in §2 and w = (w(x), x 2: 0) in §3. 

Given a one-dimensional Levy process W = {w(t), t 2: 0, P}, we 
define a function h by h( x) = JJ( [0, x)), x > 0, where Jl is the measure in 
[0, oo) determined by (2.9). According to Silverstein [20] the function h 
is sub-invariant for the absorbing process w- in (0, 00 ); it is invariant for 
w- ifsupw(t) = oo a.s. Therefore H(t,x,dy) = h(x)-1P-(t,x,dy)h(y) 
is a sub-Markov transition function in (0, oo) where p- (t, x, dy) denotes 
the transition function of w-. Defining the transition H ( t, 0, dy) from 0 
in a suitable way, we will have a Markov process with state space [0, oo ), 
called the h-transform of w-and denoted by Wh. When supw(t) = oo 
a.s., the process Wh is what we call the Levy process W conditioned to 
stay positive. This definition is the same as that of Bertoin and Chau­
mont. When supw(t) < oo a.s., Hirano [10] showed that there are two 
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different ways of defining Levy processes conditioned to stay positive 
(under some additional condition) and so, simply to avoid confusion in 
this case we do not call Wh the process conditioned to stay positive in 
this paper, though it seems so (if, in addition, W has no positive jumps, 
Wh is not the same as the one considered in [2]). By an analytic method 
we prove that, if W enters immediately into (0, oo) a.s. and if W enters 
( -oo, 0) within a finite time with positive probability, then wh has a 
Feller semigroup Ht strongly continuous on C. [0, oo), the space of contin­
uous functions on [0, oo) vanishing at infinity. This fact was also noticed 
by Chaumont [5] as a consequence of more probabilistic arguments. For 
our application in § 3 we must also prepare some convergence theorems 
on the reversed pre-minimum and the post-minimum processes VA and 
VA defined in (2.43) and (2.44). Similar results were already obtained 
by Bertoin [1] and Chaumont [5] but there is a delicate difference and 
we need extra arguments. 

In § 3 we are concerned with diffusion processes in Levy random en­
vironments. Suppose that we are given a Levy process W = {w(x), x 2: 
0, P}. Let n = C[O,oo) and for wEn set X(t) = X(t,w) = w(t) (the 
value of w at timet). For each w E W we denote by pw the probabil­
ity measure on n such that {X(t), t 2: 0, pw} is a reflecting diffusion 
process on [0 oo) with generator .!ew(x) .!L (e-w(x) .!L) and starting at 

' 2 dx dx 
0. The reflecting barrier at x = 0 is not essential; it was considered 
just to simplify the situation; we may (but do not) consider the case 
where the Levy environment w(x) is given in the whole of R. We set 
IP'(dwdw) = P(dw)Pw(dw), which is a probability measure on W x n. 
We then regard {X(t), t ~ 0, IP'} as a process. defined on the probability 
space (W X n, IP') and call it the (reflecting) diffusion process in the Levy 
environment W. 

When W is a Brownian environment, Brox [3] and Schumacher [19] 
proved that {X(t), t 2: 0, IP'} has the same limiting behavior (or the same 
localization property) as Sinai's random walk in a random environment 
([21]). A result of refinement, which corresponds to that of Golosov [8] 
for Sinai's random walk, was then obtained by Tanaka [22, 25] and some 
extension by Kawazu-Tamura-Tanaka [13]. In this paper for a certain 
class of Levy environments we obtain such a results of localization, which 
is similar to those of [8],[22, 25],[13]. To be precise let w E W, .A > 0 
and set 

(1.1) N(x) = N(x,w) = inf{w(y): 0:::; y:::; x}, w#(x) = w(x)- N(x), 

(1.2) aA = aA(w) = inf{x > 0: w#(x) >.A}, 
(1.3) bA = bA(w) =the unique x such that w(x) is equal to N(aA)· 
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In general there may be many x with w(x) = N(a;..) but, in the case we 
actually discuss, such an xis unique a.s. (see Lemma 7). It will be proved 
that, under a certain condition on W, the distribution of X(e>.)- b;.. 
under lP' tends to some nondegenerate distribution D as A -7 =· It can 
happen that the limit distribution of X ( e>-)- b;.. under lP' exists even when 
the limit distribution of a suitably scaled X(t) (without centering, under 
JID) does not; the latter exists if, in addition, b;.. has a limit distribution 
under a suitable scaling (without centering). We are also interested in 
the form of the limit distribution D. Under a certain condition on W 
our result is that D can be expressed in terms of two independent Levy 
processes conditioned to stay positive starting at 0, the one is related to 
W and the other to - W. 

§2. Levy processes conditioned to stay positive 

We use the notation in§ 1 and soW= {w(t), t?: 0, P} is a Levy 
process starting at 0. Throughout the paper we exclude the trivial case 
where w(t) = 0 (t?: 0) a.s. The infimum process N(t) and the reflecting 
process w#(t) are defined by (1.1) with x replaced by t. The hitting 
(entrance) times a(x) and T(x) are defined by 

a(x)=inf{t>O:x+w(t)::::;o}, x?:O, 

T(x) = inf{t > 0: x + w(t) < 0}, x?: 0, 

a= a(O), T = T(O). 

We often consider W = { w(t), t ?: 0}, the dual of W, where w(t) 
-w(t) and define N(t), 8-, f, etc., similarly in terms of W. The ab­
sorbing Levy process w- in (0, =) is defined as the Markov process 
{x + w(t),O::::; t < a(x),x > 0} and its transition function, semigroup 
and Green operator are denoted by p-(t,x,dy), Tt- and G)., respec­
tively. We set c- = G0. Another absorbing Levy process w= on 
[0, = ), which does not much differ from w-, is the Markov process 
{x + w(t),O::::; t < T(x),x?: 0}; its Green operator of order 0 is de­
noted by c=. We also define the reflecting Levy process W# on [0, =) 
associated with W as the Markov process { w# ( t; x), t ?: 0, x ?: 0}, where 

sup {w(t;x)-w(s;x)}Vw(t;x) 
O:Ss:St 

{ 
x+w(t) 

w(t)- N(t) 

ifx+N(t)>O, 

if X+ N(t)::::; 0, 
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wherein w(t;x) = x + w(t) and a V b = max{a,b}, and we denote by 
p# ( t, x, dy) the transition function of W#. The reflecting dual Levy 
process W# on [O,oo) and its transition function ft#(t,x,dy) are de­
fined in a similar manner from W. Throughout the paper T denotes an 
exponential random time with mean 1/>.. and independent of W. 

2.1 Preliminaries. In this subsection we present in an elementary way 
some preliminary and known facts concerning the measure J1, such as the 
(sub-)invariance for W#. 

Lemma 1. (Silverstein [20, p.556]) (i) For any fixed t > 0, x > 0 
andy;:::: 0 we have ft#(t, y, [0, x)) = p-(t, x, (y, oo)). 
(ii) For any fixed t ;:::: 0, -N(t) !!:::. w#(t) and -N(t) !!:::. w#(t), where 

.1:::_ is the equality in distribution. In particular, -N(T) .1:::_ w#(T) and 

-N(T)!!:::. w#(T). 

Let V>. be the distribution of -N(T), or equivalently of w#(T), 
and V>. be the distribution of -N(T), or equivalently of w#(T). The 
fluctuation identity 

logE{ eeN(T)+1j(w(T)-N(T))} 

{'>0 ->.t { } 
= Jo T E(eew(t)- 1; w(t) < 0) + E(e11w(t)- 1; w(t) > 0) dt 

due to Pecherskii-Rogozin [15] (see also Sato [18], Bertoin [2], Doney [6]) 
implies that N(T) and w#(T) are independent and fore;:::: 0 

(2.1) .C(e, v>.) = exp 100 
C 1e->.t E{ eew(t) - 1; w(t) < O}dt, 

(2.2) .C(e, il>.) = exp 100 
t-1e->.t E{ e-ew(t) - 1; w(t) > O}dt, 

where .C(e, v) denotes the Laplace transform fro,oo)e-exv(dx) of a mea­

sure v. The equations (2.1) and (2.2) imply that there exist finite mea­
sures Jl,>. and P,>. on [0, oo) such that 

(2.3) .C(e, JJ,>.) = exp 100 
t-1e->.t E{ eew(t) - e-t; w(t) < O}dt, 

(2.4) .C(e, P,>.) = exp 100 
C 1e->.t E{ e-ew(t) - e-t; w(t) > O}dt, 

(2.5) ll).. = C).. Jl,>., V).. = C).. P,).., 

(2.6) C>. = exp { -100 
C 1e->.t(1- e-t)P(w(t) < O)dt}, 
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and c;. is defined with the replacement of "w(t) < 0" by "w(t) > 0" in 
the equation (2.6). 

For our elementary and straightforward method the following simple 
lemma, probably known, is useful. 

Lemma 2. If W is not the zero process, then for any ~ > 0 

(i) E{e-~lw(t)l}:::; const.c 1/ 4 (t 2: 0), 

(ii) E{1- e-~lw(t)l}:::; const.t112 (0:::; t:::; 1), 

where const. may depend on~-
Proof. Assume that W is not deterministic. Then we can write 

w(t) = w0 (t) + w 1 (t) where w0 (t) and w 1 (t) are independent Levy pro­
cesses and E{w0 (t)} = 0, E{lw0 (t)l2} = cr2t, (a> 0), E{lwo(tW} < =· 
In fact, the decomposition can be obtained by noting the fact that any 
Levy process having Levy measure with bounded support admits finite 
absolute moments of all positive orders (e.g. see Sato [18, p.161]). We 
now make use of the Berry-Esseen theorem (e.g. see Feller [7, p.542]): 

sup IP{(av't)-1w0 (t) :::; x} -lx (27r)- 112 exp( -y2 j2)dyl = O(c112), 
xER -oo 

as t---+ =· Setting Y(t) = (a.Jt)- 1 lw0 (t) + xl we have 

E{ e-~lwo(t)+xl} 

= E{e-~avtY(t); Y(t) < cl/4} + E{e-~avtY(t); Y(t) 2: cl/4} 

:::; P{Y(t) < c 114} + exp( -~at1 14 ) 

:::; const.cl/2 + 1 (27r)-lf2e-y2 /2dy + e-~atl/4 
{IY+(ayt) -lxl<t- 114 } 

:::; const.c1/ 4 (for large t), 

where const. may depend on~- Therefore 

The proof of (ii) is omitted. 

2.1.1 A formula on Green operators of absorbing Levy processes. For 
>. > 0, x > 0 and f E C0 [0, CXJ ), the space of continuous functions with 



360 H. Tanaka 

compact supports, we have 

(2.7) G).. f(x) 

and similarly 

100 e-.\t E{f(x + w(t)); u(x) > t}dt 

r 1 E{f(x+N(T) +w#(T)); -N(T) < x} 

A.- 11 v>.(du) { v>.(dv)f(x-u+v), 
[o,x) lro,oo) 

(2.8) G): f(x) = r 1 r ll>.(du) r V>.(dv)f(x- u + v), X 2 0. 
lro,x] lro,oo) 

By Lemma 2 the integrals on the right hand sides of (2.3) and (2.4) are 
convergent for A. = 0 and so the measures f.L>. and fl.>. converge vaguely as 
A. 1 0 to the measures p, and fl in [0, oo ), respectively, which are defined 
by 

(2.9) .C(~, p,) = exp 100 
C 1 E{ el;w(t) - e-t; w(t) < O}dt, 

(2.10) .C(~, [L) = exp 100 
C 1 E{ e-l;w(t) - e-t; w(t) > O}dt, 

where ~ > 0. Moreover, using the definition of c.\ and C.>. we see that 
A_- 1c.\C.\-+ c0 as A.1 0 where 

which is finite by Lemma 2. It is also known that (e.g. see Sato [18, 
p.372]) 

(2.12) c0 = 1 if W is not a compound Poisson process. 

Thus A_- 1v.\ Q9 v-' = A_- 1 c>.C>.f.L.\ Q9 fl.>.-+ c0 p, Q9 fl vaguely as A. 1 0 and 
hence letting A. 1 0 in (2.7) and (2.8) we obtain the following theorem. 

Theorem 1. If W is not the zero process, then for f E C0 [0, oo) 

(2.13) G- f(x) = c0 r p,(du) r {L(dv)f(x- U + v), X> 0, 
lro,x) lro,oo) 

(2.14) G= f(x) = c0 r p,(du) r {L(dv)f(x- U + v), X 2 0. 
lro,x] lro,oo) 
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This theorem was obtained by Ray [16] for symmetric stable pro­
cesses and by Silverstein [20] for general Levy processes; the present 
derivation of (2.13) and (2.14) was taken from Tanaka [23, 24] with a 
slight improvement. 

2.1.2 The measure f.L is a sub-invariant measure of the Markov process 
A # w. 

Theorem 2. (Silverstein [20]) (i) If the Markov process W# is 
recurrent, then f.L is an invariant measure of W#. 
(ii) If W# is transient, then f.L is a sub-invariant measure of w#; more 
precisely, for any A E B[O, oo) 

(2.15) f.L(A) = cE {1oo lA(w#(t))dt}, 

(2.16) { f.L(dx)F#(t, x, A)= f.L(A)- cE { t lA(w#(s))ds}, 
lro,oo) lo 

(2.17) c = exp { -100 
C 1 (1- e-t)P(w(t) 2: O)dt}. 

Proof. (i) We assume that W# is recurrent and that W is not an 
increasing process. Take a > 0, let y# be the time of first return of 
w#(t) to 0 after visiting (a,oo) and define the measures f.Lt,>-. 2: 0, in 
[0, oo) by 

(2.18) 

Then 

Since f.Lt ----> f.Lt and f.L>-. ----> f.L as ).. l 0, the above identity implies that 

the measure f.Lt is a constant multiple of f.L· On the other hand it is easy 
to see that f.Lt is an invariant measure of the recurrent process W# and 

so is f.L· (ii) If W# is transient, then c > 0 and the assertion follows from 
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We now introduce a function h(x),x 2:0, by 

(2.19) { 
JL([O,x)) 

h(x) = 
JL({O}) 

for x;:::: 0, 

for x = 0. 

Then using Lemma 1 we can rephrase Theorem 2 as follows. 

Theorem 3. (Silverstein [20]) (i) If W# is recurrent, then 

(2.20) f p-(t,x,dy)h(y)=h(x), x>O, 
J(o,oo) 

(2.21) >-.G):h(x) = h(x), x > 0. 

(ii) If W# is tmnsient, then for any x > 0 

(2.22) f p-(t,x,dy)h(y)=h(x)-c ftP{w#(s)<x}ds, 
J(o,oo) Jo 

(2.23) >-.G):h(x) = h(x)- )..-1cv>.([O,x)). 

Remark. The following conditions are equivalent to each other (e.g. 
see Sato [18]). 
(i) W# is recurrent. 
(iii) J0

00 r 1(1- e-t)P{ w(t) > O}dt = oo. 
(v) It r 1 P{ w(t) > O}dt = 00. 

(ii) SUPt~O w(t) = oo, a.s. 
(iv) c = 0. 
(vi) Jt(R) = oo. 

2.2 The Feller property of the semigroup of Wh. We define the 
super harmonic transform H ( t, x, dy) of p- ( t, x, dy) by 

(2.24) H(t,x,dy) = h(x)-1P-(t,x,dy)h(y). 

We set Htf(x) = f(o,oo) H(t, x, dy)f(y). Then Htf(x) is well-defined for 
f E C.[O,oo) and for x > 0. We will prove that Htf can be extended 
to a function in [0, oo) so that Ht gives rise to a strongly continuous 
sub-Markov semigroup on C.[O, oo) provided that f == 0 a.s. and r < oo 
with positive probability. 

We prepare three lemmas. 

Lemma 3. (i) If W is not a compound Poisson process, then 
JL({x}) = V>.({x}) = 0 for any x > 0 and)..> 0. 
(ii) The condition r = 0 a.s. is equivalent to each of JL( {0}) = 0 and 
li>.({O}) = 0. 
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The proof is easy; for instance, the equivalence of T = 0 ( a.s.) and 
p,({O}) = 0 follows from the formula (2.14). The rest are omitted. 

In what follows we often use the notation v(f) = f[o,oo) fdv. 

Lemma 4. Suppose that W is not the zero process. 
(i) For any .X > 0 and x > 0 

(2.25) .x-1c + r h(v)v;..(dv) < 
J[o,oo) 

h(x) 
v;..([O, x)) 

(ii) For any .X > 0 

(2.26) 

(2.27) 

l. v;..([O, x)) _ 
1m h( ) -a;.., 
xlO X 

a;..= {.X- 1c+D;..(h)}- 1 E (O,oo). 

Proof. The function .X G). h can be expresses in two ways: 

(2.28) 

(2.29) 

.xc-;, h(x) = r v;..(du) r v;..(dv)h(x- u + v). 
J[o,x) J[o,oo) 

.XG).h(x) = h(x)- .x-1cv;..([O,x)). 

Firstly we remark that the finiteness of v;..(h) follows from (2.28); more­
over, if D;..(h) = 0 then 0;.. is the 8-distribution at 0 so W is decreasing 
and hence c > 0. Thus 0 < a;.. < oo always. Secondly from (2.28) and 
(2.29) we have 

h(x) = .x-1 cv;..([O,x)) + { v;..(du) { D;..(dv)h(x- u + v), 
J[o,x) J[o,oo) 

and hence 

,_1_+ A (h)< h(x) < ,-1-+ A (hx) 
/\ c !/;.. - ( [ ) ) - /\ c !/;.. ' 

!/).. 0, X 

where hx(-) = h(x +·),which proves (2.25) and (2.26). The proof of the 
lemma is finished. 

Let .X> 0, f E C0 [0, oo) and set 

(2.30) U;..f(x) = 1= e->-.tHtf(x)dt, x > 0. 



364 H. Tanaka 

Then by (2.7) we have 

(2.31) U>J(x)=>..- 1h(x)-1 [ V>.(du) [ V>.(dv)}(x-u+v), 
J[o,x) J[o,oo) 

where j = fh. If W is not a compound Poisson process, then h(x) is 
continuous by Lemma 3 and hence U>.f(x) is also continuous in x > 0. 
Moreover, U>.f(x) tends to >..- 1a>.V>.(i) as x l 0 by (2.26) and (2.31). On 
the other hand it is clear that U>.f(x) tends to 0 as x ---+ oo. Therefore 
U>.f(x), x > 0, can be extended continuously to a function in C.[O, oo), 
which we denote by the same notation U>.f· Since IIU>.flloo ::; >.. -lllflloo, 
U>.f is well-defined also for f E C.[O, oo ). Thus we have a linear operator 
U>. : C.[O, oo) ---+ C.[O, oo), which clearly satisfies 

(2.32) U>.f 2: 0 iff 2: 0, 

(2.33) IIU>.flloo::; >..-1 llflloo, 
(2.34) U>. - U>.' + (>..- >..')U>.U>.' = 0, >.. > 0, >..' > 0. 

Now we introduce the following conditions. 
(A) T = f = 0, a.s. 
(A') f = 0 a.s. and 0 < T < oo with positive probability. 

Lemma 5. If either one of the conditions (A) and (A') is satisfied, 
then 

(2.35) lim JJ>..U>.f- flloo = 0 for f E C.[O, oo). A--+oo 
Proof. Making use of (2.7) and (2.26) we have 

(2.36) 

If we set P>.(dx) = a>.h(x)i/>.(dx), then P>. is a measure in [O,oo) with 
total mass ::; 1 and (2.36) yields 

(2.37) >..U>.f(O) = P>.(f), f E C.[O, oo). 

We are going to prove that P>. converges vaguely to 8o as )... ---+ oo. To 
prove this, we assume that f = Uog with g E C0 [0, oo) and () > 0. Then 
the equation (2.34) implies IJ>..U.>J- f!Joo = IJBU.>J - UAgiJ 00 ---+ O, as 
)... ---+ oo. In particular, 

(2.38) Uog(O) = f(O) = lim >..U>.f(O) = lim P>.(f). 
>.->oo >.--+oo 
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Let p be any vague limit of P>. as A ____, oo via a sequence {.An}· Then 
(2.38) implies Ueg(O) = p(f), which can be rewritten, again by making 
use of (2.7) and (2.26), as follows: 

(2.39) e- 1ae ve(g) = p( {0} )e-1ae ve(g) 

+8-1 r h(x)-1 p(dx) r ve(du) r g(x-u+v)ve(dv). 
J(o,oo) J[o,x) J[o,oo) 

We now prove that, under the assumption of the lemma, the equa­
tion (2.39) holds for g(x) = h(x)- 1 e-~x, ~ > 0. Since i/e({O}) = 0 
by Lemma 3, the integration interval [0, oo) of ve in (2.39) can be re­
placed by the open interval (0, oo). With such a replacement we take 
gn(x) = min{h(x)- 1 e-~x, n} for g(x) in (2.39) and then let n I oo. The 
result is 

e-1ae { e-~xve(dx) = p({O})e- 1ae { e-~xve(dx) 
J~,oo) J~,oo) 

+8- 1 r h(x)-1 p(dx) r ve(du) r e-~(x-u+v)ve(dv), 
J(o,oo) J[o,x) J(o,oo) 

or equivalently, 

ae = p({O})ae + { h(x)-1 p(dx) { e-~(x-u)ve(du). 
J(o,oo) J[o,x) 

Letting ~ I oo we obtain ae = p( {0} )ae so p = 80 . This proves that P>. 
converges vaguely to 80 as .A ____, oo. Thus (2.37) implies 

(2.40) lim .AU>.f(O) = f(O), f E C.[O, oo). 
"A->oo 

On the other hand it is clear that, for any x > 0, 

(2.41) lim .AU>.f(x) = f(x), f E C.[O, oo). 
"A->oo 

From (2.40) and (2.41) we can easily derive (2.35). This completes the 
proof of Lemma 5. 

As an immediate consequence of (2.32) "' (2.35) we obtain the fol­
lowing theorem. 

Theorem 4. If f = 0 a.s. and T < oo with positive probability 
(namely, either one of the conditions (A) and (A') is satisfied), then 
there exists a unique strongly continuous sub-Markov semigroup Ht on 
C.[O,oo) such that, for any t > O,x > O,f E C.[O,oo), 

(2.42) Htf(x) = h(x)- 1 { p-(t,x,dy)f(y)h(y). 
J(o,oo) 
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Denote by C 6. the subspace of C. [0, oo) consisting of those functions 
f with f(O) = E{f (w(f)- w(f- )) ; f < oo }. We omit the proof of the 
following theorem since it is not used in our later arguments. Pictorial 
observation of the sample path of the reversed pre-minimum process of 
the next subsection suggests the result. . 

Theorem 5. If T = 0, f > 0 a.s. and f < oo with positive probabil­
ity, then there exists a unique strongly continuous sub-Markov semigroup 
Ht on the subspace CD. such that (2.42) holds for f E CD.. Ht can not 
be strongly continuous at t = 0 on the whole space C. [0, oo). 

2.3 The reversed pre-minimum and the post-minimum pro­
cesses. We assume that our Levy process W = { w(t), t 2: 0, P} satisfies 
the following conditions: 
Condition (A). T = f = 0 a.s. 
Condition (B). sup{ w(t) : t > 0} = - inf{ w(t) : t > 0} = oo a.s. 
So the process Wh is the process W conditioned to stay positive. We 
denote by w+ such a process starting at 0. Similarly w+ denotes 
the process W conditioned to stay positive starting at 0. We consider 
the reversed pre-minimum and the post-minimum processes V.x and V.x 
defined by 

(2.43) 

(2.44) 

V.x(t) = w((b.x- t)-)- w(b.x), 0:::; t < b_x, 

V,x(t) = w(b.x + t)- w(b_x), 0:::; t < c,x, 

where a,x and b.x are defined by (1.2) and (1.3) and c,x = a,x - b,x. It 
is known that V.x and V,x are independent for each fixed >.. We are 
interested in the convergence in law of V.x to w+ and of V,x to w+ (as 
A ---+ oo). The proof of the former convergence is considerably easier but 
we can prove the latter convergence only under an additional condition 
(C) which is somewhat stronger. We have to omit the details of the 
latter part since our proof is too lengthy to be included here. 

2.3.1 The reversed pre-minimum process. To prove the law convergence 
of V.x first we express the sample functions of w and V.x, ala Ito [11, 
( 6.6) of p.233], in terms of the Poisson point process (P. p. p. for short) of 
"W -excursions off the zeros of W#" which was first used by Greenwood­
Pitman [9] (see also Bertoin [1]). So let L(t) be the local time of the 
reflecting process W# at 0, let L- 1 (s) be the right continuous inverse 
function of L(t) and set 

6 8 = w(L-1(s))- w(L-1 (s-)), ( 8 = L-1 (s)- L-1(s-). 

Some equations to follow hold under the phrase "a.s'.' but we shall of­
ten omit to write it. We have L-1 (s) = Er~s(r (the continuous part 
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vanishes under the condition (A)). It can also be proved that the con­
tinuous part Nc(t) of N(t) is equal to -cL(t) where cis the nonnegative 
constant determined by E{e-cL(T)} = E{e-Nc(T)}, T being an expo­
nential random time with mean 1 and independent of W. Thus the 
decomposition of N(t) to continuous and jump parts yields N(t-) = 
-cs+ L:r<s l::.n t > 0, where sis determined by L-1 (s-):::; t:::; L-1 (s). 
Now let 

Ps(t) = w(L- 1 (s-) +t)- w(L-1 (s-)) for 0:::; t:::; ( 8 • 

Ps = {Ps(t), 0:::; t:::; (s} is theW-excursion on [L-1(s-),L-1 (s)] that 
starts at 0 (this is a consequence of the condition (A)) and moves during 
[0, (s] with the increments of won [L -l(s- ), L -l(s)], ending at time ( 8 

with final value !:::. 8 • Then {p8 , s > 0} is a P.p.p. and we have 

(2.45) 

with s such that L-1 (s-):::; t:::; L- 1 (s) where we use the convention 
that p 8 (·) = 0 whenever L-1(s-) = L-1 (s). Thus the process W is 
constructed from the P.p.p. {p8 , s > 0}. Moreover b>. = L- 1 (s>.-) 
where S>. is the minimum of s > 0 such that the excursion p 8 can cross 
the level A. 

Consider the reversed excursion Ps = {Ps(t), t E {0-} U [0, ( 8 )} 

defined by 

Ps(O-) = f:::.s and Ps(t) = Ps(((s- t)-) for 0:::; t < (s. 

Then {fJs, s > 0} is also a P.p.p., which we now modify as follows. Let 
A> 0 be fixed, let S>. be the same as before and define Ps by 

_ { Ps;;.-s 
Ps = 

Ps 

for 0 < s < S>., 

for s ~ S>,. 

Then {p 8 , s > 0} ~ {p 8 , s > 0} and we can prove that, for 0:::; t < b>., 

(2.46) l\(t) = p8 (t- L -l(s-)) + cs-'"""' fin 
~r~s 

where sis determined by L- 1 (s-):::; t:::; L- 1 (s). If we replace {fJs} by 
{p 8 }, the right hand side of (2.46) has the form 

Ps(t- L-1(s- )) + CS- L l::.r 
r~s 
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with s such that £-1(s-) ::=; t ::=; L-1(s), 0:::; t < b;~. (it is to be noted 
that the inverse local time associated with {Ps} is still L-1 (s)). From 
these observations we see that a cadlag process fV(t), t ~ 0} is defined 
by 

(2.47) 

with s such that L - 1 (s-) ::=; t ::=; L - 1 (s), and for each fixed>.> 0 

(2.48) 
A d A 

{V;~,(t), 0:::; t < b;~.} = {V(t), 0:::; t < b;~,}. 

We are going to prove that {V(t), t ~ 0} is the w+ -process. Let b;~. be 
the unique t such that w(t) = N(>.), define the reversed pre-minimum 
process {i\(t), 0 :::; t < b;~.} in a way similar to (2.43) and set b;~. = 
£-1 (s;~,-) where s;~, is determined by £-1 (s;~,-):::; >.:::; £-1 (s;~,). Then 
as in the case of (2.48) we have 

- - d A -

{V;~,(t), 0:::; t < b;~.} '= {V(t), 0:::; t < h}. 

On the other hand {V;~,(t)} converges in law to w+ as >. --+ oo by 
Bertoin [1, Cor.3.2,Th.3.4]. See also Chaumont [5, Th.2]. ( {V;~,(t)} is 
identical in law to the post-minimum process for the dual process W 
while this will not be true for {V;~,(t)}. We may also use Millar [14]; in this 
case it is better to define {V;~,(t)} and the related quantities by replac­
ing the constant time>. in w(t) = N(>.) and £-1 (s;~,-):::; >.:::; L- 1 (s;~,) 
with an exponential random time of mean >. and independent of W.) 
Therefore {V(t), t ~ 0} is w+ and we have the following: 

Theorem 6. Under the conditions (A) and (B) {V(t), t ~ 0} de­
fined by (2.47) is the w+-process and (2.48) holds for each fixed>.. In 
particular, V;~. converges in taw tow+ as>.- oo. 

2.3.2 The post-minimum process. Since we have no formula for V;~. like 
( 2.48), we need extra arguments for the proof of the convergence in law of 
V;~,. And, assuming only the conditions (A) and (B) we did not succeed 
(the part (ii) of Theorem 7 in [24] lacked a complete proof); we had 
unexpected difficulty in proving the tightness concerning {V;~.} and so 
we must assume the additional condition (C) below which is somewhat 
stronger. For 0 < x < >. let h;~.(x) denote the probability that x + w(t) 
enters (>., oo) before it enters ( -oo, 0) and let us state the following 
lemma. 
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Lemma 6. If W satisfies the condition (A) and supw(t) = oo 
a.s., then 

(2.49) lim.x_, 00 h.x(x)- 1 h.x(y) = h(x)- 1h(y), x > 0, y > 0. 

Outline of proof. We first prepare the result for a random walk 
analogous to (2.49), in which the right hand side is replaced by the ratio 
of certain renewal functions (e.g. see [13, Theorem 2.3, p.524]). This 
ratio is again replaced by the ratio of certain mean occupation measures 
of the reflecting dual random walk which are defined in a manner similar 
to (2.18). To go to the case of a Levy process we make use of the uniform 
approximation of W by suitable step processes of semi-Markov type. 

Remark. When supw(t) < oo a.s. contrary to the assumption of 
the lemma Hirano [10] proved, under some additional condition, that 
the limit in (2.49) exists but the equality does not hold so that there 
are two different processes conditioned to stay positive attached to the 
same W. 

From Lemma 6 it follows that 

(2.50) 

uniformly on any compact subset of (0, oo). 

Condition (C). The convergence in (2.50) is uniform on (0, a] for any 
a> 0. 

Theorem 7. Under (A),(B) and (C), the post-minimum process 
V.x converges in law to w+ as A---+ oo. 

Key of proof. (i) By Lemma 6 the transition function of V.x tends 
to that of w+ as A ---+ oo, and (ii) the family of laws of V.x, A > Ao, is 
tight; we used the condition (C) to check this. 

§3. Diffusion processes in Levy environments 

In this section we write w(x) instead of w(t). Suppose, as stated in 
§ 1, that we are given the reflecting diffusion process {X(t), t ?: 0, IfD} 
in a Levy environment W = { w, P}. 
3.1 Let w E Wand x > 0. Then w is said to be locally right-oscillating 
(resp. locally left-oscillating) at x if sup{w(y): x < y < x + e} > w(x) 
and inf{w(y): x < y < x+e} < w(x) for any E > 0 (resp. ifsup{w(y): 
x- e < y < x} > w(x-) and inf{ w(y) : x- E < y < x} < w(x-) for 
any e > 0). w is said to be locally oscillating at x if it is locally right­
and left-oscillating at x. w is said to have a local maximum (resp. local 
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minimum) at x ifsup{w(y), x-E < y < x+t:} = w(x)Vw(x-) (resp. if 
inf{w(y) : x- E < y < x + ~:} = w(x) 1\ w(x-)) for some E. An extreme 
point is a point of either local maximum or local minimum. 

The following lemma can be proved in the same way as Lemma 3.1 
of [13]. 

Lemma 7. If the conditions (A) and (B) are satisfied, then there 
exists W 0 C W with P(W0 ) = 1 such that any wE W 0 has the follow­
ing properties: 
(i) T = f = 0. 
(ii) sup{w(x): x > 0} = -inf{w(x): x > 0} = oo. 
(iii) w can not have the same value at distinct extreme points. 
(iv) w is locally oscillating at any point of discontinuity. In particular, 
w is continuous at any point of local minimum. 

We assume that W satisfies the conditions (A) and (B). We denote 
by JL'f the distribution of X ( e>.)- b>. under pw and by v):' the probability 
measure on [-b>., a>.- b>.] defined by . 

(3.1) vJ:'(dx) = z;,~ exp{ -(w(x + b>.)- w(b>.))}dx, 

where Z>.,w = J~~~xp dx (normalization), a>. and b>. are defined by (1.2) 
and (1.3), and C>. = a>. - b>.. In what follows II · II stands for the total 
variation. In computing IIJL'f -v):' II we regard v):' as a probability measure 
in ( -oo, oo). Such a convention is often used. Note that IIJL'f- vJ:'II is 
a random variable on the probability space (W, P). For a > 0, >. > 0 
and w E W we define w~ E W by w~(x) = >.-1w(N"x), x ~ 0. Then 
Wf = {w~(x), x ~ 0, P} is a Levy process. 

Here are the conditions often used in the arguments to follow. 

Condition (DA)· Let A= {>.n} be a given positive sequence tending to 
oo and let it be fixed. There exists a > 0 such that Wf converyes in 
law, as>.~ oo along A, to some Levy process W = {w(x), x ~ 0, F} 
satisfying the conditions (A) and (B). 
Condition (D). For any positive sequence{>.~} tending to oo there exists 
a subsequence A = {An} of{>.~} for which the condition (D A) is satisfied. 

Most of strictly semi-stable Levy processes satisfy the condition (D). 
A simple example of W satisfying (D) but is not strictly semi-stable is 
a Levy process W with characteristic function 

E{eiew(l)} = exp 100 (cosiex -1)x-<>-1a(x) dx, 

where 0 <a< 2 and a(x) is a Borel function such that a(et) is aperiodic 
in t and bounded from above and below by positive constants. 
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Theorem 8. Suppose that W satisfies the conditions (A),(B) and 
(DA). Then 1111~- vfll ---> 0 in probability with respect P as A ---> oo 
along A. If, in addition, (D) is satisfied, then the phrase "along A" is 
removed. 

3.2 This subsection is for preliminaries to the proof Theorem 8. Let A= 
Pn}, Wf and W = {w(x), x 2': 0, P} be the ones in the condition (DA)· 
Then by Lemma 7 there exists W 0 C W with P(W0 ) = F(W0 ) = 1 
such that any wE W 0 has the properties (i) "' (iv) of Lemma 7. Take 
an arbitrary w E W 0 and then let {wn, n ;::: 1} be any sequence in 
W converging to w in the Skorohod topology. In the argument of this 
subsection {An}, wand {wn} are all fixed. 

We set a = a1 and b = b1 suppressing the suffix A = 1. Then for 
any small E > 0 there exists a' with the following properties: 

(i') a< a'< a+ E. (ii') w is continuous at a'. 
(iii') w(a)- E < w(x) < w(a') for any x E [a, a'). 

We set d' = w(a')- w(b) and e' = sup{w(y)- w(x): 0:::; x < y:::; b}. 
Then d' > 1 and e' < 1 (as for the latter we have to take W 0 so 
that e' < 1 holds for any w E Wo but this is certainly possible). We 
now employ the coupling method of Brox [3]. We use the notation w(t) 
instead of X(t) for the time being. Consider the product probability 
measure P~ = p>.nwn ®Pn on D X 0 where 0 = C([O,oo)---> [O,a']) and 
Pn is the probability measure on 0 with respect to which the coordinate 
process {w(t), t;::: 0} is a stationary reflecting diffusion process on [O,a'] 
with (local) generator 

Let f)Wn be the distribution (on [0, a']) of w(t) under Pn; it is independent 
oft and has the density const.exp{ -AnWn(x)}, 0:::; x:::; a'. We set 

T 1 = inf{t > 0: w(t) =a'}, 

(j = inf{t > 0, w(t) = w(t)}, 

f' = inf{t > 0: w(t) =a'}, 

7 = inf{t > (J: w(t) =a'}. 

_(t) = { w(t) 
w w(t) 

if 0 :::; t < (J, 

ift;:::u. 

d 
Note that (J :::; T 1 and f' :::; T 1. The following lemma can be proved as in 
Brox [3] (see also [12, p.179]). 

Lemma 8. (i) The process {w(t), 0:::; t < T 1, p>.nwn} is equiva­
lent in law to {w(t), 0:::; t < 7, P~}. 
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(ii) Let e' < r < d'. Then as n----> oo we have, P~{a < e.>.nr}----> 1 and 

Denote by E.>.n wn, En and E:jf the expectations with respect to 
p.>.n wn, En and P~, respectively. Then for any Borel function f in [0, oo) 
with IJI :::; 1 and for any positive sequence {rn} tending to 1 we have 

EAnWn{j(w(eAnrn))} = E~{f(w(eAnrn)); a< e.>.nrn < f} +o(1) 

= E~{f(w(e.>.nrn ))} + o(1) = r f dvWn + o(1), 
J[o,a'] 

where o(1), which may vary from place to place, denotes a term whose 
absolute value is dominated by some En independent off and tending to 
0 as n ----> oo. Therefore, if f.Lwn denotes the distribution of w( e.>.nrn) under 
p.>.nwn, then llt-twn- vwnll----> 0 as n----> oo. This can be rephrased as 
(3.3) below. Let vwn be the probability measure on [0, a] with density 
const.exp{ -Anwn(x)}, 0 :::; x :::; a. Since a' can be taken arbitrarily 
close to a and since Wn ----> w (the Skorohod convergence), we have 
llvwn - vwn II ----> 0 as n----> oo and hence 

3.3 We proceed to the proof of Theorem 8. From now on we use X(t) 

for w(t). As in [3] we have p-a X(A20t), t ;:=: 0, pw} ~ {X(t), p.>.w.q 
and so 

where r(A) = 1- 2aA- 1 logA which tends to 1 as A----> oo. Now let us 
denote by jl'f. the distribution of X(e.>.r(.>.)) under p.>.w'A and by ii'f. the 
probability measure on [0, a(w~)] with density const.exp{ -Aw~(x)}, 0:::; 
x :::; a(w~). Noting that Wf converges in law to W as A ----> oo along 
{An}, we first make use of Skorohod 's realization theorem of almost sure 
convergence and then apply (3.3). As a result we have 

(3.4) llil'f.- ii'f.ll----> 0 in probability as A----> oo along {An}· 

Since a.>.(w) = A0a(w~), b.>.(w) = A0 b(w~) and {X( e.>.) - b.>., pw} is 
identical in law to {A0 (X(e.>.r(.>.))) - b(w~), p.>.w'A}, we have, for any 
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Borel function fin R with IJI S 1 and as A-+ oo along {.An}, 

(3.5) 1 f d11!f. = f f(N"(x- b(w~)))jl'f.(dx) 
[-b>.,oo) J[o,oo) 

(3.6) = r J(>.o:(x- b(w~)))i/~(dx) + o(1) 
J[o,a(w~)] 

(3.7) = const. r J(>.o:(x- b(w~)))e-w(,\"'x)dx + o(1). 
J[o,a(w~)] 

(3.8) = const.>.-0: r f(x- b,\)e-w(x)dx + o(1) 
J[o,a>.] 

(3.9) = 1 f dv~ + o(1), 
[-b>,,a>,-b>.] 

where we used (3.4) for (3.6), the definition of i/~ for (3.7), change of 
variable for (3.8) and the definition (3.1) of v~ for (3.9). The proof of 
Theorem 8 is finished. 

3.4 Let W be the space of those nonnegative functions w in R which 
are right continuous and have left limits with w(O) = w(O-) = 0. Let 
p be the probability measure on W such that w- = { w( -X-), X 2:: 0} 
is w+, w+ = {w(x), X 2:: 0} is w+ and w- and W+ are independent. 
The following lemma can be proved by making use of (2.13). 

Lemma 9. Under (A) and (B), E{f~00 e-w(x) dx} < oo. 

By this lemma we can define a probability measure ilw in R, with 
superfix w outside some P-negligible subset of W, and then iJ by 

Of course v~ and ilw are random variables taking values of probability 
measures in R; the former is governed by P and the latter by P. From 
Theorem 6 and 7 it will be expected that v~ converges in law to ilw 
as >. -+ oo but, to verify this, we still have to assume the following 
condition. 

Condition (E). There is a constant C such that, for any x > 0 andy > 0, 
the inequality h-\(x)-1 h-\(Y) S C h(x)-1h(y) holds. 

In the following theorem f-t,\ denotes the distribution of X(e-\)- b,\ 
under JP>, namely, f-t,\ = J p,'f. P(dw). 

Theorem 9. Under the conditions (A)rv (E) v~ and hence t-t'f., 
by Theorem 8, converge in law to ilw as >. -+ oo. In particular, f-t,\ 
converges to iJ as >. -+ oo. 
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For the proof we have to show the law convergence of Z >., w (governed 
by P) to Zw (governed by P) as A ---+ =· Set 

z;:,w = 1° exp{ -(w(x + b>.)- w(b>.))}dx, 
-b.>. 

Z - = 10 -w(x)d w e x, 
-oo 

Then the law convergence of Z>:,w to z;;; follows immediately from The­

orem 6 (in particular, from (2.48)). As for z_t w' Theorem 7 alone is not 
enough; in fact, we have to show the unifor~ smallness (w.r.t. A ) of 
the tail rc; for large r and this is done by using the inequality 

Jr"C>.. 

(3.10) 

where 0:::; t 1 < t2 < ... < tn and rk, 1:::; k:::; n, are Borel sets in (0, =). 
The condition (E) is used for (3.10). 

Remark. Our arguments remain valid when the conditions (D A) and 
(D) are replaced by the following. 
Condition (D~). Let A = {An} be a given positive sequence tending 
to = and let it be fixed. There exists a positive sequence {an} with 
an = o(An/ log An) and such that W~: converges in law, as n ---+ =, to 

some Levy process W = {w(x), x;:::: 0, P} satisfying the conditions (A) 
and (B). 
Condition (D'). For any positive sequence {A~} tending to= there exists 
a subsequence A = {An} of {A~} for which the condition (D~) is satisfied. 
Thus Theorem 9 still holds when the condition (D) is replaced by (D'). 
On the other hand the conditions (C) and (E) seem too strong and it is 
desirable to remove or relax these conditions. 

Examples. (i) Let W be a strictly stable Levy process with exponent 
a E (0, 2) such that 0 < p = P{w(1) > 0} < 1. Then W satisfies all 
the conditions (A),...., (E) and h(x) = const.x<>(l-p). The verification of 
(C) and (E) is done by using, in detail, the explicit formula on h>.(x) 
obtained by Rogozin [17]. 
(ii) Spectrally negative Levy processes satisfy the conditions (C) and 
(E) since h,>.(x)- 1h>.(Y) = h(x)-1h(y), x, y E (0, .X), for any A. So any 
Levy process W such that 

E{ei~w(l)} = exp £000(ei~x -1- i~x) I X 1-<>-l a(x) dx, 

with 1 < a < 2 and 0 < c1 :::; a( x) :::; c2 , satisfies all the conditions 
(A)rv(E). 
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