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Abstract. 

The hyperbolic (Euler) scaling limit of weakly asymmetric Ginz­
burg-Landau models with a single conservation law is investigated, 
weak asymmetry means that the microscopic viscosity of the system 
tends to infinity in a prescribed way during the hydrodynamic limit. 
The system is not attractive, its potential is a bounded perturbation 
of a quadratic function. The macroscopic equation reads as 8tp + 
8, S' (p) = 0, where S is a convex function. The Tartar - Murat theory 
of compensated compactness is extended to microscopic systems, we 
prove weak convergence of the scaled density field to the set of weak 
solutions. In the attractive case of a convex potential this set consists 
of the unique entropy solution. Our main tool is the logarithmic 
Sobolev inequality of Landim, Panizo and Yau for continuous spins. 

§1. Introduction and Main Result 

In the last fifteen years a great progress has been made in the theory 
of hydrodynamic limits. Although the first papers [2) and [22) concern 
hyperbolic problems, most results are related to diffusive systems, see 
e.g. [13,29,30) and the monograph [15) with historical notes and further 
references. The main difficulty in hyperbolic problems comes from the 
breakdown of regularity and uniqueness of macroscopic solutions. In a 
smooth regime the relative entropy method of Yau [32) works well in 
quite general situations. Beyond shocks, however, only some attractive 
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systems like asymmetric exclusions, zero range and stick processes are 
tractable, see [1,4,21,23,24] and also [16,31] on entropy and large devia­
tions for asymmetric exclusion processes. The specific structure of these 
models is very important, and PDE techniques play an essential role 
in the proofs. The main purpose of this paper is to develop a general 
method for hyperbolic problems: we are going to extend the Tartar -
Murat theory of compensated compactness to microscopic (stochastic) 
systems, see [26] and [19] for the first ideas, [14] or [25] for a systematic 
treatment of these advanced PDE techniques. Compensated compact­
ness yields weak convergence of the scaled empirical density to the set 
of weak solutions to the macroscopic equations. A first exposition of 
the main ideas for stochastic systems was given in [9] in the case of 
asymmetric exclusions, and also for a lattice gas with two conservation 
laws. Here we study an asymmetric Ginzburg-Landau model with a 
single conservation law in details; we wanted to demonstrate that this 
method is really applicable. Another model, a two-component lattice 
gas with collisions is to be discussed in a forthcoming paper [11], see 
also [27,28] for a large class of two-component models. To have conver­
gence of the scaled microscopic process to a well specified macroscopic 
solution, one has to supplement compensated compactness with the en­
tropy condition of Lax and KrliZkov implying the uniqueness of the 
limiting macroscopic solution. Unfortunately, we can only prove this 
condition for attractive Ginzburg-Landau models by adapting the cou­
pling method of Rezakhanlou [21]. In another paper [10] we investigate 
non-attractive lattice gas models with a single conservation law. The 
structure of these systems allows us to verify also the entropy condi­
tion, thus we get convergence to a single entropy solution specified by 
its initial value. 

Let 'TJk(t) E lR for t ~ 0, k E Z, and consider the following infinite 
system of stochastic differential equations as the evolution law of this 
continuous spin model. Given a potential V(y) = y2 /2 + U(y) such that 
U, U', U" are bounded, 

(1.1) dryk = ~ (V£_ 1 - v~+l) dt 

+a(c-) (V~+l+VL 1 -2V£)dt+ ~ (dwk-1-dwk), 

where Wk , k E Z is a family of independent Wiener processes, a 
a(c-) > 1/2 is the coefficient of microscopic viscosity; abbreviations like 
V~ := V'(rJk) are widely used also later on. The scaling parameter, 
0 < c- --t 0 of the hydrodynamic limit is interpreted as the spacing of 
the lattice in macroscopic units, hyperbolic scaling means that time is 
speeded up by a factor of 1/c-. We shall let a depend on c during the 
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limiting procedure in such a way that c:a(c:) --+ 0 as c: --+ 0, thus the 
effect of the second difference, a (V~+ 1+VLc2VD diminishes as c:--+ 0. 
A technical condition, c:a2 ( c:) --+ oo will be explained later. 

Since the drift is Lipschitz continuous in a weighted £2 space, 0 
of doubly infinite sequences 'TJ = ('TJk : k E Z) with weights e-lkl, for 
instance, the existence of unique strong solutions to (1.1) follows by a 
standard iteration procedure, and 0 carries a large class of probability 
measures, see e.g. [9] for further references. Let ::Fk,l denote the a-field 
generated by 'TJk,l := ('TJj : k- l < j :::; k), f-tt is the distribution of the 
evolved configuration ry(t), and f-tt,k,l denotes the distribution of 'T/k,z(t). 
Short hand notation is to be used later in case of k = n and l = 2n . 

The total spin I: 'T/k is formally preserved by the evolution, and 
certain product measures Az with one dimensional marginal densities 
9z, Z E JR, 

9z(Y) := exp(zy- V(y)- F(z)), F(z) :=log 1: ezy-V(y) dy 

are all stationary states. As a reference measure, >. := >.0 will be used; 
we may and do assume that F(O) = F'(O) = 0. A converse statement on 
stationary states in a much stronger form will be needed, our main tool 
is the logarithmic Sobolev inequality of [17]; that is why we are assuming 
that V is a bounded perturbation of a quadratic function. The model is 
attractive if V is convex; we are interested in the general case when an 
effective coupling is not available. 

Due to the asymmetric part (1/2)(VL 1 - V~+1 ) of the drift, the 
model admits a hyperbolic scaling as specified below. In the absence 
of the stochastic term .;2a (dwk - dwk-l), (1.1) looks like a lattice 
approximation procedure for solving 8tP + 8x V' (p) = 0; the viscid part 
a (V~+l + VL 1 - 2VD is needed even in this deterministic situation to 
stabilize the algorithm, see [14,18,25]. However, in regions of the phase 
space where V is concave, the viscid correction plays an opposite role; 
the convexity of V is very important in the deterministic case. Moreover, 
the value of a may depend on the initial condition. 

The behavior of the stochastic model is similar, but more complex. 
For c: > 0 interpreted as the macroscopic spacing of the lattice, let 
Pe(t,a;) := 'TJk(tjc:) if \a;- kc:\ < c:/2 denote the empirical process; we 
are interested in its limiting behavior as the scaling parameter c: --+ 0. 
In view of the principle of local equilibrium, the true distribution, f-ttje 
of our process is close to a product measure with marginal densities 9z 
such that z does depend on space and time. Since >-z('TJk) = F'(z) = 
p is the expectation of 'T/k with respect to >-z , while >-z (vn = z = 
S'(p) if p = F'(z), where S(p) := supz {zp- F(z)}, 8tP + 8xS'(p) ~ 
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eaa;s'(p) is expected for the asymptotic mean of Pe: as e ---+ 0. This 
was proven in [7] for a = a 0 /e and small U by means of the parabolic 
perturbation technique of [6], see also [12,4] on the weakly asymmetric 
exclusion process. Heuristic considerations of this kind suggest that 
the macroscopic equation becomes 8tP + 8xS'(p) = 0 if ea---+ 0 during 
the hydrodynamic limit. This can be proven by means of the relative 
entropy method [32] when the macroscopic solution is smooth, even 
if a > 0 is fixed. In case of an incompressible limit (perturbation of 
equilibrium) the initial configuration is changed during the scaling limit, 
see [20,24,28]. 

In a regime of shocks some new methods are needed, this is the 
subject of the present paper. Unfortunately, we are able to control 
oscillations of the empirical process only if the microscopic viscosity, a 
goes to infinity as e ---+ 0. More precisely, we are assuming that eO" ---+ 0 
but ea2 ---+ +oo as e ---+ 0. For example, a(e) := ftlog(1/e) is an 
allowed choice. Let us remark that the concept of microscopic viscosity 
is plausible in many other cases, and conditions on its growth rate are 
the same as above, see [9,10,11], but Dittrich [4] only needs ea3 ---+ +oo 
in case of asymmetric exclusions. If the generator, i! of a conservative 
process decomposes as i! = .1!0 + a<5 , where <15 is symmetric, then the 
parameter a > 0 may be interpreted as the microscopic viscosity of the 
model. The paper [28] investigates perturbation of the equilibrium for 
a class of two-component hyperbolic models in a smooth regime; the 
order of microscopic viscosity of these models is the same as here. Also 
in such situations we use the term weakly asymmetric system; perhaps 
the phrase large microscopic viscosity limit would be more correct. 

A locally square integrable p E L?oc(IR~) is a weak solution to 8tp + 
8xS'(p) = 0 with initial value poE L?oc(IR) if p(t,x) satisfies 

for all test functions '1/J E C~(JR2 ), where '1/J~ := 8u'I/J, C~(JR2 ) is the 
space of compactly supported '1/J : IR2 f-+ lR with k continuous derivatives, 
IR~ := [0, oo) x lR, L?oc is the space of locally square integrable functions. 
It is easy to check that S" is bounded, thus the definition above is not 
a senseless one. In fact, only the local integrability of p is needed in 
(1.2) because S' is linearly bounded, but we prefer an £ 2 setting. In 
case of a single conservation law the Lax entropy condition is sufficient 
for the uniqueness of weak solutions, see [14] or [25]. For a > 0 let 9-Ca 
denote the set of such couples (h, J) of continuously differentiable real 
functions that lh(u)l + IJ(u)l = O(lui<>) for large u, and J' = h'S", that 
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is 8th(p) + 83,J(p) = 0 along classical solutions; (h, J) is called an Lax 
entropy pair. A weak solution, p satisfies the entropy condition if 

(1.3) 100 
/_: (h(p)'!f;; + J(p)'l/J~) dx dt + /_: h(p0 (x))'!f;(O, x) dx ;::: 0 

for all 0 s; '1/J E C1(1R.2) and (h, J) E 9{1 with h convex. An equivalent 
version of the Lax inequality has been proposed by Kruzkov, see [21,25], 
namely 

100 
/_: (IP- ci '1/J~ + IS'(p)- S'(c)l '1/J~) dx dt 

(1.4) + /_: IPo(x)- cl '1/;(0, x) dx ;::: 0 

for all 0 s; '1/J E C1(R2 ) and c E ~; the flux of hc(u) := lu- ci can be 
chosen as Jc(u) := IS'(u)- S'(c)l. 

The Lax inequality is motivated by the viscous approximation 8tue:+ 
8xS'(ue) = caa;<I>'(ue), where ca-----t 0, because 

8th(ue) + 8xJ(ue) = cah'(ue)a;<I>'(ue) 

(1.5) = c0"8x(h'(ue)<I>"(ue)8xue)- cah"(ue)<I>"(ue)(8xue)2 , 

whence one can derive (1.3) with an appropriate choice of <I>; the most 
favored one is <I>(u) = u2 /2. We see that there is a freedom in choos­
ing the viscid correction caa;<I>' , but <I>" ;::: 0 is very important at this 
point; the structure of lattice approximation procedures and other nu­
merical schemes is similar. The viscous correction must be elliptic in 
all cases. Stochastic models are structured in a more canonical way be­
cause they must have a stationary state; the form of (1.1) is dictated by 
this requirement. Calculations at the microscopic level follow the above 
scheme of the viscous approximation, that is why the strict convexity of 
V is needed for (1.3) or (1.4). 

Several topologies shall be used in the study of the limit distribu­
tion of the empirical process Pe . We shall see that Pe is locally square 
integrable, thus the weak topology of L?oc(~~) will be the first one; the 
distribution Pe of Pe will be considered on this space. We are interested 
in the limiting behavior of the density field Re , 

(1.6) 

where '1/J E Cc(~2 ) is compactly supported. The initial conditions are 
specified in terms of a family f.le,o : c > 0 of initial distributions. First 
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of all, we have some p0 E Lfoc (JR) such that 

(1.7) !~l: <p(x)p"(O,x)dx =I: <p(x)p0 (x)dx 

in probability for all <p E Cc(lR). The second condition tells that the 
entropy, S of f.Le,O relative to >. := >.0 is extensive. The entropy of a 
probability measure v relative to >. is defined as S[vl>.] := v(log f) if 
v « >. and dv = fd>., S = +oo otherwise. Let f.Le,O,n denote the 
restriction of f.Le,O to :!n,2n, and suppose that fn := df.Le,o,nfd>. satisfies 

(1.8) Sn [J.Le,O I .A] := j fe,n log fe,n d>. :::; Con '<IE > 0 and n E N. 

Our main result is 

Theorem 1.1. Suppose (1.7), (1.8) and specify a = a(c) such 
that w(c)-+ 0 but ca2 (c) -+ +oo as c-+ 0. Then the family P" is tight 
as E -+ 0, and any limit distribution is concentrated on a set of weak 
solutions (1.2) to the macroscopic equation 8tp+8xS'(p) = 0. Moreover, 
if V is strictly convex, then we have a weak solution p E Lfoc(JR~) such 
that 

lim R"('l/;) = R('lf;) := {oo loo 'l/;(t, x)p(t, x) dxdt 
e->0 Jo -oo 

in probability for all 'lj; E Cc(1R2); this p is uniquely specified by its initial 
value p0 and the entropy condition (1.4). 

The paper is organized as follows. Below and in Section 2 we are 
going to exhibit the main ideas of the argument. Section 3 summarizes 
some basic facts on the microscopic model, further technical details are 
added in Section 4. The proof is then completed in the last section. 

The first main step of the proof is certainly the replacement of V' (p") 
with S'(p"), this characteristic argument of hydrodynamic limits does 
not appear in PDE theory. The second step is then to show that the 
weak limit of S'(p") equals S'(p), where pis the weak limit of p". As 
we have learned from [13], the replacement of V' with S' can be done 
at a level of block averages. In case of a diffusive scaling the celebrated 
two-block estimate allows us to work with macroscopic blocks, thus the 
weak limit commutes with S'. This step is more difficult if we consider 
a hyperbolic problem because the two-block lemma extends to blocks 
of size l = o( forE) only, consequently there is no direct argument 
to identify the weak limit of S'(p"). The concept of measure solution 
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plays an important role at this point, see e.g. [3] on partial differential 
equations, and [29] on a first application to a microscopic system. 

Let 8 denote the set of measurable families 0 = Ot,x : (t, x) E JR~ 
of probability measures on lR such that fh,x(u2 ) is locally integrable on 
JR~. () E e is a measure solution to (1.1) if 

for all 'ljJ E C}(JR~), the space of 'ljJ E C1 (JR2 ) such that supp 'ljJ is con­
tained in the interior of JR~ . Notice that the initial value has not been 
included in this definition. A function u E Lf0c(JR~) is represented by 
a family () E 8 of Dirac measures such that ()t,x is concentrated at the 
actual value u( t, x) of u; this () is called the Young representation of 
u. Moreover, any () E e can be identified as a locally finite measure 
mo, dmo := dt dx ()t,x(du) on JRt := JR~ X JR; equip 8 with the associ­
ated weak topology. Therefore any weak solution is a measure solution, 
and the existence of measure solutions follows by a direct compactness 
argument. Compensated compactness is the tool for proving that any 
measure solution is actually a weak solution. We say that () E e admits a 
Tartar factorization for a couple (h1 , Jl), (h2 , J 2 ) E JC1 of entropy pairs, 
if for almost every ( t, x) E JR~ we have 

In the case of a single conservation law like BtP + BxS'(p) = 0, 
Tartar's factorization implies that () is a family of Dirac measures, that 
is a weak solution. To get uniqueness of weak solutions we need the 
Kruzkov inequality (1.4). The entropy condition can also be stated at 
the level of measure solutions, 

100 £: ( et,x ( hc)'l/J~ + et,x ( Jc)'l/J~) dx dt 

(1.11) + 1: eo,x(h)'lj;(O,x)dx 2::0 

for all 0 :::; 'ljJ E C}(JR2 ) and for the Kruzkov entropy pairs (he, Jc), 
c E lR, see (1.4); the derivation of (1.11) is easier than that of (1.4). 
Let us remark that DiPerna [3] proves the uniqueness of measure solu­
tions satisfying (1.11) without any reference to Tartar's factorization, 
but his initial condition is much stronger than that we do have here. 
Compensated compactness requires large microscopic viscosity, but it 
has an advantage from the point of view of uniqueness. Since we have 
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weak solutions, (1.4) is sufficient, i.e. no continuity condition is needed 
at time zero, see [22]. 

Entropy pairs constitute additional conservation laws at the macro­
scopic level, but the microscopic model must be ergodic, thus it can 
not have any other conservation law than those we are a priori given. 
Therefore the Lax entropies exhibit rapid oscillations, they should be 
controlled by means of non-gradient tools as initiated by Varadhan [30]. 

§2. Compensated Compactness 

The proof of Tartar's factorization is based on some functional ana­
lytic properties of the Lax entropy production X:= 8th+ 8xJ, we have 
to estimate X in various spaces. Let II'PII denote the uniform norm, 
II'PIIP is the LP norm of cp : 1R2 f--t lR for p ~ 1. The Sobolev space 
H+1(1R2 ) is defined as the completion of C1(1R2 ) with respect to 11·11+1, 
II'PII~1 := II'PII~ + II'P~II~ + II'P~II~, and H_1(1R2 ) is the dual of H+l with 
respect to L2(JR2). Here and below we adopt a convention: if a func­
tion u is only defined on JR~ , then we extend its definition by setting 
u( t, x) = 0 for t < 0. 

A first version of Tartar's theorem can be stated as follows. Let 
(hi, Ji) E JC1 fori= 1, 2, and set Xi,e: := 8thi(ue:) + 8xJi(ue:). Suppose 
that Ue: , hi ( Ue:) and Ji ( Ue:) are all weakly convergent in L 2 (JR2 ) as E --+ 0, 
while the Young representation Be: of Ue: tends to some () E 8. If the set 
{Xi,e: : i = 1, 2; E > 0} is relative compact in H_ 1 (JR2), then (1.10) 
holds true. The so called Murat lemma on the conditions of Tartar's 
theorem had certainly been motivated by (1.5). It states that if hi(ue:) 
and Ji ( Ue:) are bounded in £P(JR2 ) for some p > 2 , and Xi,e: = Yi,e: + Zi,e: 
such that Zi,e: is bounded in the space of finite signed measures on JR2 , 

while Yi,e: belongs to a compact set of H_ 1 (JR2), then Xi,e: also lies 
in a compact subset of H_ 1 (JR2). Since the empirical process does not 
vanish at infinity, we have to localize the problem by multiplying X with 
a general¢ E CJ(lR2 ); this step is also present in the original papers [26] 
and [19]. "Compensation" appears at two places. The factorization on 
the right hand side of (1.10) holds true only for the difference on the left, 
and 8th, 8xJ alone are only bounded in H-1, their sum does belong to 
a compact set. 

In view of our project, we formulate and prove Tartar's factorization 
and the entropy inequality at the microscopic level, this will be done in 
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terms of block averages. For any sequence ~ indexed by Z , 

(2.1) 
- 1 1-1 A 1 l 

6,k := y L~k-j and ~l,k := z2 L llil-ll ~k+j · 
j=O j=-l 

For example, Vi\ refers to the sequence V£ = V'('Tik). The smooth av-, 
eraging ~~ seems to be convenient in analytic calculations, while the 
usual one, (! is preferred in computing canonical expectations. The size 
l = l (e) of these blocks should be chosen in such a way that 

(2.2) 
. a(e) 

hm sup -l3 ( ) < +oo and 
e-->0 e e 

lim l(e) - 0 
e--+0 a(e) - ' 

thus el2 (a) --t +oo as e --t 0. Since ea(e) --t 0 and ea2(e) --t +oo, 
a 2 = o(l3 ). We see also that (a /e) 113 = O(l) = o(a), thus the integer 
part of e-114 .J(T(€) is an acceptable choice for l. Because of some tech­
nical reasons, we modify the empirical process as p,;;(t,x) := f/l,k(t/e) if 
lx - kel < e/2, Pe denotes its distribution on L~oc(JR.~); from now on 
the block size l = l(e) is specified according to (2.2). In view of the 
Young representation, the empirical process Pe can be considered also 
as a random element {Je of e; the distribution, Po,e of {Je is defined on 
this space. Of course, P,;; , Pe and Po,e are not really different from each 
other, just the notion of weak convergence varies. 

The microscopic version of entropy production X = 8th+ 8xJ is 
defined for 1/J E C~(JR.~) and (h, J) E !Ji1 by 

remember that 1/J is compactly supported in the interior of JR.~ . We have 

where N,;; is a numerical error due to the lattice approximation of the 
space derivative, Me is a stochastic integral coming from the Ito lemma, 
and .C = £ 0 + al!5 is the generator of the microscopic process ( 1.1). On 
smooth cylinder functions rp( 71) , £ 0 and 1!5 are acting as 

.Corp:=- L(V1V£)8kcp, 
kEZ 

1!5rp := L(\718k- \71V£)\718kcp, 
kEZ 
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where ak'P := 8<p/81Jk' \lz~k := l- 1 (~k+l- ~k)' ~~ := (1/2)(\lz- \lt)' 
\li~k := l- 1 (~k-l-~k), ~~ := -\li\lz for lEN. Note that \11€1 = \lz~z. 
The formalism is used also for functions as c:\16 <p(x) := <p(x+c:)- <p(x), 
~c:'P(x) := (1/2c:)(<p(x + c:)- <p(x- c:)), and so on. 

Mimicking integration by parts, the numerical error becomes 

The stochastic equations for f) read as 

thus scaling the noise as ((t, x) := y'c Wz,k ( t/ c:) if lx - kc:l < c:/2, 

Splitting ~/c: into its asymmetric and symmetric components, we obtain 
a decomposition Xc: = N 6 +Me: + Xa,c: + Xs,e: , where 

(2.7) 1 100 !00 -Xa,e:('l/J,h) :=- 'ljJ(t,x)(~oh(pe:)+c:\le:J(pc:))dxdt, 
C: 0 -oo 

(2.8) a 1oo!oo Xs,e:('l/J, h):=- 'ljJ(t, x) Q5h(fJc:(t, x)) dxdt. 
C: 0 -oo 

The main term here is certainly the asymmetric Xa,e:('l/J, h). 
Having in mind (1.5) and the Tartar- Murat theorems, we are look­

ing for a decomposition of entropy production Xe:('l/J,h) = Ye:('l/J,h) + 
Ze:('l/J, h) described as follows. 

Proposition 2.1. Let (h1, J1), (hz, Jz) E :H:1, and suppose that 
we are given some mndomfunctionals Yc:('l/J, hi), Ze:('l/J, hi), Ac:(¢), Be:(¢) 
such that Xe: = Yc + Ze: , Ae: ( ¢) and Be: ( ¢) do not depend on 'ljJ , moreover 

for each 'ljJ E C1(IR~)' ¢ E c;(IR.2 )' i = 1, 2 and c: > 0. If II¢Pc:ll~ ::::: 
Be:(¢), EAc:(¢)---> 0 and lim sup EBe:(¢) < +oo as c:---> 0, then Pe,e:: c: > 
0 is tight on 8, and (1.10) holds true with probability one with respect 
to any weak limit point Pe of Pe,e: as c: ---> 0. 
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This is a microscopic (stochastic) synthesis of the fundamental re­
sults of L. Tartar and F. Murat on compensated compactness. We post­
pone its proof to the last section, the main problem is to verify the 
conditions; that is the content of Sections 3 and 4. The first part of 
Theorem 1.1 follows from Proposition 2.1 and Lemma 5.1. 

For the Lax-Kruzkov inequality we do not need bounds that are 
uniform in'¢, but the viscid term, a-~1 V' of the microscopic evolution 
must be elliptic as a (nonlinear) operator on the configuration space. 

Proposition 2.2. Suppose all conditions of Theorem 1.1 includ­
ing the strict convexity of V, then Po,e : E > 0 is a tight family with 
respect to the weak topology of 8 , and its weak limit distributions are 
concentrated on a set of measure solutions satisfying (1.11). 

The proof of this statement is based on the attractiveness of the 
microscopic process due to monotonicity of V'. Following [21], it is pre­
sented in Section 5. The proof of Theorem 1.1 is then completed by weak 
uniqueness of entropy solutions. The case of a general (non-convex) po­
tential is a formidable open problem. 

§3. The a priori bounds 

This section summarizes some estimates based on relative entropy 
and its rate of production, the fundamental entropy inequality v(cp) :<:::: 

S[vj.\] +log .\(e'P) will be used several times. The Donsker-Varadhan 
rate function of· a probability measure v « ,\ with respect to a self­
adjoint generator, 6 of a Markov process in L2 (.\) is a Dirichlet form 
D[vj.\, 6] := -4.\( VJ 6 VJ) when f := dv j d.\; for technical details 
see [13],[15] or [9] with further references. We consider (1.1) with an 
arbitrary, but fixed value of a > 1/2 , f.Lt,n is the restriction of the evolved 
measure, f.Lt to :Jn,Zn, and fn(t, ry) denotes the .\-density of f-Lt,n, if any. 
Set Sn(t) := S[f.Lt,nl.\], while Dn(t) := D[t-Lt,nl.\, Q5n,2n], where 

k-1 

Q5k,l 'P := L ('V18j- 'V1 Vj)'V18jcp 
j=k-l+1 

for smooth cp. If 0 < fn is differentiable then 

n-1 n-1 

Dn(t)=4 L J('V18kVfn) 2 d.\= L J ;n('V18kfn)2 d.\. 
k=1-n k=1-n 

First we derive an explicit bound for Sn and the time integral of Dn . 
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Lemma 3.1. If Sn(O) ::; Con then 

for all n EN, where C1 is a constant depending only on C0 and U. 

Proof. We follow the proof of Proposition 1 in [8], only the main 
steps are presented. Remember that >. is preserved by the deterministic 
process generated by £o, i.e. >.(£orp) = 0, while (5 is symmetric in 
L 2 (>.), thus 

J rp®'l/Jd>. =- :L fc'v'!akrp)vlak'l/Jd>. 
kEZ 

for smooth cylinder functions tp and 'lj;. If fn > 0 is smooth enough, then 
by a direct calculation 

where 

and fn = fn(t, TJ). Both sums on the right hand side above consist only 
of boundary terms corresponding to k = ±n, >.(V£) = 0 'ik, and for 
k = n + 1 or k = -n we have 

whenever !fn is :J' n,2n measurable. Denoting 
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by an easy computation we arrive at 

8tSn +a Dn = (1 + 2a) Bn- aDo,n 

""" f '\118kfn (3.1) = Bn- a ~ ('\118kfn+1) fn d).. 
k=±n 

:::; Bn + aJDn+1-Dn~; 

at the final step '\118nfn = -8nfn, '\118-nfn = 81-nfn, the Schwarz 
inequality and convexity of D were used. 

First of all we have to estimate Bn . For any probability measure v, 
and u E IR we have an entropy bound 

see (3.4) for the second inequality, whence by setting u = ±J2S/IIV"II 
we obtain that v2(VD :::; 2IIV"II S[vi>.J. Let v = JLt[·l:fn,2n], again by 
Schwarz and convexity we get 

In view of (3.1) there is nothing to prove if (1 + 2a)Bn :::; aDo,n, but 

aDo,n:::; 4Bn:::; 4KoJ(sn+l- Sn)Do,n 

in the opposite case, whence a system 

of differential inequalities follows immediately, where K 1 depends only 
on IIV"II· This system admits an explicit solqtion, see Lemma 3 in [8], 
the result is just the bound we have to prove. Since the final statement 
does not depend on smoothness of fn any more, this restriction can be 
removed by a standard regularization. Q.E.D. 

As a first consequence, from the entropy bound we get the moment 
condition lim sup EII<PPe:ll~ < +oo of Proposition 2.1 for <P E c,;(IR2). 

Lemma 3.2. We have a universal constant C2 such that 
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Proof From the basic entropy inequality, v( 'P) :S S[vi>.J+log >.( e'P) , 
for any (3 > 0 we get 

To estimate >.(e"~~), let E9 denote expectation with respect to an N(O, 2(3) 
variable (, then ef3"1% = E9 e("'k , thus >.( e('l/k) = eF(() , and F( () ::; 
(1/2) I IF" II ( 2 as F(O) = F' (0) = 0 by assumption. Since F" (z) is just the 
variance of T/k under Az, F"(z) :S Az((TJk- y) 2 ) e.g. if z = V'(y). How­
ever, ( T/k -y )2 :S a+b(V~- z )2 because V" (x) is strictly positive for large 
lxl, while Az((V~- z) 2 ) = >.z(V~'), we have IIF"II :Sa+ biiV"II < +=. 
Finally, 

(3.2) log E9e~'(2 = -log .j1 - 4'"'((3 :S 4'"'((3 whenever 8'"'((3::; 1, 

which completes the proof via Lemma 3.1. Q.E.D. 

The following lemma summarizes some results of [17]. For any lin­
early bounded hE C(JR), and aj E lR: 0::; j < l set h(p) := >.z(h(ryk)), 

1-1 

¢1,k(h, a):=~ aj (h(TJk-j)-h(i/l,k)), 
j=O 

and <Ph(p,u) := logAz(euh("'k)-uh(p)), where z := S'(p). 

Lemma 3.3. We have positive constants l0 and C3 depending only 
on U such that if l > l0 , then any probability measure, v on ~k,l satisfies 

(3 J ¢1,k(h, a) dv :S C3 (1 + l2 D[vl>., 1Bk,ll) 

1-1 

+~log J exp(~<Ph(i71,k,2f3aj)) dv. 
j=O 

Proof. Given i/l,k = p, denote D1,p and >..l,p the conditional distri­
butions of TJk,l under v and >., respectively. In view of LSI, which is 
Theorem 2.2 in [17], we have S[DI,pl5..1,p] ::; ql2 D[DI,pl5..1,p, IBk,l] for allv 
and p with the same c~ ' thus from the entropy bound 

Let 5..1,m,p denote the restriction of 5..1,p to ~k,m. If l is large enough, 
z = S'(p) and 1 < m :S 1 + l/2, then d5..1,m,p/dAz is uniformly bounded 
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in view Corollary 5.5 of [17]. Splitting cPl,k(h, a) into two pieces, by 
means of the Schwarz inequality we obtain that 

Since ®k,l fil,k = 0, we can integrate (3.3) with respect to v; notice that 
D[vi>.z, ®k,zl does not depend on z. Q.E.D. 

From now on we are assuming that l > l0 in all statements. On the 
rate of convergence to local equilibrium we have 

Lemma 3.4. There exists a universal constant C4 such that 

where Ct,n(a, l) := tjl2 + (lja)(1 + tn- 1 + atn-2 ). 

Proof. We apply Lemma 3.3 with h = V', aj = 1/l and f3 = f30 l; 
for brevity we let ¢ = cPl,k(V', a) and <I>(p, u) = <I>v' (p, u). First we show 

that Az(ef3<P2
) ::; C~ if z = S'(fil,k) and (30 is small. Since ef3<P2 = EgeC:<P 

if ( is an N(O, 2/3) variable, and >-z(ef3<P) = Egel<I>(p,(Jl), the statement 
follows in the usual way by (3.2). Indeed, <I>(p, u) ::; ~ !IV" II u 2 for all 
y E lR because <I>(z, 0) = 0 and, integrating by parts, we obtain a bound 

(3.4) <I>~(p,u) =u J V"(ryk)exp(uV~ -uz-<I>(p,u))d>.z, 

that is I<I>~(p,u)l::; luiiiV"II' whence c~ = O(f3o)' thus 

Doing summation for k and integrating with respect to time, the state­
ment follows from Lemma 3.1 by subadditivity of D. Q.E.D. 

Differences of various block averages are estimated by means of 

Lemma 3.5. Let aj E lR for 0 ::; j < l such that L: aj = 0, 
L: a] ::; 1/l, and set cPl,k(1, a) := cPl,k(h, a) when h(y) = y. We have a 
universal c5 such that 
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Proof. It is essentially the same as that of Lemma 3.4 with the only 
difference that at the final step, in the exponent we have 

l-1 l-1 

L(F(aj()- aj(F'(z)- F(z)) = ~ L F"('Yj)aJ(2 :::; ;liiF"IIC2 , 

j=O j=O 

which completes the proof as IIF"II < +oo. Q.E.D. 

The following lemma is essentially the two-block estimate of [13]. In 
particular, choosing l = 2r we obtain a bound for ('\7 r v;,k)2. 

Lemma 3.6. We have a universal C6 such that for 2r:::; l, 

1 "" tj -, -, 2 nl L....t lo Wr,k- Vi,k) dJ.Ls ds:::; c6 Ct,n(a, l, r)' 
lkl<n 0 

where Ct,n(a, l, r) := t/rl + (l/a)(1 + tn-1 + atn-2 ). 

Proof. This is a consequence of the previous lemma, but integrat­
ing by parts on the left hand side, it can directly be estimated by the 
Dirichlet form via the Schwarz inequality without any reference to LSI, 
see e.g. [8] for details. Q.E.D. 

Now we are in a position to verify all conditions of Proposition 2.1. 

§4. The Lax entropy production 

We start with the explicit decomposition Xe: = Ne:+Me:+Xa,e:+Xs,e: 
of entropy production, see (2.3) and (2.5), (2.6), (2.7), (2.8). To get 
Xe: = Ye: + Ze: as needed in Proposition 2.1, we split some terms into 
new ones, and each of them will be casted into one of two categories 
named by Y and Z according to the bound it satisfies. More precisely, 
a random functional r"' ( 'lj;) is of type Y if for each ¢ E c; (JR) we have a 
random bound Ae: ( ¢) such that Ae: ( ¢) does not depend on 'lj; , 

lim EA(¢) = 0. 
c--->0 

Similarly, r is of type Z if 

lre:(¢'1f;)l:::; Ae:(¢)11'1f;ll and lim sup EA(¢) < +oo. 
e:--+0 

In case of terms of type Z we also indicate if the bound does, or 
does not vanish. 



Asymmetric Systems 159 

Throughout this section we deal with an entropy pair (h, J) E J£1 
such that h' and h" are bounded. All calculations are done at the 
microscopic level, thus the integral mean 

( 4.1) 
1 Je/2 

7/Jk(t) := - 7/J(tc, kc + x)¢(tc, kc + x) dx 
c -e/2 

appears at several places; the notation Hk(t) := H(iJz,k(t)) shall also be 
used for functions H E C(JR) like h, J, h', S" and so on. ¢ E c;(JR2) 
plays an explicit role only in 

Lemma 4.1. The stochastic integral Me is of type Y. 

Proof. This is the only case where we estimate the H-1 norm in a 
direct way by using Fourier transform; the underlying generalized func­
tion is just 

me(t, x) := ~ h'(Pe(t, x))¢(t, x)8t'V;(e(t,x). 

In view of IMe(7/J, h)l :S llmell-1 II7/JII+1, we have to show that 

(4.2) lim Ellmell:_1 =lim Joo Joo Elme(T,w)l2 dTdw = 0, 
e->O e->O _ 00 _ 00 1 + 72 + w2 

where me denotes the Fourier transform of me . In microscopic variables 

- cvf2U ~1oo ' me(T,W) = -l- ~ 7/Jk(t,T,w)hk(t)(dwz,k-1- dwl,k+l-d, 
kE'l!. O 

where 7/Jk(t, T, w) is defined by ( 4.1) with 'ljJ = (2n)-1 exp(ztT+zxw). The 
sum of the integrands can be rewritten as a sum like I: [z,k dwk , thus a 
simple Ito calculus and ([z,k)2::;; ([2)z,k result in 

Of course, 7/Jk(t) is bounded, and it is zero if one of lckl or ct exceeds 
some threshold depending on the support of¢. For large values of lwl 
another bound of 
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is needed. Integrating by parts we get 

1'1/Jk(t,r,w)l :S - 1-lfe/
2 e•xwq;~(E:t,ck+x)dxl 

27r£W -e/2 

+ - 1-le•ewf2¢(ct, ck + cl2)- e-•ewf2¢(ct, ck- cl2) I 
27r£W 

:S _3_ll¢' II+ I sin(wcl2)lll¢ll, 
47rlwl x 27rclwl 

thus we have a constant, K 1 depending only on ¢ such that 

and 0 < £ < 1. Comparing the bounds above, we see that 

Elme(r,wW :S K2llh'll 2 ~ "llle(w), 

thus integrating (4.2) with respect to T, 

Ellm 112 < Kacr loo "llle(w) dw 
e -1- z2 ~2 -oo V .L +w-

follows immediately, where K 3 is a new constant depending only on ¢ 
and llh'll· Integrating over the domain lwl < 1lc, the trivial bound 
"llle(w) :S 1 is sufficient, while "llle(w) :S (cw)-2 is used in the opposite 
case to conclude 

Elme(r,wW :S K4 ~ (1-logc). 

In view of (2.2) and its consequences we have cr = o(Z312 ) and 11£ = 
o(l2 ), thus the right hand side vanishes as£~ 0. Q.E.D. 

From now on we may suppress the dependence of our functionals on 
¢ . In practice this simply means that we put ¢ = 1 and suppose that 
the support of 'ljJ is contained in a rectangle ( -1, T) x (-L, L) , thus we 
need the estimates of Section 3 for n < L I£ and t < T I£ only. Introduce 

€ {Tje 
Q; := l L Jo Qk(t,l)dt, 

lki<Lfe 0 

(4.3) 

where Qk(t, l) := (lY'liik,l) 2 + (f/l,k+l- f7l,k) 2 + (ill,k- iil,k)2 + (lY'1 i/i:k) 2 , 
and 

(4.4) z; := y L 1Tje (Vz:k('Tl(t))- S'(iil,k(t)) 2 dt. 
lki<L/e 0 
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Moreover, set Ce(a,l) := Ct,n(a,l) when t = Tjs and n = Ljs. In the 
rest of the paper we assume (2.2), thus Ce = O(lja) goes to 0 ass---. 0. 
In view of the a priori bounds, EQ* and Ez; are of order Ce(a, l). 

It is a bit surprising that a two-block lemma is needed to treat Ne. 

Lemma 4.2. The numerical ermr Ne is of type Y. 

Pmof. Let 'l/Jk(t) be as in (4.1) with¢= 1, then 

Ne( 'l/;, h) = c L r= (v 1 'l/Jk - c iJ e/2'l/;(ts, ks)) Jk(t) dt. 
kEZlo 

Since V1 = V1- (1/2)~1, the integrand turns into (1/2)(V1'l/Jk)V1Jk + 
'Pk vr Jk, where 'Pk := 'l/Jk - 'lj;(ts, ks- s/2) is an integral of 'lj;~. By the 
Schwarz inequality 

1 Je/2 
'Pk(t) = - (s-2x)'l/;~(ts, ks+x) dx = 0( vfc) ll1e,k 'l/;~(ts, ·) ll2, 

2s -e/2 

where 1e,k(x) is the indicator of the interval (ks- s/2, ks + s/2); the L 2 

norm refers to space. Similarly, 

thus V 1 'l/Jk satisfies the same bound that 'Pk does. 
On the other hand, V;' Jk = J'('-yk)V'[fiz,k+l- 1 with some intermedi­

ate value "fk. Since J' = h' S" is bounded, separating 'Pk and Vi Jk by 
means of the Schwarz inequality, and doing the same with V 1 'l/Jk and 
V 1 Jk, we obtain that N; = O(s) ll'l/J~II~ Q;, that is N 10 is of type Y, and 
~is its order. Q.E.D. 

The next step is the only one where LSI is really needed. 

Lemma 4.3. The asymmetric functional, Xa,e reads as Xa,e 
Ya,e + Za,e + Qa,e, where Qa,e and Za,e are of type Z with a vanishing 
bound, Ya,e is of type Y. 

Pmof. Using earlier notation we have 

Xa,e('lf;,h) = ~ L r=('l/Jk +'l/Jk+I)(Vdk- h~ Vzfii:k)dt, 
kEZlo 

and V 1 Jk = h~ S~ Vzfiz,k + ~ J" bk) (Vzfiz,k) 2 with some intermediate 
l M S /1" - " S'(- ) S"'( -")(A _, )" -va ue "(k . oreover, k v z 'T/l,k = v z 'T/l,k + 'TJk 'T/l,k - 'TJk v l'T/l,k , 

where ij~ is a convex combination of fil,k+l and fiz,k , i.e. liiz,k - ij~ I :::; 
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l'l]z,k- ilz,kl + l'l]z,k- ill,k-zl· Summarizing the calculations above, we get 
Xa,e: = x;,e: + Qa,e:, where . 

while the remainder, Qa,e: is a bilinear form of differences of block aver­
ages of size at most 2l + 1. Since J" = h" S" + h' 8 111 , and 8 111 is bounded 
in view of Lemma 5.1 in [17], the coefficients of Qa,e: are all uniformly 
bounded, consequently Qa,e: = O(ll7jJII) Q;. This means that Qa,e: is of 
type Z with a vanishing order of Ce:(a, l) = O(lja). 

On the other hand, from 'Vi(~k~D = ('Vi~k)~~ + ~k-z'Vi~~ we get 
x;,e: = Ya,e: + Za,e: , where 

Ya,e: := ~I: r= ('Vi'lj;k+ 'Vi'lj;k+t) h~ (S'(ilz,k)- Vz:k) dt, 
kEZlo 

Za,e: :=~I: r= ('lj;k-l + 'lj;k+t-l) ('Vih~) (S'(ilz,k)- Vz:k) dt. 
kEZlo 

From the estimate of Lemma 4.2 for 'V 1 'ljJ it follows by convexity that 
('Vz'lj;k(t))2 = O(lc-)ll1ze:,k'lj;~(tc-,·)ll~- Separating the space gradients of 
'ljJ from h' (S'- Vj') by means of the Schwarz inequality, we obtain that 

IYa,e:l2 ~ c2 llh'llll7jJ~II~ z;' thus Ya,e: is of type Y, and ...;;:e c:12 (a, l) is 
the order of its bound. Finally, 'Vih~ = h"(!D'Vi'l]z,k, whence IZa,e:l2 ~ 
llh''llll7jJII Q; z;, that is Za,e: is of type Z with a vanishing bound of 
order Ce:(a, l). Q.E.D. 

The symmetric form decomposes as Xs,e: = Xsl,e: + Xsz,e:, where 
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In case of Xs1,e: we write 'V 1 ( '1/JkhU = '1/Jk 'V 1h/. +h/.+1 'V 1 '1/Jk to get Xs1,e: = 
Ys,e: - Zs,e: , where 

Zs,e: := ac 2: r= '1/Jk ('V 1hk) 'V1 Vi:k dt, 
kEZlo 

Ys,c := -aE: I: r= ('V1'¢k)hk+l 'Vlili:k dt. 
kEZlo 

The symmetric part of entropy production is handled by means of 

Lemma 4.4. We have X 8 6 = Y8 6 + X8 2 6 - Z 8 6 , where Y8 6 is of 
type Y, Xs2,e: is of type Z, and,a/cl3 is the o~der oj its bound. Za,e: is 
also of type Z , but its bound does never vanish. 

Proof. Since h" is bounded, Xs2,e: = 11'¢11 O(a/cl3 ) is of type Z. 
From 2xy:::; x2 + y 2 , and 'V1hk = h"('"Yn'Vl'fil,k we get 

IZs,cl:::; ~ llh"IIII'I/JII(Q; + z;), 

see (4.3) and (4.4) for the definition of Q; and z;. Therefore Zs,e: is of 
type Z, and the bound does not vanish. Finally, applying the Schwarz 
inequality as we did many times before, we have 

2 

IYs,e:l2 :::; alE: llh'II 2 II'I/J~II~ Q;' 

consequently Ys,e: is of type Y as ca2l-1 C6 (a, l) = O(ca). Q.E.D. 

§5. Completion of the proofs 

Proposition 2.1, is a more or less direct consequence of the results 
of Section 4. 

Proof of Proposition 2.1: Suppose first that (hi, Ji) E 9{, , where 
0 <a< 1, and h', h" are bounded, then lim sup EII<PPe:ll~ < +oo implies 
h, J E £P(~~) with some p > 2. More precisely, the distributions of 
hi(Pe:) and Ji(Pe:) are tight in the weak topology of Lfoc(~~). Similarly, 
the distributions of the functionals Y6 and Z 6 are tight with respect to 
the weak local topology of H _1 and the space of measures, respectively. 
In view of the Skorohod embedding theorem, see Theorem 1.8 in Chapter 
3 of [5], we can realize the associated weak convergence of probability 
measures as a.s. convergence on a suitably constructed probability space. 
In this setting the theorems of Tartar and Murat apply directly, so we 
have Tartar factorization for entropy pairs from 9-fa . The final statement 
follows by a direct approximation procedure. Q.E.D. 

Tartar's factorization property is the input of 
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Lemma 5.1. Let h1(p) := p, J1(p) := S'(p), h2(p) := S'(p) and 
define J2 by J2(0) = 0 and J~(p) := S"2(p). If this couple of entropy 
pairs satisfies (1.10), then Ot,x is almost everywhere a Dime measure. 

Proof. The trivial case of a quadratic V can be excluded, thus 
there is no such interval where S" is constant because S is analytic. 
Rearranging ( 1.10) we get 

I: I: Q(u, v) Ot,x(du) Ot,x(dv) = 0 a.s. on JR~, 

where Q(u,v) := (u- v)(J2(u)- J2(v))- (S'(u)- S'(v)) 2 . Since 

J2(u)- J2(v) = (u- v) 11 
S"2(tu + (1- t)v) dt, 

S'(u)- S'(v) = (u- v) 11 
S"(tu + (1- t)v) dt, 

Q(u, v) > 0 follows by the Schwarz inequality if u =/= v, which proves the 
Dirac property of 0. Q.E.D. 

As a consequence, we have (1.2) with probability one with respect 
to any weak limit distribution of Pc: • In view of Lemma 3.5 the same 
statement holds also true for the usual averages Pc: defined by f5c:(t, x) := 
fik(t/e) if lx-kel < e/2, and even l = o(1/e) is allowed; the lower bound 
l ~ (a/e)113 is the relevant one. 

To prove Proposition 2.2, we have to show that the contribution 
of terms ('V1h(ilz,k))'VzVz:k is not negative if his convex. Despite of 
Lemma 3.4, this is not quite obvious. Fortunately, the Lax-Kruzkov 
inequality does not require uniform bounds as compensated compactness 
does, weak limiting arguments are sufficient. Nevertheless, convexity of 
V seems to be essential at this point. 

Proof of Proposition 2.2: Since V is convex by assumption, fol­
lowing [21] we can exploit the attractiveness of the process, see also 
[15] for some technical details. Let ( denote the equilibrium process 
with initial distribution Az such that F'(z) = c. The original process, 
'fl is coupled to ( simply by identifying the Wiener processes in their 
stochastic equations (1.1); the initial distribution is J.Lc:,o X Az. It is re­
markable that this coupled process admits a comparison principle: the 
set 
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is preserved by time. Introduce 

Wc(ry, (,1/>): = L roo 1/>~(t, c:k)l7lk(t/c:)- (k(t/c:)l dxdt' 
kEZlo 

W6*(ry, (, 1/>) : = L 100 1/>~(t, c:k)IV'(ryk(tjc:)) - V'((k(tjc:)) I dx dt, 
kEZ O 

Hc(ry, 1/>) : = 100 I: 1/>~(t, x)IPc(t, x)- cl dx dt, 

H;(ry,1{>) := 100 I: 1/>~(t,x)IS'(pc(t,x))-S'(c)ldxdt; 
we have to show that for all c E lR and 0 :S 1f E C~(JR~) we have 

(5.1) 

(5.2) 

(5.3) 

lim (W6 (ry, (, 1/>)- H6 (ry, 1/>)) = 0, 
e->0 

lim (w;(ry, (,7{>)- H;(ry, 1/>)) = o, 
c->0 

liminf (W6 (ry,(,7f) + w;(ry,(,1/>)) 2:0 
c->0 

165 

in the sense of stochastic convergence, see Section 3 of [21]; the crucial 
point is (5.3). To prove it, observe first that Tlk - (k is differentiable, 
and VL1 - v~+1 = 2VL1 - 2V~ - VL1 - v~+1 + 2V~' thus 

8tl77k- (kl = sign(ryk- (k)(V'(Tlk-1)- V'((k-d- V'(ryk) + V'((k)) 

+(a -1/2)sign(ryk- (k)(V'(Tlk-1)- V'((k-d- V'(ryk) + V'((k)) 

+(a -1/2)sign(ryk- (k)(V'(Tlk+I)- V'((k+I)- V'(ryk) + V'((k)). 

Let Xk(ry, () := sign(ryk- (k) sign(77k+1 - (k+l), by an elementary com­
putation 

8tl77k- (kl :S Xk-11V'(77k-d- V'((k-1)1- XkiV'(ryk)- V'((k)l 

+(a- 1/2) Xk-1 (IV'(Tlk-d- V'((k-1)1-IV'(ryk)- V'((k)l) 

-(a- 1/2) Xk (IV'(ryk)- V'((k)I-IV'(77k+1)- V'((k+l)l) 

-(a- 1/2)(2- Xk-1- Xk)IV'(ryk)- V'((k)l. 

Hence by rearranging the sums we get 

we+ w: :::: Re(ry, (, 1/>) + e L roo Wk(t/c:) dt' 
kEZlo 
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where Re is a numerical error term, tis the macroscopic time, and 

Wk(t): = '1/J~(c:t,c:k)(Xk -1)1V'(77k)- V'((k)i 

+(a -1/2)'1/J~(t,c:k) Xk Y'1IV'(17k)- V'((k)i 

+ (1/c:)(a -1/2)'1/J(c:t,c:k)(1- Xk)IV'(17k)- V'((k)i. 

Since 'ljJ E C 2 (IR2 ) may be assumed, Re goes to zero as c:--+ 0, and Xk V' 1 
on the second lime above can be replaced with (Xk - 1) V' 1 , we see that 
the last nonnegative terms dominate the rest. Indeed, c:l'l/J~I = o('ljJ) is 
certainly true if 'ljJ > 0 vanishes in a suitable way as lxl --+ oo, whence 
the general case follows by a direct approximation procedure. 

The proofs of (5.1) and (5.2) also follow [21]; but they turn out to be 
much simpler in our case. The formal generator of the coupled process 
reads as .C77 ,c := £ 0 ,77 + .Co,c + a <!5 71 ,c , where £ 0 ,77 and .Co,c are identical 
copies of £ 0 acting on the 17 and ( components, respectively, while <!5 77 ,c 
is the generator of the coupled process (17, () defined by 

d1]k = ~1 V'(17k) dt + v'2V'i dwk, d(k = ~1 V'((k) dt + v'2V'i dwk 

with identical Wiener processes for both systems. In view of the Kol­
mogorov equation, for smooth cylinder functions 

E¢(77(t), ((t)) = E¢(77(0), ((0)) + E lot £ 71 ,c</>(17(s), ((s)) ds. 

Let De denote the time average of the joint distribution of 17 and (from 
t = 0 to t = 1/c:. In view of the £ 2 moment condition coming from 
Lemma 3.2, this family is tight, thus dividing the Kolmogorov equation 
by a/ c: , we see that its weak limit points are all stationary measures for 
the coupled process generated by <!577,c. Performing a simultaneous av­
eraging also in space, we obtain translation invariant limit distributions 
ii that are stationary with respect to <!571 ,c , and also satisfy the moment 
conditions ii(1]~ +(~) = K < +oo. These statements follow immediately 
also from Theorem 1 of [8] without any averaging in space. The evalu­
ation of W and W* should be based on such a joint distribution ii , see 
[13] and [22]. 

To prove that Xk = 1 ii-a.s. for all k E Z, consider now the coupled 
process defined by <!5 77,c , with ii as its initial distribution. By elementary 
calculation we get 

8tl17k- (kl = -V'1sign(17k- (k) · Y'1(V'(17k)- V'((k)) 

+ sign(17k+1- (kH) V'1 (V'(17k)- V'((k)) 

- sign(17k - (k) V' 1 (V' (17k-1) - V' ((k-1)) , 
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where both sides are of mean zero with respect to D because of its sta­
tionarity. Summing for k E ( -n, n) we see that the last two terms cancel 
each other, only two of them survives at the boundary. Therefore the 
translation invariance of D implies 

J \7lsign(7Jk - (k) · \71 (V'(7Jk) - V' ((k)) dD = 0 

for all k E Z, that is sign(7Jk - (k) is a constant D-a.s. This means 
that D[Xk = 1] = 1 for all k E Z, thus we can get rid of the absolute 
values under the sums in the expressions of W and W* . First we replace 
77 and ( in We: and w; with their large microscopic block averages i/r 
and Cr. Letting c ---+ 0 first, and r ---+ +oo at the second step, we get c 
as the limit of Cr. Finally, Lemma 3.6 allows us to replace i/r with f7t, 
where l = l(c) is the intermediate block size of (2.2). The replacement 
of V'(7Jk) with S'(i7t,k) is the same, thus we can pass to (1.11) along 
subsequences. Q.E.D. 

Proof of Theorem 1.1: In view of Skorohod's embedding, Lemma 5.1 
and the a priori bounds, the empirical processes, Pe: and Pe: converge 
almost surely, and also in Lfoc(IR~) to the same p E L2 (IR~) along sub­
sequences. At the same time, V' (Pe:) has the same weak limits as S' (Pe:) 
does, thus we have convergence to the set of weak solutions. 

The uniqueness part is now a direct consequence of Proposition 2.2 
and weak uniqueness of entropy solutions, see Kruzkov's result, The­
orem 2.3.5 in [25]. Although the proof there is written for bounded 
solutions only, the essential condition is bounded propagation, that is 
liS" II < +oo. By means of the local L2 bound we have, the argument 
extends to our case without any essential change. On the other hand, 
we have already derived from Proposition 2.1 and Lemma 5.1 that the 
measure solutions involved in (1.11) are all weak solutions, thus we have 
(1.4), too. Therefore any limit distribution of the empirical process Pe: 
is concentrated on the unique entropy solution specified by its initial 
value. In this way we have shown that if c ---+ 0 then 

Re:('l/l) := roo roo '1/J(t,x)fJe:(t,x)dxdt 
Jo }_oo 

converges in probability for each 'ljJ E Cc(IR2 ) to R('l/l) defined in Theorem 
1.1. However, Re:('l/l) has the same limit. Q.E.D. 

Concluding remarks: We are trying to present a brief and heuris­
tic description of situations of hyperbolic scaling in which the method 
proposed here might apply, several principal open problems are also 
mentioned. We consider a microscopic Markov evolution generated by 
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,C = .C0 +a(c)~ such that both .Co and~ are Markov generators, and the 
conservative observables and the associated (equilibrium) Gibbs states 
of~ are all conserved also by ,C0 . The main component, ,C0 is asym-. 
metric (but not necessarily antisymmetric), while ~ is symmetric with 
respect to the equilibrium states. The scaling parameter c > 0 denotes 
the macroscopic unit of distance in space, a( c) > 0 is interpreted as the 
coefficient of microscopic viscosity, a( c) --+ +oo and ca( c) --+ 0 as c --+ 0. 

First of all we are assuming that ,C0 admits Euler scaling with a 
resulting hyperbolic system of macroscopic conservation laws, that is we 
speed up time by a factor of 1/c, see e.g. [27] for a class of such models. 
In the absence of the symmetric stabilization a~ , these equations can 
be derived in a smooth regime only. In general, there is a good reason to 
expect that the effect of (1/c)a(c)~ diminishes as c--+ 0 because c2~ 
is the proper scaling of the symmetric~. In other words, 

c-1 ,C = c-1 ,C0 + (ca(c)) c-2~ 

resembles the scheme of small viscosity limit as c --+ 0; ca(c) is the 
coefficient of macroscopic viscosity. 

Independently of the number of conservation laws, once we have LSI 
for ~, there is a good chance to derive Tartar's factorization property 
for the limiting Young measures; ca2 (c) --+ +oo as c --+ 0 seems to be a 
general condition at this point, see [9,10,11]. It is not clear this time if 
this condition could be relaxed, or not. In the case of a single conser­
vation law Tartar factorization is usually sufficient for the identification 
of measure solutions as weak solutions by using an argument like that 
of Lemma 5.1. The problem of two conservation laws is more delicate, 
a very nice model is discussed in [11]. In other cases we have to do 
something more for proving that measure solutions are weak solutions. 
Although there is a general theory of hyperbolic and genuinely nonlin­
ear systems of two conservation laws in one space dimension initiated by 
DiPerna, additional difficulties emerge when we are working on stochas­
tic models. Indeed, this theory requires at the very beginning that the 
limiting Young measure is compactly supported. Moreover, most phys­
ically motivated models have some singularities in the phase space of 
the macroscopic equations, general methods fail at such points. In PDE 
theory these difficulties are ruled out by restricting the initial values to 
singularity-free compact invariant regions, if any. However, it is not easy 
to establish the existence of such invariant regions in the case of micro­
scopic systems. Coupling is an effective tool, but attractive evolutions 
do not allow two conservation laws. 

Anyway, compensated compactness yields convergence of the em­
pirical process to a set of weak solutions in several cases, so the next 
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question is the uniqueness of the limit. If we have a single conservation 
law, the Lax-Kruzkov entropy condition is sufficient for uniqueness, and 
coupling based on attractiveness is not the only way of proving it. For 
example, if Q5 is acting on the conservative observables like a discrete 
Laplacian, that is a linear elliptic operator, then the derivation of the 
Lax inequality (1.3) is only a question of direct computations. This is 
the case when .C0 describes interacting exclusions because then Q5 can 
be chosen as the generator of stirring, see [10,11]. There is a conflict of 
.Co and Q5 if the cardinality of the individual phase space is bigger than 
three. For instance, the easy way mentioned above is only available for 
the trivial, linear Ginzburg-Landau model. It is not clear if attractive­
ness of Q5 were sufficient for the Lax-Kruzkov inequality. Uniqueness for 
two conservation laws is certainly very hard, even in the simplest cases 
Oleinik type entropy conditions were needed for the Riemann invariants. 
The derivation of such one-sided uniform bounds on space gradients is 
really problematic for stochastic models. 

Acknowledgement: I am indebted to Claudio Landim for useful 
discussions on LSI and uniform large deviation estimates. 
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