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Stable C*-algebras

Mikael Rgrdam

Abstract.

We give a survey of known and a few new results on stable C*-
algebras. Characterizations of stable C*-algebras are described, it is
decided for a number of operations on C*-algebras whether or not
they leave the class of stable C*-algebras invariant, and the rela-
tion between this topic and the structure of simple C™-algebras is
discussed.

§1. Introduction

This article contains some new results and a survey of older results,
mostly from the articles [12], [16], [17], and [19], on stable C*-alge-
bras. Recall that a C*-algebra A is stable if it is isomorphic to A ® K,
where K denotes the C*-algebra of compact operators on a separable
Hilbert space. Since K ® K & K it follows that A ® K is stable for every
C*-algebra A. If B; and B; are full hereditary sub-C*-algebras of a
C*-algebra A, then B; ® K & B> ® K by Brown’s theorem, [4]. In other
words, among full hereditary sub-C*-algebras the stable ones have the
distinguished property that they all are isomorphic to each other.

In BDF-theory, [5], extensions 0 — K — A — B — 0 (for fixed
(abelian) C*-algebras B) are classified, and it is contained in this theory
that A is stable if and only if B is stable in any such extension. The
extension question for stable C*-algebras asked if for any extension 0 —
I - A — B — 0 of (separable) C*-algebras one has that A is stable if
and only if I and B are stable. This question has recently been answered
in the negative in [19] (see Theorem 6.1). Some partial positive results
do however hold (see Section 6).

Blackadar has shown that an AF-algebra is stable if and only if it
admits no bounded non-zero traces. This results can be generalized (see
Section 3), but the existence (established in [16], see Theorem 4.3) of a
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simple, stably finite, non-stable C*-algebra A such that My(A) is stable
shows that Blackadar’s result is not valid for all (stably finite, simple)
C*-algebras.

The negative answer to the extension problem for stable C*-algebras
was obtained using methods similar to those used in the recent article
[18] were an example of a simple C*-algebra with a finite and an infinite
projection was constructed. It is no surprise that these two problems are
linked. In both cases one seeks C*-algebras exhibiting exotic comparison
properties (as first found by Villadsen in [20]). Another link is given in
the observation by Kirchberg that a simple C*-algebra is purely infinite
if and only if all its hereditary sub-C*-algebras contain a stable sub-C*-
algebra.

The first version of this paper was written in December, 2000. The
paper was revised in July, 2001, to include the results from the papers
[18] and [19].

I thank Larry Brown for valuable information about the extension
problem, and I thank MSRI for its hospitality during the fall of 2000
and for its support from the NSF grant DMS-9701755.

§2. Characterizing stable C*-algebras

We begin this section by stating a result from [12] by Hjelmborg and the
author that characterizes stable C*-algebras. We need some notation to
state the result.

In a C*-algebra A, let F(A) denote the set of positive elements a in
A for which there exists e in A such that ea = ae = a. (Every element
in F(A) belongs to the Pedersen ideal of A; but the Pedersen ideal can
in some cases contain positive elements not in F'(A). This is for example
the case whenever A is an algebraically simple, non-unital C*-algebra.)

A C*-algebra is said to be o-unital if it contains a countable approx-
imate unit; and it is called o, -unital if it contains a countable approxi-
mate unit consisting of projections. One can show that an approximate
unit of projections always can always be taken to be increasing and to
dominate any fixed projection in the C*-algebra.

Remark 2.1. (Equivalence of positive elements) Two pos-
itive elements a,b in a C*-algebra A are said to be equivalent, written
a ~ b, if there is an element z in A such that z*x = a and zz* = b.
Let © = u(z*z)'/2? be the polar decomposition for = in A**. Then uc
belongs to A for every ¢ in aAa, and the map ¢ — ucu* defines an iso-
morphism from aAa onto bAb which maps a to b. Moreover, for each
positive element ¢ in aAa we have ¢ ~ ucu* because y = uc'/? belongs
to A, y*y = ¢, and yy* = ucu®*.
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Write a 3 bif a and b are positive elements in A such that z}bz,, — a
for some sequence {z,} in A. For ain A" and £ > 0 let (a — )+ denote
the positive part of the self-adjoint element a — -1 in the unitization of
A. Then (a — €)4 belongs to A, and a = b if and only if (a — g)y ~ b
for some b, in bAb for each & > 0 (cf. [15, Proposition 2.4]).

Theorem 2.2. (Theorems 2.1 and 3.3 of [12]) The following
conditions are equivalent for every o-unital C*-algebra A:
(i) A is stable,
(if) for every positive element a in A and for every positive € > 0
there are positive elements b, c in A such that ||a—b|| < e, b~c,
and |lac|| < e,
(iii) for every a in F(A) there is a positive element b in A such that
aZXbanda LD,
(iv) for every a in F(A) there is a unitary element u in the unitization
of A such that a 1 uau*,
(v) there is a sequence {E,} ; of mutually orthogonal, mutually
equivalent projections in the multiplier algebra M(A) of A such
that >°>° | E, =1 (the sum converges in the strict topology).

If A is further assumed to be op-unital, then (1) — (v) above are equivalent
to:

(vi) for every projection p in A there is a projection q in A such that
p~qandp L q.
Corollary 2.3. (Permanence)
(i) If A is a o-unital C*-algebra and if A is the inductive limit of an
inductive system of o-unital stable C*-algebras, then A is stable.
(ii) If A is stable, then so is every ideal in A and every quotient of
A.
(iii) If A is a o-unital, stable C*-algebra and if a is a positive con-
traction in A, then (1 — a)A(1 — a) is stable.
(iv) If B is a sub-C*-algebra of a o-unital, stable C*-algebra A and
if B contains an approximate unit for A, then B is stable.
(v) If A is a o-unital, stable C*-algebra and if G is a countable dis-
crete group acting on A, then A x G is stable.

Parts (i), (iii), (iv), and (v) are proved in [12] (and the proof of (i)
and (iii) uses Theorem 2.2). To see that (ii) holds we may assume that
A = Ay ® K for some C*-algebra Ag. If I is a closed two-sided ideal in
Ao ® K, then I = Iy ® K for some closed two-sided ideal Iy of Ag, and
it follows that I and A/I are stable.

Extension of two (o-unital) stable C*-algebras need not be stable,
cf. Section 6. If A is stable, then so is A ® B for every C*-algebra B.



180 M. Rgrdam

In the converse direction one can clearly not conclude that A is stable
knowing that AQB is stable for some C*-algebra B, perhaps surprisingly
not even in the case when B = M3(C), cf. Theorem 4.3.

No stable C*-algebra can admit a bounded trace nor can it have
a unital quotient. The converse does not hold in general (see Corol-
lary 4.4), but it does hold for certain well-behaved C*-algebras, cf.
Proposition 2.7 below. Hjelmborg proved in [11] that Cuntz—Krieger
algebras arising from infinite graphs are stable if and only if they admit
no bounded trace and have no unital quotient.

For a particularly well-behaved class of finite C*-algebras, absence
of bounded traces is equivalent to stability (see Section 3); and absence
of unital quotients is equivalent to stability for purely infinite C*-alge-
bras in the sense of [14] (see Section 5). A precursor to these results is
given in Proposition 2.7 below.

Definition 2.4. (Large subalgebras) A hereditary sub-C*-al-
gebra B of a C*-algebra A is said to be large in A if for every positive
element a in A and for every e > 0 there is x in A such that ||z*z—al| < €
and xx* belongs to B.

Any large hereditary sub-C*-algebra is necessarily full, i.e., not con-
tained in any proper ideal.

Every C*-algebra A is large in itself.

If B is a large hereditary sub-C*-algebra of A, then for each a in
F(A) thereis z in A such that #*z = a and zz* belongs to B. Indeed, ife
is a positive contraction in A such that ea = ae = a then z*(e—1/2) 12z =
a for some z in A (in the notation of Remark 2.1). Find z in A such that
lz*z — e|| < 1/2 and zz* belongs to B. By [13, Lemma 2.2] there is y
in A such that y*z*zy = (e — 1/2)+. Put w = zyz. Then ww* belongs
to B and w*w = a.

The argument above also shows that for every projection p in A
there is a projection ¢ in B such that p ~ g (whenever B is large in A).

Recall that a (possibly non-simple) C*-algebra A is called purely
infinite if for every pair of positive elements a, b in A such that b belongs
to the closed two-sided ideal generated by a there is a sequence {z,,} of
elements in A with z}az, — b (see [14]).

Lemma 2.5. Every full, hereditary sub-C*-algebra of a purely in-
finite C*-algebra is large.

Proof. Suppose that B be a full, hereditary sub-C*-algebra of a
purely infinite C*-algebra A. Let a be a positive element in A and let
€ > 0 be given. Then a belongs to the closed two-sided ideal generated
by B, hence (a — €/3)+ belongs to the algebraic ideal generated by B,
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and hence (a — 2¢/3) . belongs to the algebraic ideal generated by some
positive element b in B. Since A is purely infinite, (a — )y = y*by
for some y in A. This shows that (a — €); = z*x and zz* € B when
z = b2y, Q.ED.

Lemma 2.6. Any full, stable, hereditary sub-C*-algebra of a sep-
arable C*-algebra is large.

Proof. Let B be a full, stable, hereditary sub-C*-algebra of a C*-
algebra A, let a be a positive element in A and let € > 0 be given. Since
F(B) is dense in BT and since B is full in A, the algebraic ideal in A
generated by F(B) is dense in A. It follows that we can find b in F(B)
and z1,...,x, in A such that

n
I Zaz;bwj —al <e.
j=1

It follows from Theorem 2.2 that there are mutually orthogonal and

mutually equivalent positive elements b; = b,bs,...,b, in B. Find

Ul,...,Up in B such that uju; = b and uju; = bj;, so that uju; =0

when 7 # j. Put ¢ = Z?:l u;xz;. Then zz* belongs to B and z*z =
n n *

Zj:l Tiuu Ty = Zj:l z;bx;. Q.E.D.

Proposition 2.7. (Proposition 5.1 of [12]) Let A be a o-unital
C*-algebra that has the property that any full, hereditary sub-C*-algebra
of A is large if it admits no non-zero bounded trace. Then A is stable if
and only if A has no non-zero bounded trace and no non-trivial unital
quotient.

Section 4 contains an example of a non-stable op-unital C*-algebra A
without bounded traces and unital quotients. Consequently, this C*-al-
gebra has a full, hereditary sub-C*-algebra which is not large in A and
which does not have a bounded trace.

The example below is due to Ken Dykema.

Example 2.8. The full free product K%K is not stable; hence the
class of stable C*-algebras is not closed under forming free products.

Indeed, K * K has a unital quotient. To see this, let {e;;}5_, be
the standard matrix units for K. Observe that if D is a C*-algebra and
if f1, fo,... is a sequence of mutually orthogonal and equivalent projec-
tions in D, then there is an embedding ¢: K — D such that ¢(e;;) = f;.
Take the Cuntz algebra Qs with its two canonical generators s; and ss.
Since every pair of non-zero projections in Oy are equivalent and any
non-zero projection in O3 has countably many mutually orthogonal non-
zero sub-projections, there are embeddings 1, p2: K — O3 such that
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p1(e11) = s157 and pa(e11) = s2s3. By the universal property of free
products there is a *~homomorphism ¢: K+ /C — O3 whose restriction to
the first and the second copy of K is ¢, respectively, 2. Accordingly,
1 = s187 + s283 belongs to the image of ¢. Hence K * K has a unital
quotient.

§3. Stability of finite C*-algebras

Blackadar proved in [1] that a (simple) AF-algebra is stable if and only
if it admits no bounded trace. We shall in this section pursue gener-
alizations of this result. Let us first remark that any unital, properly
infinite C*-algebra is traceless but not stable. One will therefore expect
the two properties, being stable and being traceless, to be equivalent
only for finite C*-algebras; and even here the equivalence does not hold
without qualifications.

As in [1] it is convenient to consider also a third property of a C*-
algebra that the scale of its Ky-group equals the entire positive cone.
The positive cone and the scale of the Ky-group of a C*-algebra A are
given by

Ko(A)" ={lplo:peP(A®K)},  Do(A) ={[plo:p € P(4)}.

It follows from Lemma 2.6 that Dy(A) = Ko(A)* for all stable C*-alge-
bras.

An axiomatic description of a scaled ordered Abelian group is given
in the following:

Definition 3.1. A triple (G,G*,X) will be called a scaled, or-
dered Abelian group if (G, GT) is an ordered Abelian group and ¥ is an
upper directed, hereditary, full subset of G, i.e.,

(i) V1,20 € Xz €eX iz <z, 29 <z,

(i) Vee GTVyeX:z<y=z€l,

(i) Ve Gt Iye LIk e N: z < ky.
A (op-unital) C*-algebra A is said to be finite if it contains no infinite
projections, and A is stably finite if M, (A) is finite for every n. (A
projection is infinite if it is Murray—von Neumann equivalent to a proper
subprojection of itself.) If

Vp,q € P(A®K) : [plo = [glo in Ko(4) = p~g,
then A is said to have cancellation. We have
st(A) =1 = A has cancellation = A is stably finite,

for all C*-algebras A.
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Lemma 3.2. Let A be a C*-algebra with the cancellation property,
let p be a projection in A, and let g be an element in Kp(A).
(i) If 0 < g < [plo, then there is a projection q in A such that g <p
and [glo = g.
(i) If A us op-unital, if [plo < g, and if g belongs to Dy(A), then
there is a projection q in A such that p < q and [¢]o = g.

Proof. (i). Find projections e, f in matrix algebras over A such
that [e]o = g and [f]o = [p]o — g- Then [e @ f]o = [p]o and because A is
assumed to have the cancellation property we conclude that e & f ~ p.
Find a rectangular matrix v over A such that v*v = e ® f and vv* = p,
and set ¢ = v(e @ 0)v*. Then g belongs to A, ¢ < p, and [¢g]o = g.

(i1). There is an approximate unit {p,} ; for A where each p,
is a projection dominating p. Now, [p,lo > ¢ for some n. Indeed,
take a projection ¢’ in A such that g = [¢']o and choose n such that
{1 —po)d'|| < 1. Then ¢’ = pn, and so [pr]o > [¢'lo = g- Use (i) to
find a projection e in A such that e < p,, — p and [e]p = g — [p]o- The
projection ¢ = p + e will then be as desired. Q.E.D.

Lemma 3.3.  The triple (Ko(A), Ko(A)™,Do(A)) is a scaled, or-
dered, Abelian group if A is a op-unital C*-algebra with the cancellation
property.

Conversely, if A is a stable, op-unital C*-algebra with the cancel-
lation property, and if ¥ is a subset of Ko(A)T for which the triple
(KO(A), Ko(A)T, Z) s a scaled, ordered, Abelian group, then there is a
full, op-unital, hereditary sub-C*-algebra B of A such that

(Ko(B), Ko(B)",Do(B)) = (Ko(A), Ko(A)T,T).

Proof. Assume that A is a op-unital C*-algebra with the cancella-
tion property. Let {p,}22; be an approximate unit for A consisting of
projections. (i) in Definition 3.1 holds as we can take x to be [py]o for
some large enough n. (ii) follows from Lemma 3.2 (i). If ¢ is a projection
in My (A), then ¢ is equivalent to a projection in Mg (p,Apy) for some
large enough n whence [q]o < k[p,]o. Hence (iii) in Definition 3.1 holds.

To prove the second part of the lemma, use (i), (ii), and (iil) in
Definition 3.1 to find 0 < z; < x5 < z3 < ... in X such that for every g

in Ko(A)" the following two conditions are satisfied:

e g < kx,, for some positive integers k and n, and
e ¢ belongs to X if and only if g < z,, for some n.

Use Lemma 3.2 (ii) to find an increasing sequence {g, }5° 1 of projections

in A such that [gs]o = zn. Let B be the closure of | J;7 , gnAgn. Then
B is a full o,-unital sub-C*-algebra of A. By construction of B, if g
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is an element in Ky(A), then g belongs to ¥ if and only if there is a
projection e in B such that g = [e]o. It follows that the isomorphism
Ko(B) — Ky(A) induced by the inclusion mapping B — A maps Dy(B)
onto . Q.E.D.

An ordered Abelian group (G,G™) is said to be weakly unperforated if
ng > 0 implies g > 0 for every g in G and for every positive integer n.
(Other texts have assigned other meanings to the term weak unperfora-
tion.)

Proposition 3.4. Let A be a op-unital C*-algebra with the can-
cellation property, and consider the following three conditions:
(i) A is stable,
(i) Do(A) = Ko(A)T,
(iif) A admits no bounded trace.
Then
(i) & (i) = (iii),
and (iil) = (ii) if A is exact, Ko(A) is weakly unperforated, and every
ideal in A is op-unital.

Proof. The implication (i) = (ii) holds for all C*-algebras (as noted
above). The assumption that A is o,-unital implies that every non-zero,
densely defined trace 7 on A induces a non-zero state T on Ko(A), and

17l = sup{7(g) : g € Do(A)} = sup{7(g) : g € Ko(A4)"} = oo,

when (ii) holds. Therefore (ii) = (iii).

(ii) = (i): Assume that (ii) holds. Let p be a projection in A. Then
2[p|o belongs to Dy(A), and so it follows from Lemma 3.2 (ii) that there
is a projection ¢ in A with p < ¢ and [¢g]o = 2[p]o. Using again that A
has the cancellation property we find that ¢ —p ~ p. It now follows from
Theorem 2.2 that A is stable.

(iii) = (ii): Assume next that Ky(A) is weakly unperforated, each
ideal in A is op,-unital, A is exact, and that (iii) holds. Take g in Ko(A4)"
and find a projection p in A ® K such that g = [p]o. Let I ® K be the
closed two-sided ideal in A ® K generated by p, and take an increasing
approximate unit {p,}22., of projections for I. Let T' be the compact
set of traces 7 on I such that 7(p) = 1. Then

sup 7(pn) = 0o
neN

for every 7 in T (otherwise 7 would extend to a bounded trace on I and
in turns to a bounded trace on A).
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Each projection ¢ in I (or in I @ K) defines a continuous affine
function g: T — R, and {p,} is an increasing sequence of functions
tending pointwise to infinity. Since T is compact we have p,, > 1 for some
n. In other words, 7(p) < 7(p,) for all 7 in T. We infer that f([p]o) <
f([pr]o) for all states f on (Ko(I), Ko(I)*) with f([plo) = 1. Indeed,
each such state f lifts to a quasitrace 7 on I (by [3]) and each quasitrace
on an exact C*-algebra is a trace (by Haagerup’s theorem in [10]). By
Goodearl-Handelman’s extension theorem (see [9]), k[plo < k[pn]o in
Ko(I) (and hence in K((A)) for some natural number k. Since Ky(A)
is weakly unperforated we can conclude that [plo < [pn]o. This entails
that g = [p]o belongs to Dg(A) using Lemma 3.3 and Definition 3.1
(ii). Q.E.D.

The three conditions of Proposition 3.4 are equivalent for all separable,
exact, real rank zero C*-algebras with the cancellation property and
with weakly unperforated Ky-group. This is a lot to ask for, but many
commonly encountered C*-algebras satisfy these properties. For exam-
ple, all AF-algebras, and more generally, all AH-algebras of real rank
zero and of slow dimension growth have these properties (see [8] and
2])-

Stability of a finite C*-algebra can also be expressed in terms of
properties of its multiplier algebra as in the proposition below from [17].
Recall that a unital C*-algebra is properly infinite if it contains two
mutually orthogonal projections p, g such that 1 ~p ~ gq.

Proposition 3.5. Let A be a C*-algebra and let M(A) denote its
multiplier algebra.

(i) If A is stable, then M(A) is properly infinite.
(i) If A is o-unital, st(A) = 1, and A is not stable, then M(A) is
not properly infinite.
(iii) If A is o-unital, simple, st(A) = 1, and A is not stable, then
M(A) is finite.

Part (i) is standard and follows from the fact that M(A) @ M(K) (max-
imal tensor product) maps into M(A ® K). Parts (i) and (ii) say that
for o-unital C*-algebras A of stable rank one, A is stable if and only if
M(A) is properly infinite.

If A is a unital, properly infinite C*-algebra, then M(A4) = A, and
hence M(A) is properly infinite. On the other hand, A is not stable.
We can therefore not in general deduce that A is stable knowing that
M(A) is properly infinite.
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84. Stability is not a stable property

One often refers to a property of C*-algebras as being stable if it is
preserved by passing from A to M, (A) and vice versa for each n. Being
stable is not a stable property in this sense, as shown by the author in
[16] using techniques of Villadsen from [20].

We first state a result that limits how exotic this behavior can be:

Proposition 4.1. (Proposition 2.1 of [16]) Let A be a o-unital
C*-algebra. If M,,(A) is stable for some integer n, then My(A) is stable
for all k > n.

The proof uses Theorem 2.2.

Let us indicate at the level of scaled, ordered Abelian groups why
there should exists a non-stable C*-algebra A such that M2(A) is stable:

Example 4.2. (Example 3.4 of [16]) Let Z, denote the group
Z/27, and let Zg)o) denote the group of all sequences t = (;)52,, with

t; € Zy and where t; # 0 for at most finitely many j. For each ¢ € Zg’o)
let d(t) be the number of elements in the set {j € N | ¢; # 0}. Set

G=7a7Z{, Gt={(kt)|dt) <k}, T={(kt)|dt)=k}.

Then (G,GT,Y) is a scaled, ordered Abelian group, cf. Definition 3.1.

To see this, let e; € Zg’o) be the generator of the jth copy of Zs and set
g; = (1,e;) € G*. Then

Z:LJ{ﬂfeG"L|55.<_91+92+‘“+9j}7

j=1

and in this picture it is easy to see that X satisfies the axioms of Defini-
tion 3.1.

The element (2, e;1) belongs to G but not to X, and so X # G™.

If A is a C*-algebra whose scaled ordered Ky-group is isomorphic
to (G, G, ), then the scaled ordered Ko-group of My(A) is isomorphic
to (G,G1,2+Y), where X+ is the set of elements = in G* for which
there exist y1,ys in 3 such that x < y; + y2. In the given example,
$+% = GT, because if g = (k,t) belongs to G, then

g<g+g=(2k0)=2(g1+g2+" - +gx).

If we can find a op-unital C*-algebra A with the cancellation prop-
erty such that the scaled ordered Ky-group of A is isomorphic to (G, G,
¥), then A will be non-stable and M3(A) will be stable by Proposi-
tion 3.4. The C'*-algebra found in Theorem 4.3 below, corresponding to
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n = 2, has the property that a subgroup of its Kg-group is isomorphic
to (G,GT,X).

For the formulation of the next result, recall that an AH-algebra is a C*-
algebra that is the inductive limit of a sequence of C*-algebras of the
form p(C{X) ® K)p, where X is a (not necessarily connected) compact
Hausdorff space and p is a projection in C(X) ® K.

Theorem 4.3. (Theorem 5.3 and Corollary 4.2 of [16])

(i) For each natural number n there is a simple, separable, o, -unital
AH-algebra A of stable rank one such that M,(A) is stable but
M, _1(A) is not stable.

(ii) For each natural number n there is continuous field C*-algebra
A = (Az)sex, where X is a compact Hausdorff space and where
each fiber A, is isomorphic to K, such that M, _1(A) is not stable
and My (A) is stable.

We indicate here the proof of part (ii) in the case where n = 2. As
mentioned above, the proof follows ideas of Villadsen.

Let Y = RP? be the real projective plane and recall that its coho-
mology (over Z) is given as:

HYY;7Z) =7, HYY;Z) =0, H*(Y;Z) = Z/27.
‘We have
CY)={feCD): f(z) = f(—z) forall z €T}

Let & be a complex line bundle over Y with non-trivial Euler class
e(&) in H?(Y;Z). This line bundle corresponds to the projection p in
M>(C(Y)) given by

p(re) = <e_it\/7ﬁ e* ”{Elr_ T)> ; r€[0,1], te€[0,2n].

Also, & @ &g = 02, the trivial 2-dimensional complex bundle over Y.
Put X = [[°, Y and let m,: X — Y be the coordinate map onto
the nth copy of Y. Put &, = 7 (£), so that each &, is a complex line
bundle over X. We have &, & £, = 7 (& @ &) = 0 for every n. An
application of Kiinneth’s theorem shows that & ©& @ - - - & &, has non-
trivial Euler class for every n. It follows that there for no n is a complex
bundle 7 such that & ®&n X & @ - @ &, since that would entail

o ON=6EHDEBNELDED - D&
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This cannot be because 0> ® 7 has trivial Euler class, whereas &1 & &, @
- @ &, was constructed to have non-trivial Euler class.

Choose mutually orthogonal projections p1, ps, ... in C(X)®K such
that p, corresponds to the line bundle &,, and let e be a projection in
C(X) ® K corresponding to the trivial bundle 6;. Then

(a) pn @ pn ~ede for all n, and
(b) p1 is not equivalent to a sub-projection of ps + p3 + -+ + p, for
any m.
Put ¢, =p1 + -+ + pn and set

A= G 4 (C(X) ® ) g

With p,: A — K the restriction to A of the evaluation mapping C(X)®
K — K at x, A gets the structure of a continuous field C*-algebra with
base space X and with each fiber isomorphic to K.

By (b) above, there is no projection ¢ in A such that ¢ ~ p; and
g L p1, and it follows from (a) that Mz(A) is stable. O

We can now conclude that there are non-stable C*-algebras that do not
have bounded traces or unital quotients:

Corollary 4.4. There is a non-stable, non-unital, separable, nu-
clear, simple, op-unital C*-algebra A that admits no bounded traces.

Proof. Take A as in Theorem 4.3 (i) corresponding to n = 2. Then
A is non-stable, separable, nuclear, simple and op-unital. Since M;(A)
is stable, A is not unital, nor can it have a bounded trace. Q.E.D.

The corollary below (or a modification of it) was in [18] used to construct
a simple, unital, finite C*-algebra B such that M5(B) is infinite. Cuntz
has shown that every infinite simple C*-algebra is properly infinite, so
M>(B) is necessarily properly infinite. A non-simple unital, finite C*-
algebra A such that M3(A) is infinite has been known to exist for a long
time (see [6]), but in this (and related) examples, M5(A) is not properly
infinite.

Corollary 4.5. For each natural number n there is a unital C*-
algebra B such that M, (B) is properly infinite, but My(B) is finite for
k <n.

Proof. Take A to be the C*-algebra constructed in Theorem 4.3
(i). Let B = M(A) be the multiplier algebra of A. Then My(B) =
M(Mj(A)). We can now apply Proposition 3.5 to conclude that B is as
desired. Q.E.D.
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The C*-algebra B constructed in Corollary 4.5 is not separable, not
simple, and not nuclear. It is easy to make B separable: Take two
isometries s1,s2 in M,,(B) such that sys} L sasi. Let s;(i,5) € B be
the matrix entries for sg, kK = 1,2, and let By be the separable sub-
C*-algebra of B generated by the 2n? elements si(i,7). Then sy, so
belong to M,,(Byp), and this makes M,,(By) properly infinite. Being a
sub-C*-algebra of the finite C*-algebra My(B), M (By) is finite when
k <mn.

We can rephrase Corollary 4.5 as follows: There is a unital, properly
infinite C*-algebra A such that (1—e)A(1—e) is finite for some projection
e # 1in A, and e can be chosen to have size 1/n. The next corollary
says that the example can be sharpened in that e can be chosen to have
infinitesimal size.

Corollary 4.6. There is a properly infinite, unital C*-algebra A
and an embedding ¢: K — A such that for every non-zero projection e
in IC, the corner C*-algebra (1 — p(e))A(1 — ¢(e)) is finite.

Proof. By Corollary 4.5 there is for each natural number n a unital
C*-algebra B,, such that M,,(B,) is properly infinite and M,,_1(B,) is
finite. Put

A= H Mn(Bn)/ Z M,(By),

where [[° | M, (B,) is the C*-algebra of all bounded sequences {z,}22
such that z,, € M,(B,), and > . | M,(B,) is the ideal of those {z,}5>,
for which |z,|| — 0. Let 7: [[,2, M,(B,) — A denote the quotient
mapping.

Since each M,(B,) is properly infinite, []7~ ; M,(B,) and hence A
are properly infinite.

Let {eij}fz':1 be a set of matrix units for the compact operators K.

For n in N and for 1 < 4,5 < n, let gg;-b) € M,(C) C M,(B,) be the
(i, 7)th standard matrix unit (wrt. the natural embedding of M, (C) into
M, (B,,) defined by the unit of B,,). Set ggl) = 0if ¢ or j is greater than
n. Put

1 2 3
i = (9,92, 9,..),

fiz = m(g45)-
Then {fi;}75_, are matrix units for K, and so there is a *-homomor-
phism ¢: K — A given by ¢(e;;) = fij. We proceed to check that
(1 — p(e))A(1 — p(e)) is finite for all non-zero projections e in K. It
suffices to consider the case e = e1;.

Suppose, to reach a contradiction, that (1 — ¢(e11))A(1 — ¢(e11)) is
infinite and take a non-unitary isometry s in that algebra. Lift s to an
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element z = (z1,%2,...) in [[~, Mn(B,). Upon replacing each z, by
(l—g ):L'n(l g( )) we may assume that each z, = (1— g("))xn(l g(n)).
Since

2 * *
m(l— 911)’ 1- gil)) D=1- ple1n) = m(ziz, 252, . . . )s

we conclude that ||z} xz, — (1 — 911))“ — 0, and so z}x, is invertible (in
the corner algebra (1 — 911))M (Bn )( 911))) for all sufficiently large
n. As (1 911))M (Bn)(} — gu)) = 1(By) and this C*-algebra is
finite, we can further conclude that z,, is mvertible for all large enough
n. But then s is invertible, a contradiction. Q.E.D.

By an argument similar to the one outlined below Corollary 4.5, the C*-
algebra A in Corollary 4.6 can be taken to be separable. One cannot take
A to be simple: any simple, unital C*-algebra that admits an embedding
of K is properly infinite (cf. [7]); and there are embeddings

Ko (1- oK1 — ) = (1 - p(e)) A1 — p(e))-

§5. Stability of infinite C*-algebras

A (simple or non-simple) C*-algebra A is said to be purely infinite if it
has no Abelian quotient and if for every pair of positive elements a,b
in A, such that b belongs to the closed two-sided ideal generated by a,
there is a sequence {z,} of elements in A with z}az, — b (see [14]).
This notion was introduced by Cuntz for simple C*-algebras, and he
defined, in agreement with the definition above, a simple C*-algebra
to be purely infinite if each of its non-zero hereditary sub-C*-algebras
contain an infinite projection.

There are nice characterizations of stability for purely infinite C*-
algebras, and conversely, one can characterize pure infiniteness in terms
of stability.

We look first at the case of simple C*-algebras. Here we have the
following classical result of of S. Zhang from [21] (that also can be derived
from Theorem 2.2 using that every purely infinite, simple, o-unital C*-
algebra has an (increasing) approximate unit consisting of projections,
and that for any pair of non-zero projections p, ¢ in such a C*-algebra
one has p 3 q):

Proposition 5.1. (Zhang’s Dichotomy) A o-unital, purely in-
finite, simple C*-algebra is either unital or stable.

The result below is an observation of Kirchberg and it is a special case
of Proposition 5.4 below for which we include a proof.
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Proposition 5.2. A simple C*-algebra A is purely infinite if and
only if every non-zero hereditary sub-C*-algebra of A contains a (non-
zero) stable sub-C*-algebra.

Purely infinite C*-algebras (simple and non-simple alike) have no traces.
The proposition below, proved in [14, Theorem 4.24] and which is an
easy consequence of Proposition 2.7, extends Zhang’s Dichotomy. There
are (non-simple) purely infinite C*-algebras that are neither stable nor
unital. Take for example Cy(R) ® Os.

Proposition 5.3. A (possibly non-simple) purely infinite, o-unital
C*-algebra is stable if and only if it has no unital quotients.

George Elliott suggested that the following result holds:

Proposition 5.4. Let A be a (possibly non-simple) separable C*-
algebra A. Then the following three conditions are equivalent:
(i) A is purely infinite,
(i) every mon-zero hereditary sub-C*-algebra of A contains o full,
stable, hereditary sub-C*-algebra,
(iil) every non-zero hereditary sub-C*-algebra of A contains a full,
stable (not necessarily hereditary) sub-C*-algebra.

Proof. (i) = (ii): Let B be a non-zero hereditary sub-C*-algebra
of A. Take a countable dense subset X of the unit ball of BT and put

Y={(b-1/n);+:b€ X, neN},

cf. Remark 2.1. Let Y = {by,bs,...} be an enumeration of Y. We
proceed to find mutually orthogonal positive elements c¢y,co,... in B
such that ¢; ~ b; (cf. Remark 2.1) and BN {cy,...,c,}t is full in B for
every n. The set {c,,cnt1,- ..} will then be full in B for every natural
number n. We construct the sequence {c,}32; by induction and to do
so it suffices to justify the first step, i.e., to find ¢;.

By construction, by = (b — ¢€),; for some € > 0 and some positive
contraction b in B. The element b is properly infinite because A is purely
infinite and we can therefore find z,y in bAb with

t'r=y'y=(b—¢/2)y, xz" Lyy",

(see [14, Lemma 3.2]). Let z = u|z| be the polar decomposition for z
as in Remark 2.1. There is a positive contraction f in the hereditary
sub-C*-algebra generated by z*z = (b—e/2) such that fb; = by f = by.
Put ¢y = ubju™, put e = ufu*, and let I be the closed two-sided ideal in
B generated by BN {c;}*. Then ¢; ~ by, cf. Remark 2.1, and it remains
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to show that I = B. Because yy* belongs to B N {c;}*+ we conclude
that y*y = (b—&/2)+ belongs to I. It follows that f and hence e belong
to I. By construction, ec; = cie = ¢; and so (1 — e)a(l — ) belongs to
Bn{c;}* for all @ in B. Now, each element a in B belongs to the ideal
generated by {eaa*e, (1 —e)aa*(1 —e)} and hence to I. This proves that
I=B.

Let D and D, be hereditary sub-C*-algebras of B generated by

c1,Ca,- - ., respectively, by ¢i,...,¢,. Then Dy € Dy C --- and D =
U2, D,.. Since D contains c1, ¢y, ..., the closed two-sided ideal of B
generated by D contains by, bs, ..., and this set generates B. Therefore

D is full in B. We must also show that D is stable. This follows by an
application of Theorem 2.2, but it can be seen more easily by first noting
that D is purely infinite, being a hereditary sub-C*-algebra of A, and D
has no unital quotient. Indeed, assume that J is a proper ideal in D and
that D/J is unital. The unit of D/J will then belong to D,,/(J N D)
for some sufficiently large n. In that case c; belongs to J for all k > n;
but cpi1,Cnt2,- .. is full in D (by construction of b, and c,), and hence
J = D, a contradiction. Proposition 5.3 now yields that D is stable.

(if) = (iii) is trivial.

(iii) = (i): Suppose that (iii) holds. Take a positive element a
in A and find a full, stable sub-C*-algebra D of aAa. Let ¢ > 0 be
given. Being separable and stable, D contains a sequence of mutually
orthogonal and equivalent elements cq,cs,... so that a belongs to the
ideal generated c¢1. (To see this, write D = Dy ® K, take a strictly
positive element ¢ in Dy and put ¢; = c®e;;.) Let uj, j > 2, be partial
isometries in A** implementing the equivalence between ¢; and ¢; so
that ujcju; = c1, cf. Remark 2.1, and such that w;u; L ¢; when i # j.

. . _ n ®
Find n and elements 1, ..., =, in D such that (a—¢)4 = ._, zja1z;.
Put
n 2n n n
e= E cj, f= E cj, T = E U;T, Y= E Up i Tj.
j=1 j=n+1 j=1 j=1

Then e and f are mutually orthogonal positive elements in aAa and
z*ex = y* fy = (a — &)4. This shows that a is properly infinite, cf. [14,
Proposition 3.3], and since a was arbitrary we conclude that A is purely
infinite. Q.E.D.

§6. Extensions of stable C*-algebras

Extensions of two stable C*-algebras need not be stable as the following
theorem, proved recently in [19], shows:
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Theorem 6.1. There is an extension

0—=C(Z2)®K A K 0

of C*-algebras, where Z = ][> | S, such that A is non-stable. More-
over, A can be chosen to be op,-unital.

The proof of Theorem 6.1 is somewhat similar to the proof of Theo-
rem 4.3. Some special cases of the extension problem for stable C*-al-
gebras remain open:

Question 6.2. Given a split-exact sequence of (separable) C*-al-
gebras

0—>J—>=AT=—>B——>0

Does it follow that A is stable if I and B are known to be stable?

Question 6.3. Given two stable closed two-sided ideals I and J
in a (separable) C*-algebra A. Does it follow that their sum I + J is
stable?

If I and J are stable ideals in a C*-algebra A, then I +.J is an extension
of two stable ideals:

0 I I+J (I+J)/I——>o.

(Note that (I + J)/I = J/(I nJ) is stable being (isomorphic) to a
quotient of the stable C*-algebra J.)

Given a partially ordered set (P,<). An element z in P is called
mazimal if x <y implies x = y for all y in X. An element z is called a
greatest element if y < x for every y in X. A greatest element is also a
maximal element (but not conversely); a partially ordered set can have
at most one greatest element, but it can have several maximal elements.

Proposition 6.4. FEvery separable C*-algebra has a maximal sta-
ble ideal (i.e., a stable ideal not properly contained in any other stable
ideal).

Proof. Use Zorn’s Lemma to choose a maximal totally ordered fam-
ily {I;}ic1 of stable ideals in A (counting O as a stable ideal) and set
I = ;e Ii- Then I is an ideal in A and I is not properly contained in

any stable ideal in A by maximality of the set {I;};c1. It follows from
Corollary 2.3 (i) that I is stable. Q.ED.

Question 6.5. Does every (separable) C*-algebra A have a great-
est stable ideal (i.e., a stable ideal that contains all other stable ideals)?
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It can be shown that the canonical ideal C(Z) ® K is a greatest stable
ideal in the C*-algebra A from Theorem 6.1. Notice that the quotient
by this ideal is stable. Hence the quotient of a separable C*-algebra by
its greatest stable ideal (whenever it exists) can have stable ideals.

Tt follows from Proposition 6.4 (and its proof) that any stable ideal
of a separable C*-algebra is contained in a maximal stable ideal. We
can therefore rephrase Question 6.5 as follows: Does every (separable)
C*-algebra have a unique maximal stable ideal?

For separable C*-algebras, Question 6.5 is equivalent to Question 6.3.
It is trivial that Question 6.3 will have affirmative answer if Question 6.5
has affirmative answer. To see the converse direction, let A be a separa-
ble C*-algebra, and let {I;};c1 be the collection of all stable ideals in A
(including 0). If Question 6.3 has affirmative answer, then I;, + I;, be-
longs to this collection for all 41,7, € I. It follows that I = J,c;[; is an
ideal in A, and every stable ideal in A is contained in I. Corollary 2.3 (i)
shows that I is stable.

Consider the continuous field C*-algebra A = (A;)zex constructed in
Theorem 4.3 (ii). FEach open subset U of X defines an ideal Ay =
(Az)zev of A consisting of those section a = (a,) in A such that a, =0
whenever = ¢ U; and every ideal in A is of this form. In the given case,
each fiber A, is isomorphic to K and hence is stable, but no ideal Ay is
stable — roughly because each non-empty open subset U of X contains
an open cylinder set:

VixVox oo xVy,xYxYx-.-. CU, V; Y.

We give in Propositions 6.8 and 6.12 below a partial positive answer to
Question 6.2.

Lemma 6.6. Let A be a C*-algebra and let I be a closed two-
sided ideal in A. If I and A/I have no (non-trivial) unital quotients,
then neither has A.

Proof. Suppose, to reach a contradiction, that J is a proper closed
two-sided ideal in A such that A/J is unital. Then A/(I + J) is a unital
quotient of A/I and therefore I + J = A. Hence

I _I+J A

nJg -~ J J
so that I/(I N J) is unital. This entails that I NJ = I. It follows that
I C J and consequently J = A, a contradiction. Q.E.D.
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Lemma 6.7. Let A be a C*-algebra, let I be a closed two-sided
ideal in A, and assume that neither I nor A/I have (non-trivial) unital
quotients. Then for each a in A, the C*-algebra (1 —a)I(1 — a*) is full
in I and has no (non-trivial) unital quotients.

Proof. Let A _denote the unitization of A. Let J be the closed '
two-sided ideal in A generated by 1 — a, let Jy be the closed two-sided
ideal in A generated by (1 — a)A(1 — a*), and let Iy be the closed two-
sided ideal in I generated by (1 —a)I(1 —a*). Then Jo = JN A and
Ip=JdNI=JyN1I. Let «: A— Z/J be the quotient mapping. Then
m(a) = m(1), and so m(A) is unital. The kernel of the restriction of
m to A is equal to Jy. Hence A/Jy is unital. By Lemma 6.6 and the
assumption that I and A/I have no unital quotients we conclude that
Jo = A. Tt follows that Ip = I so that (1 —a)I(1 —a*) is full in I.

Assume next, to reach a contradiction, that Ly is a proper ideal in
(1—=a)I(1 —a*) such that (1 ~a)I(1 —a*)/Lo is unital. Let L be the
closed two-sided ideal in I generated by Ly so that

Lo=(1—-a)I(1-a")NL.

Let m: A — A/L be the quotient mapping. Find e in (1 —a)I(1 — a*)
such that 7(e) is the unit for (1 — a)I(1 — a*)/Lo, and put y = e+a—ea.
Then y belongs to A and

(1-9I(1-y")=(1-e)1-a)I(1-a")(1-€) <L,

contradicting the first part of the lemma saying that (1 — y)I(1 — y*) is
full in I. Q.E.D.

Proposition 6.8. Let I be a stable, closed, two-sided ideal in a
separable C*-algebra A, and suppose that A/I is stable. Then the fol-
lowing three conditions are equivalent:

(i) A is stable,

(ii) for each positive contraction a in A, the hereditary sub-C*-algebra
(1 —a)I(1 —a) is large in I (cf. Definition 2.4),
(iii) (1 —a)I(1 — a) is stable for each positive contraction a in A.

Proof. (i) = (iii). If A is stable, then so is (1 —a)A(l —a) by
Corollary 2.3 (iii). Hence (1 — a)I(1 — a) is stable by Corollary 2.3 (ii)
being an ideal in a stable C*-algebra.

(iii) = (ii) follows from Lemmas 2.6 and 6.7.

(ii) = (i). Suppose that (ii) holds. To show that A is stable we use
Theorem 2.2 and find to each a in F/(A) a positive element a; in A such
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that a L a; and a 3 a1 (cf. Remark 2.1). Let m: A — A/I denote the
quotient mapping.

There is a positive contractions e in F'(A4) such that ea = a = ae.
Set f = w(e). Since A/I is stable and f belongs to F(A/I) there is
f'in F(A/I) with f ~ f" and f L f’ (by Theorem 2.2). Because
P = (1= P - 1) we get

fre-NA/IA-f)=n((1-e)A(l—e)),

and we can therefore find a positive contraction e’ in (1 —e)A(1 —e)
such that w(e’) = f’. Since w(e') ~ m(e) there is a positive element c
in I such that (e —1/3)4 2 ¢ @ ¢, cf. [14, Lemma 4.2]. It follows that
(e—2/3); 2 (/=64 ® (c— 6)4 for some 6§ > 0, cf. [15, Proposition
2.4]. Put ¢g = (c—6)+ € F(I) and ¢} = (¢/ — 6); € F(A). Then a 3
(e—2/3)+ 3 ep@®co. Let g be a positive contraction in A such that ge =
epg = ef. By assumption (and by the remarks below Definition 2.4) there
is a positive element ¢; in (1 —¢e—g)I(1 —e— g) such that ¢y ~ c;.
Now, a, e}, and ¢; are mutually orthogonal, positive elements in A, and

a 3 ePe Sep®er 3 eyt
We can therefore take a; to be e, + c;. Q.E.D.

Lemma 6.9. Let A be a C*-algebra, and let I be a stable, closed
two-sided ideal in A such that the quotient A/I does mot have (non-
trivial) unital quotients. Let a be a positive contraction in A. Then
(1 —a)I(1 — a) admits no non-zero bounded trace.

Proof. Assume to reach a contradiction that 7 is a bounded (posi-
tive) trace on the hereditary sub-C*-algebra (1 — a)I(1 — a). This hered-
itary sub-C*-algebra is full in I by Lemma 6.7. We can therefore extend
T to an unbounded (because I is stable) densely defined trace T on I.
Now, I is an ideal in the unitization A of A, and we can extend 7 to
a lower semi-continuous trace function 7: AT — [0,00]. Let J be the
closed two-sided ideal in A generated by all positive elements b in A with
7(b) < co. A positive element b in A will then belong to J if and only if
CT((b—e)t) < oo for all e > 0.

Now, I is contained in J because 7 is densely defined on I. Since
7 is not bounded on I we cannot have 7(1) < oo; thus J # A. The
assumption that 7 is bounded on (1 — a)I(1 — a) leads to 7(1 —a) < oo,
and hence 1 — a belongs to J.

Let ¢: A — Z/J and 7: A'/I — Z/J be the quotient mappings.
Then (1) = 9(a) because 1 — a belongs to J, and it follows that 1 (A)
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is unital. Since m(A/I) = 9 (A), A/I has a unital quotient contrary to
our assumptions. Q.E.D.

To state Proposition 6.12 in general terms the following definition is
convenient.

Definition 6.10. A C*-algebra I is called regular if every full,
hereditary sub-C*-algebra of I, that has no unital quotients and no bounded
traces, is stable

It follows from Corollary 4.4 that not all C*-algebras are regular. On
the other hand, many C*-algebras are regular:

Lemma 6.11. A C*-algebra I is regular
(1) o I 1s an exact C*-algebra with the cancellation property, RR(I)
=0, and Ko(I) is weakly unperforated, or
(i) #f I is purely infinite.

Proof. (i). Let Iy be a full, hereditary sub-C*-algebra of I. Then
Iy is op-unital because I has real rank zero. The cancellation property,
exactness, and having weakly unperforated Ky-group are all properties
that pass to full hereditary sub-C*-algebras, so Iy has these properties.
Proposition 3.4 therefore yields that Iy is stable if Iy has no bounded
trace.

(ii). Every hereditary sub-C*-algebra of a purely infinite C*-algebra
is again purely infinite ([14, Proposition 4.17]) and hence is stable if it
has no unital quotient, cf. Proposition 5.3. Q.E.D.

Proposition 6.12. Let

0 1 A B 0

be a short ezact sequence of separable C*-algebras and suppose that I is
regular. Then A is stable if and only if [ and B are stable.

All AF-algebras, and more generally all AH-algebras of real rank zero
and of slow dimension growth, are regular (see the comments below
Proposition 3.4). In particular, for every extension 0 - K — A — B —
0 of separable C*-algebras one has that A is stable if and only if B is
stable, a fact that implicitly is contained in the BDF-paper [5].

Proof. If A is stable, then so are I and A/I (by Corollary 2.3 (ii)).
Assume now that I and A/I are stable and that I is regular. As
(1 —a)I(1 — a) is a full hereditary sub-C*-algebra of I that has no uni-
tal quotient (by Lemma 6.7) and no bounded traces (by Lemma 6.9)
for every positive contraction a in A, the assumption that I is regular
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implies that (1 — a)I(1 — a) is stable. Proposition 6.8 then yields that
A is stable. Q.E.D.
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