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Abstract. 

We give a survey of known and a few new results on stable C*
algebras. Characterizations of stable C* -algebras are described, it is 
decided for a number of operations on C* -algebras whether or not 
they leave the class of stable C* -algebras invariant, and the rela
tion between this topic and the structure of simple C* -algebras is 
discussed. 

§1. Introduction 

This article contains some new results and a survey of older results, 
mostly from the articles [12], [16], [17], and [19], on stable C*-alge
bras. Recall that a C* -algebra A is stable if it is isomorphic to A 0 K, 
where K denotes the C* -algebra of compact operators on a separable 
Hilbert space. Since K 0 K 9:! K it follows that A 0 K is stable for every 
C* -algebra A. If B1 and B2 are full hereditary sub-C* -algebras of a 
C* -algebra A, then B1 0 K 9:! B 2 0 K by Brown's theorem, [4]. In other 
words, among full hereditary sub-C* -algebras the stable ones have the 
distinguished property that they all are isomorphic to each other. 

In BDF-theory, [5], extensions 0 --+ K --+ A --+ B --+ 0 (for fixed 
(abelian) C*-algebras B) are classified, and it is contained in this theory 
that A is stable if and only if B is stable in any such extension. The 
extension question for stable C* -algebras asked if for any extension 0 --+ 

I --+ A --+ B --+ 0 of (separable) C* -algebras one has that A is stable if 
and only if I and B are stable. This question has recently been answered 
in the negative in [19] (see Theorem 6.1). Some partial positive results 
do however hold (see Section 6). 

Blackadar has shown that an AF -algebra is stable if and only if it 
admits no bounded non-zero traces. This results can be generalized (see 
Section 3), but the existence (established in [16], see Theorem 4.3) of a 
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simple, stably finite, non-stable C* -algebra A such that M 2 (A) is stable 
shows that Blackadar's result is not valid for all (stably finite, simple) 
C* -algebras. 

The negative answer to the extension problem for stable C* -algebras 
was obtained using methods similar to those used in the recent article 
[18] were an example of a simple C* -algebra with a finite and an infinite 
projection was constructed. It is no surprise that these two problems are 
linked. In both cases one seeks C* -algebras exhibiting exotic comparison 
properties (as first found by Villadsen in [20]). Another link is given in 
the observation by Kirchberg that a simple C* -algebra is purely infinite 
if and only if all its hereditary sub-C* -algebras contain a stable sub-C*
algebra. 

The first version of this paper was written in December, 2000. The 
paper was revised in July, 2001, to include the results from the papers 
[18] and [19]. 

I thank Larry Brown for valuable information about the extension 
problem, and I thank MSRI for its hospitality during the fall of 2000 
and for its support from the NSF grant DMS-9701755. 

§2. Characterizing stable C*-algebras 

We begin this section by stating a result from [12] by Hjelmborg and the 
author that characterizes stable C* -algebras. We need some notation to 
state the result. 

In a C* -algebra A, let F(A) denote the set of positive elements a in 
A for which there exists e in A such that ea = ae = a. (Every element 
in F(A) belongs to the Pedersen ideal of A; but the Pedersen ideal can 
in some cases contain positive elements not in F(A). This is for example 
the case whenever A is an algebraically simple, non-unital C* -algebra.) 

A C* -algebra is said to be O"-unital if it contains a countable approx
imate unit; and it is called O"p-unital if it contains a countable approxi
mate unit consisting of projections. One can show that an approximate 
unit of projections always can always be taken to be increasing and to 
dominate any fixed projection in the C* -algebra. 

Remark 2.1. (Equivalence of positive elements) Two pos
itive elements a, b in a C* -algebra A are said to be equivalent, written 
a rv b, if there is an element x in A such that x*x = a and xx* = b. 
Let x = u(x*x) 112 be the polar decomposition for x in A**. Then uc 
belongs to A for every c in aAa, and the map c f---+ ucu* defines an iso
morphism from aAa onto bAb which maps a to b. Moreover, for each 
positive element c in aAa we have c rv ucu* because y = uc112 belongs 
to A, y*y = c, and yy* = ucu*. 
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Write a~ b if a and bare positive elements in A such that x~bxn ----> a 
for some sequence { Xn} in A. For a in A+ and c > 0 let (a - c)+ denote 
the positive part of the self-adjoint element a- c·1 in the unitization of 
A. Then (a- c)+ belongs to A, and a~ b if and only if (a- c)+ rv b"' 
for some b"' in bAb for each c > 0 ( cf. [15, Proposition 2.4]). 

Theorem 2.2. (Theorems 2.1 and 3.3 of [12]) The following 
conditions are equivalent for every a-unital C* -algebra A: 

(i) A is stable, 
(ii) for every positive element a in A and for every positive c > 0 

there are positive elements b, c in A such that !!a- bll :::; c, b rv c, 
and !lac!! :S c, 

(iii) for every a in F(A) there is a positive element b in A such that 
a ~ b and a j_ b, 

(iv) for every a in F(A) there is a unitary element u in the unitization 
of A such that a j_ uau*, 

( v) there is a sequence {En} ~=l of mutually orthogonal, mutually 
equivalent projections in the multiplier algebra M(A) of A such 
that L~=l En = 1 (the sum converges in the strict topology). 

If A is further assumed to be ap-unital, then (i) ~ (v) above are equivalent 
to: 

(vi) for every projection p in A there is a projection q in A such that 
p rv q and p j_ q. 

Corollary 2.3. (Permanence) 

(i) If A is a a-unital C* -algebra and if A is the inductive limit of an 
inductive system of a-unital stable C* -algebras, then A is stable. 

(ii) If A is stable, then so is every ideal in A and every quotient of 
A. 

(iii) If A is a a-unital, stable C*-algebra and if a is a positive con
traction in A, then (1- a)A(1- a) is stable. 

(iv) If B is a sub-C* -algebra of a a-unital, stable C* -algebra A and 
if B contains an approximate unit for A, then B is stable. 

(v) If A is a a-unital, stable C* -algebra and if G is a countable dis-
crete group acting on A, then A ><1 G is stable. 

Parts (i), (iii), (iv), and (v) are proved in [12] (and the proof of (i) 
and (iii) uses Theorem 2.2). To see that (ii) holds we may assume that 
A = A 0 0 JC for some C* -algebra A 0 . If I is a closed two-sided ideal in 
A 0 0 JC, then I= I0 0 JC for some closed two-sided ideal I0 of A 0 , and 
it follows that I and A/ I are stable. 

Extension of two (a-unital) stable C* -algebras need not be stable, 
cf. Section 6. If A is stable, then so is A 0 B for every C*-algebra B. 
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In the converse direction one can clearly not conclude that A is stable 
knowing that A®B is stable for some C* -algebra B, perhaps surprisingly 
not even in the case when B = M 2 (C), cf. Theorem 4.3. 

No stable C* -algebra can admit a bounded trace nor can it have 
a unital quotient. The converse does not hold in general (see Corol
lary 4.4), but it does hold for certain well-behaved C* -algebras, cf. 
Proposition 2.7 below. Hjelmborg proved in [11] that Cuntz-Krieger 
algebras arising from infinite graphs are stable if and only if they admit 
no bounded trace and have no unital quotient. 

For a particularly well-behaved class of finite C*-algebras, absence 
of bounded traces is equivalent to stability (see Section 3); and absence 
of unital quotients is equivalent to stability for purely infinite C* -alge
bras in the sense of [14] (see Section 5). A precursor to these results is 
given in Proposition 2.7 below. 

Definition 2.4. (Large subalgebras) A hereditary sub-C* -al
gebra B of a C* -algebra A is said to be large in A if for every positive 
element a in A and for every E: > 0 there is x in A such that llx*x-all :::; E: 

and xx* belongs to B. 

Any large hereditary sub-C* -algebra is necessarily full, i.e., not con
tained in any proper ideal. 

Every C* -algebra A is large in itself. 
If B is a large hereditary sub-C* -algebra of A, then for each a in 

F(A) there is x in A such that x*x =a and xx* belongs to B. Indeed, if e 
is a positive contraction in A such that ea = ae = a then z* ( e -1/2) + z = 
a for some z in A (in the notation of Remark 2.1). Find x in A such that 
llx*x- ell < 1/2 and xx* belongs to B. By [13, Lemma 2.2] there is y 
in A such that y*x*xy = (e- 1/2)+· Put w = xyz. Then ww* belongs 
to B and w*w = a. 

The argument above also shows that for every projection p in A 
there is a projection q in B such that p rv q (whenever B is large in A). 

Recall that a (possibly non-simple) C* -algebra A is called purely 
infinite if for every pair of positive elements a, b in A such that b belongs 
to the closed two-sided ideal generated by a there is a sequence {xn} of 
elements in A with x~axn ----> b (see [14]). 

Lemma 2.5. Every full, hereditary sub-C* -algebra of a purely in
finite C* -algebra is large. 

Proof. Suppose that B be a full, hereditary sub-C* -algebra of a 
purely infinite C* -algebra A. Let a be a positive element in A and let 
E: > 0 be given. Then a belongs to the closed two-sided ideal generated 
by B, hence (a- s/3)+ belongs to the algebraic ideal generated by B, 
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and hence (a- 2c:/3)+ belongs to the algebraic ideal generated by some 
positive element b in B. Since A is purely infinite, (a- c:)+ = y*by 
for some y in A. This shows that (a- c:)+ = x*x and xx* E B when 
X= b1f2y. Q.E.D. 

Lemma 2.6. Any full, stable, hereditary sub-C* -algebra of a sep
arable C* -algebra is large. 

Proof Let B be a full, stable, hereditary sub-C* -algebra of a C*
algebra A, let a be a positive element in A and let E > 0 be given. Since 
F(B) is dense in B+ and since B is full in A, the algebraic ideal in A 
generated by F(B) is dense in A. It follows that we can find bin F(B) 
and x 1 , ... , Xn in A such that 

n 

II l:xjbxj- all::::; c. 
j=1 

It follows from Theorem 2.2 that there are mutually orthogonal and 
mutually equivalent positive elements b1 = b, b2 , ... , bn in B. Find 
u1, ... , Un in B such that ujuj = b and Ujuj = bj, so that uiuj = 0 
when i -I- j. Put x = "L-7=1 UjXj. Then xx* belongs to B and x*x = 

"L-7=1 xjujujXj = "L-7= 1 xjbx1. Q.E.D. 

Proposition 2. 7. (Proposition 5.1 of [12]) Let A be a CJ-unital 
C* -algebra that has the property that any full, hereditary sub-C* -algebra 
of A is large if it admits no non-zero bounded trace. Then A is stable if 
and only if A has no non-zero bounded trace and no non-trivial unital 
quotient. 

Section 4 contains an example of a non-stable CJp-unital C* -algebra A 
without bounded traces and unital quotients. Consequently, this C* -al
gebra has a full, hereditary sub-C* -algebra which is not large in A and 
which does not have a bounded trace. 

The example below is due to Ken Dykema. 

Example 2.8. The full free product K * K is not stable; hence the 
class of stable C* -algebras is not closed under forming free products. 

Indeed, K * K has a unital quotient. To see this, let { eij }?,}=1 be 
the standard matrix units forK. Observe that if Dis a C*-algebra and 
if h, Jz, ... is a sequence of mutually orthogonal and equivalent projec
tions in D, then there is an embedding c.p: K-+ D such that c.p(e11 ) = IJ. 
Take the Cuntz algebra Oz with its two canonical generators s1 and Sz. 
Since every pair of non-zero projections in 0 2 are equivalent and any 
non-zero projection in 0 2 has countably many mutually orthogonal non
zero sub-projections, there are embeddings c.p1 , c.p2 : K -+ 0 2 such that 
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<pl(eu) = s1si and <p2(eu) = s2s2. By the universal property of free 
products there is a *-homomorphism <p: KAK----> 02 whose restriction to 
the first and the second copy of K is <p1, respectively, <p2. Accordingly, 
1 = s1si + s2s2 belongs to the image of <p. Hence K * K has a unital 
quotient. 

§3. Stability of finite C*-algebras 

Blackadar proved in [1] that a (simple) AF-algebra is stable if and only 
if it admits no bounded trace. We shall in this section pursue gener
alizations of this result. Let us first remark that any unital, properly 
infinite C* -algebra is traceless but not stable. One will therefore expect 
the two properties, being stable and being traceless, to be equivalent 
only for finite C* -algebras; and even here the equivalence does not hold 
without qualifications. 

As in [1] it is convenient to consider also a third property of a C*
algebra that the scale of its K 0-group equals the entire positive cone. 
The positive cone and the scale of the K 0-group of a C* -algebra A are 
given by 

Ko(A)+ = {[p]o: p E P(A 0 K)}, 'Do(A) = {[p]o : p E P(A)}. 

It follows from Lemma 2.6 that V 0 (A) = K 0 (A)+ for all stable C*-alge
bras. 

An axiomatic description of a scaled ordered Abelian group is given 
in the following: 

Definition 3.1. A triple (a, a+,~) will be called a scaled, or
dered Abelian group if (a, a+) is an ordered Abelian group and~ is an 
upper directed, hereditary, full subset of a+' i.e.' 

(i) \fx1 ,x2 E ~ :Jx E ~:XI::; x, X2::; x, 
(ii) \fx E a+ \fy E ~ : X ::; y ::::} x E ~' 

(iii) \fx E a+ 3y E ~ 3k EN: x::; ky. 

A (ap-unital) C* -algebra A is said to be finite if it contains no infinite 
projections, and A is stably finite if Mn(A) is finite for every n. (A 
projection is infinite if it is Murray-von Neumann equivalent to a proper 
subprojection of itself.) If 

\fp, q E P(A 0 K) : [p]o = [q]o in Ko(A) =::::} p "' q, 

then A is said to have cancellation. We have 

sr(A) = 1 =::::} A has cancellation =::::} A is stably finite, 

for all C* -algebras A. 
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Lemma 3.2. Let A be a C* -algebra with the cancellation property, 
let p be a projection in A, and let g be an element in K 0 (A). 

(i) If 0 S g S [plo, then there is a projection q in A such that q ::::; p 
and [ql 0 =g. 

(ii) If A is up-unital, if [plo ::::; g, and if g belongs to D0 (A), then 
there is a projection q in A such that p::::; q and [ql 0 =g. 

Proof. (i). Find projections e, f in matrix algebras over A such 
that [elo = g and [flo = [Plo -g. Then [e EB flo = [plo and because A is 
assumed to have the cancellation property we conclude that e EB f ,...., p. 
Find a rectangular matrix v over A such that v*v = e EB f and vv* = p, 
and set q = v(e EB O)v*. Then q belongs to A, q::::; p, and [ql 0 =g. 

(ii). There is an approximate unit {Pn}~=l for A where each Pn 
is a projection dominating p. Now, [pnlo 2: g for some n. Indeed, 
take a projection q' in A such that g = [q'lo and choose n such that 
11(1- Pn)q'll < 1. Then q' ;) Pn, and so [pnlo 2: [q'lo =g. Use (i) to 
find a projection e in A such that e ::::; Pn- p and [elo = g- [pl 0 . The 
projection q = p + e will then be as desired. Q.E.D. 

Lemma 3.3. The triple (K0 (A), K 0 (A)+, D0 (A)) is a scaled, or
dered, Abelian group if A is a up-unital C*-algebra with the cancellation 
property. 

Conversely, if A is a stable, Up-unital C* -algebra with the cancel
lation property, and if ~ is a subset of K 0 (A)+ for which the triple 
(Ko(A), K 0 (A)+, ~) is a scaled, ordered, Abelian group, then there is a 
full, up-unital, hereditary sub-C* -algebra B of A such that 

(Ko(B), Ko(B)+, Do(B)) f:'! (Ko(A), Ko(A)+, ~). 

Proof. Assume that A is a Up-unital C* -algebra with the cancella
tion property. Let {Pn}~=l be an approximate unit for A consisting of 
projections. (i) in Definition 3.1 holds as we can take x to be [pnlo for 
some large enough n. (ii) follows from Lemma 3.2 (i). If q is a projection 
in Mk(A), then q is equivalent to a projection in Mk(PnAPn) for some 
large enough n whence [ql 0 ::::; k[pnlo· Hence (iii) in Definition 3.1 holds. 

To prove the second part of the lemma, use (i), (ii), and (iii) in 
Definition 3.1 to find 0 ::::; x 1 ::::; x 2 ::::; x 3 ::::; ... in ~ such that for every g 

in K 0 (A)+ the following two conditions are satisfied: 

• g ::::; kxn for some positive integers k and n, and 
• g belongs to ~ if and only if g ::::; Xn for some n. 

Use Lemma 3.2 (ii) to find an increasing sequence {qn}~=l of projections 
in A such that [qnlo = Xn. Let B be the closure of u:=l qnAqn. Then 
B is a full up-unital sub-C* -algebra of A. By construction of B, if g 
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is an element in K 0 (A), then g belongs to ~ if and only if there is a 
projection e in B such that g = [e] 0 . It follows that the isomorphism 
K 0 (B)----+ K 0 (A) induced by the inclusion mapping B L..+ A maps Do(B) 
onto ~- Q.E.D. 

An ordered Abelian group (G, c+) is said to be weakly unperforated if 
ng > 0 implies g > 0 for every g in G and for every positive integer n. 
(Other texts have assigned other meanings to the term weak unperfora
tion.) 

Proposition 3.4. Let A be a aP-unital C* -algebra with the can-
cellation property, and consider the following three conditions: 

(i) A is stable, 
(ii) Do(A) = Ko(A)+, 

(iii) A admits no bounded trace. 

Then 
(i) <===? (ii) ====? (iii), 

and (iii) =? (ii) if A is exact, K 0 (A) is weakly unperforated, and every 
ideal in A is a P -unital. 

Proof. The implication (i) =? (ii) holds for all C*-algebras (as noted 
above). The assumption that A is ap-unital implies that every non-zero, 
densely defined trace Ton A induces a non-zero state Ton K 0 (A), and 

IITII 2: sup{?(g) : g E Do(A)} = sup{?(g) : g E Ko(A)+} = =, 

when (ii) holds. Therefore (ii) =? (iii). 
(ii) =? (i): Assume that (ii) holds. Let p be a projection in A. Then 

2[p] 0 belongs to D0 (A), and so it follows from Lemma 3.2 (ii) that there 
is a projection q in A with p ::::; q and [q] 0 = 2[p] 0 . Using again that A 
has the cancellation property we find that q- p rv p. It now follows from 
Theorem 2.2 that A is stable. 

(iii) =? (ii): Assume next that K 0 (A) is weakly unperforated, each 
ideal in A is ap-unital, A is exact, and that (iii) holds. Take gin K 0 (A)+ 
and find a projection p in A® JC such that g = [p] 0 . Let I® JC be the 
closed two-sided ideal in A ® JC generated by p, and take an increasing 
approximate unit {Pn}~=l of projections for I. Let T be the compact 
set of traces T on I such that T(p) = 1. Then 

for every T in T (otherwise T would extend to a bounded trace on I and 
in turns to a bounded trace on A). 
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Each projection q in I (or in I® K) defines a continuous affine 
function q: T -+ JR., and {fn} is an increasing sequence of functions 
tending pointwise to infinity. Since Tis compact we have Pn > 1 for some 
n. In other words, T(p) < T(Pn) for all T in T. We infer that f([p] 0 ) < 
f([Pn]o) for all states f on (Ko(J), Ko(I)+) with f([p]o) = 1. Indeed, 
each such state f lifts to a quasitrace T on I (by [3]) and each quasitrace 
on an exact C*-algebra is a trace (by Haagerup's theorem in [10]). By 
Goodearl-Handelman's extension theorem (see [9]), k[p] 0 < k[pn]o in 
K 0 (I) (and hence in K 0 (A)) for some natural number k. Since K 0 (A) 
is weakly unperforated we can conclude that [p] 0 < [Pn]o. This entails 
that g = [p] 0 belongs to V 0 (A) using Lemma 3.3 and Definition 3.1 
(ii). Q.E.D. 

The three conditions of Proposition 3.4 are equivalent for all separable, 
exact, real rank zero C* -algebras with the cancellation property and 
with weakly unperforated K 0-group. This is a lot to ask for, but many 
commonly encountered C* -algebras satisfy these properties. For exam
ple, all AF-algebras, and more generally, all AH-algebras of real rank 
zero and of slow dimension growth have these properties (see [8] and 
[2]). 

Stability of a finite C* -algebra can also be expressed in terms of 
properties of its multiplier algebra as in the proposition below from [17]. 
Recall that a unital C* -algebra is properly infinite if it contains two 
mutually orthogonal projections p, q such that 1 ~ p ~ q. 

Proposition 3.5. Let A be a C*-algebra and let M(A) denote its 
multiplier algebra. 

(i) If A is stable, then M(A) is properly infinite. 
(ii) If A is cr-unital, sr(A) = 1, and A is not stable, then M(A) is 

not properly infinite. 
(iii) If A is cr-unital, simple, sr(A) = 1, and A is not stable, then 

M(A) is finite. 

Part (i) is standard and follows from the fact that M(A) ®M(K) (max
imal tensor product) maps into M(A ® K). Parts (i) and (ii) say that 
for cr-unital C* -algebras A of stable rank one, A is stable if and only if 
M(A) is properly infinite. 

If A is a unital, properly infinite C* -algebra, then M (A) = A, and 
hence M(A) is properly infinite. On the other hand, A is not stable. 
We can therefore not in general deduce that A is stable knowing that 
M(A) is properly infinite. 
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§4. Stability is not a stable property 

One often refers to a property of C* -algebras as being stable if it is 
preserved by passing from A to Mn(A) and vice versa for each n. Being 
stable is not a stable property in this sense, as shown by the author in 
[16] using techniques of Villadsen from [20]. 

We first state a result that limits how exotic this behavior can be: 

Proposition 4.1. (Proposition 2.1 of [16]) Let A be a o--unital 
C* -algebra. If Mn(A) is stable for some integer n, then Mk(A) is stable 
for all k 2': n. 

The proof uses Theorem 2.2. 
Let us indicate at the level of scaled, ordered Abelian groups why 

there should exists a non-stable C* -algebra A such that M2 (A) is stable: 

Example 4.2. (Example 3.4 of [16]) Let Z2 denote the group 

Z/2Z, and let z~=l denote the group of all sequences t = (t1 )~1 , with 

tj E Z2 and where t1 -=/= 0 for at most finitely many j. For each t E z~=) 
let d(t) be the number of elements in the set {j EN I t1 -=/= 0}. Set 

c+ = {(k,t) 1 d(t).:::; k}, ~ = {(k,t) 1 d(t) = k}. 

Then ( G, c+, ~) is a scaled, ordered Abelian group, cf. Definition 3.1. 

To see this, let ej E z~=) be the generator of the jth copy of Z 2 and set 
gj = (1, ej) E c+. Then 

(X) 

~ = U{x E c+ I X.:::; gl + g2 + ... + gj}, 
j=l 

and in this picture it is easy to see that ~ satisfies the axioms of Defini
tion 3.1. 

The element (2, e1 ) belongs to c+ but not to~' and so~-=/= c+. 
If A is a C* -algebra whose scaled ordered K 0-group is isomorphic 

to ( G, c+, ~), then the scaled ordered K 0-group of M 2 (A) is isomorphic 
to ( G, c+' ~+~), where ~+~ is the set of elements X in c+ for which 
there exist Y1, Y2 in ~ such that x .:::; y 1 + y2 . In the given example, 
~+ ~ = c+) because if g = ( k, t) belongs to c+) then 

g.:::; g + g = (2k, 0) = 2(gl + g2 + ... + gk). 

If we can find a CJp-unital C* -algebra A with the cancellation prop
erty such that the scaled ordered K 0-group of A is isomorphic to ( G, c+, 
~), then A will be non-stable and M 2 (A) will be stable by Proposi
tion 3.4. The C* -algebra found in Theorem 4.3 below, corresponding to 
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n = 2, has the property that a subgroup of its K 0-group is isomorphic 
to (G,G+,E). 

For the formulation of the next result, recall that an AH-algebra is a C*
algebra that is the inductive limit of a sequence of C* -algebras of the 
form p(C(X) ® JC)p, where X is a (not necessarily connected) compact 
Hausdorff space and pis a projection in C(X) ®/C. 

Theorem 4.3. (Theorem 5.3 and Corollary 4.2 of [16]) 
(i) For each natural number n there is a simple, separable, ap-unital 

AH-algebra A of stable rank one such that Mn(A) is stable but 
Mn-l(A) is not stable. 

(ii) For each natural number n there is continuous field C* -algebra 
A = (Ax)xEX, where X is a compact Hausdorff space and where 
each fiber Ax is isomorphic to /(, such that Mn-1 (A) is not stable 
and Mn(A) is stable. 

We indicate here the proof of part (ii) in the case where n = 2. As 
mentioned above, the proof follows ideas of Villadsen. 

Let Y = JRJP'2 be the real projective plane and recall that its coho
mology (over Z) is given as: 

We have 

C(Y) = {! E C(IIJ)): f(z) = f( -z) for all z E 'll'}. 

Let ~0 be a complex line bundle over Y with non-trivial Euler class 
e(~o) in H 2 (Y; Z). This line bundle corresponds to the projection pin 
M 2 (C(Y)) given by 

·t ( r eit.Jr(l- r)) 
p(re')= e-it.Jr(l-r) 1-r ' r E [0, 1], t E [0, 2n]. 

Also, ~0 EB ~0 ~ ()2 , the trivial 2-dimensional complex bundle over Y. 
Put X = TI~=l Y and let 1r n : X ----> Y be the coordinate map onto 

the nth copy of Y. Put ~n = 1r~ ( ~o), so that each ~n is a complex line 
bundle over X. We have ~nEB ~n = n~(~o EB ~o) ~ ()2 for every n. An 
application of Kiinneth's theorem shows that 6 EB 6 EB · · · EB ~n has non
trivial Euler class for every n. It follows that there for no n is a complex 
bundle 'TJ such that 6 EB 'TJ ~ 6 EB · • · EB ~n since that would entail 
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This cannot be because 02 EB 'T} has trivial Euler class, whereas ~1 EB 6 EB 
• · • EB ~n was constructed to have non-trivial Euler class. 

Choose mutually orthogonal projections p1 ,p2 , ... in C(X)®IC such 
that Pn corresponds to the line bundle ~n, and let e be a projection in 
C(X) ®IC corresponding to the trivial bundle 01 . Then 

(a) Pn EB Pn ,....., e EB e for all n, and 
(b) P1 is not equivalent to a sub-projection of P2 + P3 + · · · + Pn for 

anyn. 

Put Qn = P1 + · · · + Pn and set 

00 

A= U qn(C(X) ®IC)qn. 
n=1 

With Px: A --+ lC the restriction to A of the evaluation mapping C(X) Q9 

lC--+ lC at x, A gets the structure of a continuous field C*-algebra with 
base space X and with each fiber isomorphic to /C. 

By (b) above, there is no projection q in A such that q ,....., p 1 and 
q l_ p~, and it follows from (a) that M2(A) is stable. D 

We can now conclude that there are non-stable C* -algebras that do not 
have bounded traces or unital quotients: 

Corollary 4.4. There is a non-stable, non-unital, separable, nu
clear, simple, up -unital C* -algebra A that admits no bounded traces. 

Proof. Take A as in Theorem 4.3 (i) corresponding ton = 2. Then 
A is non-stable, separable, nuclear, simple and up-unital. Since M 2 (A) 
is stable, A is not unital, nor can it have a bounded trace. Q.E.D. 

The corollary below (or a modification of it) was in [18] used to construct 
a simple, unital, finite C* -algebra B such that M2 (B) is infinite. Cuntz 
has shown that every infinite simple C* -algebra is properly infinite, so 
M2(B) is necessarily properly infinite. A non-simple unital, finite C*
algebra A such that M2 (A) is infinite has been known to exist for a long 
time (see [6]), but in this (and related) examples, M 2 (A) is not properly 
infinite. 

Corollary 4.5. For each natural number n there is a unital C*
algebra B such that Mn(B) is properly infinite, but Mk(B) is finite for 
k < n. 

Proof. Take A to be the C* -algebra constructed in Theorem 4.3 
(i). Let B = M(A) be the multiplier algebra of A. Then Mk(B) ~ 
M(Mk(A)). We can now apply Proposition 3.5 to conclude that B is as 
desired. Q.E.D. 
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The C* -algebra B constructed in Corollary 4.5 is not separable, not 
simple, and not nuclear. It is easy to make B separable: Take two 
isometries s1, s2 in Mn(B) such that s1si .l s2s;. Let sk(i,j) E B be 
the matrix entries for Sk, k = 1, 2, and let B 0 be the separable sub
C*-algebra of B generated by the 2n2 elements sk(i,j). Then s 1 , s2 

belong to Mn(B0 ), and this makes Mn(B0 ) properly infinite. Being a 
sub-C*-algebra of the finite C*-algebra Mk(B), Mk(Bo) is finite when 
k < n. 

We can rephrase Corollary 4.5 as follows: There is a unital, properly 
infinite C* -algebra A such that (1-e )A(1-e) is finite for some projection 
e =1- 1 in A, and e can be chosen to have size 1/ n. The next corollary 
says that the example can be sharpened in that e can be chosen to have 
infinitesimal size. 

Corollary 4.6. There is a properly infinite, unital C* -algebra A 
and an embedding r.p: K ~ A such that for every non-zero projection e 
inK, the comer C*-algebra (1- r.p(e))A(1- r.p(e)) is finite. 

Proof. By Corollary 4.5 there is for each natural number n a unital 
C*-algebra Bn such that Mn(Bn) is properly infinite and Mn-l(Bn) is 
finite. Put 

00 00 

n=l n=l 

where IJ~=l Mn(Bn) is the C*-algebra of all bounded sequences {xn}~=l 
such that Xn E Mn(Bn), and L~=l Mn(Bn) is the ideal of those {xn}~=l 
for which llxnll ~ 0. Let 1r: IJ~=l Mn(Bn) ~A denote the quotient 
mapping. 

Since each Mn(Bn) is properly infinite, IJ~=l Mn(Bn) and hence A 
are properly infinite. 

Let { eij }i,j=1 be a set of matrix units for the compact operators K. 

For n inN and for 1 ::::; i,j ::::; n, let g}J) E Mn(C) <:;;; Mn(Bn) be the 
(i,j)th standard matrix unit (wrt. the natural embedding of Mn(C) into 

Mn(Bn) defined by the unit of Bn)· Set g;'j) = 0 if i or j is greater than 
n. Put 

Then {fij }i,j=1 are matrix units for K, and so there is a * -homomor
phism r.p: K ~ A given by r.p( eij) = fij. We proceed to check that 
(1- r.p(e))A(1- r.p(e)) is finite for all non-zero projections e in K. It 
suffices to consider the case e = e11 . 

Suppose, to reach a contradiction, that (1- r.p(e11 ))A(1- r.p(e 11 )) is 
infinite and take a non-unitary isometry s in that algebra. Lift s to an 
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element X= (xl, x2, ... ) in rr~=l Mn(Bn)· Upon replacing each Xn by 
( (n)) ( (n)) h h ( (n)) ( 1 (n)) 1-g11 Xn 1-g11 wemayassumet ateac Xn = 1-g11 Xn -g11 . 
Since 

(1 (1) 1 (2) ) - 1 ( ) - ( * * ) 1r -g11 , -g11 , ... - -cp en -Jr x1x1,x2x2,···, 

we conclude that llx~Xn- (1- gi~l)ll---> 0, and so X~Xn is invertible (in 

the corner algebra (1- gi~))Mn(Bn)(1- gi~l)) for all sufficiently large 

n. As (1- gi~))Mn(Bn)(l- gi~l) ~ Mn-l(Bn) and this C*-algebra is 
finite, we can further conclude that Xn is invertible for all large enough 
n. But then s is invertible, a contradiction. Q.E.D. 

By an argument similar to the one outlined below Corollary 4.5, the C*
algebra A in Corollary 4.6 can be taken to be separable. One cannot take 
A to be simple: any simple, unital C* -algebra that admits an embedding 
of K is properly infinite ( cf. [7]); and there are embed dings 

K '---' (1- e)K(1- e)'---' (1- cp(e))A(1- cp(e)). 

§5. Stability of infinite C* -algebras 

A (simple or non-simple) C* -algebra A is said to be purely infinite if it 
has no Abelian quotient and if for every pair of positive elements a, b 
in A, such that b belongs to the closed two-sided ideal generated by a, 
there is a sequence {xn} of elements in A with x~axn ---> b (see [14]). 
This notion was introduced by Cuntz for simple C* -algebras, and he 
defined, in agreement with the definition above, a simple C* -algebra 
to be purely infinite if each of its non-zero hereditary sub-C* -algebras 
contain an infinite projection. 

There are nice characterizations of stability for purely infinite C*
algebras, and conversely, one can characterize pure infiniteness in terms 
of stability. 

We look first at the case of simple C* -algebras. Here we have the 
following classical result of of S. Zhang from [21] (that also can be derived 
from Theorem 2.2 using that every purely infinite, simple, a-unital C*
algebra has an (increasing) approximate unit consisting of projections, 
and that for any pair of non-zero projections p, q in such a C* -algebra 
one hasp~ q): 

Proposition 5.1. (Zhang's Dichotomy) A a-unital, purely in
finite, simple C* -algebra is either unital or stable. 

The result below is an observation of Kirchberg and it is a special case 
of Proposition 5.4 below for which we include a proof. 
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Proposition 5.2. A simple C* -algebra A is purely infinite if and 
only if every non-zero hereditary sub-C* -algebra of A contains a (non
zero) stable sub-C* -algebra. 

Purely infinite C* -algebras (simple and non-simple alike) have no traces. 
The proposition below, proved in [14, Theorem 4.24] and which is an 
easy consequence of Proposition 2. 7, extends Zhang's Dichotomy. There 
are (non-simple) purely infinite C*-algebras that are neither stable nor 
unital. Take for example Co(IR) ® 02. 

Proposition 5.3. A (possibly non-simple) purely infinite, O"-unital 
C* -algebra is stable if and only if it has no unital quotients. 

George Elliott suggested that the following result holds: 

Proposition 5.4. Let A be a (possibly non-simple} separable C*
algebra A. Then the following three conditions are equivalent: 

(i) A is purely infinite, 
(ii) every non-zero hereditary sub-C* -algebra of A contains a full, 

stable, hereditary sub-C* -algebra, 
(iii) every non-zero hereditary sub-C* -algebra of A contains a full, 

stable (not necessarily hereditary) sub-C* -algebra. 

Proof. (i) =? (ii): Let B be a non-zero hereditary sub-C* -algebra 
of A. Take a countable dense subset X of the unit ball of B+ and put 

Y = {(b -1/n)+: bE X, n EN}, 

cf. Remark 2.1. Let Y = {b1 , b2 , ... } be an enumeration of Y. We 
proceed to find mutually orthogonal positive elements c1, c2 , • • . in B 
such that Cj "' bj ( cf. Remark 2.1) and B n { c1, ... , Cn }j_ is full in B for 
every n. The set {cn,Cn+1, ... } will then be full in B for every natural 
number n. We construct the sequence { c,}~=l by induction and to do 
so it suffices to justify the first step, i.e., to find c1. 

By construction, b1 = (b - c)+ for some c > 0 and some positive 
contraction bin B. The element b is properly infinite because A is purely 
infinite and we can therefore find x, y in bAb with 

x*x = y*y = (b- c/2)+, xx* l_ yy*, 

(see [14, Lemma 3.2]). Let x = ulxl be the polar decomposition for x 
as in Remark 2.1. There is a positive contraction f in the hereditary 
sub-C*-algebra generated by x*x = (b-r:;/2)+ such that fb1 = bd = b1. 
Put c1 = ub1 u*, put e = ufu*, and let I be the closed two-sided ideal in 
B generated by Bn{cl}j_. Then c1 "'b1 , cf. Remark 2.1, and it remains 
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to show that I = B. Because yy* belongs to B n {cl}J. we conclude 
that y*y = (b- c/2)+ belongs to I. It follows that f and hence e belong 
to I. By construction, ec1 = c1e = c1 and so (1- e)a(1- e) belongs to 
B n { cl}J. for all a in B. Now, each element a in B belongs to the ideal 
generated by { eaa*e, (1- e)aa*(1- e)} and hence to I. This proves that 
I=B. 

Let D and Dn be hereditary sub-C* -algebras of B generated by 
c1, c2, ... , respectively, by c1, ... , Cn. Then D1 s;;; D2 s;;; · · · and D = 
U:'=1 Dn. Since D contains c1, c2 , ... , the closed two-sided ideal of B 
generated by D contains b1, b2 , ... , and this set generates B. Therefore 
D is full in B. We must also show that D is stable. This follows by an 
application of Theorem 2.2, but it can be seen more easily by first noting 
that D is purely infinite, being a hereditary sub-C* -algebra of A, and D 
has no unital quotient. Indeed, assume that J is a proper ideal in D and 
that D / J is unital. The unit of D jJ will then belong to Dn/ (J n Dn) 
for some sufficiently large n. In that case Ck belongs to J for all k > n; 
but Cn+l, Cn+2 , ••• is full in D (by construction of bn and en), and hence 
J = D, a contradiction. Proposition 5.3 now yields that D is stable. 

(ii) =? (iii) is trivial. 
(iii) =? (i): Suppose that (iii) holds. Take a positive element a 

in A and find a full, stable sub-C* -algebra D of aAa. Let c > 0 be 
given. Being separable and stable, D contains a sequence of mutually 
orthogonal and equivalent elements c1, c2 , . . . so that a belongs to the 
ideal generated c1. (To see this, write D = Do ® JC, take a strictly 
positive element c in D 0 and put Cj = c ® ejj.) Let Uj, j 2: 2, be partial 
isometries in A** implementing the equivalence between c1 and Cj so 
that ujcjuj = c1, cf. Remark 2.1, and such that uiui ..l Cj when i "f. j. 
Find nand elements x1, ... , Xn in D such that (a- c)+ = LJ=l xjclXj. 
Put 

n 

e = 2:= Cj, 
j=l 

2n 

j = 2:= Cj, 
j=n+l 

n 

X= 2:= UjXj, 
j=l 

n 

y = 2:= Un+jXj· 
j=l 

Then e and f are mutually orthogonal positive elements in aAa and 
x*ex = y* fy =(a- c)+· This shows that a is properly infinite, cf. [14, 
Proposition 3.3], and since a was arbitrary we conclude that A is purely 
infinite. Q.E.D. 

§6. Extensions of stable C* -algebras 

Extensions of two stable C* -algebras need not be stable as the following 
theorem, proved recently in [19], shows: 
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Theorem 6.1. There is an extension 

0 ~ C(Z) ® lC ~A~ lC ~ 0 

of C*-algebras, where Z = f]~=l 8 2 , such that A is non-stable. More
over, A can be chosen to be ap-unital. 

The proof of Theorem 6.1 is somewhat similar to the proof of Theo
rem 4.3. Some special cases of the extension problem for stable C* -al
gebras remain open: 

Question 6.2. Given a split-exact sequence of (separable) C* -al
gebras 

1r 

o~J~A~B~o 
A 

Does it follow that A is stable if I and B are known to be stable'? 

Question 6.3. Given two stable closed two-sided ideals I and J 
in a (separable) C* -algebra A. Does it follow that their sum I + J is 
stable? 

If I and J are stable ideals in a C* -algebra A, then I+ J is an extension 
of two stable ideals: 

o~I~I+J~(I+J)fi~o. 

(Note that (I+ J)ji ~ Jj(I n J) is stable being (isomorphic) to a 
quotient of the stable C* -algebra J.) 

Given a partially ordered set (P, ~). An element x in P is called 
maximal if x ~ y implies x = y for all y in X. An element x is called a 
greatest element if y ~ x for every y in X. A greatest element is also a 
maximal element (but not conversely); a partially ordered set can have 
at most one greatest element, but it can have several maximal elements. 

Proposition 6.4. Every separable C* -algebra has a maximal sta
ble ideal (i.e., a stable ideal not properly contained in any other stable 
ideal). 

Proof. Use Zorn's Lemma to choose a maximal totally ordered fam
ily {IihEn of stable ideals in A (counting 0 as a stable ideal) and set 
I = UiEll h Then I is an ideal in A and I is not properly contained in 
any stable ideal in A by maximality of the set {IihEll· It follows from 
Corollary 2.3 (i) that I is stable. Q.E.D. 

Question 6.5. Does every (separable) C* -algebra A have a great
est stable ideal (i.e., a stable ideal that contains all other stable ideals)'? 
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It can be shown that the canonical ideal C(Z) 0 K is a greatest stable 
ideal in the C* -algebra A from Theorem 6.1. Notice that the quotient 
by this ideal is stable. Hence the quotient of a separable C* -algebra by 
its greatest stable ideal (whenever it exists) can have stable ideals. 

It follows from Proposition 6.4 (and its proof) that any stable ideal 
of a separable C* -algebra is contained in a maximal stable ideal. We 
can therefore rephrase Question 6.5 as follows: Does every (separable) 
C* -algebra have a unique maximal stable ideal? 

For separable C* -algebras, Question 6.5 is equivalent to Question 6.3. 
It is trivial that Question 6.3 will have affirmative answer if Question 6.5 
has affirmative answer. To see the converse direction, let A be a separa
ble C*-algebra, and let {IihEn be the collection of all stable ideals in A 
(including 0). If Question 6.3 has affirmative answer, then Ii1 + Ii2 be
longs to this collection for all ii, i2 E ll. It follows that I = uiEll Ii is an 
ideal in A, and every stable ideal in A is contained in I. Corollary 2.3 (i) 
shows that I is stable. 

Consider the continuous field C* -algebra A = (Ax)xEX constructed in 
Theorem 4.3 (ii). Each open subset U of X defines an ideal Au = 
(Ax)xEU of A consisting of those section a= (ax) in A such that ax= 0 
whenever x ¢. U; and every ideal in A is of this form. In the given case, 
each fiber Ax is isomorphic to K and hence is stable, but no ideal Au is 
stable - roughly because each non-empty open subset U of X contains 
an open cylinder set: 

We give in Propositions 6.8 and 6.12 below a partial positive answer to 
Question 6.2. 

Lemma 6.6. Let A be a C* -algebra and let I be a closed two
sided ideal in A. If I and A/ I have no {non-trivial) unital quotients, 
then neither has A. 

Proof. Suppose, to reach a contradiction, that J is a proper closed 
two-sided ideal in A such that A/ J is unital. Then A/ (I+ J) is a unital 
quotient of A/ I and therefore I + J = A. Hence 

I "'I+J A 
--=--= 
InJ J J' 

so that I /(In J) is unital. This entails that In J = I. It follows that 
I~ J and consequently J =A, a contradiction. Q.E.D. 
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Lemma 6. 7. Let A be a C* -algebra, let I be a closed two-sided 
ideal in A, and assume that neither I nor A/ I have (non-trivial) unital 
quotients. Then for each a in A, the C* -algebra (1 - a )I(1 - a*) is full 
in I and has no (non-trivial) unital quotients. 

Proof. Let A denote the unitization of A. Let J be the closed 
two-sided ideal in A generated by 1 - a, let Ia be the closed two-sided 
ideal in A generated by (1 - a)A(1- a*), and let Ia be the closed two
sided ideal in I generated by (1- a)I(1- a*). Then Ia = J n A and 
I a = J n I = I a n I. Let 7r: A---+ A/ J be the quotient mapping. Then 
n(a) = n(1), and so n(A) is unital. The kernel of the restriction of 
1r to A is equal to Ia. Hence A/ Ia is unital. By Lemma 6.6 and the 
assumption that I and A/ I have no unital quotients we conclude that 
Ia =A. It follows that Ia =I so that (1- a)I(1- a*) is full in I. 

Assume next, to reach a contradiction, that La is a proper ideal in 
(1- a)I(1- a*) such that (1- a)I(1- a*)/ La is unital. Let L be the 
closed two-sided ideal in I generated by La so that 

La= (1- a)I(1- a*) n L. 

Let n: A---+ A/L be the quotient mapping. Find e in (1- a)I(1- a*) 
such that n(e) is the unit for (1- a)I(1- a*)/ La, and put y = e+a-ea. 
Then y belongs to A and 

(1- y)I(1- y*) = (1- e)(1- a)I(1- a*)(1- e*) <;;; L, 

contradicting the first part of the lemma saying that (1- y)I(1- y*) is 
full in I. Q.E.D. 

Proposition 6.8. Let I be a stable, closed, two-sided ideal in a 
separable C* -algebra A, and suppose that A/ I is stable. Then the fol
lowing three conditions are equivalent: 

(i) A is stable, 
(ii) for each positive contraction a in A, the hereditary sub-C* -algebra 

(1- a)I(1- a) is large in I (cf. Definition 2.4}, 
(iii) ( 1 - a) I ( 1 - a) is stable for each positive contraction a in A. 

Proof. (i) =? (iii). If A is stable, then so is (1- a)A(1- a) by 
Corollary 2.3 (iii). Hence (1- a)I(1- a) is stable by Corollary 2.3 (ii) 
being an ideal in a stable C* -algebra. 

(iii) =? (ii) follows from Lemmas 2.6 and 6.7. 
(ii) =? (i). Suppose that (ii) holds. To show that A is stable we use 

Theorem 2.2 and find to each a in F(A) a positive element a 1 in A such 
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that a _L a 1 and a;:) a 1 (cf. Remark 2.1). Let 1r: A___, A/I denote the 
quotient mapping. 

There is a positive contractions e in F(A) such that ea = a = ae. 
Set f = 1r(e). Since A/ I is stable and f belongs to F(A/ I) there is 
f' in F(A/ I) with f rv f' and f _L f' (by Theorem 2.2). Because 
f' = (1- f)f'(1- f) we get 

f' E (1- f)A/ I(1- f)= 1r((1- e)A(1- e)), 

and we can therefore find a positive contraction e' in (1- e)A(1- e) 
such that 1r(e') = f'. Since 1r(e') "' 1r(e) there is a positive element c 
in I such that (e- 1/3)+;:) e' EB c, cf. [14, Lemma 4.2]. It follows that 
(e- 2/3)+ ;:) (e'- 8)+ EB (c- 8)+ for some 8 > 0, cf. [15, Proposition 
2.4]. Put c0 = (c- 8)+ E F(I) and e~ = (e'- 8)+ E F(A). Then a;:) 
(e-2/3)+;:) e~EBc0 . Let g be a positive contraction in A such that ge~ = 
e~g = e~. By assumption (and by the remarks below Definition 2.4) there 
is a positive element c1 in (1- e- g)I(1- e- g) such that c0 "' c1 . 

Now, a, e~, and c1 are mutually orthogonal, positive elements in A, and 

We can therefore take a1 to be e~ + c1 . Q.E.D. 

Lemma 6.9. Let A be a C* -algebra, and let I be a stable, closed 
two-sided ideal in A such that the quotient A/ I does not have (non
trivial) unital quotients. Let a be a positive contraction in A. Then 
(1- a)I(1- a) admits no non-zero bounded trace. 

Proof. Assume to reach a contradiction that T is a bounded (posi
tive) trace on the hereditary sub-C*-algebra (1- a)I(1- a). This hered
itary sub-C* -algebra is full in I by Lemma 6. 7. We can therefore extend 
T to an unbounded (because I is stable) densely defined trace T on I. 
Now, I is an ideal in the unitization A of A, and we can extend T to 
a lower semi-continuous trace function 7: A+ ___, [0, oo]. Let J be the 

closed two-sided ideal in A generated by all positive elements b in A with 
r(b) < oo. A positive element bin A will then belong to J if and only if 
r((b- c-)+)< oo for all c- > 0. 

Now, I is contained in J because T is densely defined on I. Since 
T is not bounded on I we cannot have T(1) < oo; thus J =f A. The 
assumption that Tis bounded on (1- a)I(1- a) leads to T(1- a) < oo, 
and hence 1- a belongs to J. 

Let 'ljJ: A ___, A/ J and 1r: A/ I ___, A/ J be the quotient mappings. 
Then '1j;(1) = 'lj;(a) because 1- a belongs to J, and it follows that 'lj;(A) 
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is unital. Since 1r(Aj I) = 'lj!(A), A/ I has a unital quotient contrary to 
our assumptions. Q.E.D. 

To state Proposition 6.12 in general terms the following definition is 
convenient. 

Definition 6.10. A C* -algebra I is called regular if every full, 
hereditary sub-C* -algebra of I, that has no unital quotients and no bounded 
traces, is stable 

It follows from Corollary 4.4 that not all C*-algebras are regular. On 
the other hand, many C* -algebras are regular: 

Lemma 6.11. A C*-algebra I is regular 

(i) if I is an exact C* -algebra with the cancellation property, RR(I) 
= 0, and K0 (I) is weakly unperforated, or 

(ii) if I is purely infinite. 

Proof. (i). Let I0 be a full, hereditary sub-C*-algebra of I. Then 
I 0 is O'p-unital because I has real rank zero. The cancellation property, 
exactness, and having weakly unperforated Ko-group are all properties 
that pass to full hereditary sub-C* -algebras, so I 0 has these properties. 
Proposition 3.4 therefore yields that I 0 is stable if I 0 has no bounded 
trace. 

(ii). Every hereditary sub-C* -algebra of a purely infinite C* -algebra 
is again purely infinite ([14, Proposition 4.17]) and hence is stable if it 
has no unital quotient, cf. Proposition 5.3. Q.E.D. 

Proposition 6.12. Let 

o~I~A~B~o 

be a short exact sequence of separable C* -algebras and suppose that I is 
regular. Then A is stable if and only if I and B are stable. 

All AF-algebras, and more generally allAH-algebras of real rank zero 
and of slow dimension growth, are regular (see the comments below 
Proposition 3.4). In particular, for every extension 0 ---+ JC---+ A---+ B---+ 
0 of separable C* -algebras one has that A is stable if and only if B is 
stable, a fact that implicitly is contained in the BDF-paper [5]. 

Proof. If A is stable, then so are I and A/ I (by Corollary 2.3 (ii)). 
Assume now that I and A/ I are stable and that I is regular. As 
(1- a)I(l- a) is a full hereditary sub-C*-algebra of I that has no uni
tal quotient (by Lemma 6.7) and no bounded traces (by Lemma 6.9) 
for every positive contraction a in A, the assumption that I is regular 
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implies that (1- a)I(l- a) is stable. Proposition 6.8 then yields that 
A is stable. Q.E.D. 
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