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Abstract. 

We give a survey of known and a few new results on stable C*­
algebras. Characterizations of stable C* -algebras are described, it is 
decided for a number of operations on C* -algebras whether or not 
they leave the class of stable C* -algebras invariant, and the rela­
tion between this topic and the structure of simple C* -algebras is 
discussed. 

§1. Introduction 

This article contains some new results and a survey of older results, 
mostly from the articles [12], [16], [17], and [19], on stable C*-alge­
bras. Recall that a C* -algebra A is stable if it is isomorphic to A 0 K, 
where K denotes the C* -algebra of compact operators on a separable 
Hilbert space. Since K 0 K 9:! K it follows that A 0 K is stable for every 
C* -algebra A. If B1 and B2 are full hereditary sub-C* -algebras of a 
C* -algebra A, then B1 0 K 9:! B 2 0 K by Brown's theorem, [4]. In other 
words, among full hereditary sub-C* -algebras the stable ones have the 
distinguished property that they all are isomorphic to each other. 

In BDF-theory, [5], extensions 0 --+ K --+ A --+ B --+ 0 (for fixed 
(abelian) C*-algebras B) are classified, and it is contained in this theory 
that A is stable if and only if B is stable in any such extension. The 
extension question for stable C* -algebras asked if for any extension 0 --+ 

I --+ A --+ B --+ 0 of (separable) C* -algebras one has that A is stable if 
and only if I and B are stable. This question has recently been answered 
in the negative in [19] (see Theorem 6.1). Some partial positive results 
do however hold (see Section 6). 

Blackadar has shown that an AF -algebra is stable if and only if it 
admits no bounded non-zero traces. This results can be generalized (see 
Section 3), but the existence (established in [16], see Theorem 4.3) of a 
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simple, stably finite, non-stable C* -algebra A such that M 2 (A) is stable 
shows that Blackadar's result is not valid for all (stably finite, simple) 
C* -algebras. 

The negative answer to the extension problem for stable C* -algebras 
was obtained using methods similar to those used in the recent article 
[18] were an example of a simple C* -algebra with a finite and an infinite 
projection was constructed. It is no surprise that these two problems are 
linked. In both cases one seeks C* -algebras exhibiting exotic comparison 
properties (as first found by Villadsen in [20]). Another link is given in 
the observation by Kirchberg that a simple C* -algebra is purely infinite 
if and only if all its hereditary sub-C* -algebras contain a stable sub-C*­
algebra. 

The first version of this paper was written in December, 2000. The 
paper was revised in July, 2001, to include the results from the papers 
[18] and [19]. 

I thank Larry Brown for valuable information about the extension 
problem, and I thank MSRI for its hospitality during the fall of 2000 
and for its support from the NSF grant DMS-9701755. 

§2. Characterizing stable C*-algebras 

We begin this section by stating a result from [12] by Hjelmborg and the 
author that characterizes stable C* -algebras. We need some notation to 
state the result. 

In a C* -algebra A, let F(A) denote the set of positive elements a in 
A for which there exists e in A such that ea = ae = a. (Every element 
in F(A) belongs to the Pedersen ideal of A; but the Pedersen ideal can 
in some cases contain positive elements not in F(A). This is for example 
the case whenever A is an algebraically simple, non-unital C* -algebra.) 

A C* -algebra is said to be O"-unital if it contains a countable approx­
imate unit; and it is called O"p-unital if it contains a countable approxi­
mate unit consisting of projections. One can show that an approximate 
unit of projections always can always be taken to be increasing and to 
dominate any fixed projection in the C* -algebra. 

Remark 2.1. (Equivalence of positive elements) Two pos­
itive elements a, b in a C* -algebra A are said to be equivalent, written 
a rv b, if there is an element x in A such that x*x = a and xx* = b. 
Let x = u(x*x) 112 be the polar decomposition for x in A**. Then uc 
belongs to A for every c in aAa, and the map c f---+ ucu* defines an iso­
morphism from aAa onto bAb which maps a to b. Moreover, for each 
positive element c in aAa we have c rv ucu* because y = uc112 belongs 
to A, y*y = c, and yy* = ucu*. 
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Write a~ b if a and bare positive elements in A such that x~bxn ----> a 
for some sequence { Xn} in A. For a in A+ and c > 0 let (a - c)+ denote 
the positive part of the self-adjoint element a- c·1 in the unitization of 
A. Then (a- c)+ belongs to A, and a~ b if and only if (a- c)+ rv b"' 
for some b"' in bAb for each c > 0 ( cf. [15, Proposition 2.4]). 

Theorem 2.2. (Theorems 2.1 and 3.3 of [12]) The following 
conditions are equivalent for every a-unital C* -algebra A: 

(i) A is stable, 
(ii) for every positive element a in A and for every positive c > 0 

there are positive elements b, c in A such that !!a- bll :::; c, b rv c, 
and !lac!! :S c, 

(iii) for every a in F(A) there is a positive element b in A such that 
a ~ b and a j_ b, 

(iv) for every a in F(A) there is a unitary element u in the unitization 
of A such that a j_ uau*, 

( v) there is a sequence {En} ~=l of mutually orthogonal, mutually 
equivalent projections in the multiplier algebra M(A) of A such 
that L~=l En = 1 (the sum converges in the strict topology). 

If A is further assumed to be ap-unital, then (i) ~ (v) above are equivalent 
to: 

(vi) for every projection p in A there is a projection q in A such that 
p rv q and p j_ q. 

Corollary 2.3. (Permanence) 

(i) If A is a a-unital C* -algebra and if A is the inductive limit of an 
inductive system of a-unital stable C* -algebras, then A is stable. 

(ii) If A is stable, then so is every ideal in A and every quotient of 
A. 

(iii) If A is a a-unital, stable C*-algebra and if a is a positive con­
traction in A, then (1- a)A(1- a) is stable. 

(iv) If B is a sub-C* -algebra of a a-unital, stable C* -algebra A and 
if B contains an approximate unit for A, then B is stable. 

(v) If A is a a-unital, stable C* -algebra and if G is a countable dis-
crete group acting on A, then A ><1 G is stable. 

Parts (i), (iii), (iv), and (v) are proved in [12] (and the proof of (i) 
and (iii) uses Theorem 2.2). To see that (ii) holds we may assume that 
A = A 0 0 JC for some C* -algebra A 0 . If I is a closed two-sided ideal in 
A 0 0 JC, then I= I0 0 JC for some closed two-sided ideal I0 of A 0 , and 
it follows that I and A/ I are stable. 

Extension of two (a-unital) stable C* -algebras need not be stable, 
cf. Section 6. If A is stable, then so is A 0 B for every C*-algebra B. 
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In the converse direction one can clearly not conclude that A is stable 
knowing that A®B is stable for some C* -algebra B, perhaps surprisingly 
not even in the case when B = M 2 (C), cf. Theorem 4.3. 

No stable C* -algebra can admit a bounded trace nor can it have 
a unital quotient. The converse does not hold in general (see Corol­
lary 4.4), but it does hold for certain well-behaved C* -algebras, cf. 
Proposition 2.7 below. Hjelmborg proved in [11] that Cuntz-Krieger 
algebras arising from infinite graphs are stable if and only if they admit 
no bounded trace and have no unital quotient. 

For a particularly well-behaved class of finite C*-algebras, absence 
of bounded traces is equivalent to stability (see Section 3); and absence 
of unital quotients is equivalent to stability for purely infinite C* -alge­
bras in the sense of [14] (see Section 5). A precursor to these results is 
given in Proposition 2.7 below. 

Definition 2.4. (Large subalgebras) A hereditary sub-C* -al­
gebra B of a C* -algebra A is said to be large in A if for every positive 
element a in A and for every E: > 0 there is x in A such that llx*x-all :::; E: 

and xx* belongs to B. 

Any large hereditary sub-C* -algebra is necessarily full, i.e., not con­
tained in any proper ideal. 

Every C* -algebra A is large in itself. 
If B is a large hereditary sub-C* -algebra of A, then for each a in 

F(A) there is x in A such that x*x =a and xx* belongs to B. Indeed, if e 
is a positive contraction in A such that ea = ae = a then z* ( e -1/2) + z = 
a for some z in A (in the notation of Remark 2.1). Find x in A such that 
llx*x- ell < 1/2 and xx* belongs to B. By [13, Lemma 2.2] there is y 
in A such that y*x*xy = (e- 1/2)+· Put w = xyz. Then ww* belongs 
to B and w*w = a. 

The argument above also shows that for every projection p in A 
there is a projection q in B such that p rv q (whenever B is large in A). 

Recall that a (possibly non-simple) C* -algebra A is called purely 
infinite if for every pair of positive elements a, b in A such that b belongs 
to the closed two-sided ideal generated by a there is a sequence {xn} of 
elements in A with x~axn ----> b (see [14]). 

Lemma 2.5. Every full, hereditary sub-C* -algebra of a purely in­
finite C* -algebra is large. 

Proof. Suppose that B be a full, hereditary sub-C* -algebra of a 
purely infinite C* -algebra A. Let a be a positive element in A and let 
E: > 0 be given. Then a belongs to the closed two-sided ideal generated 
by B, hence (a- s/3)+ belongs to the algebraic ideal generated by B, 
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and hence (a- 2c:/3)+ belongs to the algebraic ideal generated by some 
positive element b in B. Since A is purely infinite, (a- c:)+ = y*by 
for some y in A. This shows that (a- c:)+ = x*x and xx* E B when 
X= b1f2y. Q.E.D. 

Lemma 2.6. Any full, stable, hereditary sub-C* -algebra of a sep­
arable C* -algebra is large. 

Proof Let B be a full, stable, hereditary sub-C* -algebra of a C*­
algebra A, let a be a positive element in A and let E > 0 be given. Since 
F(B) is dense in B+ and since B is full in A, the algebraic ideal in A 
generated by F(B) is dense in A. It follows that we can find bin F(B) 
and x 1 , ... , Xn in A such that 

n 

II l:xjbxj- all::::; c. 
j=1 

It follows from Theorem 2.2 that there are mutually orthogonal and 
mutually equivalent positive elements b1 = b, b2 , ... , bn in B. Find 
u1, ... , Un in B such that ujuj = b and Ujuj = bj, so that uiuj = 0 
when i -I- j. Put x = "L-7=1 UjXj. Then xx* belongs to B and x*x = 

"L-7=1 xjujujXj = "L-7= 1 xjbx1. Q.E.D. 

Proposition 2. 7. (Proposition 5.1 of [12]) Let A be a CJ-unital 
C* -algebra that has the property that any full, hereditary sub-C* -algebra 
of A is large if it admits no non-zero bounded trace. Then A is stable if 
and only if A has no non-zero bounded trace and no non-trivial unital 
quotient. 

Section 4 contains an example of a non-stable CJp-unital C* -algebra A 
without bounded traces and unital quotients. Consequently, this C* -al­
gebra has a full, hereditary sub-C* -algebra which is not large in A and 
which does not have a bounded trace. 

The example below is due to Ken Dykema. 

Example 2.8. The full free product K * K is not stable; hence the 
class of stable C* -algebras is not closed under forming free products. 

Indeed, K * K has a unital quotient. To see this, let { eij }?,}=1 be 
the standard matrix units forK. Observe that if Dis a C*-algebra and 
if h, Jz, ... is a sequence of mutually orthogonal and equivalent projec­
tions in D, then there is an embedding c.p: K-+ D such that c.p(e11 ) = IJ. 
Take the Cuntz algebra Oz with its two canonical generators s1 and Sz. 
Since every pair of non-zero projections in 0 2 are equivalent and any 
non-zero projection in 0 2 has countably many mutually orthogonal non­
zero sub-projections, there are embeddings c.p1 , c.p2 : K -+ 0 2 such that 
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<pl(eu) = s1si and <p2(eu) = s2s2. By the universal property of free 
products there is a *-homomorphism <p: KAK----> 02 whose restriction to 
the first and the second copy of K is <p1, respectively, <p2. Accordingly, 
1 = s1si + s2s2 belongs to the image of <p. Hence K * K has a unital 
quotient. 

§3. Stability of finite C*-algebras 

Blackadar proved in [1] that a (simple) AF-algebra is stable if and only 
if it admits no bounded trace. We shall in this section pursue gener­
alizations of this result. Let us first remark that any unital, properly 
infinite C* -algebra is traceless but not stable. One will therefore expect 
the two properties, being stable and being traceless, to be equivalent 
only for finite C* -algebras; and even here the equivalence does not hold 
without qualifications. 

As in [1] it is convenient to consider also a third property of a C*­
algebra that the scale of its K 0-group equals the entire positive cone. 
The positive cone and the scale of the K 0-group of a C* -algebra A are 
given by 

Ko(A)+ = {[p]o: p E P(A 0 K)}, 'Do(A) = {[p]o : p E P(A)}. 

It follows from Lemma 2.6 that V 0 (A) = K 0 (A)+ for all stable C*-alge­
bras. 

An axiomatic description of a scaled ordered Abelian group is given 
in the following: 

Definition 3.1. A triple (a, a+,~) will be called a scaled, or­
dered Abelian group if (a, a+) is an ordered Abelian group and~ is an 
upper directed, hereditary, full subset of a+' i.e.' 

(i) \fx1 ,x2 E ~ :Jx E ~:XI::; x, X2::; x, 
(ii) \fx E a+ \fy E ~ : X ::; y ::::} x E ~' 

(iii) \fx E a+ 3y E ~ 3k EN: x::; ky. 

A (ap-unital) C* -algebra A is said to be finite if it contains no infinite 
projections, and A is stably finite if Mn(A) is finite for every n. (A 
projection is infinite if it is Murray-von Neumann equivalent to a proper 
subprojection of itself.) If 

\fp, q E P(A 0 K) : [p]o = [q]o in Ko(A) =::::} p "' q, 

then A is said to have cancellation. We have 

sr(A) = 1 =::::} A has cancellation =::::} A is stably finite, 

for all C* -algebras A. 
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Lemma 3.2. Let A be a C* -algebra with the cancellation property, 
let p be a projection in A, and let g be an element in K 0 (A). 

(i) If 0 S g S [plo, then there is a projection q in A such that q ::::; p 
and [ql 0 =g. 

(ii) If A is up-unital, if [plo ::::; g, and if g belongs to D0 (A), then 
there is a projection q in A such that p::::; q and [ql 0 =g. 

Proof. (i). Find projections e, f in matrix algebras over A such 
that [elo = g and [flo = [Plo -g. Then [e EB flo = [plo and because A is 
assumed to have the cancellation property we conclude that e EB f ,...., p. 
Find a rectangular matrix v over A such that v*v = e EB f and vv* = p, 
and set q = v(e EB O)v*. Then q belongs to A, q::::; p, and [ql 0 =g. 

(ii). There is an approximate unit {Pn}~=l for A where each Pn 
is a projection dominating p. Now, [pnlo 2: g for some n. Indeed, 
take a projection q' in A such that g = [q'lo and choose n such that 
11(1- Pn)q'll < 1. Then q' ;) Pn, and so [pnlo 2: [q'lo =g. Use (i) to 
find a projection e in A such that e ::::; Pn- p and [elo = g- [pl 0 . The 
projection q = p + e will then be as desired. Q.E.D. 

Lemma 3.3. The triple (K0 (A), K 0 (A)+, D0 (A)) is a scaled, or­
dered, Abelian group if A is a up-unital C*-algebra with the cancellation 
property. 

Conversely, if A is a stable, Up-unital C* -algebra with the cancel­
lation property, and if ~ is a subset of K 0 (A)+ for which the triple 
(Ko(A), K 0 (A)+, ~) is a scaled, ordered, Abelian group, then there is a 
full, up-unital, hereditary sub-C* -algebra B of A such that 

(Ko(B), Ko(B)+, Do(B)) f:'! (Ko(A), Ko(A)+, ~). 

Proof. Assume that A is a Up-unital C* -algebra with the cancella­
tion property. Let {Pn}~=l be an approximate unit for A consisting of 
projections. (i) in Definition 3.1 holds as we can take x to be [pnlo for 
some large enough n. (ii) follows from Lemma 3.2 (i). If q is a projection 
in Mk(A), then q is equivalent to a projection in Mk(PnAPn) for some 
large enough n whence [ql 0 ::::; k[pnlo· Hence (iii) in Definition 3.1 holds. 

To prove the second part of the lemma, use (i), (ii), and (iii) in 
Definition 3.1 to find 0 ::::; x 1 ::::; x 2 ::::; x 3 ::::; ... in ~ such that for every g 

in K 0 (A)+ the following two conditions are satisfied: 

• g ::::; kxn for some positive integers k and n, and 
• g belongs to ~ if and only if g ::::; Xn for some n. 

Use Lemma 3.2 (ii) to find an increasing sequence {qn}~=l of projections 
in A such that [qnlo = Xn. Let B be the closure of u:=l qnAqn. Then 
B is a full up-unital sub-C* -algebra of A. By construction of B, if g 
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is an element in K 0 (A), then g belongs to ~ if and only if there is a 
projection e in B such that g = [e] 0 . It follows that the isomorphism 
K 0 (B)----+ K 0 (A) induced by the inclusion mapping B L..+ A maps Do(B) 
onto ~- Q.E.D. 

An ordered Abelian group (G, c+) is said to be weakly unperforated if 
ng > 0 implies g > 0 for every g in G and for every positive integer n. 
(Other texts have assigned other meanings to the term weak unperfora­
tion.) 

Proposition 3.4. Let A be a aP-unital C* -algebra with the can-
cellation property, and consider the following three conditions: 

(i) A is stable, 
(ii) Do(A) = Ko(A)+, 

(iii) A admits no bounded trace. 

Then 
(i) <===? (ii) ====? (iii), 

and (iii) =? (ii) if A is exact, K 0 (A) is weakly unperforated, and every 
ideal in A is a P -unital. 

Proof. The implication (i) =? (ii) holds for all C*-algebras (as noted 
above). The assumption that A is ap-unital implies that every non-zero, 
densely defined trace Ton A induces a non-zero state Ton K 0 (A), and 

IITII 2: sup{?(g) : g E Do(A)} = sup{?(g) : g E Ko(A)+} = =, 

when (ii) holds. Therefore (ii) =? (iii). 
(ii) =? (i): Assume that (ii) holds. Let p be a projection in A. Then 

2[p] 0 belongs to D0 (A), and so it follows from Lemma 3.2 (ii) that there 
is a projection q in A with p ::::; q and [q] 0 = 2[p] 0 . Using again that A 
has the cancellation property we find that q- p rv p. It now follows from 
Theorem 2.2 that A is stable. 

(iii) =? (ii): Assume next that K 0 (A) is weakly unperforated, each 
ideal in A is ap-unital, A is exact, and that (iii) holds. Take gin K 0 (A)+ 
and find a projection p in A® JC such that g = [p] 0 . Let I® JC be the 
closed two-sided ideal in A ® JC generated by p, and take an increasing 
approximate unit {Pn}~=l of projections for I. Let T be the compact 
set of traces T on I such that T(p) = 1. Then 

for every T in T (otherwise T would extend to a bounded trace on I and 
in turns to a bounded trace on A). 
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Each projection q in I (or in I® K) defines a continuous affine 
function q: T -+ JR., and {fn} is an increasing sequence of functions 
tending pointwise to infinity. Since Tis compact we have Pn > 1 for some 
n. In other words, T(p) < T(Pn) for all T in T. We infer that f([p] 0 ) < 
f([Pn]o) for all states f on (Ko(J), Ko(I)+) with f([p]o) = 1. Indeed, 
each such state f lifts to a quasitrace T on I (by [3]) and each quasitrace 
on an exact C*-algebra is a trace (by Haagerup's theorem in [10]). By 
Goodearl-Handelman's extension theorem (see [9]), k[p] 0 < k[pn]o in 
K 0 (I) (and hence in K 0 (A)) for some natural number k. Since K 0 (A) 
is weakly unperforated we can conclude that [p] 0 < [Pn]o. This entails 
that g = [p] 0 belongs to V 0 (A) using Lemma 3.3 and Definition 3.1 
(ii). Q.E.D. 

The three conditions of Proposition 3.4 are equivalent for all separable, 
exact, real rank zero C* -algebras with the cancellation property and 
with weakly unperforated K 0-group. This is a lot to ask for, but many 
commonly encountered C* -algebras satisfy these properties. For exam­
ple, all AF-algebras, and more generally, all AH-algebras of real rank 
zero and of slow dimension growth have these properties (see [8] and 
[2]). 

Stability of a finite C* -algebra can also be expressed in terms of 
properties of its multiplier algebra as in the proposition below from [17]. 
Recall that a unital C* -algebra is properly infinite if it contains two 
mutually orthogonal projections p, q such that 1 ~ p ~ q. 

Proposition 3.5. Let A be a C*-algebra and let M(A) denote its 
multiplier algebra. 

(i) If A is stable, then M(A) is properly infinite. 
(ii) If A is cr-unital, sr(A) = 1, and A is not stable, then M(A) is 

not properly infinite. 
(iii) If A is cr-unital, simple, sr(A) = 1, and A is not stable, then 

M(A) is finite. 

Part (i) is standard and follows from the fact that M(A) ®M(K) (max­
imal tensor product) maps into M(A ® K). Parts (i) and (ii) say that 
for cr-unital C* -algebras A of stable rank one, A is stable if and only if 
M(A) is properly infinite. 

If A is a unital, properly infinite C* -algebra, then M (A) = A, and 
hence M(A) is properly infinite. On the other hand, A is not stable. 
We can therefore not in general deduce that A is stable knowing that 
M(A) is properly infinite. 
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§4. Stability is not a stable property 

One often refers to a property of C* -algebras as being stable if it is 
preserved by passing from A to Mn(A) and vice versa for each n. Being 
stable is not a stable property in this sense, as shown by the author in 
[16] using techniques of Villadsen from [20]. 

We first state a result that limits how exotic this behavior can be: 

Proposition 4.1. (Proposition 2.1 of [16]) Let A be a o--unital 
C* -algebra. If Mn(A) is stable for some integer n, then Mk(A) is stable 
for all k 2': n. 

The proof uses Theorem 2.2. 
Let us indicate at the level of scaled, ordered Abelian groups why 

there should exists a non-stable C* -algebra A such that M2 (A) is stable: 

Example 4.2. (Example 3.4 of [16]) Let Z2 denote the group 

Z/2Z, and let z~=l denote the group of all sequences t = (t1 )~1 , with 

tj E Z2 and where t1 -=/= 0 for at most finitely many j. For each t E z~=) 
let d(t) be the number of elements in the set {j EN I t1 -=/= 0}. Set 

c+ = {(k,t) 1 d(t).:::; k}, ~ = {(k,t) 1 d(t) = k}. 

Then ( G, c+, ~) is a scaled, ordered Abelian group, cf. Definition 3.1. 

To see this, let ej E z~=) be the generator of the jth copy of Z 2 and set 
gj = (1, ej) E c+. Then 

(X) 

~ = U{x E c+ I X.:::; gl + g2 + ... + gj}, 
j=l 

and in this picture it is easy to see that ~ satisfies the axioms of Defini­
tion 3.1. 

The element (2, e1 ) belongs to c+ but not to~' and so~-=/= c+. 
If A is a C* -algebra whose scaled ordered K 0-group is isomorphic 

to ( G, c+, ~), then the scaled ordered K 0-group of M 2 (A) is isomorphic 
to ( G, c+' ~+~), where ~+~ is the set of elements X in c+ for which 
there exist Y1, Y2 in ~ such that x .:::; y 1 + y2 . In the given example, 
~+ ~ = c+) because if g = ( k, t) belongs to c+) then 

g.:::; g + g = (2k, 0) = 2(gl + g2 + ... + gk). 

If we can find a CJp-unital C* -algebra A with the cancellation prop­
erty such that the scaled ordered K 0-group of A is isomorphic to ( G, c+, 
~), then A will be non-stable and M 2 (A) will be stable by Proposi­
tion 3.4. The C* -algebra found in Theorem 4.3 below, corresponding to 
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n = 2, has the property that a subgroup of its K 0-group is isomorphic 
to (G,G+,E). 

For the formulation of the next result, recall that an AH-algebra is a C*­
algebra that is the inductive limit of a sequence of C* -algebras of the 
form p(C(X) ® JC)p, where X is a (not necessarily connected) compact 
Hausdorff space and pis a projection in C(X) ®/C. 

Theorem 4.3. (Theorem 5.3 and Corollary 4.2 of [16]) 
(i) For each natural number n there is a simple, separable, ap-unital 

AH-algebra A of stable rank one such that Mn(A) is stable but 
Mn-l(A) is not stable. 

(ii) For each natural number n there is continuous field C* -algebra 
A = (Ax)xEX, where X is a compact Hausdorff space and where 
each fiber Ax is isomorphic to /(, such that Mn-1 (A) is not stable 
and Mn(A) is stable. 

We indicate here the proof of part (ii) in the case where n = 2. As 
mentioned above, the proof follows ideas of Villadsen. 

Let Y = JRJP'2 be the real projective plane and recall that its coho­
mology (over Z) is given as: 

We have 

C(Y) = {! E C(IIJ)): f(z) = f( -z) for all z E 'll'}. 

Let ~0 be a complex line bundle over Y with non-trivial Euler class 
e(~o) in H 2 (Y; Z). This line bundle corresponds to the projection pin 
M 2 (C(Y)) given by 

·t ( r eit.Jr(l- r)) 
p(re')= e-it.Jr(l-r) 1-r ' r E [0, 1], t E [0, 2n]. 

Also, ~0 EB ~0 ~ ()2 , the trivial 2-dimensional complex bundle over Y. 
Put X = TI~=l Y and let 1r n : X ----> Y be the coordinate map onto 

the nth copy of Y. Put ~n = 1r~ ( ~o), so that each ~n is a complex line 
bundle over X. We have ~nEB ~n = n~(~o EB ~o) ~ ()2 for every n. An 
application of Kiinneth's theorem shows that 6 EB 6 EB · · · EB ~n has non­
trivial Euler class for every n. It follows that there for no n is a complex 
bundle 'TJ such that 6 EB 'TJ ~ 6 EB · • · EB ~n since that would entail 
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This cannot be because 02 EB 'T} has trivial Euler class, whereas ~1 EB 6 EB 
• · • EB ~n was constructed to have non-trivial Euler class. 

Choose mutually orthogonal projections p1 ,p2 , ... in C(X)®IC such 
that Pn corresponds to the line bundle ~n, and let e be a projection in 
C(X) ®IC corresponding to the trivial bundle 01 . Then 

(a) Pn EB Pn ,....., e EB e for all n, and 
(b) P1 is not equivalent to a sub-projection of P2 + P3 + · · · + Pn for 

anyn. 

Put Qn = P1 + · · · + Pn and set 

00 

A= U qn(C(X) ®IC)qn. 
n=1 

With Px: A --+ lC the restriction to A of the evaluation mapping C(X) Q9 

lC--+ lC at x, A gets the structure of a continuous field C*-algebra with 
base space X and with each fiber isomorphic to /C. 

By (b) above, there is no projection q in A such that q ,....., p 1 and 
q l_ p~, and it follows from (a) that M2(A) is stable. D 

We can now conclude that there are non-stable C* -algebras that do not 
have bounded traces or unital quotients: 

Corollary 4.4. There is a non-stable, non-unital, separable, nu­
clear, simple, up -unital C* -algebra A that admits no bounded traces. 

Proof. Take A as in Theorem 4.3 (i) corresponding ton = 2. Then 
A is non-stable, separable, nuclear, simple and up-unital. Since M 2 (A) 
is stable, A is not unital, nor can it have a bounded trace. Q.E.D. 

The corollary below (or a modification of it) was in [18] used to construct 
a simple, unital, finite C* -algebra B such that M2 (B) is infinite. Cuntz 
has shown that every infinite simple C* -algebra is properly infinite, so 
M2(B) is necessarily properly infinite. A non-simple unital, finite C*­
algebra A such that M2 (A) is infinite has been known to exist for a long 
time (see [6]), but in this (and related) examples, M 2 (A) is not properly 
infinite. 

Corollary 4.5. For each natural number n there is a unital C*­
algebra B such that Mn(B) is properly infinite, but Mk(B) is finite for 
k < n. 

Proof. Take A to be the C* -algebra constructed in Theorem 4.3 
(i). Let B = M(A) be the multiplier algebra of A. Then Mk(B) ~ 
M(Mk(A)). We can now apply Proposition 3.5 to conclude that B is as 
desired. Q.E.D. 
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The C* -algebra B constructed in Corollary 4.5 is not separable, not 
simple, and not nuclear. It is easy to make B separable: Take two 
isometries s1, s2 in Mn(B) such that s1si .l s2s;. Let sk(i,j) E B be 
the matrix entries for Sk, k = 1, 2, and let B 0 be the separable sub­
C*-algebra of B generated by the 2n2 elements sk(i,j). Then s 1 , s2 

belong to Mn(B0 ), and this makes Mn(B0 ) properly infinite. Being a 
sub-C*-algebra of the finite C*-algebra Mk(B), Mk(Bo) is finite when 
k < n. 

We can rephrase Corollary 4.5 as follows: There is a unital, properly 
infinite C* -algebra A such that (1-e )A(1-e) is finite for some projection 
e =1- 1 in A, and e can be chosen to have size 1/ n. The next corollary 
says that the example can be sharpened in that e can be chosen to have 
infinitesimal size. 

Corollary 4.6. There is a properly infinite, unital C* -algebra A 
and an embedding r.p: K ~ A such that for every non-zero projection e 
inK, the comer C*-algebra (1- r.p(e))A(1- r.p(e)) is finite. 

Proof. By Corollary 4.5 there is for each natural number n a unital 
C*-algebra Bn such that Mn(Bn) is properly infinite and Mn-l(Bn) is 
finite. Put 

00 00 

n=l n=l 

where IJ~=l Mn(Bn) is the C*-algebra of all bounded sequences {xn}~=l 
such that Xn E Mn(Bn), and L~=l Mn(Bn) is the ideal of those {xn}~=l 
for which llxnll ~ 0. Let 1r: IJ~=l Mn(Bn) ~A denote the quotient 
mapping. 

Since each Mn(Bn) is properly infinite, IJ~=l Mn(Bn) and hence A 
are properly infinite. 

Let { eij }i,j=1 be a set of matrix units for the compact operators K. 

For n inN and for 1 ::::; i,j ::::; n, let g}J) E Mn(C) <:;;; Mn(Bn) be the 
(i,j)th standard matrix unit (wrt. the natural embedding of Mn(C) into 

Mn(Bn) defined by the unit of Bn)· Set g;'j) = 0 if i or j is greater than 
n. Put 

Then {fij }i,j=1 are matrix units for K, and so there is a * -homomor­
phism r.p: K ~ A given by r.p( eij) = fij. We proceed to check that 
(1- r.p(e))A(1- r.p(e)) is finite for all non-zero projections e in K. It 
suffices to consider the case e = e11 . 

Suppose, to reach a contradiction, that (1- r.p(e11 ))A(1- r.p(e 11 )) is 
infinite and take a non-unitary isometry s in that algebra. Lift s to an 
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element X= (xl, x2, ... ) in rr~=l Mn(Bn)· Upon replacing each Xn by 
( (n)) ( (n)) h h ( (n)) ( 1 (n)) 1-g11 Xn 1-g11 wemayassumet ateac Xn = 1-g11 Xn -g11 . 
Since 

(1 (1) 1 (2) ) - 1 ( ) - ( * * ) 1r -g11 , -g11 , ... - -cp en -Jr x1x1,x2x2,···, 

we conclude that llx~Xn- (1- gi~l)ll---> 0, and so X~Xn is invertible (in 

the corner algebra (1- gi~))Mn(Bn)(1- gi~l)) for all sufficiently large 

n. As (1- gi~))Mn(Bn)(l- gi~l) ~ Mn-l(Bn) and this C*-algebra is 
finite, we can further conclude that Xn is invertible for all large enough 
n. But then s is invertible, a contradiction. Q.E.D. 

By an argument similar to the one outlined below Corollary 4.5, the C*­
algebra A in Corollary 4.6 can be taken to be separable. One cannot take 
A to be simple: any simple, unital C* -algebra that admits an embedding 
of K is properly infinite ( cf. [7]); and there are embed dings 

K '---' (1- e)K(1- e)'---' (1- cp(e))A(1- cp(e)). 

§5. Stability of infinite C* -algebras 

A (simple or non-simple) C* -algebra A is said to be purely infinite if it 
has no Abelian quotient and if for every pair of positive elements a, b 
in A, such that b belongs to the closed two-sided ideal generated by a, 
there is a sequence {xn} of elements in A with x~axn ---> b (see [14]). 
This notion was introduced by Cuntz for simple C* -algebras, and he 
defined, in agreement with the definition above, a simple C* -algebra 
to be purely infinite if each of its non-zero hereditary sub-C* -algebras 
contain an infinite projection. 

There are nice characterizations of stability for purely infinite C*­
algebras, and conversely, one can characterize pure infiniteness in terms 
of stability. 

We look first at the case of simple C* -algebras. Here we have the 
following classical result of of S. Zhang from [21] (that also can be derived 
from Theorem 2.2 using that every purely infinite, simple, a-unital C*­
algebra has an (increasing) approximate unit consisting of projections, 
and that for any pair of non-zero projections p, q in such a C* -algebra 
one hasp~ q): 

Proposition 5.1. (Zhang's Dichotomy) A a-unital, purely in­
finite, simple C* -algebra is either unital or stable. 

The result below is an observation of Kirchberg and it is a special case 
of Proposition 5.4 below for which we include a proof. 
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Proposition 5.2. A simple C* -algebra A is purely infinite if and 
only if every non-zero hereditary sub-C* -algebra of A contains a (non­
zero) stable sub-C* -algebra. 

Purely infinite C* -algebras (simple and non-simple alike) have no traces. 
The proposition below, proved in [14, Theorem 4.24] and which is an 
easy consequence of Proposition 2. 7, extends Zhang's Dichotomy. There 
are (non-simple) purely infinite C*-algebras that are neither stable nor 
unital. Take for example Co(IR) ® 02. 

Proposition 5.3. A (possibly non-simple) purely infinite, O"-unital 
C* -algebra is stable if and only if it has no unital quotients. 

George Elliott suggested that the following result holds: 

Proposition 5.4. Let A be a (possibly non-simple} separable C*­
algebra A. Then the following three conditions are equivalent: 

(i) A is purely infinite, 
(ii) every non-zero hereditary sub-C* -algebra of A contains a full, 

stable, hereditary sub-C* -algebra, 
(iii) every non-zero hereditary sub-C* -algebra of A contains a full, 

stable (not necessarily hereditary) sub-C* -algebra. 

Proof. (i) =? (ii): Let B be a non-zero hereditary sub-C* -algebra 
of A. Take a countable dense subset X of the unit ball of B+ and put 

Y = {(b -1/n)+: bE X, n EN}, 

cf. Remark 2.1. Let Y = {b1 , b2 , ... } be an enumeration of Y. We 
proceed to find mutually orthogonal positive elements c1, c2 , • • . in B 
such that Cj "' bj ( cf. Remark 2.1) and B n { c1, ... , Cn }j_ is full in B for 
every n. The set {cn,Cn+1, ... } will then be full in B for every natural 
number n. We construct the sequence { c,}~=l by induction and to do 
so it suffices to justify the first step, i.e., to find c1. 

By construction, b1 = (b - c)+ for some c > 0 and some positive 
contraction bin B. The element b is properly infinite because A is purely 
infinite and we can therefore find x, y in bAb with 

x*x = y*y = (b- c/2)+, xx* l_ yy*, 

(see [14, Lemma 3.2]). Let x = ulxl be the polar decomposition for x 
as in Remark 2.1. There is a positive contraction f in the hereditary 
sub-C*-algebra generated by x*x = (b-r:;/2)+ such that fb1 = bd = b1. 
Put c1 = ub1 u*, put e = ufu*, and let I be the closed two-sided ideal in 
B generated by Bn{cl}j_. Then c1 "'b1 , cf. Remark 2.1, and it remains 
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to show that I = B. Because yy* belongs to B n {cl}J. we conclude 
that y*y = (b- c/2)+ belongs to I. It follows that f and hence e belong 
to I. By construction, ec1 = c1e = c1 and so (1- e)a(1- e) belongs to 
B n { cl}J. for all a in B. Now, each element a in B belongs to the ideal 
generated by { eaa*e, (1- e)aa*(1- e)} and hence to I. This proves that 
I=B. 

Let D and Dn be hereditary sub-C* -algebras of B generated by 
c1, c2, ... , respectively, by c1, ... , Cn. Then D1 s;;; D2 s;;; · · · and D = 
U:'=1 Dn. Since D contains c1, c2 , ... , the closed two-sided ideal of B 
generated by D contains b1, b2 , ... , and this set generates B. Therefore 
D is full in B. We must also show that D is stable. This follows by an 
application of Theorem 2.2, but it can be seen more easily by first noting 
that D is purely infinite, being a hereditary sub-C* -algebra of A, and D 
has no unital quotient. Indeed, assume that J is a proper ideal in D and 
that D / J is unital. The unit of D jJ will then belong to Dn/ (J n Dn) 
for some sufficiently large n. In that case Ck belongs to J for all k > n; 
but Cn+l, Cn+2 , ••• is full in D (by construction of bn and en), and hence 
J = D, a contradiction. Proposition 5.3 now yields that D is stable. 

(ii) =? (iii) is trivial. 
(iii) =? (i): Suppose that (iii) holds. Take a positive element a 

in A and find a full, stable sub-C* -algebra D of aAa. Let c > 0 be 
given. Being separable and stable, D contains a sequence of mutually 
orthogonal and equivalent elements c1, c2 , . . . so that a belongs to the 
ideal generated c1. (To see this, write D = Do ® JC, take a strictly 
positive element c in D 0 and put Cj = c ® ejj.) Let Uj, j 2: 2, be partial 
isometries in A** implementing the equivalence between c1 and Cj so 
that ujcjuj = c1, cf. Remark 2.1, and such that uiui ..l Cj when i "f. j. 
Find nand elements x1, ... , Xn in D such that (a- c)+ = LJ=l xjclXj. 
Put 

n 

e = 2:= Cj, 
j=l 

2n 

j = 2:= Cj, 
j=n+l 

n 

X= 2:= UjXj, 
j=l 

n 

y = 2:= Un+jXj· 
j=l 

Then e and f are mutually orthogonal positive elements in aAa and 
x*ex = y* fy =(a- c)+· This shows that a is properly infinite, cf. [14, 
Proposition 3.3], and since a was arbitrary we conclude that A is purely 
infinite. Q.E.D. 

§6. Extensions of stable C* -algebras 

Extensions of two stable C* -algebras need not be stable as the following 
theorem, proved recently in [19], shows: 
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Theorem 6.1. There is an extension 

0 ~ C(Z) ® lC ~A~ lC ~ 0 

of C*-algebras, where Z = f]~=l 8 2 , such that A is non-stable. More­
over, A can be chosen to be ap-unital. 

The proof of Theorem 6.1 is somewhat similar to the proof of Theo­
rem 4.3. Some special cases of the extension problem for stable C* -al­
gebras remain open: 

Question 6.2. Given a split-exact sequence of (separable) C* -al­
gebras 

1r 

o~J~A~B~o 
A 

Does it follow that A is stable if I and B are known to be stable'? 

Question 6.3. Given two stable closed two-sided ideals I and J 
in a (separable) C* -algebra A. Does it follow that their sum I + J is 
stable? 

If I and J are stable ideals in a C* -algebra A, then I+ J is an extension 
of two stable ideals: 

o~I~I+J~(I+J)fi~o. 

(Note that (I+ J)ji ~ Jj(I n J) is stable being (isomorphic) to a 
quotient of the stable C* -algebra J.) 

Given a partially ordered set (P, ~). An element x in P is called 
maximal if x ~ y implies x = y for all y in X. An element x is called a 
greatest element if y ~ x for every y in X. A greatest element is also a 
maximal element (but not conversely); a partially ordered set can have 
at most one greatest element, but it can have several maximal elements. 

Proposition 6.4. Every separable C* -algebra has a maximal sta­
ble ideal (i.e., a stable ideal not properly contained in any other stable 
ideal). 

Proof. Use Zorn's Lemma to choose a maximal totally ordered fam­
ily {IihEn of stable ideals in A (counting 0 as a stable ideal) and set 
I = UiEll h Then I is an ideal in A and I is not properly contained in 
any stable ideal in A by maximality of the set {IihEll· It follows from 
Corollary 2.3 (i) that I is stable. Q.E.D. 

Question 6.5. Does every (separable) C* -algebra A have a great­
est stable ideal (i.e., a stable ideal that contains all other stable ideals)'? 
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It can be shown that the canonical ideal C(Z) 0 K is a greatest stable 
ideal in the C* -algebra A from Theorem 6.1. Notice that the quotient 
by this ideal is stable. Hence the quotient of a separable C* -algebra by 
its greatest stable ideal (whenever it exists) can have stable ideals. 

It follows from Proposition 6.4 (and its proof) that any stable ideal 
of a separable C* -algebra is contained in a maximal stable ideal. We 
can therefore rephrase Question 6.5 as follows: Does every (separable) 
C* -algebra have a unique maximal stable ideal? 

For separable C* -algebras, Question 6.5 is equivalent to Question 6.3. 
It is trivial that Question 6.3 will have affirmative answer if Question 6.5 
has affirmative answer. To see the converse direction, let A be a separa­
ble C*-algebra, and let {IihEn be the collection of all stable ideals in A 
(including 0). If Question 6.3 has affirmative answer, then Ii1 + Ii2 be­
longs to this collection for all ii, i2 E ll. It follows that I = uiEll Ii is an 
ideal in A, and every stable ideal in A is contained in I. Corollary 2.3 (i) 
shows that I is stable. 

Consider the continuous field C* -algebra A = (Ax)xEX constructed in 
Theorem 4.3 (ii). Each open subset U of X defines an ideal Au = 
(Ax)xEU of A consisting of those section a= (ax) in A such that ax= 0 
whenever x ¢. U; and every ideal in A is of this form. In the given case, 
each fiber Ax is isomorphic to K and hence is stable, but no ideal Au is 
stable - roughly because each non-empty open subset U of X contains 
an open cylinder set: 

We give in Propositions 6.8 and 6.12 below a partial positive answer to 
Question 6.2. 

Lemma 6.6. Let A be a C* -algebra and let I be a closed two­
sided ideal in A. If I and A/ I have no {non-trivial) unital quotients, 
then neither has A. 

Proof. Suppose, to reach a contradiction, that J is a proper closed 
two-sided ideal in A such that A/ J is unital. Then A/ (I+ J) is a unital 
quotient of A/ I and therefore I + J = A. Hence 

I "'I+J A 
--=--= 
InJ J J' 

so that I /(In J) is unital. This entails that In J = I. It follows that 
I~ J and consequently J =A, a contradiction. Q.E.D. 
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Lemma 6. 7. Let A be a C* -algebra, let I be a closed two-sided 
ideal in A, and assume that neither I nor A/ I have (non-trivial) unital 
quotients. Then for each a in A, the C* -algebra (1 - a )I(1 - a*) is full 
in I and has no (non-trivial) unital quotients. 

Proof. Let A denote the unitization of A. Let J be the closed 
two-sided ideal in A generated by 1 - a, let Ia be the closed two-sided 
ideal in A generated by (1 - a)A(1- a*), and let Ia be the closed two­
sided ideal in I generated by (1- a)I(1- a*). Then Ia = J n A and 
I a = J n I = I a n I. Let 7r: A---+ A/ J be the quotient mapping. Then 
n(a) = n(1), and so n(A) is unital. The kernel of the restriction of 
1r to A is equal to Ia. Hence A/ Ia is unital. By Lemma 6.6 and the 
assumption that I and A/ I have no unital quotients we conclude that 
Ia =A. It follows that Ia =I so that (1- a)I(1- a*) is full in I. 

Assume next, to reach a contradiction, that La is a proper ideal in 
(1- a)I(1- a*) such that (1- a)I(1- a*)/ La is unital. Let L be the 
closed two-sided ideal in I generated by La so that 

La= (1- a)I(1- a*) n L. 

Let n: A---+ A/L be the quotient mapping. Find e in (1- a)I(1- a*) 
such that n(e) is the unit for (1- a)I(1- a*)/ La, and put y = e+a-ea. 
Then y belongs to A and 

(1- y)I(1- y*) = (1- e)(1- a)I(1- a*)(1- e*) <;;; L, 

contradicting the first part of the lemma saying that (1- y)I(1- y*) is 
full in I. Q.E.D. 

Proposition 6.8. Let I be a stable, closed, two-sided ideal in a 
separable C* -algebra A, and suppose that A/ I is stable. Then the fol­
lowing three conditions are equivalent: 

(i) A is stable, 
(ii) for each positive contraction a in A, the hereditary sub-C* -algebra 

(1- a)I(1- a) is large in I (cf. Definition 2.4}, 
(iii) ( 1 - a) I ( 1 - a) is stable for each positive contraction a in A. 

Proof. (i) =? (iii). If A is stable, then so is (1- a)A(1- a) by 
Corollary 2.3 (iii). Hence (1- a)I(1- a) is stable by Corollary 2.3 (ii) 
being an ideal in a stable C* -algebra. 

(iii) =? (ii) follows from Lemmas 2.6 and 6.7. 
(ii) =? (i). Suppose that (ii) holds. To show that A is stable we use 

Theorem 2.2 and find to each a in F(A) a positive element a 1 in A such 
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that a _L a 1 and a;:) a 1 (cf. Remark 2.1). Let 1r: A___, A/I denote the 
quotient mapping. 

There is a positive contractions e in F(A) such that ea = a = ae. 
Set f = 1r(e). Since A/ I is stable and f belongs to F(A/ I) there is 
f' in F(A/ I) with f rv f' and f _L f' (by Theorem 2.2). Because 
f' = (1- f)f'(1- f) we get 

f' E (1- f)A/ I(1- f)= 1r((1- e)A(1- e)), 

and we can therefore find a positive contraction e' in (1- e)A(1- e) 
such that 1r(e') = f'. Since 1r(e') "' 1r(e) there is a positive element c 
in I such that (e- 1/3)+;:) e' EB c, cf. [14, Lemma 4.2]. It follows that 
(e- 2/3)+ ;:) (e'- 8)+ EB (c- 8)+ for some 8 > 0, cf. [15, Proposition 
2.4]. Put c0 = (c- 8)+ E F(I) and e~ = (e'- 8)+ E F(A). Then a;:) 
(e-2/3)+;:) e~EBc0 . Let g be a positive contraction in A such that ge~ = 
e~g = e~. By assumption (and by the remarks below Definition 2.4) there 
is a positive element c1 in (1- e- g)I(1- e- g) such that c0 "' c1 . 

Now, a, e~, and c1 are mutually orthogonal, positive elements in A, and 

We can therefore take a1 to be e~ + c1 . Q.E.D. 

Lemma 6.9. Let A be a C* -algebra, and let I be a stable, closed 
two-sided ideal in A such that the quotient A/ I does not have (non­
trivial) unital quotients. Let a be a positive contraction in A. Then 
(1- a)I(1- a) admits no non-zero bounded trace. 

Proof. Assume to reach a contradiction that T is a bounded (posi­
tive) trace on the hereditary sub-C*-algebra (1- a)I(1- a). This hered­
itary sub-C* -algebra is full in I by Lemma 6. 7. We can therefore extend 
T to an unbounded (because I is stable) densely defined trace T on I. 
Now, I is an ideal in the unitization A of A, and we can extend T to 
a lower semi-continuous trace function 7: A+ ___, [0, oo]. Let J be the 

closed two-sided ideal in A generated by all positive elements b in A with 
r(b) < oo. A positive element bin A will then belong to J if and only if 
r((b- c-)+)< oo for all c- > 0. 

Now, I is contained in J because T is densely defined on I. Since 
T is not bounded on I we cannot have T(1) < oo; thus J =f A. The 
assumption that Tis bounded on (1- a)I(1- a) leads to T(1- a) < oo, 
and hence 1- a belongs to J. 

Let 'ljJ: A ___, A/ J and 1r: A/ I ___, A/ J be the quotient mappings. 
Then '1j;(1) = 'lj;(a) because 1- a belongs to J, and it follows that 'lj;(A) 
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is unital. Since 1r(Aj I) = 'lj!(A), A/ I has a unital quotient contrary to 
our assumptions. Q.E.D. 

To state Proposition 6.12 in general terms the following definition is 
convenient. 

Definition 6.10. A C* -algebra I is called regular if every full, 
hereditary sub-C* -algebra of I, that has no unital quotients and no bounded 
traces, is stable 

It follows from Corollary 4.4 that not all C*-algebras are regular. On 
the other hand, many C* -algebras are regular: 

Lemma 6.11. A C*-algebra I is regular 

(i) if I is an exact C* -algebra with the cancellation property, RR(I) 
= 0, and K0 (I) is weakly unperforated, or 

(ii) if I is purely infinite. 

Proof. (i). Let I0 be a full, hereditary sub-C*-algebra of I. Then 
I 0 is O'p-unital because I has real rank zero. The cancellation property, 
exactness, and having weakly unperforated Ko-group are all properties 
that pass to full hereditary sub-C* -algebras, so I 0 has these properties. 
Proposition 3.4 therefore yields that I 0 is stable if I 0 has no bounded 
trace. 

(ii). Every hereditary sub-C* -algebra of a purely infinite C* -algebra 
is again purely infinite ([14, Proposition 4.17]) and hence is stable if it 
has no unital quotient, cf. Proposition 5.3. Q.E.D. 

Proposition 6.12. Let 

o~I~A~B~o 

be a short exact sequence of separable C* -algebras and suppose that I is 
regular. Then A is stable if and only if I and B are stable. 

All AF-algebras, and more generally allAH-algebras of real rank zero 
and of slow dimension growth, are regular (see the comments below 
Proposition 3.4). In particular, for every extension 0 ---+ JC---+ A---+ B---+ 
0 of separable C* -algebras one has that A is stable if and only if B is 
stable, a fact that implicitly is contained in the BDF-paper [5]. 

Proof. If A is stable, then so are I and A/ I (by Corollary 2.3 (ii)). 
Assume now that I and A/ I are stable and that I is regular. As 
(1- a)I(l- a) is a full hereditary sub-C*-algebra of I that has no uni­
tal quotient (by Lemma 6.7) and no bounded traces (by Lemma 6.9) 
for every positive contraction a in A, the assumption that I is regular 
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implies that (1- a)I(l- a) is stable. Proposition 6.8 then yields that 
A is stable. Q.E.D. 
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