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Direct limit decomposition for C*-algebras 
of minimal diffeomorphisms 

Qing Lin and N. Christopher Phillips 

This article outlines the proof that the crossed product C* (Z, M, h) 
of a compact smooth manifold M by a minimal diffeomorphism h: M ___, 
M is isomorphic to a direct limit of subhomogeneous C* -algebras be­
longing to a tractable class. This result is motivated by the Elliott 
classification program for simple nuclear C*-algebras [9], and the obser­
vation that the known classification theorems in the stably finite case 
mostly apply to certain kinds of direct limits of sub homogeneous C*­
algebras, or at least to C*-algebras with related structural conditions. 
(See Section 1.) This theorem is a generalization, in a sense, of direct 
limit decompositions for crossed products by minimal homeomorphisms 
of the Cantor set (Section 2 of [32]), for the irrational rotation algebras 
([10]), and for some higher dimensional noncommutative toruses ([13], 
[14], [24], and [5]). (In [32], only a local approximation result is stated, 
but the C*-algebras involved are semiprojective.) Our theorem is not a 
generalization in the strict sense for several reasons; see the discussion 
in Section 1. 

There are four sections. In the first, we state the theorem and discuss 
some consequences and expected consequences. In the second section, we 
describe the basic construction in our proof, a modified Rokhlin tower, 
and show how recursive subhomogeneous algebras appear naturally in 
our context. The third section describes how to prove local approxima­
tion by recursive subhomogeneous algebras, a weak form of the main 
theorem. In Section 4, we give an outline of how to use the methods of 
Section 3 to obtain the direct limit decomposition. 

This paper is based on a talk given by the second author at the US­
Japan Seminar on Operator Algebras and Applications (Fukuoka, June 
1999), which roughly covered Sections 2 and 3, and on a talk given by 
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the second author at the 28th Canadian Annual Symposium on Operator 
Algebras (Toronto, June 2000), which roughly covered Sections 1 and 2. 
At the time of the first talk, only the local approximation result described 
in Section 3 had been proved. We refer to the earlier survey paper [25] 
for earlier parts of the story; this paper reports the success of the project 
described in Section 6 there. 

The first author would like to thank George Elliott, John Phillips, 
and Ian Putnam for funding him at the University of Victoria where 
some of this work was carried out. He would particularly like to acknowl­
edge his great gratitude to Ian Putnam for many interesting discussions. 
The second author would like to thank Larry Brown, Marius Dadarlat, 
George Elliott, and Ian Putnam for useful discussions and email corre­
spondence. Some of the work reported here was carried out during a 
sabbatical year at Purdue University, and he would like to thank that 
institution for its hospitality. 

§1. The main theorem, consequences, and conjectured conse­
quences 

The main theorem is as follows. Undefined terminology is discussed 
after the statement. 

Theorem 1.1. Let M be a connected compact smooth manifold 
with dim(M) = d > 0, and let h: M----+ M be a minimal diffeomorphism. 
Then there exists an increasing sequence 

Ao c A1 c A2 c ·· · c C*(Z,M,h) 

of C*-subalgebras of C*(Z, M, h) such that 

U~=o An= C*(Z, M, h) 

and such that each An has a separable recursive subhomogeneous de­
composition with topological dimension at most d and strong covering 
number at most d(d + 2). 

A recursive subhomogeneous algebra (a C*-algebra with a recur­
sive subhomogeneous decomposition) is a particularly tractable kind of 
subhomogeneous C*-algebra. See [29], [30], and [25], and also see the 
consequences below. We will explain in Section 2 how recursive subho­
mogeneous algebras arise, and we will recall (informally) the definition 
there (after Theorem 2.7). A finite direct sum 

l 

Ef)c(xk> Mn(k)) 

k=O 
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of (trivial) homogeneous C*-algebras is a special case of a recursive sub­
homogeneous algebra, and the topological dimension is simply maxo::;k:S! 
dim(Xk)· (Dimension is taken to be covering dimension; see Definition 
1.6.7 of [15].) The condition in the theorem that An have topological 
dimension at most d for all n thus ensures that the resulting direct limit 
decomposition C*(Z, M, h)~ ~An has no dimension growth. 

In general, it is not possible to find a representation as a direct 
limit (with no dimension growth) of direct sums of corners of trivial 
homogeneous C* -algebras. A simple direct limit of this sort must even 
be approximately divisible in the sense of [4], by Theorem 2.1 of [11]. 
However, a crossed product by a minimal diffeomorphism may have no 
nontrivial projections (Corollary 3 and Example 4 of Section 5 of [7]). 

We will not define the strong covering number here, although some 
discussion will be given after Theorem 3.1. We have included it in the 
conclusion because the proof of Theorem 3.1 suggests that a bound on 
the strong covering number might be necessary for some classification 
results. 

The requirement that we have a diffeomorphism of a manifold is con­
nected with the appearance of a condition on the strong covering number 
in the hypotheses of Theorem 3.1. This also will be discussed after that 
theorem. We certainly expect that the theorem will be true for mini­
mal homeomorphisms of finite dimensional compact metric spaces (even, 
presumably, compact metric spaces with infinite covering dimension). 

We point out here that our theorem does not directly imply the 
Elliott-Evans direct limit representation for the irrational rotation al­
gebras [10]. Our theorem gives a representation of an irrational rota­
tion algebra as a direct limit of recursive subhomogeneous algebras with 
topological dimension at most 1, while the Elliott-Evans theorem gives 
a representation as a direct limit of direct sums of homogeneous C*­
algebras with topological dimension at most 1 (in fact, circle algebras). 
We do not recover the results of [13], [14], and [24] (for certain higher 
dimensional noncommutative toruses), not only because the algebras in 
our direct system are more complicated but also because not all the alge­
bras considered there are even crossed products by diffeomorphisms. We 
also do not recover the direct limit decomposition for crossed products 
by minimal homeomorphisms of the Cantor set (see Section 2 of [32] for 
the local approximation result), because the Cantor set is not a mani­
fold. (Our methods do specialize to this case, but that would be silly, 
since our argument is much more complicated.) 

Theorem 1.1 has the following consequences for crossed products by 
minimal diffeomorphisms. These consequences all hold for an arbitrary 
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simple unital direct limit of recursive subhomogeneous algebras, assum­
ing no dimension growth and that the maps of the system are unital 
and injective. (Most don't require the full strength of these hypothe­
ses, but all require some restriction on dimension growth. None require 
any hypotheses on the strong covering number.) The proofs are in [30], 
and the statements can be found in Section 4 of [25] (except for the 
last one, which is actually a consequence of stable rank one). In all of 
these, M is a connected compact smooth manifold with dim(M) > 0, 
and h : M ---> M is a minimal diffeomorphism. 

Corollary 1.2. (Theorem 3.6 of [30].) The algebra C*(Z, M, h) 
has stable rank one in the sense of [33]. That is, the invertible group 
inv(C*(Z, M, h)) is dense in C*(Z, M, h). 

Corollary 1.3. (Theorem 2.2 of [30].) The projections in 

00 

Moo(C*(Z, M, h))= U Mn(C*(Z, M, h)) 
n=l 

satisfy cancellation. That is, if e, p, q E Moo ( C* (Z, M, h)) are projec­
tions, and if pEEl e rv q EEl e, then p rv q. 

Corollary 1.4. (Theorem 2.3 of [30].) The algebra C*(Z, M, h) 
satisfies Blackadar's Second Fundamental Comparability Question ([2], 
1.3.1). That is, if p, q E M 00 (C*(Z, M, h)) are projections, and if T(p) < 
T(q) for every normalized trace Ton C*(Z, M, h), then p ;::i q. 

Corollary 1.5. (Theorem2.4of[30].) ThegroupK0 (C*(Z,M,h)) 
is unperforated for the strict order. That is, if TJ E K 0 (C*(Z, M, h)) and 
if there is n > 0 such that nry > 0, then TJ > 0. 

(In the simple case, this is the same as saying that K 0 (C*(Z, M, h)) 
is weakly unperforated in the sense of 2.1 of [8].) 

Corollary 1.6. (Theorem 2.1 of [30].) The canonical map 

U(C*(Z, M, h))/U0 (C*(Z, M, h))---> K 1 (C*(Z, M, h)) 

is an isomorphism. 

A small part of these results could already be obtained using the 
weaker (and much simpler) methods described in Sections 1 and 5 of 
[25]. It had already been shown that the order on K 0 (C*(Z, M, h)) is 
determined by traces (a weak form of Corollary 1.4), and hence that 
Ko(C*(Z, M, h)) is unperforated for the strict order (Corollary 1.5). 
Also, surjectivity in Corollary 1.6 (but not injectivity) was known. 
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The criterion in [3], for when a simple direct limit of direct sums of 
trivial homogeneous C* -algebras with slow dimension growth has real 
rank zero, is known to fail for simple direct limits of recursive subhomo­
geneous algebras with no dimension growth. (Indeed, it even fails for 
crossed products by minimal diffeomorphisms; see Example 5. 7 of [25].) 
Nevertheless, it appears likely that a suitable strengthening of the con­
dition will be equivalent to real rank zero for such direct limits, and that 
the proof will not be difficult. Specializing (for simplicity) to the case of 
a unique trace, we obtain the following, which we state as a conjecture. 

Conjecture 1. 7. Let M be a connected compact smooth mani­
fold with dim(M) > 0, and let h: M-'--> M be a uniquely ergodic minimal 
diffeomorphism. Let 

T: C*(Z, M, h)-'--> c 

be the trace induced by the unique invariant probability measure. Then 
C*(Z, M, h) has real rank zero ([6]) if and only if r*(K0 (C*(Z, M, h))) 
is dense in R. 

For methods for computing the ranges of traces on the K-theory of 
crossed products by Z, we refer to [16]. 

It might not be terribly difficult to prove that if a simple C* -algebra 
A is a direct limit of a system of recursive subhomogeneous algebras 
with no dimension growth, and possibly also assuming that the maps of 
the system are unital and injective, then real rank zero implies tracial 
rank zero in the sense of H. Lin [20]. If so, then the following result of 
H. Lin (Theorem 3.9 of [23]) implies classifiability: 

Theorem 1.8. Suppose A and B are separable simple unital C*­
algebras with tracial rank zero in the sense of [20]. Suppose that each 
has local approximation by subalgebras with bounded dimensions of 
irreducible representations. That is, for every finite subset F C A and 
every E: > 0, there is a C*-subalgebra DC A and an integer N such that 
every element of F is within E: of an element of D and every irreducible 
representation of D has dimension at most N; and similarly for B. Then 

implies A ~ B. 

In particular, one would have a proof of the following conjecture: 

Conjecture 1.9. Let M be a connected compact smooth mani­
fold with dim(M) > 0, and let h: M-'--> M be a uniquely ergodic minimal 
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diffeomorphism. Let 

T: C*(Z,M,h) ...... c 

be the trace induced by the unique invariant probability measure, and 
assume that -r*(K0 (C*(Z, M, h))) is dense in R. Then the crossed prod­
uct C*-algebra C*(Z, M, h) is classifiable. 

We will not give a precise definition of "classifiable" here. 
We note that H. Lin's classification theorem has no hypotheses in­

volving slow dimension growth, and does not even require a direct limit 
representation; only local approximation is needed, and the condition 
on the approximating algebras is weak. (Indeed, H. Lin has other clas­
sification theorems which don't even require local approximation, but 
do require further restrictions on the K-theory.) However, at least with 
our current state of knowledge, the direct limit representation in The­
orem 1.1, including the no dimension growth condition, seems to be 
needed to verify the other hypotheses of Theorem 1.8. For example, 
simple direct limits that don't have slow dimension growth need not 
even have stable rank one [35]. 

Since C*(Z, M, h) always has stable rank one, if it doesn't have real 
rank zero then it has real rank one. However, most of the currently 
known general classification theorems apply only to algebras with many 
projections, and those that don't are much too restrictive in other ways 
(such as assuming trivial K-theory). In particular, the C*-algebras cov­
ered by [17] and. [12] are approximately divisible (as discussed above), 
and the theorems of H. Lin (see [21] and [22]) require a finite value of 
the tracial rank, the definition of which again requires the existence of 
many nontrivial projections. However, as mentioned above, the example 
of Connes shows that C*(Z, M, h) may have no nontrivial projections. 
There is a classification theorem [19] for a special class of direct limits 
which includes simple C*-algebras with no nontrivial projections, but 
the building blocks there are much more special than those appearing 
in our theorem. 

We are hopeful that the approach of [17] and [12], which now covers 
simple direct limits, with no dimension growth, of direct sums of homo­
geneous C*-algebras (actually, a slightly larger class), can be generalized 
to cover simple direct limits, with no dimension growth, of recursive sub­
homogeneous algebras, possibly with the added restriction of no growth 
of the strong covering number. One reason for optimism (as well as 
for the belief that conditions on the strong covering number might be 
necessary) is the successful generalization of exponential length results 
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from the case of trivial homogeneous C*-algebras to recursive subhomo­
geneous algebras; see Theorem 3.1 below. The related results for the 
trivial homogeneous case (see Theorems 3.3 and 4.5 of [28]) depended 
heavily on the existence of many projections, but in the proof of The­
orem 3.1 we had to learn to handle situations with no nontrivial pro­
jections at all. However, we do not know whether Theorem 3.1 is even 
true without the condition on the strong covering number. (See the dis­
cussion after the statement of that theorem.) We included the bound 
on the strong covering number in Theorem 1.1 because of the possibil­
ity that it might be necessary for our suggested approach to proving a 
classification result, or perhaps even for a classification result to hold. 

In any case, a generalization of the methods of [17] and [12] is likely 
to be very difficult. Possibly the situation will be improved by a gener­
alization of H. Lin's methods that is strong enough to apply to simple 
C*-algebras which contain no nontrivial projections. 

§2. Modified Rokhlin towers 

Throughout this section, M is a compact metric space and h: M ---+ 

M is a minimal homeomorphism. (The requirement that M be a mani­
fold will not be needed until the next section.) We let u denote the imple­
menting unitary in C*(Z, M, h), so that ufu* = f o h-1 for f E C(M). 

We start with a definition. 

Definition 2.1. Let Y c M, and let x E Y. The first return time 
..\y(x) (or ..\(x) if Y is understood) of x toY is the smallest integer n ~ 1 
such that hn(x) E Y. We set ..\(x) = oo if no such n exists. 

The following result is well known in the area, and is easily proved: 

Lemma 2.2. If int(Y) =/= 0, then supxEY ..\(x) < oo. 

Let Y C Mwithint(Y) =/= 0. Let n(O) < n(1) < · · · < n(l) (or, ifthe 
dependence on Y must be made explicit, ny(O) < ny(1) < · · · < ny(ly)) 
be the distinct values of ..\(x) for x E Y. The Rokhlin tower based on a 
subset Y C M with int(Y) =/= 0 consists of the partition 

l 

Y= U{xEY:..\(x)=n(k)} 
k=O 

of Y (the sets here are the base sets), and the corresponding partition 

l n(k)-l 

M=U U h1 ({xEY:..\(x)=n(k)}) 
k=O j=O 



114 Q. Lin and N. C. Phillips 

of M. Note that h acts like a cyclic shift except on the top space 

of each "tower" 

hn(k)-1 ({x E Y: .A(x) = n(k)}) 

n(k)-1 
U hi({xEY:.A(x)=n(k)}). 
j=O 

Actually, for our purposes it is more convenient to use the partition 

l n(k) 
M= U U hi({x E Y: .A(x) =n(k)}). 

k=Oj=l 

Note that 

l 

Y = U hn(k)({x E Y: .A(x) = n(k)}), 
k=O 

so that h now acts like a cyclic shift on the towers, except on Y itself. 
We will be interested in arbitrarily small choices for Y, in particular 

with arbitrarily small diameter and for which the smallest first return 
time ny(O) is arbitrarily large. If M is totally disconnected, then we 
may choose Y to be both closed and open. In this case, the sets 

Yk = {x E Y: .A(x) = n(k)} 

are all closed, and there is a composite homomorphism 'Yo given by 

l n(k) l 

C(M)----> ffiffiC(hi(Yk))----=--. ffiC(Ykt(k), 
k=O j=l k=O 

which is in fact an isomorphism. The formula is 

See [31] for the exploitation of this idea. 
In order to have a C*-algebraically sensible codomain for ')'o, we 

must insist that the sets Yk be closed. However, the spaces M we are 
interested in are connected, so we are forced to choose 

Yk = {x E Y: .A(x) = n(k)} 
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instead. The sets hJ (Yk) are no longer disjoint (although they certainly 
cover M), so our map 

l 

'/0: C(M) --+ EB C(Ykt(k)' 
k=O 

while still injective, is no longer an isomorphism. 
Next, define 

by 

and define 

0 0 
1 0 
0 1 

0 0 
0 0 

l 

0 0 1 
0 0 0 
0 0 0 

1 0 0 
0 1 0 

s =(so, s1, ... , sz) E E9 C (Yk, Mn(k)). 
k=O 

Then s is unitary. Identifying C(Yk)n(k) with the diagonal matrices 
in C (Yk, Mn(k)) in the obvious way, one can check that iff E C(M) 
vanishes on Y, then 

'lo(uju*) ='loU o h-1 ) = S'fo(f)s*. 

The calculation uses the fact that 

l 

Y = u hn(k)(Yk), 

k=O 

and in fact our choice to start our towers at h(Yk) rather than at Yk was 
made to have this formula work correctly when f vanishes on Y (rather 
than when f vanishes on h- 1 (Y)). 

This relation allows us to extend '/o to the following subalgebra of 
C*(Z,M,h): 
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Definition 2.3. For any closed subset Y C M, we define 

A(Y) = C* (C(M), uC0 (M \ Y)) c C*(Z, M, h), 

the C*-subalgebra of C*(Z, M, h) generated by C(M) and uCo(M \ Y). 
Here, we identify C0 (M \ Y) in the obvious way with the subalgebra of 
C(M) consisting of those functions vanishing on Y. We use the analo­
gous convention throughout the paper. 

Proposition 2.4. Suppose M is a compact metric space, and let 
h: M ----> M be a minimal homeomorphism. Let Y C M be closed with 
int(Y) 1- 0. Then there exists a unique homomorphism 

l 

'YY: A(Y)----> EB C (Yk, Mn(k)) 
k=O 

such that iff E C(M), then 

Jiy(f)k = diag (f o hlyk, f o h2 lyk, ... , j o hn(k)IYk) 

and iff E C0 (M \ Y), then 

Moreover, 'YY is unital and injective. 

We now introduce a slight twist on these ideas. 

Definition 2.5. Let Y c M be closed with int(Y) 1- 0. Let 
S C int(Y0 ) be closed. Define 

ex(S) = {h(S), h2 (S), ... , hn(o)(S) }, 

which is a collection of disjoint closed subsets of M. Define C(M)ex(S) 
to be the set of all f E C(M) such that f is constant on T for every 
T E ex( S). (The constant value is allowed to depend on T.) Define 
A(Y, S) to be the C*-subalgebra of C*(Z, M, h) given by 

A(Y,S) = C* (C(M)ex(S), u [Co(M\ Y) n C(M)ex(s)]) c A(Y). 

As we will see below, the point of this definition is that (when 
int(S) 1- 0) we can construct useful unitaries in C*(Z, M, h) which 
commute with (most of) A(Y, S). (See Step 9 in the proof outline in 
Section 3.) 
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It is not obvious what the image 

l 

i'Y(A(Y,S)) c ffic (Yk,Mn(k)) 
k=O 

looks like, and working with it directly threatens to be very complicated. 
Fortunately, the essential properties can be abstracted in a tractable 
way; the result is what we call a recursive sub homogeneous algebra. ·(The 
definition of a recursive subhomogeneous algebra was in fact invented for 
exactly this purpose.) First, we recall the notion of a pullback. 

Definition 2.6. Let A and B be C*-algebras, and let a third C*­
algebra C and homomorphisms r.p: A ---+ C and 'lj;: B ---+ C be given. The 
pullback (also called fibered product or restricted direct sum) is 

If the maps r.p and 'lj; are understood, we will write A EElc B. 

Theorem 2. 7. Let M be a compact metric space, and let h: M ---+ 

M be a minimal homeomorphism. Let Y C M be closed with int(Y) =/= 
0. Let S C int(Yo) be closed. Then there exist closed subsets 

Y1°) c 8Yk cYk 

for 1 :::; k :::; l, and homomorphisms 'Pk and 'l/Jk (with 'l/Jk being just 
the restriction map) such that the image !Y(A(Y, S)) is equal to the 
subalgebra 

[· · · [[c (Yo, Mn(o)) 8 EElc(y1(oJ ,Mn(lJ),cp,,.p1 C (Y1, Mn(l))] 

EElc(Y?) ,Mn(2 J),cp2 ,.p2 C (Y2, Mn(2))] · · ·] 

EElc(y?l ,Mn(L) ),cpz ,,Pz C (Yi' Mn(l)) 

of ffi~=O C (Yk, Mn(k)). Here, by analogy with Definition 2.5, we set 

C (Yo, Mn(o)) 8 = {! E C (Yo, Mn(o)) : f is constant on S}. 

A C*-algebra given as an iterated pullback as in the conclusion of 
this theorem, in which the algebras have the form C (Xk,Mn(k)), the 
maps 'Pk are unital, and the maps 'l/Jk are unital and surjective, is called 
a recursive subhomogeneous algebra. We refer to Section 2 of [25] for 
a more careful definition, for some useful associated terminology, and 
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examples; to Section 3 of [25] for a discussion of the proof of Theorem 2. 7 
(in the case S = 0); and to Section 4 of [25] for a discussion of why 
the concept of a recursive subhomogeneous decomposition is useful and 
what can be done with it. We recall here that the topological dimension 
is the largest dimension dim(Xk)· Unfortunately, it depends on the 
particular decomposition; see Example 2.9 of [25]. We will always have 
a decomposition in mind, usually coming from Theorem 2.7. 

The next difficulty we face is that the unitary 

l 

s =(so, s1, ... , sz) E ffi C (Yk, Mn(k)) 
k=O 

is not in the image of A(Y). (When M is totally disconnected and Y 
is both closed and open, there is no problem: the image of /'Y is all of 
EB~=O C (Yk, Mn(k)) .) The cure for this problem is the following lemma, 
which however requires that we look at two nested subsets Y and Z, 
along with the associated subalgebras A(Y) and A( Z). 

Lemma 2.8. Let M be a compact metric space with finite cov­
ering dimension d, and let h: M ___, M be a minimal homeomorphism. 
Let Y C M be closed with int(Y) -=f. 0. Then every point of int(Y) 
has a neighborhood U C int(Y) such that for every closed set Z C U 
with int(Z) -=f. 0, and every closed subsetS C int(Z0 ), there is a unitary 
v E A(Z, S) such that vf = uf in C*(Z, M, h) whenever f E C(M) 
vanishes on Y. 

The condition on U used in the proof is that there are at least 
max (1, ~d) images of U under positive powers hr of h, with r less than 
the smallest first return time of U to itself, which are contained in int(Y). 
Under this condition, the first step in the construction of vis an approx­
imate polar decomposition, in the recursive subhomogeneous algebra 
!'z(A(Z, S)), of ug for a suitable function g E C(M)exz(S) which, in 
particular, is required to be equal to 1 on M \ int(Y) and to vanish on 
z. 

It isn't in general true that int(Z) -=f. 0 implies int(Zo) -=f. 0, al­
though it happens that the sets we use in the diffeomorphism case au­
tomatically have int(Zk) -=f. 0 for all k. 

To sum up: We have what might be called the "basic construction" 
for weak approximation in C*(Z, M, h) (not to be confused with the 
basic construction of subfactor theory), namely a triple (Y, Z, v) (or a 
quadruple (Y, Z, S, v)) consisting of closed subsets with 

S C int(Z0 ) C Z C int(Y) C Y C M 
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(or, if Sis not present, at least int(Z) =/:- 0), and a unitary v E A(Z,S) 
(A(Z) if S is not present) such that vf = uf in C*(Z, M, h) whenever 
f E C(M) vanishes on Y. We say weak approximation here because we 
have not approximated u in norm; rather, we have a unitary v E A(Z, S) 
which "acts like u" (that is, like h) on most of the space M. In particular, 
this construction is not the same as what we call a "basic approximation" 
in [26]. The basic approximation, of which we describe an easier form in 
the next section, does permit the norm approximation of u, but requires 
two nested basic constructions and an additional unitary. 

§3. An outline of the proof of local approximation 

In this section, we outline the proof of a weak form of Theorem 1.1, 
namely that if h: M -+ M is a minimal diffeomorphism of a connected 
compact smooth manifold M with dim(M) > 0, and ifF c C*(Z, M, h) 
is a finite set and r:: > 0, then there is a recursive subhomogeneous 
algebra A C C*(Z, M, h) which approximately contains F to within r::. 
This result requires most of the machinery needed for the proof of the 
full direct limit decomposition result. 

The crucial ingredient not yet mentioned is related to Loring's ver­
sion [27] of Berg's technique [1]. This method (described in Step 7 be­
low) requires a priori bounds on the lengths of paths connecting certain 
elements in the unitary groups of hereditary subalgebras of recursive 
subhomogeneous algebras. This is an exponential length problem in 
the sense of [34]. We therefore begin by stating our exponential length 
result; we require some terminology. 

First, if A is a unital C* -algebra and B C A is a hereditary subal­
gebra, we define the unitary group U(B) to be 

U(B) = {u E U(A): u 1 E B}. 

(This is the same as a common definition in terms of the unitization B+ 
of B, namely 

U(B) = { u E U(B+): u- 1 E B}. 

Moreover, if B is actually a corner, then this group can be canonically 
identified with the usual unitary group of B.) Further, let 

A= [· · · [ [ C (Xo, Mn(o)) ffic(xlo) ,Mn(lJ) C (X1, Mn(l)) J 

ffic(x(O) M ) c(x2,Mn(2))] ···] ffic(x(O) M ) C(Xz,Mn(l)) 
2 ' n(2) l ' n(l) 
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be a recursive subhomogeneous algebra. If B C A is a hereditary sub­
algebra and x E Xk for some k, then we define rankx(B) to be the rank 
of the identity in the image of B in the finite dimensional C*-algebra 
Mn(k) under the map evx given by point evaluation at X E xk. If 
v E U(A), then we say that det(v) = 1 if det(evx(v)) = 1 for all k and 
all x E Xk. (Although determinants are not well defined in recursive 
subhomogeneous algebras, one can show that the condition det( v) = 1 
is well defined.) 

Theorem 3.1. Let d, d' 2: 0 be integers. Then there is an integer 
R such that the following holds. 

Let A be a recursive subhomogeneous algebra which has a separable 
recursive subhomogeneous decomposition with topological dimension at 
most d and strong covering number at most d'. Let B C A be a hered­
itary subalgebra such that rankx(B) 2: R for every x in the total space 
of A. Let v E U(B) satisfy det(v) = 1 and be connected to 1 by a 
path t r---+ Vt in U(B) such that det( Vt) = 1 for all t. Then there is a 
continuous path from v to 1 in U(B) with length less than 47r(d' + 2). 

At this point, we should give a brief indication of the significance of 
the strong covering number. We explained in Section 4 of [25] how to 
use relative versions of the subprojection and cancellation theorems for 
C(X, Mn) to obtain analogous theorems for recursive subhomogeneous 
algebras. Theorem 3.1, however, is an exponential length theorem, and, 
at a crucial step in its proof, we have only been able to prove an approxi­
mate relative theorem for C(X, Mn)· (See Theorem 6.2 of [25].) Roughly 
speaking, errors accumulate everywhere that the recursive subhomoge­
neous decomposition of A specifies that two algebras be glued together. 
The strong covering number gives a limit on how often a neighborhood 
of a particular point in one of the base spaces is involved in such a gluing. 
It is a strengthened version of the most obvious notion (the "covering 
number"); the more obvious version proved to be technically too weak. 

The definition of the strong covering number is somewhat compli­
cated, and is omitted; instead, we illustrate with an example. Let X be 
a compact metric space, let E be a locally trivial continuous field over X 
with fiber Mn, and let r(E) be the corresponding section algebra. Then 
any finite cover X 0 , X 1 , ... , Xl of X by closed subsets, such that Elxk 
is trivial for each k, induces a recursive subhomogeneous decomposition 
of r(E). (See the proof of Proposition 1.7 of [29] and Example 2.8 of 
[25].) It can be shown that the strong covering number of this recur­
sive subhomogeneous decomposition is the order (as in Definition 1.6.6 
of [15]) of the cover of X by the sets X 0 , X 1 , ... , X1, that is, the largest 
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number d such that there are distinct r 0 , r 1 , ... , rd for which 

Note the parallel with the definition of the covering dimension (Defini­
tion 1.6. 7 of [15]). 

At this point, we can explain how we use the condition that we have 
a diffeomorphism of a manifold. Let Y C M satisfy int(Y) -j. 0. Our 
method for bounding the strong covering number requires that there be 
an integer m such that, for any m + 1 distinct integers r 0 , r 1 , ... , r m E Z, 
we have 

m n hrj (8Y) = 0. 

j=O 

When h is a minimal diffeomorphism of a compact manifold, this is 
arranged as follows. First, require that 8Y be a smooth submanifold (of 
codimension 1). Then perturb 8Y by an arbitrarily small amount, so 
that all finite sets 

of distinct images of 8Y under powers of h are jointly mutually trans­
verse. This means, first, that hr0 (8Y) and hr1 (8Y) are transverse (see 
pages 28-30 of [18]) whenever r0 -j. r 1 , so that hro ( 8Y) n hr1 ( 8Y) is 
a smooth submanifold (of codimension 2; see the theorem on page 30 
of [18]); that hr2 ( 8Y) and hro ( 8Y) n hr1 ( 8Y) are transverse whenever 
r0 , r 1 , and r 2 are all distinct, so that hro ( 8Y) n hr1 ( 8Y) n hr2 ( 8Y) is a 
smooth submanifold (of codimension 3); etc. These conditions guarantee 
that the intersection of any dim(M)+ 1 distinct images of 8Y under pow­
ers of h will be empty. (Note, however, that the resulting upper bound 
on the strong covering number turns out to be dim(M)(dim(M) + 2), 
not dim(M). The situation is much more complicated than for section 
algebras of locally trivial continuous fields.) We thus have: 

Proposition 3.2. Let M be a connected compact smooth man­
ifold with dim(M) = d > 0, and let h: M ---> M be a minimal diffeo­
morphism. For every x E M and open U C M with x E U, there is 
a closed set Y C M with x E int(Y) C Y C U such that for every 
closed set S c int(Y0 ) (notation as in Section 2) which is homeomor­
phic to a closed ball in R d, the subalgebra A(Y, S) satisfies the following 
properties: 
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• The recursive subhomogeneous decomposition of Theorem 2. 7 has 
topological dimension equal to d. 

• The decomposition of Theorem 2. 7 has strong covering number 
at most d(d + 2) . 

• In the notation of Theorem 2.7, we have y~O) c ayk for all k. 

We hope that if h is a minimal homeomorphism of a finite dimen­
sional compact metric space, then one might be able to substitute a 
dimension theory argument for transversality in the above. We have not 
yet had time to look into this. What to do about infinite dimensional 
compact metric spaces (such as ( 8 1 ) z) is less clear. 

Now we start the outline of the proof of local approximation. We 
fix a connected compact smooth manifold M with dim(M) > 0 and a 
minimal diffeomorphism h : M --+ M. 

Step 1. It suffices to prove the following: Let 

h, h, ... , fm E C(M) c C*(Z, M, h) 

be a finite collection of functions, and let E > 0. Then there is a re­
cursive subhomogeneous algebra A C C*(Z, M, h) which approximately 
contains {h,f2, ... ,fm,u} to within E. (The reason is that C(M) and 
u generate C*(Z, M, h) as a C*-algebra.) 

Step 2. Choose 8 > 0 so small that the functions h, h, ... , fm 
are all approximately constant to within ~E on every subset of M with 
diameter less than 8. Choose an integer R following Theorem 3.1 for 
the number d = dim(M) and for d' = d(d + 2), and also with R > 
max (1, ~d). Choose an integer N so large that 

47T(d' + 2) 
N <E. 

Step 3. Choose a quadruple (YCll, zCll, S, v1 ), as described at the 
end of the previous section, consisting of closed subsets with 

0 =f. int(S) c S c int (Zb1)) c zC1l c int (YCll) c y(l) c M 

and a unitary v1 E A (zCl), S) such that vd = uf in C*(Z, M, h) when­

ever f E C(M) vanishes on y(l). We also require that the conclusions 
of Proposition 3.2 be satisfied. Let n 1 (0) < n 1 (1) < · · · < n 1 (h) be 
the first return times nyc1J(O) < nyC1>(1) < · · · < ny(l) (ly(lJ). We then 
further require that the sets involved be so small that: 

• The sets y(l), h- 1 (YCll), ... , h-N (YCll) are pairwise disjoint 
(whence n 1 (0) > N). 
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• The sets Y(1), h-1 (Y<1)), ... , h-N (Y<1)) all have diameter less 
than 8. 

• The sets h(S), h2 (S), ... , hn1 ( 0 )(S) all have diameter less than 
8. 

• Each ofthe sets h(S), h2 (S), ... , hn1 ( 0 )(S) is either contained in 
one of y(1), h-1 (Y(1)), ... , h-N (Y(1)) or is disjoint from all of 
them. 

(Note that we chooseS after having chosen y(1) .) 

Step 4. Choose a triple (Y<2)' z<2)' V2)' as described at the end of 
the previous section, consisting of closed subsets with 

0 =/= int (z<2)) c z<2) c int (Y<2)) c Y( 2 ) c int(S) 

and a unitary v2 E A (z<2), S) such that v2f = uf in C*(Z, M, h) when­
ever f E C(M) vanishes on Y(2). Again, we also require that the conclu­
sions of Proposition 3.2 be satisfied. Let n 2 (0) < n 2 (1) < · · · < n 2 (l2 ) be 
the first return times ny(2)(0) < ny(2)(1) < · · · < ny(2) (ly(2}). Let B c 
A (z<2)) be the hereditary subalgebra generated by Co (int (Y(1))) c 
C(M). We then further require that z<2 ) be so small that 'Yz<2l (B), 
as a hereditary subalgebra of the recursive subhomogeneous algebra 
'Yz<2l (A(z<2))), satisfies rankxbz<2l(B)) ~ R for all x (in the sense 
discussed before Theorem 3.1). (This is accomplished by requiring that 
there be at least R images of z<2 ) under positive powers hr of h, with 
r < n 2 (0), which are contained in int (Y<1)).) 

Step 5. Observe that the relations Vjf = uf in C*(Z, M, h) when­
ever f E C(M) vanishes on y(j) imply that vtv2f = f whenever f E 

C(M) vanishes on Y(1). From this one can deduce that vtv2 E U(B). 
With the help of the condition rankx bz<2l (B)) ~max (1, ~d), it is pos­
sible to alter the choice of v2 so that, in addition to the conditions weal­
ready have, also z = 'Yz<2l (vtv2 ) E U bzc2) (B)) satisfies det(z) = 1 and 
is connected to 1 by a path t f-+ Zt in U bz<2l (B)) such that det(zt) = 1 
for all t. (For the meaning of these conditions, see the discussion before 
Theorem 3.1.) Then also v2v1 = (vtv2 )* satisfies these properties. 

Step 6. Apply Theorem 3.1 to find a path in U(B) from vtv2 to 
1 with total length less than 47r(d' + 2). Using a suitable subdivision of 
the domain of this path, find unitaries 

such that 

47r(d' + 2) 
llwj- Wj-1ll < N < c 
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for 1 S:. j S:. N. 
Step 7. Define 

. ( -I ) ( -2 2) ( -N N) W = Wo U WI U U W2U · · · U W NU . 

Then w is a unitary in C*(Z, M, h) with the following properties: 

(1) w commutes with every f E C(M) which is constant on each of 
the sets 

(2) w commutes with uv2. 
(3) llwvi w* - v2ll < c. 

We will say something below about how these results follow. Some of 
the ideas are related to calculations in Section 6 of [31] and Section 2 of 
[32]. 

Step 8. Set 

D=C*(uv2,A(zCI),S))cC*(Z,M,h) and A=wDw*. 

We show that A approximately contains JI, h, ... , fm, and u to 
within c. 

Let TI, T2, ... , Tr be the sets y(l), h-I (Y(l)) , ... , h-N (Y(l)), to-
gether with all of the sets h(S), h2(S), ... , hn1 (o) (S) which are not con­
tained in any of the images of y(I) listed above. By the construction in 
Step (3), the sets T1. T2 , .•• , Tr are pairwise disjoint and have diameter 
less than 8. The functions JI, h, ... , fm are all approximately constant 
to within ~con every subset of M with diameter less than 8 (by Step 2), 
so there exist functions 9I,92, ... ,9m E C(M) which are actually con­
stant on the sets TI, T2, ... , Tr and satisfy II 9i - h II < c for 1 S:. i S:. m. 
These functions are then constant on all of 

Now 9i E A(z(l), S) CD and (by Step 7 (1)) w commutes with 
91.92, · · · ,9m, so 9I,92, ... ,9m E wDw* =A. 

We also have w ( uv2 · VI) w* E A. Using the relations w ( uv2) w* = 
uv2 and llwviw*- v2ll < c from Step 7, we get 

So u is approximately in A. 



C*-algebras of minimal diffeomorphisms 125 

Step 9. The algebra D, and hence A = wDw*, is a recursive 
subhomogeneous algebra with topological dimension d and strong cov­
ering number at most d' = d(d + 2) (that is, no more complicated than 
A (z<1), S)). This step is where Sis used in an essential way. 

Let's assume for simplicity that sp ( uv~) is the whole unit circle 8 1 . 

Then it turns out that D is a pullback 

The map 'lj;: C ( S\ Mn 1 (o)) ----+ Mn 1 (o) is evaluation at 1 E 8 1 . The map 
r.p: A (z(l), S) ----+ Mn1 (o) is the evaluation on the set S in the recursive 
subhomogeneous decomposition described in Theorem 2. 7. (This is re­
ally a point evaluation, because the elements of A ( z(l), S) are constant 
on S.) The unitary uv~ corresponds to the pair 

(1, diag (z, 1, ... , 1)) 

in which z is the identity function ( f--+ (in C(S1 ). 

The key relation here is that uv~ acts as 1 off h(S). Thus, if f E 

C(M) vanishes on h(S), then (uv~) f = f (uv~) = f. If in addition f 
vanishes on z(l), then (uv~) (uf) = (uf) (uv~) = uf. These relations 
imply, for example, that uv~ commutes with all elements of Ker( r.p) c 
A(z(l), S). 

The verification of the isomorphism with the pullback requires lots of 
functional calculus. For example, one needs to define suitable homomor­
phisms with domain D = C* ( uv~, A ( z(l), S)), or at least determine 
somehow all the elements of this C* -algebra. We omit further discus­
sion, except to note that it is much easier to demonstrate that there is 
an exact sequence 

as should certainly happen for a pullback with surjective maps. This 
exact sequence implies (using Theorem 2.16 of [29]) that Dis a recursive 
subhomogeneous algebra with topological dimension d, but doesn't give 
anything about the strong covering number. 

This finishes the outline of the proof of local approximation. 
Let us now return to the explanation of Step 7. We first explain 

the significance of w, in a greatly simplified context-so much simplified 
that it does not satisfy the hypotheses of this section. Then we give an 
outline of how to prove the claimed properties in our case. 
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For the simple context, let us assume that 

n 

z(ll = y(l) and M = U hj (z(ll). 
j=l 

(We ignore S, since it is not relevant for this step.) In this case, note 

that Zb1l = zCll, that n = n 1(0), and that /zC'l induces an isomorphism 
A (zCll) ~ Mn (C (zCll)), under which functions constant on each of 
the sets 

are sent to the diagonal matrices in Mn ( C ( zCll)), the last N + 1 diag­
onal entries of which are constants. (Our simplifying assumptions imply 
that h-j (zCll) = hn-j (zCll).) 

Let us further assume we have an h-invariant Borel probability 
measure JL on M, and that C*(Z, M, h) is represented faithfully on 
L2 (M, JL) with C(M) acting as multiplication operators and u acting 
as u~ = ~ o h -l. There is a direct sum decomposition 

n 

L 2 (M,JL) = ffiL 2 (hj (zCll)), 
j=l 

which determines an identification of L(L2 (M,JL)) with Mn(L2 (zCll)) 
which is compatible in a suitable sense with the isomorphism /zCl). Fur­
ther let ej be the projection onto L 2 (hj (zC 1l)). With respect to this 
identification, we can write 

U= 

0 0 
1 0 
0 1 

0 0 
0 0 

0 0 u(o) 

0 0 0 
0 0 0 

1 0 
0 1 

0 
0 

with uC 0l E e1 L(L2 (M,JL))en. (Note that it is equal to the shift matrix 
so considered in Section 2, except for the upper right corner.) Similarly, 
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0 0 
1 0 
0 1 

Vj = 

0 0 
0 0 

0 0 
0 0 
0 0 

1 0 
0 1 

(0) 
vj 

0 
0 

0 
0 
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Again, the difference is in the the upper right corner, but note that v1 

and V2 are now in A ( zC2)). 

In this situation, we let w~ = eowieo, and identify w as 

w = diag (1, 1, ... , 1, w'rv, w'rv_ 1 , ... , w~, wb). 

(We have used the fact that n 2': N + 1.) Now Condition (1) of Step 7 
follows from the fact that w is block diagonal and that functions in 
C(M) constant on each of the sets 

are diagonal matrices, the last N + 1 diagonal entries of which are con­
stants. For Condition (2) of Step 7, we calculate: 

*-d· ((0)((0))*11 1) uv2 - 1ag u v2 , , , ... , . 

This element clearly commutes with w. (The worst case is n = N + 1; 
then, recall that WN = 1.) For Condition (3) of Step 7, we estimate 
instead llw- v2wvJ'II· (This is easily seen to be equivalent.) A compu­
tation shows that 

* _ d. ( (0) I ( (0)) * 1 1 1 I I I) v2wv1 - 1ag v2 w0 v 1 , , ... , , , wN, ... , w2, w 1 

= diag (1, 1, ... , 1, 1, w'rv, ... , w;, wD. 

(The entries of w have all been moved one space down the diagonal. In 
addition, the new first entry has been modified. Since w 0 = v~v1 , we 

have w~ = ( v~O) r viO).) Therefore, using w N = 1, we get 



128 Q. Lin and N. C. Phillips 

In the actual situation, we work inside C*(Z, M, h). Let B C 

C*(Z, M, h) be the hereditary subalgebra of Step 4. For the matrix 
decomposition, we substitute the fact that the hereditary subalgebras 

are orthogonal in C*(Z, M, h). This follows from the fact that the sets 

are pairwise disjoint. As a consequence, the factors 

Wo, U-1w1u, U-2 w2u2 , ... , U-NWNUN 

of w, which are in the unitary groups of these hereditary subalgebras, all 
commute with each other, and also with any function f E C(M) which 
is constant on each of the sets 

When proving that w commutes with uv2, it helps to show first that 

for 0 ~ j ~ N. In fact, this is true if Wj is replaced by any b E 
C*(Z,M,h) which differs by a scalar from an element of B. For the 
verification of the norm estimate in Condition (3) of Step 7, one needs 
in addition the following fact, which is the analog of the estimate on the 
difference of diagonal matrices above: if Co, cl, ... , eN are orthogonal 
hereditary subalgebras in a C* -algebra A, and if Yi, Zj E U ( Cj) for 
0 ~ j ~ N, then 

IIYoYl · · · YN - zoz1 · · · ZN II = o!f"·~N IIYi - Zj II· 
_J_ 

§4. Direct limit decomposition 

We give here a very brief approximate outline of the modifications 
necessary to achieve the direct limit decomposition of Theorem 1.1, as 
opposed to merely local approximation. The previous section describes 
the construction of a (simple version of) a single "basic approximation", 
and the problem is to arrange successively better ones so as to obtain 
an increasing sequence of subalgebras of C*(Z, M, h). As will be clear, 
putting everything together requires complicated notation, and there are 
interactions between the modifications described below which we do not 
have room to discuss here. 
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First, the unitary corresponding tow in each new basic approxima­
tion must commute with all elements of the subalgebra A ( z(2)) from the 
previous one. This requires two changes. The old subalgebra A (Z(2)) 

must be replaced by A (Z(2), T) for some suitable T, and the new set 
y(l) must be contained in T. Also, the sequence 

v~v1 = wo, w1, ... , WN-1, WN = 1 E U(B) 

used to construct the new w must now consist of constant subsequences, 
the lengths of which are certain return times associated with the old 
z(2)_ 

Second, having constructed one approximating subalgebra, say A0 , 

the next one, say A1, will be slightly "twisted" with respect to A0 , 

even with the adjustment above. To straighten this out, it is necessary 
to modify A0 by replacing v2 in the construction by a nearby unitary. 
Then, after constructing A2 , one must further modify the unitaries v2 

associated with both A1 and A0 , etc. Enough control must be main­
tained that the sequences of modifications converge to unitaries not too 
far from the original choices. 

Third, even apart from the "twisting" referred to in the previous 
paragraph, the use of the subsets S leads to problems with the expected 
inclusion relations between subalgebras. Suppose, for example, we have 
closed subsets Y and Z, satisfying the conclusions of Proposition 3.2, 
with associated first return times 

ny(O) < ny(l) < · · · < ny(ly) and nz(O) < nz(l) < · · · < nz(lz), 

and with corresponding subsets 

Yo, Y1. ... , Yiy c Y and Zo, Z1, ... , Zzz c Z. 

Suppose that 

0 =f. S C int(Zo) C Z C int(Yo) 

(in particular, Z C Y), and that nz(O) > ny(O) (this is the relevant 
situation, because arbitrarily good approximations require arbitrarily 
large values of the smallest first return time). We have A(Y) C A(Z), 
because every function in C(M) which vanishes on Y also vanishes on Z. 
However, it is not true that A(Y, S) C A(Z, S). In fact, C(M) n A(Z, S) 
consists of those functions in C ( M) that are constant on the sets 
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C(M) n A(Y, S) consists of those functions in C(M) that are constant 
on the sets 

h(S), h2 (S), ... , hny(o)(S), 

and ny(O) < nz(O), so C(M) n A(Y, S) £ C(M) n A(Z, S). 
To fix this problem, it is necessary to replace the single set S in the 

construction of A(Y, S) by a whole family of subsets. One must require 
that whenever hJ(S) C Y, with 0 < j < nz(O), then there is k with 
hj (S) C int(Yk)· Then one uses the collection of all such hj (S), rather 
than just S itself, with the obvious modification to account for the fact 
that they are no longer all subsets of int(Yo). The resulting subalgebra 
is a proper subalgebra of A(Y, S). 

In the inductive construction of an increasing sequence of approx­
imating subalgebras of C*(Z, M, h), this works out as follows. First, 

one constructs an approximating algebra A6°). Then one constructs an 

approximating algebra Ai1), incorporating the first two modifications 
discussed above, and using a sufficiently small set S. Next, one replaces 

A6°) by a smaller algebra A61), using the approach outlined in the pre­
vious paragraph on the algebra A (z(l), S) appearing in the definition 

of A6°), but with the set S from the construction of Ai1). That done, 

one constructs A~2). Then it is necessary to go back and replace both 

Ai1) and A61 ) (in that order) by smaller subalgebras Ai2 ) and A62), in a 
similar way. This procedure continues for all n. 

There are two problems. First, n~=n A~k) must still be large enough 

to approximate not too badly the finite set that the first algebra A~n) was 

constructed to approximate. Second, n;::n A~k) must still be a recur­
sive subhomogeneous algebra with topological dimension at most d and 
strong covering number at most d(d + 2). Since subalgebras of recursive 
subhomogeneous algebras need not even be recursive subhomogeneous 
algebras (see Example 3.6 of [29]), this requires work. The construction 
of the subalgebra A(Y, S) can be viewed as identifying the subset S of Y 
to a point. By the time the inductive process of the previous paragraph 
is complete, one must identify infinitely many subsets of Y to (distinct) 
points, in such a way that the resulting space is not only Hausdorff (there 
is trouble even here) but in fact has dimension no greater than dim(Y). 
The details are quite messy. 
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