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Abstract.

We give a brief review on Weyl manifolds and thier Poincaré-
Cartan classes. A Weyl manifold is a Weyl algebra bundle over a
symplectic manifold which is a geometrization of deformation quan-
tization and the Poincaré-Cartan class is a complete invariant of Weyl
manifolds.

We introduce a concept of a contact Weyl manifold, which
is a contact algebra bundle over a symplectic manifold containing
a Weyl manifold as a subbundle. We show the existence of contact
Weyl manifolds for a symplectic manifold.

We construct a connection on a contact Weyl manifold which
gives a Fedosov connection when it is restricted to a Weyl mani-
fold. With the help of the connection, we show that the cohomology
class given by the curvature of Fedosov connection coincides with the
Poincaré-Cartan class.

§1. Introduction

A contact manifold is embedded into a symplectic manifold compat-
ible with the symplectic structure (cf. the concept of symplectification
and contactification in [AG], §2). However, as to the converse direc-
tion, we have some obstruction as follows. A linear symplectic manifold
(R?,0p) is embedded into a canonical contact manifold (R2"+1,6,)
compatible with the contact structure dfy = o0, but in general an arbi-
trary symplectic manifold is not necessarily embedded into a contact
manifold in a compatible way. For such an embedding, we need at least
a vanishing cohomology class of the symplectic structure.
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In this paper, we show in quantum world the embedding is always
possible, namely, a quantized symplectic manifold is embedded into
a quantized contact manifold. Here a quantized symplectic manifold
means a Weyl manifold defined by Omori-Maeda-Yoshioka- ((OMY1]),
which is a Weyl algebra bundle over a symplectic manifold, and a quan-
tized contact manifold means a contact Weyl manifold, a contact alge-
bra bundle over a symplectic manifold containing the Weyl manifold as
a subbundle.

The purpose of this paper is two fold. First we give a brief review on
Weyl manifold and its Poincaré-Cartan class, which are given in [OMY1]
and in Omori-Maeda-Miyazaki-Yoshioka [OMMY1], respectively.

The second purpose is to give a concept of contact Weyl manifold,
and to show the existence of contact Weyl manifold. We also construct a
connection on a contact Weyl manifold, which is an extension of Fedosov
connection. Using this connection, we show the Poincaré-Cartan class
is equal to the cohomology class of the curvature of Fedosov connection.

The Weyl algebra W is the space of all formal power series of ele-
ments v, Z*, ..., Z?" with coefficients in R having the Moyal type prod- -
uct ¥ (see equation (2.3) below). The algebra W is equipped with the
formal power series topology under which (W, %) is a complete topolog-
ical algebra.

In a word, a Weyl manifold W), is a locally trivial fiber bundle
over a symplectic manifold (M, o) with fibers consisting of the Weyl
algebra W and the transition functions of local trivializations are given
by Weyl diffeomorphisms (see Definition 2.9). Locally trivial bundles
can be regarded as quantized Darboux charts and Weyl diffeomorphisms
can be regarded as quantized symplectomorhpisms. In this way, a Weyl
manifold Wy, is considered as a quantization of symplectic manifold.

It is shown in Theorem 6.1 in [OMY1], a star product is made
from sections of a Weyl manifold and conversely a Weyl manifold is
constructed by a star product. In this sense a Weyl manifold Wy, is
also viewed as a geometrization of deformation quantization. It is also
proved that every symplectic manifold has Weyl manifolds over itself,
which yields the existence of deformation quantization for a symplectic
manifold (see, Theorem A and Theorem B in [OMY1]).

For constructing Wjps, one needs to handle the center of W. In
order to extract information of the center, the contact algebra is intro-
duced in [OMY1]. The contact algebra C is a Lie algebra given as the
direct sum C = R7 @ W, where 7 is an element such that [r,v] = 202,

[r,ZY = vZ'. In [OMMY1], by means of the contact algebra, it is also
shown that the equivalence classes of the bundle W, have a bijection
to the set of all formal power series in v? with coefficients in H?(M) of
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the form
c=[o]+v%cr+ - + vy + - € HAM)[[W?].

The element c¢(Wys) € H2(M)[[v?]] corresponding to W, is called a
Poincaré-Cartan class of W)y.

In this paper, we will establish the following. Using a Cech 2-cocycle
giving the class ¢(Wa) we extend the transition functions of Wy, to
gluing maps of locally trivial contact algebra bundles and construct a
contact algebra bundle Cjs over M with fiber C in §3. The bundle Cy
contains Wy, as a subbundle and will be called a contact Weyl manifold,
and then we regard Cps as a contactification of a Weyl manifold Wj,.
Thus we have

Theorem A. For every symplectic manifold there exists a contact
Weyl manifold Cyy.

This theorem means that in quantum world contactification is always
possible for a symplectic manifold.

On the other hand, we can take a closed 2-form Qs € A%2(M)[[v?]]
such that [Qu] = c(Wa) € H2(M)[[v?]] according to the deRham
theorem. We will construct a connection on Cps having a curvature
form Qs in §3.2. We show the connection gives a Fedosov connection if
it is restricted to a subbundle Wy, which indicates that ;s is equal to
the curvature of Fedosov connection.

Theorem B. On Cys there is a connection & whose curvature
form is Qpr. When restricted to a Weyl manifold Wy, the connection
0 gives a Fedosov connection.

Then, using this connection we prove that a Poincaré-Cartan class ¢(Wjs)
coincides with the class given by the curvature form of Fedosov connec-
tion (cf. the conjecture in §Introduction of [OMMY1]).

Theorem C. The deRham cohomomology class of the curvature
Qpr of Fedosov connection is equal to the Poincaré-Cartan class ¢(War)
of the Weyl manifold W,.

We remark that Theorems A, B and C are already given in
Yoshioka [Y1]. Also in [Y2] we gave a proof of Theorem C. In this
paper, we describe contructions in more detail. Especially, we improve
. the description of the transformation from Weyl charts to classical charts
of [Y2] explicitly, which shows the restriction of the connection 0 to Wy,
is equal to the Fedosov connection in §4.
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§2. Weyl manifold

A Weyl manifold emerges naturally from deformation quantiza-
tion ([OMY1]) and it is considered as a quantized symplectic manifold.
In this section, we give a review on Weyl manifolds.

2.1. Deformation quantization

Deformation quantization is proposed by Bayen-Flato-Fronsdal-
Lichnerowicz-Sternheimer ([BFFLS]), which is an idea to quantize clas-
sical mechanical systems on a Poisson manifold without using operators
in the following way.

2.1.1. Definition. Let (M,{, }) be a Poisson manifold. Introduce
a parameter v and consider the space of formal power series a, (M) =
C>(M)[[v]] with coefficients in a(M) = C*=°(M), the space of all real val-
ued smooth functions on M. Here we only consider real valued smooth
functions for simplicity, although the argument is directly extened to
complex valued functions. Let us consider a R][v]]-bilinear product
a, (M) x a,(M) — a,(M).

Definition 2.1. A product x* is called a star product if
(i) For any f, g € a(M) = C*° (M), the product f *g is expanded as

(2.1) frg=fg+ o {figh+ -+ mfg)+ -

where fg is the pointwise multiplication of functions on M, {f, g}
is the Poisson bracket and 7% : a(M) x a(M) — a(M) is a bidif-
ferential operator (k =2, 3,...),
(ii) fx1=1x%f= f for Vf € a(M),
(iii) * is associative.
For a star product *, the associative algebra (a, (M), %) is called a defor-
mation quantization of the Poisson manifold (M, {, }).

The existence of star products is proved by De Wilde-Lecomte
for symplectic manifolds ([DL]) and for general Poisson manifolds by
Kontsevich ([K]).

In this paper, we consider the case where M is a symplectic manifold
with symplectic structure o. A typical example is the Moyal product
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on the canonical symplectic manifold (R?", 0). We write the canonical

coordinates as z = (z',...,2%") and the canonical symplectic structure

as 0o = 3 y_; ; wijdz' Adz? where w;; are the components of the constant

2n x 2n matrix w = (wi;) = (_3, '¢)- The Poisson bracket is then
written as
{f.g}o=> _ AY0,:f8,;9, f, g€ a(R®™)=C"(R™)
)

where A = (A¥) = —w~!. With the notation

(fado = 1 (N85 ) = 15 n 8l

2%

the Moyal product *q is a star product given by
Ve— —
(2.2) f*ong(expgaz/\az)g

n 4=  —n

We sometimes refer to the deformation quantization (a, (R?"), %) as the
Moyal algebra.

A star product can be restricted to an open subset V' C M and gives
a star product on a, (V) = C°°(V)[[v]], since 7k in (2.1) are bidifferential
operators. Due to the following theorem, star products on a symplectic
manifold are locally isomorphic to the Moyal product (cf. Gutt [G],
Lichnerowicz [L}).

Theorem 2.2. Assume U be an open subset of R?™ with
H2(U)=0. Then a star product x on U is equivalent to *q, that is,
there exists an R[[v]]-linear isomorphism T: a,(U) — a,(U) satisfying
fxg=T7YTf*oTg) for Vf, g € a(U), where T is given in the form

Tf=f+vTi(f)+-- +v*Tu(f)+---, VYfeal)

and Ty: a(U) — a(U), (k =1, 2,...) are differential operators. Thus,
deformation quantizations (a,(U), *) and (a,(U),*o) are isomorphic.

2.1.2. System of the Moyal algebras. By Theorem 2.2, a star
product induces a system of local Moyal algebras and their isomor-
phisms as follows. Let {(V,, ¥a)}aca be a symplectic atlas: |J, Vo = M
and each ¢,:V, — U, CR? is a homeomorphism such that
Yo = (2L,22,...,27) is a canonical coordinate system of U, and
Qioa0 = 0 where 040 = 33 w;jdzi, Adzl, is the canonical
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symplectic structure. Here one may assume H?%(V,) =0 for every
a € A. A star product x on M is reduced to every V, and produces
a deformation quantization (a,(U,), *o) of a linear symplectic manifold
(Uq, 0a,0) by the local coordinate expression. Theorem 2.2 yields an iso-
morphism Ty, : (a,(Usy), *a) — (0, (Ua), *0). Then we have a Moyal alge-
bra isomorphism Tpg = Tg o T, : (a,(Uag), *0) — (0, (Uga), *0), where
Uag = ©a(Va NVp). Thus, a star product * on M gives a picture that a
system of local Moyal algebras {(a,(Uy), *0)}aca is glued together by a
system of algebra isomorphisms {T,g: (a,(Uag), *0) — (0, (Uga), *0)}-

We can consider the local Moyal algebra (a,(Uag),*0) as a quan-
tized Darboux coordinate and the transformation Tps: (a,(Uyg), *0) —
(a,(Ugq), *0) as the quantized symplectormorphism.

2.1.83. Motivation of Weyl manifold. Using the Weyl algebra W,
we can attach to the system {((a,,(Ua), *0), Taﬁ)} a geometric picture,
that is, a bundle over M and its sections. Although the details will be
given in the next sections, we see here an idea of Weyl manifold. We
consider a locally trivial bundle Wy = U, xW and consider the space of
all smooth sections of Wy, which is denoted by I'(Wy, ). By the point-
wise multiplication, I'(Wy, ) is an associative algebra. We will see that
there exists a subalgebra F(Wy,) C T'(Wy, ), whose elements are called
local Weyl functions, isomorphic to the local Moyal algebra (a, (Uy), *0).
With the identification of (a,(U,),*) and F(Wy., ), the isomorphism
Twp of local Moyal algebras naturally induces an algebra isomorphism
faﬂ: F(Wy,,) — F(Wy,,). This algebra isomorphism is given as
the pullback map of certain algebra bundle isomorphism ®4,: Wy,, —
Wiess Pha = Aaﬂ (see for a proof, Lemma 3.2 in [OMY1]). Such a bun-
dle isomorphism will be called a Weyl diffeomorphism (see §2.2.3). Then,
a Weyl manifold Wy, will be given as a bundle over M by gluing trivial
bundles {Wy_} with Weyl diffeomorphisms {®,g}. Since the local Weyl
function algebra F(Wy, ) = (a,(Uy), *0) can be regarded as a quantized
Darboux chart and also the Weyl diffeomorphism ®,5 can regarded as .
a quantized symplectomorphism, the Weyl manifold W), is considered
as a quantized symplectic manifold, and also considered as a geometric
picture of a star product on M.

2.2. Review of Weyl manifold

In this section, we give a brief review of Weyl manifold defined
in [OMY1]. Let us consider a 2n-dimensional symplectic manifold M
with symplectic structure o.

2.2.1. Weyl algebra. Introducing 2n+1 elements v, Z1, Z2, ..., Z?",
we consider a formal power series with coefficients in R, a = Y a;, /' Z°,
wherea;o € R,1=0,1,2,...and a = (a1, as, ..., ag,) is a multi-index.
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We put the set of all formal power series
W = {a = ZalaulZo‘ ‘ e € R}.

We introduce the formal power series topology in W and W is complete
under this topology. Using a 2n X 2n constant matrix A = (_?n 151)
where 1,, is the n X n identity matrix, we put a R[[v]]-bilinear Poisson

bracket in W
{a, b} = ZAijaziaazjb = agz A _521).
if
Similarly as in (2.2), we consider a R][v]]-bilinear product ¥ in W of
Moyal type

(23)  a¥b=a(exps 051 8z)b=ab+ {abh+---.

The product ¥ is continuous. We call the space W with % the Weyl
algebra.
We can introduce an anti-involution a — @ in W by putting

(2.4) a¥b=b%xa, T=-—u, 7:Zi, Tle = Q-

It is easy to see the generators satisfy the canonical commutation
relations (CCR for short)

(2.5) { W Z=v¥Z'—Z'%v =0

(Z8, 29| =Z'% 727 — Z9% Z¢ = vAY.

Remark 2.3. By (2.3), we have ZZ7 = Z'% Z7 — ¥ A%, and induc-
tively we see that every monomial v!Z% is written as a linear combina-
tion of the ¥ products of the genrators v, Z!,..., Z?". Thus, the Weyl
algebra W is also described as an algebra over R formally generated

by the elements v, Z', Z2,..., Z?" satisfying the CCR relations (2.5)
(see [OMY1], §1.1-1.2).

We introduce the degrees of monomials of W. We put the degrees -
for generators and monomials as

(26) dv)=2, d(Z)=1, (i=1,...,2n), d@'Z%) =20+ |al,
respectively. We set Wy = W and

a= Y alaulza}, k=1, 2,....

2+ || >k

(27) Wy = {CL ew
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Using the conjugation, we can decompose W as a dirct sum of the
set of hermitian, skewhermitian elements, respectively a

W=WwtreW -, Wr={aeW|a=a}, W ={aeW|a=—a}.

It is obvious the center is R[[v]], the set of all formal power seires
in v. We also put the set of noncentral elements

a= Z alal/lZ"}.

|e|>0

(2.8) We = {a ew

We set the intersections as
(2.9) Wt =WinWenwt, W =W,nW°nw-.
Definition 2.4. An R-linear isomorphism ®: W — W satisfying
(1) ®(a%b) = ®(a) ¥ ®(b), Va, beW, (ii) ®(v) = v

is called a v-automorphism of the Weyl algebra W.
A v-automorphism @ is hermitian if and only if

(2.10) ®(a) = (@), VYaecW.

We give two basic examples. Let A = (a;;) be a 2n x 2n sym-
plectic matrix. We set AZ* = > ai;Z* and Av = v. Then it holds
[AZ%, AZ7] = A[Z%, Z7) and [Av, AZ*] = A[v, Z'] and hence the matrix A
naturally acts on W as a v-automorphism. Also let us consider F' € W3.
Notice [F, W] C vWs, and [F, G] can be divided by v for every G € W.
Then 1adF = L[F, ] gives a derivation of W. By exponentiating
this derivation we have a v-automrophism exp % ad F', which satisfies
expiad F(Z') = Z' + O(2) where O(2) means the collection of the

terms belonging to Ws.
Now as to the structure of v-automorphisms, we have

Proposition 2.5. For a v-automorphism ®: W — W, there exist
uniquely a 2n x 2n symplectic matriz A = (a;5) and F' € W3 such that

1
@:Aoexp;adF.

If ® has the hermitian property (2.10), then F € W3™.

Proof. Notice W is the maximal ideal of W and then ®(W;) C W;.
We put
. 2n .
(2 =) a; Z7+0(2), ay€R, i=1,2,...,2n.

=1
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Form the identity [®(Z%),®(Z7)] = ®([Z%, Z7]), one sees A = (a;;) is
a 2n X 2n symplectic matrix. Consider the v-automorphism A~ o® and
apply to each Z*. We have

Ao ®(ZY) = Z"+ gl +0(B3), i=1,...,2n

where gfz) is the term of homogeneous degree 2. Then the identity
[A7 o ®(Z%),A7 0 ®(Z7)] = A7 o ®([Z%, Z7]) gives the equation
[Zi,ng)] = [Zj,gé2)], i, 7 = 1, 2,...,2n. The Poincaré lemma yields
an element F(3y of homogenous degree 3 such that %[Zi,F(g)] = 922),
i=1,...,2n. Thus we have

8(2') = Aoexp L ad Fiy(Z) +0(3), i=1,....2m.

Repeating this process, we have a sequence { F k) } of elements of homoge-
nous degree k such that

) 1 1 ;
®(Z*) = Aoexp ” ad Fgy0---oexp ” ad Fii,)(Z*) + O(k),

for i = 1,...,2n. By Campbell-Hausdorff formula there is an element
F € W such that limy_,c IIF_, exp % ad F(;) = exp % ad F3 which com-
pletes the existence proof of A and F. The uniqueness is inductively
checked by looking at the lawest degree term of exp % ad Fiy(Z Y~ Z¢,
i1=1,2,...,2n. For the case ® is hermitian, we obtain a proof by the
similar manner. Q.E.D.

2.2.2. Weyl functions. Suppose U C R?" be an open subset and let
Wy = U x W be a trivial bundle over U. We set I'(Wy) the space of
all smooth sections of Wy;. By the pointwise multiplication, I'(Wy) is
equipped with the associative product ¥. Under the smooth topology,
I'(Wy ) becomes a complete topological algebra. Consider a formal power
series in v with coefficients in C*°(U)

f=fotvhi+- €aU)=CU)]

Definition 2.6. We define a section f# € I'(Wy) in a Taylor
expansion fashion

)= Y S82(:)2%, (D).

la| >0

We call f# a Weyl continuation of f



468 A. Yoshioka

We put the space F(Wy) = {f# | f e a,(U)} and we call an
element of F(Wy) a Weyl function.

We have the following (see Theorem 2.6, [OMY1]).

Theorem 2.7.
(i) The Weyl continuation gives an R[[v]]-linear isomorphism
#:0,(U) - F(Wy).
(i) (F*0g)" = F#35* jor VF, § € a,(U).
The above theorem indicates F(Wy) is a subalgebra of I'(Wy) and

# is an algebra isomorphism between the local Moyal algebra (a,,(U), *o)
and the algebra of local Weyl functions (F(Wy),%). It is easy to see

Proposition 2.8. Let F be a section of T(Wy) satisfying
[F,g*] € FWy) for Vg¥.

Then there exist a local Weyl function f# € F(Wy) and a formal power
series a € a,(U) such that

sz#—i-a.

If F is a hermitian element, F = F, then we can take as hermitian,
ie., f=f(?), a=a(v?) €a,2(U) = C=(U)[[»’]].

Proof. Set ¢# = L[F,2#], i = 1,...,2n. Then the Jacobi
identity of the commutator togher with the relation [2#, 27%#] = vAY
yields [2'#, g7#] = [27#, g*#], which is equivalent to ), A"8¢*/8z' =
> A'9g7 /82" for i, j = 1,...,2n. Then, the Poincaré lemma shows
there exists f € a,(U) such that g* = {f, 2°}. Hence F — f# ¢ T'(Wy)
belongs to the center and we have F = f# + q for certain a € a,(U).
If F' is hermitian, it is obvious that we can take f and a as elements

of a,2(U). Q.E.D.

2.2.8. Weyl diffeomorphism. Consider a bundle isomorphism
P: WU - WU/.

Definition 2.9. & is called a Weyl diffeomorphism if and only
if it satisfies the following three conditions.

(i) ®.: W, — W) is a v-automorphism for every z € U where W,
is a fiber of Wy at z and ¢: U — U’ is the induced diffeomor-
phism.

(ii) The pullback map ®* satisfies ®*F(Wy) = F(Wy).

(iii) ® has the hermitian property ®(a) = ®(@), Va € Wy.
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As to the induced map, we have (cf. Lemma 3.3, [OMY1))

Lemma 2.10. The induced map ¢: U — U’ of a Weyl diffeomor-
phism is a symplectic diffeomorphism.

On the other hand, the converse direction also holds (see Theo-
rem 3.7, [OMY1]).

Theorem 2.11. For a symplectic diffeomorphism ¢: U — U,
there exists a Weyl diffeomorphism ®: Wy — Wy whose induced dif-
feomorphism is .

2.2.4. Definition of Weyl manifold. Now, gluing {Wy = U x W}
with Weyl diffeomorphisms we can define a Weyl algebra bundle over M
called a Weyl manifold in the following way.

Suppose we have a locally trivial bundle Wy, — M with fibers
isomorphic to the Weyl algebra. Let {(Vi,¥a)}aca be an atlas of M
such that ¢, : Vo — U, C R2" is a local canonical coordinate for every
a € A. We denote by ®,: Wy, — Wy, = U, x W a local bundle
chart and by ®,5 = @50 & ': Wu,s — Wuy,, the overlap map, where
WVazﬂ"l(Va) and WUozﬁ = CI’a(Va ﬂVg) = Uyg X w, Uag = QDa(Va M Vlg)

Definition 2.12. A locally trivial Weyl algebra bundle Wy, — M
is called a Weyl manifold if the overlap maps ®,3 are Weyl diffeomor-
phisms.

The sets {(Wy,,Wy,_,Po: Wy, — Wy, )}a is called local Weyl
charts.

We showed the existence of Weyl manifolds (Theorem A, [OMY1]).

Theorem 2.13. For a symplectic manifold M, there exists a Weyl
manifold Wy .

The set of all smooth sections I'(Wjs) becomes an algebra by the
pointwise multiplication at each fiber. The overlap map ®,3 of a Weyl
manifold preserves the class of local Weyl functions and then we can
introduce a concept of global Weyl functions of Wy, as follows.

Definition 2.14. A smooth section F' € T'(Wyy) is called a Weyl
function of Wy, if ®*71F € F(Wy, ) for every a € A.

We denote by F(Wy,) the set of all Weyl functions of Wy, It is
easy to see F(Wyy) forms a subalgebra of I'(Wyy).

2.2.5. Weyl manifold and deformation quantization. As is seen in
Theorem 2.7, the algebra of local Weyl functions F(Wy,) is isomor-
phic to the local Moyal algebra (a,(U,), *0). Also for globally defined
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Weyl functions, we have an R[[v]]-linear iédinorphism with the following
property (see, Theorems 3.10 and 6.1, [OMY1]).

Theorem 2.15. For a Weyl manifold Wy, there ezists an
R[[v]]-linear isomorphism p: a, (M) — F(Wyy) such that

P (PN F0(9) = fg+ S{F,g} + -+ mlfig) -

for f, g € a,(M) where {f, g} is the Poisson bracket of the symplectic
manifold M and my is a bidifferential operator on M.

If we define a product on a,(M) by

(2.11) fxg=p""(po(f)%0(9), [ g€a (M),

then * is obviously associative and becomes a star product, which induces
an existence of star products on M (Theorem B, [OMY1]). Thus, by
virtue of Theorem 2.13 and Theorem 2.15, we have obtained another
proof of the existence of deformation quantization for symplectic mani-
fold by De Wilde-Lecomte [DL)].

2.3. Poincaré-Cartan class

In [OMMY1], we obtained a complete invariant c¢(Wjps) of Weyl
manifolds over a symplectic manifold M, called the Poincaré-Cartan
class. The invariant ¢(Wys) of a Weyl manifold Wy, is an element
of H2(M)[[+?]], the set of all formal power series in v? with coefficients
in H?(M). We derived a Cech 2-cocycle with values in the hermit-
ian center R[[v?]] through patching {Wy_} and this 2-cocycle gave the
Poincaré-Cartan class. Thus, we need to extract certain information
from the center R[[v]] of W in order to define ¢(Wjy), and the contact
algebra C' was indeed introduced as a tool for this purpose. In this sec-
tion, we recall the definition of the contact algebra C and give a review
on the Poincaré-Cartan class.

2.3.1. Contact algebra. Let us introduce an element 7 and set rela-
tions

(2.12) [r,v] =202, [r,ZY=vZ' (i=1, 2,...,2n).
It is easy to see
[, [v, 2% = [[r,v], 2 + [, [, Z°]]

and
[T’ [Zi7 Z]” = [[Ta Zi]7 Zj] + [Ziv [T’ ZJ”
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Then the bracket [r, | is extended on the Weyl algebra as a- derivation
a— [1,a], a € W. We then consider a direct sum

(2.13) C=RrdW
and define a bracket by
(2.14) [MT + a1, AoT + az] = Ai[7, a2] — Ao[7, a1] + [a1, ag]

where \; € R, a; € W and [a1, az] = a1 ¥ag —as%*a; is the commutator of
the Weyl algebra W. The derivation property yields the Jacobi identity
of [, | and (C,[, ]) becomes a Lie algebra.

Definition 2.16. The Lie algebra (C,[, |) is called a contact
algebra.

We put the product topology of R and W into C = Rr&W and (C, [, |)
is a complete topological algebra. We consider an anti-involution of C
by setting

(2.15) T=7, M+F=M+F, AcR, FeW

We remark here the derivation a +— [7,a] of W counts the degree of
monomials, i.e., it holds

(7,1 2% = v(2l + |a|)' Z*

and hence we have
2n
(2.16) [r,Fl=2%0,F +vY_ Z*05F, FeW.
k=1
Now, we consider an automorphism group of the contact algebra.
First we consider a derivation; for F' € W, we set

(2.17) ad 2F(a) = %ad F(a), YaeW,
124

(2.18) ad %F(T) —2F ¢ %[F, 7.

Definition 2.17. An algebra isomorphsim ¥: C — C is called
a v-autormorphism if it gives a v-automorphism of Weyl algebra
when restricted to W. A v-automorphism ¥ is hermitian if it satisfies
¥(P)=¥(P),PeC.

We have
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Proposition 2.18. For a hermitian v-automorphism ¥V: C — C,
there exist uniquely a 2n X 2n symplectic matriz A, a hermitian central
element c(v?) € R[[V?]] and F € W§% such that

1
¥ = Aoexpad ;(F + c(v?)).

Proof. For the restriction ¥|y, Proposition 2.5 gives a symplectic
matrix A and F' € W§+ such that ¥|yw = Ao exp%a.dF. Then, the
v-automorphisms ¥ and ¢ = A oexp ad(%F ) coincide when restricted
to W, and it holds ¥~ 1 o ¥(Z%) = Z i=1,...,2n. Astop Lo ¥(T) €
C =Rt @& W, we apply ¥~! o ¥ to the identities [r, Z!] = vZ* and we
have ¢ "1 o ¥(r) = 7+b for certain central element b. The the hermitian
property induces

b=bv?) = by + v2by + - - + *Fbgy, +--- € R[[V?]].

A central element c(v?) = Y oo v e, with e = 1/(2(1 — 2k))bax
satisfies expad Lc(v?)(1) = 7 + b(v?), which shows the existence. The

uniqueness is a direct consequence of Proposition 2.5 and the uniqueness
of ¢(v?). v Q.E.D.

2.3.2. Contact Weyl diffeomorphism. Let U be an open subset
of R?™ and consider a trivial bundle Cy = U x C. We denote by I'(Cy)
the set of all smooth sections of Cyy. Then I'(Cy) forms a Lie algebra
by the pointwise multiplication and becomes a complete topological Lie
algebra under smooth topology. We consider a section 7y € T'(Cy) such
that

2n
(2.19) Tw(z) =7+ Z wi;2'Z7, (2 €U).
i5=1
Recall the derivation [r, | satisfies [1, F] = 2020, F + szil Zk0 F
in (2.16) and notice [Y_,; w;;2'Z7, F] = v}, 288, F, F € W for each

z € U. Then we see easily the fiberwise derivation [ry, | acts on T'(Wy)
in the form

2n
(2.20) [rp(2), F(2)] = 2028, F(2) + v Z 29, F(2), FeT(Wy).
k=1

The identity Oz« f# = (8, f)# yields

[ru(2), f#(2)] = 20%0, f#(2) + v Y ("0 ))#(2), f* € F(Wo).
k=1
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Here we use the identity z*# (9, f)# = (280, f)#. In fact, using the
definition of ¥ we calculate z°# % g# = *#g# 23 . AP (8,mg)#, and
using the formula given in Proposition 2.7 we see

R g7 = (2% %0 g)* = (2Fg)* ZAkm(ﬁzmg

which shows 2*# g# = (2*g)# for Vg# € F(Wy). Thus, we have
Lemma 2.19.

[ru(2), f#(2)] = 20°0, f# (=) + v(Ef)#(2), f# € F(Wu),

where B = Zk 1 2*8, is the Euler vector field.
Now remark Wy is a subbundle of Cy.

Definition 2.20. We call a bundle isomorphism ®: Cy — Cy
a contact extension of Weyl diffeomorphism, or CEWD for short,
if the restriction ®|w, is a Weyl diffeomorphism.

For a contact extension of a Wey! diffeomorphism 5, the pullback
®* 71y is obviously a section of Cy and is written in the form

®*ryr = My + H, e C®U) and H € T(Wy).

Applying ®* to the identity [ry,v] = 202 induces A = 1. Applying o+
to the identity [ry, z'#] = vz# shows [H, ®*z'#] = v®*z*# and hence
[5*‘1H, 2] = vz i = 1,...,2n which induces [5*_1H,.7:(WU/)] C
vF(Wy). Proposition 2.8 then shows ®*~1H is a sum of a certain Weyl
function and an element of a,2(U’). Thus, for a contact extension of
Weyl diffeomorphism o: Cy — Cyr, we have

Lemma 2.21. The pullback of Ty: is written as &y = o+ f#+
a(v?), for certain f# € F(Wy) with f# = f# and a(v?) € a,2(U).

Further, if a(v?) is a constant, i.e., a(v?) € R[[v?]], we can view
f*+a@?) = (f#*+ a(l/z))# as a Weyl function. We define (cf. Defini-
tion 4.6, [OMY1])

Definition 2.22. A contact extension of Weyl diffeomorphism
V: Cy — Cy is called a contact Weyl diffeomorphism if and only
Cif Uty = Ty + f# for certain f# € F(Wy).

Notice a contact Weyl diffeomorphism ¥ yields a Weyl diffeomor-
phism ¥|w,,, and then by Lemma 2.10 the induced map ¢: U — U’ is
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a symplectic diffeomorphism. As to the existence we have (see Theo-
rem 4.7, [OMY1])

Theorem 2.23. (i) For a Weyl diffeomorphism ®: Wy — Wy,
there exists a contact Weyl diffeomorphism V: Cy — Cys such that
Ulw, = ®. (i) For a symplectic diffeomorphism ¢: U — U’, there
exists a contact Weyl diffeomorphism ¥: Cy — Cy: whose induced map
s ©.

Now we proceed to consider a contact Weyl diffeomorphism with
the identity base map. Consider a hermitian, local Weyl function with
the constant leading term

(2.21) ) = g0t gt 44 P

where go € R, gor, € C*°(U), (k =1, 2,...). Obviously we have a decom-
position g# = a(v?) + F with a(v?) € a,2(U), F € T(U x W5t). Then
due to Proposition 2.18, ¥ = exp ad(%g#) gives a bundle isomorphism
of Cy which clearly satisfies U*F(Wy) = F(Wy). It is easy to see

U*ry =10 + 290 + VzAﬁ)(zﬂ), U = VZA?;) (%)
where A% (%) = AT (4V2AT o+ AVEAT o 4, Ay ok € C=(U),
1 =1, 2. Thus,; we have contact Weyl diffeomorphism ¥ with the identity

base map. Moreover, one sees that a contact Weyl diffeomorphism of
the above form is general as follows (cf. Corollary 2.5, [OMMY1]).

Proposition 2.24. (i) If a contact Weyl diffeomorphism ¥: Cy —
Cy indueces the identity base map, there exists uniquely a Weyl function
g% (v?) of the form (2.21) such that ¥ = expad(Lg#(v?)). (ii) If a con-
tact Weyl diffeomorphism ¥ yields the identity map ;I;|WU =1 on Wy,
then there exists uniquley a hermitian central element
(2.22) c(V®) =co+vica+ -+ vcop+---, ca€R
such that ¥ = expad(Lc(v?)).

In what follows we consider the relation between contact exten-
sions of Weyl diffeomorphism and contact Weyl diffeomorphisms. Let
®: Cy — Cpyr be a contact extension of Weyl diffeomorphism, CEWD.
Then Lemma 2.21 gives that ®*7y = 77 + f# + b(v?) for certain
f# € F(Wy) and b(v?) = by + v2by + -+ + v%*bgp + - - -, by, € C°(U).

. 2 2k
It is easy to see a(v?) = %bo —%by+--+ Zd’—_%jbgk +---€a,2(0)
satisfies expad(la(v?))ty = 7y + b(¥?). Then the composition
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U=3 oexp(— ad %a(yz)): Cy — Cy satisfies Urry = 117 + f# and
¥ is a contact Weyl diffeomorphism. Thus, we have

Proposition 2.25. For a contact extension of Weyl diffeomor-
phism ®: Cy — Cuyr, there exists a contact Weyl diffeomorphism
V: Cy — Cyr and a(v?) € a,2(U) such that ® = ¥ o expad(La(v?)).

2.8.8. Cech 2-cocycle of War and the Poincaré-Cartan class. Con-
sider a Weyl manifold W; = M. We have a system of local Weyl charts
&, 7Y V,) =Wy, - Wy, =U, x W and a system of overlap maps
(I)a,@ = ‘I’g o (I);l: WUaﬁ — WU,acu Uaﬂ = (pa(va N VIQ).

According to Theorem 2.23, we take a contact Weyl diffeomorphism
<f>a,g: Cv,; — Cu,, such that $aﬂ|WUQB = ®,p for each overlap map.
Here we may assume ffga o 6aﬁ =1lon Cy,,. In fact, Py 0 Pog =1
on Wy, and Proposition 2.24 yields &)[m ° EI;ag = exp ad(%daﬁ(yz)) for
certain dog(r?) € R[[v?]]. Notice

~ ~ ~ 1 ~
®up 0 Pgo 0 Pog = exp ad(;dga(yz)> o®,p
~ 1
= ®,5 0 exp ad(—dag(yz)>
v

which shows dgq (v?) = dag(v?). Then we can assume iga ° ;I;QB =1by
replacing '5043 by 5alg o exp(—ad £ das(v?)) on Cy,,.

We set a bundle isomorphism 5a,@’y = '57& o 537 o EI;o[/g of Cy,,,
where Uygy = 0o (Vo NV3NV,), VaNVgNV, # 0. Since the restriction

(I)O‘ﬂ’Y'WUam = B,y 0 By, 0 P, is the identity of Wy there exists

afBY?
capy (V%) € R[[V?]] such that ®,s, = exp ad(Lcapy(v%)). The identities

Doy 0 Poys =1 and ®ogy = Pyq 0 Pryap 0 Py induce

capy(V?) + cayp(t?) =0,  capy(v?) = cyap(t?),

respectively, which mean {cqg, (1)} is a Cech 2-cochain for the covering
U ={V4}aca. An easy calculation yields

Bpo © Basy © P © Pasp © Pays © Papy = 1

on Cy,_,. 6, Uapys = Pa(Va NV NV, N Vs) which induces

cgor (V) + Casp(V?) + Cays(V?) + capy(V?) = —6capys(v?) = 0.

Thus {capy(¥?)} is a Cech 2-cocycle with values in R[[v?]], or each
{Capy2k} of the expansion copy(V?) = Y pugV**cagyar is a Cech
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2-cocycle with values in R (k =0, 1, 2,...). Then we obtain an element
of H?(M)[[v?]] which is denoted by ¢(Wps) and is called the Poincaré-
Cartan class of the Weyl manifold Wj,. We write the expansion as

ce(Wa) = co(Wnr) + Vch(WM) 44 l/ZkCQk(WM) 4+

where cor(War) € H2(M). As to ¢(Wpyy) we have the following (Theo-
rem 3.5, [OMMY1)).

Proposition 2.26. (i) The leading term co(War) of ¢(War) s
equal to [o], the cohomology class of the symplectic structure o of M.
(ii) ¢(War) depends on the equivalence class of Wy, i.e., if Wy, is equiv-
alent to Wa as Weyl manifold, then ¢(Wy,) = ¢(War).

Theorem 2.27. The Poincaré-Cartan class is a complete invari-
ant of Weyl manifolds, i.e., the map (W] — c(War) is bijective from
all equivalence classes of Weyl manifolds to the set of all elements of
H?2(M)[[v?]] with the leading term [o].

§3. Contact algebra bundle and connection

In this section, using a Poincaré-Cartan class ¢(Wjys) of Weyl man-
ifold Wy, we will construct a contact algebra bundle Cpy — M and
a connection 8 on Cjy.

Let {cag,(¥?)} be a Cech 2-cocycle giving ¢(Wy;). Then by def-
inition, contact Weyl diffeomorphisms Cfa,g: Cu,s — Cu,, for overlap
maps of local Weyl charts ®,5: Wy, — Wy, satisty

L 1
Do 0 Pgy 0 Bop = exp ad(;cagv(uz)),

which is not the identity transformation in general. Hence the system
{®qp} is not useful for gluing {Cy,_,}. Our idea for constructing Cjy is

to use contact extensions of Weyl diffeomorphisms instead of {®n5}. By
means of {c,g,(v?)}, we construct an appropriate 1-cochain {hag5(1?)},
hap(v?) € C=(U,p)[[v?]] and using this cochain and the system of con-
tact Weyl diffeomorphisms {$aﬂ}, we obtain a certain system of contact
extensions of Weyl diffeomorphisms {Vs5: Cy,, — Cu,, }. We will then
have a contact algebra bundle by gluing {Cy_} by means of {¥,3}.

As to the connection &, we first consider a closed 2-form
Qa(v?) € A%;[[v?]] whose cohomology class is equal to the Poincaré-
Cartan class [Qar(v?)] = ¢(War). Then we take a system of local 1-forms
{&a(W?)}, €a € AY(V,)[[#?]] such that d¢,(v?) = Qar(v?) on V,. Using
this system {£,(v?)}, we construct a connection 1-form and then we will
obtain a connection & whose curvature form is Q7 (v?).
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3.1. Construction of Cjs; proof of Theorem A

Let W)y, be a Weyl manifold and ¢(Wjs) be its Poincaré-Cartan
class. Suppose {cag,(v?)} is a Cech 2-cocycle giving ¢(Was). Recall the
cocycle has the form cagy(12) = Capyo+v2Capy 2+ +v*capyon+- -,
Capry2k € R. We denote by ®,4: Wy,, — Wy,, the overlap map of

local Weyl charts and by :I;a[;: Cu.; — Cu,, its lift as a contact Weyl
diffeomorphism. Then by definition, we have the identity
~ -~ o 1
Doy = Pyg 0 Pgy 0 Pop = exp a,d(;caﬁv(lﬂ))
i)aﬁ o 6,8(1 = 1Uaﬂ'

In what follows, we construct Cech 1-cocycle {H,p(v?)} and a sys-
tem of 1-forms {£,(v?)} on M related to {cag,(v?)} by the standard
argument. The 1-cocycle {H,5(v?)} is used in this section to con-
struct a gluing map system of contact extension of Weyl diffeomorphisms
{¥ap: Cu,, — Cu,,} for the contact algebra bundle Cjs. The system
{€4(v?)} will be used for constructing a connection d on Cj; in the next
section.

Now we define a formal power seires in v? with coefficients in
a(M) = C*(M) by

(3.1) Hap(v?) = cappn(®)x2 € an[[V7]],

Y
where {x»}, is a partition of unity subbordinate to the covering {Vi}a
of M. Then we have

(82)  Hap(v?) = —Hpa()
(83)  6Hupy(v?) = Hap(v?) + Hay () + Hya(v) = capy(v2).

We set a formal power seiries of one forms on M

(3.4) Ea(v?) =) dHua(¥)xa € Ay (V7).
A

Then the identity (3.3) shows
Lemma 3.1. E5(v?) — 2, (v?) = dHga (v?).
We set the local coordinate expressions,

(35) hap(v?) = @3 " Hap (v*) € au, [V

Then the identities for H,g (3.2) and (3.3) gives
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Lemma 3.2.
(i) as(V?) = —@hghpa(V?)
(ii) ha,@(Vz) + ‘Prxﬁhﬁv( ) -+ ‘Pa»y 'ya( ) = Caﬁ’y( )

We also set the local coordinate expression

(3.6) €a(v?) = 03" Ea(v?) € Ay, (V7))
The identity Zg(1?) — Ea(v?) = dHpo(v?) induces
(3.7) €5(v?) = Phaba(v?) + dhga(v?).

Now using hag(v?) = @5 *Hap(v?) we set a contact extension of
Weyl diffeomorphism (CEWD) of ®,4 as

1
(3.8) Vop=upo0 exp(— ad ;hag(ll2)) : Cu,s — Cug,

where <T>a5 is a contact Weyl diffeomorhpism lift of ®,5. Then we have
(39) \I/a,B o \Ifﬁa = 1UaB: CU&B — CUﬁa'
In fact, the skew symmetry of hng(v?) in Lemma 3.2 (i) yields
5 1 2 3 1 2
Uop o ¥sy = Byp0exp (— ad —hag(v )) o ®g, 0 eXp (— ad ;hga(l/ ))
v
~ ~ 1 1
=®,30 Pg, 0 exp (— ad —hﬁa(VQ) + _%ahaﬁ(lﬂ))
v v
=1y,
The cyclic condition (ii) in the same lemma also gives
Vagy = Vya 0 ¥y 0 Wy
& 1 2 L . 2 L. 2
= Bapn 0 exp(— ad Shas(tv?) + S @hshen (V) + — Phyhra(v?))
1
= expad( Capy(V 2)) ° exp(— ad ~—caﬂ,y(yz)) =1u,,,-
v

Thus, by gluing local trivial contact algebra bundles {Cy,} by means
of the system {¥,3} we have a locally tirivial contact algebra bundle
Cym — M. By construction it is obvious that Cjps contains the Weyl
manifold W, as a subbundle and hence we have a proof of Theorem A.

Finally we prepare for some basic identities for {ry_}. The iden-
tities will be used in the next sections for contructing a connection
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on Cy, where 1y = 7+ ), w;j2'Z7 (see (2.19)). For simplicity, we
write 7, = T, -

Proposition 3.3. We have on Uyg
o* _ # ’]_; 2
ap™8 =Ta + fl5 — hap(v®)

where ffﬁ is a local Weyl function given by the contact Weyl diffeomor-
phism :I;aﬁ as

(3.10) DhsTs =Ta + f15
and ﬁaﬁ(VQ) € ag, [[v?]] is given by
1 -
(3.11) ad(;haﬁ(v2))7a = hap(V?).

Proof. Tt is obvious by Wo3 = ®ag0exp(—ad Lhas(r?)). Q.E.D.
B 8 v'taB

3.2. Construction of connection 9: proof of Thoerem B

The connection 9 is defined as a twisted exterior derivation. For
this, we introduce a tensor product bundle Ap; ® Cjy, where Ay is the
exterior algebra bundle over M, similarly as Fedosov [F].

8.2.1. Tensor product bundles. We consider the tensor product bun-
dles Apr ® Wir and Apr ® Chy, where Ajpy is the exterior algebra bundle
over M. Obviously Ay @ Wiy is a subbundle of Ays ® Cps. Local triv-
ializations are given by Ay, ® Wy, C Ay, ® Cy,, for each {U,}, and
gluing maps are given by

tdpap @ ®ap: Au,, @ Wy, — Au,, @ Wy,

and
td(‘OO‘B @ Wap: AUaB ® CUaB - AUﬁa ® CUam

respectively.

The algebra structure of these bundles is given in the following
way: Let U C R2" be an open subset and let us consider elements
P?Q € AU ® Cy givenbyP: Zldzlpla Q = Z_]dZJQJa PI7QJ € CU7
dzl = dz% A--- Ad2% where I = {iy,... i}, k = |I], etc. We introduce
a bracket

(3.12) [P,Q] =) dz' ndz’[P1,Q..

I,J
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For F=3, dz'Fr, G = ZszJGJ € Ay ® Wy we also set a product
(3.13) FRG =) dz' Ndz'F1%G,.

I,J
Then we have the following super algebra identities:

Lemma 3.4. Let P, Q, R be monomials of Ay ® Cy and |P|, |Q|,
|R] be their degrees as forms, respectively. Then we have the skewsym-
metry

M [P,Q] = (-1)IPHeH1[Q, P)
and the super-Jacobi identity

(i) [P, [Q, R]] + (~1)!PIIRH+IQIRIR, [P, Q]]
4 (_1)|P||Q|+|Q||R| [Q,[R, P]] = 0.

Proof. For (i), consider dz! A dz’/ = (—=1)1IVldz7 A dz! and the
skewsymmetry of the bracket of C. The second identity (ii) is obtained
by using

dzP A dz@ NdzB = (1P A d2P A d29
= (=1)PIHIdzQ A dzBR A 2P
and the Jacobi identity. Q.E.D.

8.2.2. Derivations. Now we consider derivations on Ay, ® Cy,.
Let 6, be a fiberwise derivation defined by

1 . . ;
(314) b = ad(; Zdz;wijzﬂ> : AII)Ja ® CUa — A%‘L‘l [ CUa
ij

for each p =0, 1,...,2n. It is easy to see
Lemma 3.5. For every dzl = dzit A--- Adzix, I = {iy,... ik},

it holds for any Q € Ay, ® Cy,,

(3.15) 8a(dzl A Q) = (-1)ldzL A 6,Q.
For P € A}, ® Cu,, it holds for any Q € Ay, ® Cy,
(3.16) ba[P, Q] = [6aP, Q] + (-1)P[P, 6aQ].

Proof. First equation is a direct consequence of definition of
the bracket (3.12). As to the second, set P =dzlP; € Allﬁ ® Cy,,
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Q=dzJAQsc All}lai ® Cy, and use also the definiton (3.12) then we
have [P, Q| = dz A dzJ[P1,Q;]. A direct calculation gives
8a[P, Q] = (=)!"*Mldz5 A dzg A {[8aPr, Qu] + [Pr, 8aQul}
= [(=)ldzL A 64 Pr,d22 Q]
 (—1) 2L Py, (—1)ldzd A 5,Q4)
Then the first identity shows the desired relation. Q.E.D.

Now take an arbitrary 1-form q(v?) € T'(Aj [[?]]) and consider
a derivation 8, : F(APUQ ®Cy,) — F(A%tl ®Cyp,), (p=0,1,...,2n),
given by

(3.17) By = d— 6o +ad( o (v ))

Obviously 8, induces a derivation from I'(A}, ®Wy, ) to T(AL  @Wy,)
when restricted the subbundle Ay, ® Wy,. We see easily

Proposition 3.6.

(a) Oaf = df, f€C°°(U )

(b) 0o 2" = —dz,, i=1,2,...,2n
(c) Oav =0

(d) OuT = — Zdzfxwijzj + Ra(v?)

ij
where o (v?) = ad (£ k4 (V)T € T(AL_[[V7]])-
Proof. The identities (a) and (c) are obvious. For (b) we calculate
i 1 2 i i 1 2\ i
821 = (d— Sa +ad(—;@a(u )))z = —baZ' + ~lRa(v), 2]

——Zdz BVANAIES Zdz WAl = —dzl.

As to (d), we remark the identity (2.18) and we see
[1 Z dzﬁwklZl, T] = Zdz{:wklZl.
Y Kkl

Thus, we have

OaT = —baT + 3d( 'ia(l/2)) = dekwnZ + Ra(v?),
Kl
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which gives (d). Q.E.D.
We have also the following formulae:

Lemma 3.7. Let us consider a p-form P € T(A};, ® Cy,). Then
it holds for any Q@ € T'(Ay, ® Cy,)

(i) 0[P, Q] = [0aP, Q] + (=1)"[P, 0aQ)].

For F € T(A], ® Wy,), it holds for any G € T(Ay, ® Wy,,)

(ii) 0, (FFG) = 0,F %G+ (-1) F%8,G.
Proof. We remark

(3.18) Ba(dzL Pr) = (-=1)ldzL A 8, P;.

For (i), we show first for monomials P = dzL P and Q = dzJQ;. Using
the identity above we calculate as [P, Q] = dzL A dzJ[Pr,Q] and

8alP, Q] = (1)1 V1dz] A dz A 8a[Pr, Q).
For sections of I'(Cy,, ), O acts as derivation and hence
9alPr,Qs] = [0aPr, Q] + [Pr, 0aQy]-
Thus,

8.[P, Q] = [(—D)!dzE A 8, Py, d27 Q]
+ (=1)!MdzL Pr, (=1)V1dz] A 9 Q]

which yields the desired result. For (ii), replacing [Pr, Q] with Fr ¥ G
gives the equation similarly. Q.E.D.

3.2.3. Construction of connection. First we set
~ 1
(3.19) Ea(v?) = ad(SEa(v))ra € AL (7]

where we take &,(v?) = ¢ *E4(v?) and E,(1v?) = 3, dHoa (V)X
in (3.6), (3.4) respctively. Then we have a relation

Lemma 3.8.
E5(1%) = Phaba(V?) + dhga(V?)

where higa(v?) = ad(Fhsa(v2)) 75 € au,, (V7]
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Proof. Recall £3(v?) = wﬂafa(uz) + dhgo(v?) in (3.7). Then we
calculate as

&) = [%gﬁ(yz),rﬂ] - Ew;;aga(y?),m] + Edhﬁa(ﬂ),m].

Notice that [L¢},Ea(v?), 78] = \II;;a[ £a(V?), W} 57s]. Since £,(v?) is
a one form with values in the center of the algebra W, the identity
Ul 5T = To + ffﬁ — hap(v?) shows that [1£,(1?), U7 575] is equal to

Bga(lﬂ),fa + 1 — haﬁ(uz)] = Béa(uz),m] = & (V7).

Using [1dhga (1?), 78] = dhpe(1?), we obtain the desired result. Q.E.D.
For an arbitrary 1-form ko (v2) € Aj;_[[v?]] we have

Lemma 3.9.
OaTa = =204 + Ro(V?)

where Oy = § Y, Zhwijdz], is a canonical 1-form and R (v?) € Ay [[V?]]
is given by na( ?) = ad(Lka(1V?))Ta-
Proof. By Proposition 3.6 (a) and (d), we see 0,Ta = 00T +
B Y25 Zewij Z7 is computed as
OpTo = — Z dziwiij + Ea(yz)
ij

+ Z 6az3wiij + Z z;wijﬁaZj

ij ij
which gives the desired result. Q.E.D.

Now we can set a connection. For £,(v2) defined in (3. 19) we con-
sider to find k4 (v2) so that the derivation 8, = d — 8, + ad(2kq(r?))
satisfies

(3.20) OpTa = ga( 2.
We have
Lemma 3.10. The equation (3.20) has a unique solution kq(v?).

Proof. By Lemma 3.9, the equation is equivalent to

(3'21) 717\01(1/2) =20, + Ea(VZ)v
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where Ro(v%) = ad(Lk4(1?))74. Since

1 oo oo
ad(; kz_o V%na,gk)m = ,;)(2 — 4k)y2kna’2k,

a 1-form ko (v?) = > e ¥**Kq 2k is uniquely determined from (3.21).
QED.

‘We have

Lemma 3.11.
(i) The restriction of 8q satisfies 82|w,, = 0.
(ii) A section F € T'(Wy,_) satisfies 0, F = 0 if and only if
F e F(Wy,).
(iii) It holds 82 7o = Qpy (v2), where Oy (v2) = ad (10 (1?)) 74

Proof. The first statement is a dirct consequence of Proposition 3.6.
For (iii), we use the equation (3.20) and we see

8§Ta = ,,Ea = dga = (AZM(VZ) = ad(%QM(z/z))Ta.

As to (ii), we calculate for F = %" +F,(v)Z*, F,(v) € ay_[[V]],

uu'
9o F = Z Z“+Z —Fu(

Notice here 8, Z* = — Y, pi; dz%, Z#~%, and hence

pORT IS DT N OPAED
w 7

;Lzl

‘We then have

O F = ZZ ( 57 P ()~ Fuse (y))dngM

uzl

which yields the desired result. Q.E.D.

In what follows, we fix kq(¥?) given by (3.20) for each a. Then, we
have a derivation d,: T'(AL, ® Cy,) — [(A}}! ® Cy,) for each local
trivialization.

We set a transformation as

(3:22) Wapida = U 5" 0aVhs: T(A], ® Cy,,) — T(AL! @ Cuy,).
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Then we have
Proposition 3.12. V79, = 9p

A proof follows from the following identities:

Lemma 3.13.
(i) (Yape0a)f =df, [ € ay,, [V,
(ii) ‘ (Vapsba)Z) = —dz),, j=1,2,...,2n,
(iii) (U aps0a)v =0,
(iv) (VopeBa) 5 = Eg.

Proof. For the first identity, we apply the definiton of the transfor-
mation (3.22) and we see

(‘Ilaﬂ*aa)f = \P;l*aa(ﬂozﬂf) = (P;é* dSD:;ﬁf =df.

For (ii), we notice Z7 = zg# — zf;, j=1,...,2n and we calculate

(Vapeda) 2 = U5 06 Ui (2 — 2)) = —W_ 1" 0, Whs2) = —dz]

since ¥} ﬂzé# is a Weyl function and then vanished by d,. The third
one is obvious. As to (iv), we notice the identity in Proposition 3.3 and
we have

(\Ilaﬁ*aa)'rﬁ = ‘Il;[;*aa (Ta + ffﬁ - Eaﬁ) = \I!;;* (ga - dﬁaﬂ)'
Hence Lemma 3.2 (i) gives \Il;é*(é\a - d/ﬁaﬁ) = <p;3a§a + dﬁga. Thus,
Lemma 3.8 yields the desired equation. Q.E.D.

Now, by virtue of Proposition 3.12 we define
Definition 3.14. We set a globally defined derivation
9: T(A%, ® Cy) — T(ARF ® Cr)
by
OF =V 10, F = VL0,V *F, F € T(Ay ® Cu).

Now, we consider the curvature of the covariant exterior derivative 9.
From Lemma 3.11, we have

Theorem 3.15.
(1) BZIWUQ =0.
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(i) A section F € T'(Wy) satisfies OF = 0 if and only if
F e F(Wy).

(iii) 8% = ad(2Qum(v?)), i.e., the curvature form of & is equal
to QM(VQ).

As a corollary of the theorem, we have

Corollary 3.16.
(i) The restriction Olw,, is a Fedosov connection.
(ii) The curvature of the connection O is given by the adjoint of
a 2-form which is a curvature form of Fedosov connection.
(iii) The Poincaré-Cartan class is equal to the cohomology class of
Fedosov connection; [ (v?)] = c(Way).

The statements (ii) and (iii) are direct consequences of the above theo-
rem and (i). A proof of (i) will be given in the next section.

84. Weyl charts and Classical charts

Recall that a Weyl manifold is obtained by gluing locally trivial
bundles {Wy,} with Weyl diffeomorphisms ®,5: Wy, — Wy,, and
local trivializations ®,: Wy, — Wy, such that ®3®,' = @44 are called
local Weyl charts.

Let ¥,: Cy, — Cy, be a locally trivialization of Cps given in §3.1
such that the restriction ®, = \Ila|WUQ is a local Weyl chart. For sim-
plicity, we also call ¥, : Cy, — Cy, a local Weyl chart of Cyy.

In this section, we introduce another system of local trivializations
of Cyy, called classical charts of Cps. We also obtain an expression of the
connection @ with respect to classical charts, which shows the restriction
to a Weyl manifold 8|w,, gives Fedosov connection explicitly.

4.1. Basic Lemma

The essential part of the contruction of classical charts depends on
the following lemma for a v-automorphism of the contact algebra C.

Before stating the basic lemma, we remark first the following. For
a v-automorphism ¥: C' — C, there exist t(v?) € R[[v?]] and T € W5™
such that

U(r)=7+T+t(?)

due to Proposition 2.18. We also have the converse direction.

Lemma 4.1. For T € W3, t(v?) € R[[v?]], there exist uniquely
F e W5t and c(v?) € R[[v?]] such that

exp ad(%F + %c(lﬂ)) (1) =7+ T +t(?).
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Proof. Notice [%F(g),T] = —F{3) for an element F(3) of homoge-
neous degree 3. Write T' = T(3) + O(4) where T(3) is the terms of
homogenous degree 3. Then putting F3y = T(3) we have

1
exp ad(;F(3))(T + T +t(v?) =7+ Ty +t'(V?),

where Ty € Wet, ¢/ (1v2) € R[V?]]. Similarly we put Ty = T(q) + O(5)
where T(4) is the term of homogeneous degree 4. Then taking a certain
Fuy e Wy * of homogeneous degree 4, we can eliminate T, (4) by means
of expad(2F ) (T + Ty + t'(v?)) = 7 + T5 + t"(v?) where T5 € WS,
t"(v?) € R[v?]]. Repeating this procedure with the Campbell-Hausdorff
formula gives

exp ad(—%F) (T+ T +t(?) =7 +i0?)

for certain F € Wy and #(v?) € R[[v?]]. By the similar argument
as in the proof of Proposition 2.18, there exists c¢(v?) € R[[v?]] such
that expad(—=c(v?))(r + #(v?)) = 7. Hence expad(LF + Lc(v?)) is
the desired v-automorphism. The uniqueness is obtained by the similar
argument in the proof of Proposition 2.18. Q.E.D.

4.2. Section 7 € I'(Cys) and classical charts

Regarding 7 as a constant section for each Cy,, we set a global
section of Cys by

(4.1) =3 xaUir
A

where {xx}x is a partition of unity. On each local Weyl chart, we set
the local expression as

(4.2) T =V 17 = Z¢;1*XAW;1*W§T e T(Cy,).
A
Since \I/;l*\Ilj\T = Wi,\7, as we see at the begining of the pre-

vious subsection there exist ¢,(v?) = > po, tZF) 2k ¢ a,2(U,) and
T, € T(U, x W5™) such that 7, = 7+t,(v?)+T,,. Hence, by Lemma 4.1
there exists an algebra bundle isomorphism ¢, : Cy, — Cy, such that
¥, 7 = 7,. Thus, we have a local trivialization

(4.3) U, =4,0W,: Cy, — Cy,
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giving a contact algebra isomorphism at each fiber and satisfying
U*r =7. We remark here the algebra bundle isomorphism 1), does
not give a Weyl diffeomorphism when restricted to Weyl algebra bundle
Wy, in general. Thus a local trivialization \Tl : Cy, — Cy, is not nec-
essarlly a Weyl chart, and hence the algebra of local Weyl functlons are
not preserved by the transformation \Il ) \I/ L

Definition 4.2. The local trivialization \Iluz Cy, — Cy, is re-
ferred to as a classical chart.
4.3. Expression of 8 in the classical charts

In this section we will give the explicit form of \T/u*a.
We denote transition functions between classical charts by

\T’Au = {IVIM o \f/;l: Cu,, — Cu,,, U= ex(VanVy).

We consider the transformation rule for E’}“ uT and \Tlﬁ HZi, i=1,...,2n.
By the identities (4.2) and (4.3), the constant section 7 € I'(Cy,) is
transfered to 7, W37 = 7 which yields ¥} .7 =T7. We put the expansion

{f’f\uzi - ZAiAu,ij +Go+Ga+-+Gry+--,
J

where Ag\u,j € a,2(Uxy), @, j = 1,...,2n give a symplectic matirx at
each point of Uy, and Gy € T (WJM) is the terms of homogeneous

degree k. Applying {IVIXM to the identities [r, Z'] = vZ¢, i = 1,...,2n
gives

VZA,\“] +o kG + - _VZA)\HJ UGy

since [T, G ()] = kvG 1, which shows Gy = 0 for k Z 2. Then we have
a transformation formula of classical charts

(4.4) KMV =y, \IIKMZZ ZA,\MJ , ;MT =T

In what follows, we see the functions A% u,; 18 expressed by means of
the symplectic transformation ¢,,. Notice the Weyl chart transforma-

tion ¥, and classical chart transformation 1 ap have the relation

(4.5) Uy, thn = 9, Uy
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We put the expansion

(4.6) Yzt =7"+ Z B} ;. 2" 27 4+ 0(3)

J1».72

where B¢ € C*(U,) and O(3) indicates the terms of Uy, x W3h).

®.d1dz2

As for calculating \IljuZi we remark Z* = zL# —z,onU, and ¥} = L# =

1/)% + v2g"# for some g'# € F(Wy,,). Then we have
\Il;uZz = ;p( z# ZH)

o 32 2
(47) = Z @A” Z JLZJl ZJz + O( )

023 02?
.71

Using the identities (4.6) and (4.7) for \Ilj\u@/};Zi we have

e N e
(4.8) Uy Wiz = Z?j"z +3 > Chuipn 2 27 + 0(3)

J A J1,J2
where

. 0 9k, der:
(4.9) Chpiisa = P B, 20w TP

@ JAm ; iy
e ahazf — B 023! 0232

Also we calculate
* Ty * 4 1 j j
(4.10)  P303,2° = ZAM : (ZZ +5 > B, jzzﬂlzJ:*) +0(3),
J1.d2
which shows A3, . = 9¢}, 021
Thus we have the transformation formula of classical charts:

Lemma 4.3.

~ ~ . 0¥, ~
AV =Y st = Z 5.7 —=k7i, Ui, m=T
A

Remark 4.4. Substituting (4.8), (4.10) into (4.5) shows B j,j,’s
are transformed as

2n 7

890)\# B! 82@)‘” + B 890{\# 69031#
Z 82& Xjide 9z Jlazg\z Z cp)\/i u,lm 9z ]1 8212 :
=1

I,m=1



490 A. Yoshioka

4.4. Expression of 8 in classical charts

In this subsection, we give a local expression of the connection with
respect to the classical chart.

By the Definition 3.14, the local expression of the connection in the
Weyl chart is given by (3.17), ¥ 5,0 = 8) = d— 6, +ad(%/£>\(1/2)), where
6x = ad(} Y,; dziwi; Z7) and k(1) is given in Lemma 3.10. According
to the definition (4.3), the local expression in the classical chart is given
by 9y = U3.8 = a0\ = %5 Oz}, In what follows, we will calculate
5Af for f € C*(U,), 5>\7', O and 9\ Z' for i = 1, 2,...,2n, in order
to determine the form of 5)\.

Since f belongs to the center of I'(Wy;, ), we have EN f=df. Ttis
obvious that 5>\1/ = 0 by the same reason.

4.4.1. Calculation of d)Z'. In this subsection, we will determine
the form 5>\ up to the central component, which calculus is mainly given
by 9xZ".

Now we put Fgﬁ k= Bﬁw jk- Then the identity in Remark 4.4 means
{T'% ;1 } defines a connection V. Substituting (4.6) into [y} Z%, 32| =
vA"Y induces ), A“Bf\,“c =Y, A7'Bj ;) which means V is a symplectic
connection on M. Hence we have

Lemma 4.5. The ezpansion (4.6) gives

(4'11) YLt =2"+ 2 Z F)\,]isz]lZJZ + 0(3)7
J1,J2
where L'y, .4, is the Chirstofell symbol of a symplectic connection V with

respect to a canonical coordinate (z}\, .. ,zi”)

Notice 9y Z% = Yy *O\;ZE. Then Lemma 4.5 induces

3. i i i j 1 i i i 7
(412)  OZ'=—dzf =) TS 4 dR 2" + 5 Y 85 5,5, d327 2%
ik Jirjz
+ O(3)
AyJ Asd1jz /82& + Zm rfg\,jwrg\n,hjz' _
Set L;Q = 3 ijlj?. S jinis AL 272 + O(3) and appl;i 0, to the
identity [Z*,27] = vAY. Then, we have [O\Z%, Z7] + [Z¢,0,27] = 0,
which yields [Zi,Li\’z] = [Z7, L% 5]. The Poincaré Lemma for formal

power seires gives the unique section «y, in the space I'(AL(U,)®( W; ljx))
such that

(113) iz = 5 ad()(7)

i — a7
where S/\J-jlj2 = oI’
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where W;”{}k = Uy x W5™°.

The transformation rule in Lemma 4.3 shows the term ), j dziw;; 27
given in classical charts defines a global section of Cjs and hence we have
a globally defined fiberwise derivation § of Cjs such that

~ ~ 1 ) )
4.14 Wy, 6 =06y =~ w27 ).
(4.14) A A Vad(izjdz)\wJZ )
Notice EAZ i — —dzf\ on Cyy, . Also we can extend the classical connection

V as a globally defined derivation of I'(Wy) by
(4.15) U\ VZi= =) "T% ;,dz 2.
m
Thus, in terms of (4.14) and (4.15), the connection is expressed as
- ~ -1
Uy, 0=0,=V -6+ > ad(yx)

on the classical chart Wy, .

4.4.2. Proof of Corollary 3.16. Notice the transformation U,,.0) =
Ous Wxusady = 6,. Since the section vy is unique for each Wy, , we have
the identity q’;;ﬂu = 7. Thus, we have

Proposition 4.6. There exists a section vy of Wy such that
v = ¥iy\ and

1
Olwy, =V =8+ ad(y),

where V, 6 and vz are given by (4.15), (4.14) and (4.13), respectively.

Now we are in a position to prove Corollary 3.16. By Theorem 3.15,
9% = 0 shows 9|3, = 0 where d|w,, is of the form in Proposition 4.6
and hence the restricted connection 8|w,, is a Fedosov connection.

4.4.8. Central components of 3. We proceed to determine the shape
of 8. First we remark on the classical chart Cy,

U,,0=0,=V —b+ ad(%'y,\) + ad(%?f,\(l/z))

for certain central section ox(v?) € a,2(Uy). In fact, on classical
chart Cy, , we consider the difference

@:@_v+a_m@%)
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Since 5§Z’ =0for:=1,...,2n, applying 5; to the identity |1, Z¢] = vZ*
shows 837 is a central section. Thus, we see B1 = pa(v?) for certain
oa(v?) € a,2(U,). Similary as in the proof of Lemma 3.10, we can take
G (v?) € a,2(Uy) such that’

ad(—ll;g)\(uz))T = pa(V?).

Notice the connection is written as ¥ wVY =d+ ad(%FA’(z)) where
Ty = %Zm wij‘K”kledezi. Thus, one can easily check V7 = 0.
Then, we have

5)7‘ = — Zdzf\wiij -+ 2’)’)‘ - [7', ’}’,\] + 25)‘(112) — [T, EA(VQ)].
ij
On the other hand, we calculate as
PyTIOAT = 3T ON(T + A (V) + T)
=3I ONT + dta (V?) + ¢ IONT
= — Z dziwijip;_lzj + E,)\(l/2) + dt)\(l/z) + '(,b;_la)\T)\.
ij
Comparing the central terms of the both equation we see
26,(v%) — 1,52 (v?)]

=- (Z dziwij"/);_'lzj) +Ra(?) + da (V) + (¥37INTH)°
ij

where N° means the central terms of N of N € I'(Cy, ). Similary as in
the proof of Lemma 3.10, the equation above gives the unique ) (v?).
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