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In the theory of isometric immersions of submanifolds there are fun­
damental results of John Nash for the c= case and Burstin-Cartan­
Janet-Schliifl.y for the analytic case (also see Robert Greene [G] for the 
case of local isometric immersions). However, these theorems require a 
large codimension and are of practically no help in considering concrete 
questions in low codimensions. 

An obvious way of producing large varieties of isometrically 
immersed homogeneous submanifolds is to take the orbits of Lie group 
actions. In low codimensions the following result should often be true: 

Let a compact, connected Lie group G act on the connected 
Riemannian manifold N with principal orbit type M = G I H. Then, 
among all the G-homogeneous metrics on G I H the only ones which 
allow an isometric immersions into N are the ones which are already 
realized as the orbit metrics of this action. 

Obviously this is true for the geodesic spheres sn-l (r) ofll~n under 
the standard action of SO(n). With a little work it is also easy to prove 
for the larger classes of metrics invariant under the unitary or symplectic 
groups. A somewhat more challenging example is to prove this for the 
second Stiefel manifold SO(n)ISO(n- 2) of IR2n under the diagonal 
embedding SO(n)--+ SO(n) x SO(n) acting on JR2n. 

In this paper we obtain far reaching generalizations of these results. 
First, we wish to consider isometric immersions into other homogeneous 
spaces than Euclidean (and spherical or hyperbolic) spaces. Secondly, 
we wish to include all dimensions. It is clear that the low dimensions 
are going to be considerably harder, since the main technique for using 
the Gauss equation fails in the lowest dimensions. We work out here the 
concrete case of isometric immersions of spheres S2n-l = U ( n) I U ( n -1) 
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into N = CP(n). The techniques developed here should be quite useful 
in many other homogeneous spaces, also. In particular, quite analo­
gous results hold true for complex hyperbolic space and quaternionic 
projective and hyperbolic spaces, and will be published soon. 

We also note that our results have a bearing on the fundamen­
tal theorem for hypersurfaces. This theorem states that for Euclidean 
(or spherical/hyperbolic) spaces N, any codimension one manifold M 
with given candidates for the first and second fundamental forms allow 
a local isometric immersion into N if and only if those forms satisfy 
the Gauss and Codazzi equations; moreover, this immersion is unique 
up to deformation by an isometry of N. Now for isometric embeddings 
of 8 3 into CP(2) we get far more solutions to the Gauss equation than 
those which actually come from submanifolds. Most of those solutions 
are ruled out by the Codazzi equations, but some are not. Hence, the 
fundamental theorem cannot be generalized that simply to CP(n). One 
also need a condition that the curvature tensor of the total space N is 
parallel. Also see Eschenburg-Tribuzy [ET] about this question. 

§1 These theorems follow from a careful study of the Gauss equation: 
(R(X 1\ Y)Z, W) = B(X, W)B(Y, Z) - B(X, Z)B(Y, W) where R is 
the curvature operator of the submanifold M and B is the second fun­
damental form (for the case of a Euclidean surrounding space). In the 
case of a non-Euclidean surrounding space, however, the Gauss equation 
reads: (Rt(X 1\ Y)Z, W) = B(X, Z)B(Y, W) - B(X, W)B(Y, Z) where 
Rt = J1t - R, J1t is the part of the curvature operator R of N tangen­
tial to M. This will vary with M's position in N, so in this case the 
left hand side of the above equation is also unknown when M and its 
first and second fundamental forms are specified. We are not aware of 
much study of this situation in the literature; however, we present here 
the complete solution of the probably most basic question in isometric 
immersions in·the case of non-classical geometries. 

Let N = CP(n) with the metric normalized such that the sectional 
curvatures are in [ 1, 4]. Let the metric of the geodesic sphere S 2n - 1 ( r) = 
U(n)/U(n- 1) be "fr, r E (0, ~) defined as follows: The isotropy rep­
resentation of U(n- 1) on TpS2n- 1(r) = lR E9 JR2n-2 = lR E9 cn- 1 is 
given, as on p. 12, by(} E9 J.Ln- 1 where(} is the trivial representation and 
J.Ln- 1 is the standard representation. Consequently, the inner product 
at p of any U(n)-invariant metric is given by two real, positive scalars 
a and b, which represent the stretching factors from the standard metric 
on JR2n-1 = lR E91R2n-2 for the two summands (by Schur's lemma). For 
the Berger metric sphere S 2n-1 ( r) we have a = sin r cos r and b = sin r; 

hence b - ~ = 1. We now call S2n-1 ( r) with this metric S~~- 1 . 
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Proposition 1. s;r;,- 1 = U(n)/U(n-.1) is isometric to a geodesic 

h S 2n-1( ) · ~~""P( ') jJ 1 a 2 1 · TD>2n jJ 1 a 2 0 d sp ere r 2n ll.- n 2 p: - b4 = , 2n ~ 2 p: - b4 = an 
in complex hyperbolic space CH(n) with metric normalized such that 
sectional curvatures lie in [ -4, -1] iff ~2 - ~ = -1. 

Proof. Let -b- ~ = 1, then 0 < b < 1, and we set b = sinr, 
r E (0, ~), the result then follows from the above observation. In the 
second case we have that a = b; hence this is the Euclidean case. In the 

2 
third case we have ~4 > 1; hence, setting f.. = coth r; then b = sinh r, 
i.e. a = sinh r cosh r. This is exactly the geodesic spheres in CH ( n) with 
metric normalized as above. q.e.d. 

Remark. If -b - ~: = t > 0, this corresponds to a geodesic sphere 

in a CP(n) with a homothetic metric, similarly for -b - ~: = -t < 0, 
this corresponds to a geodesic sphere in a CH(n) with a homothetic 
metric. 

We now have an interpretation of all U(n)-invariant metrics on 
S 2n-1 . We note that in CP(n) and CH(n) the geodesic spheres S 2n-1 (r) 
for different r determine distinct homothety classes of metrics, whereas 
in JR2n all such metrics are homothetic. 

Our main result, here proved for CP(n), is the following: 

Theorem 2. The Berger metrics 'Yr are the only U(n)-invariant 
metrics on S2n-1 which allow an isometric immersion into CP(n). 

Remark. We only need to prove: -b - ~~ = 1. Obviously, homo­
thetic metrics admit anisometric immersion into CP(n) with a homo­
thetic metric. Thus, the set of U(n)-homogeneous metrics admitting an 
isometric immersion into a given CP(n), is a one-dimensional subset of 
the two-dimensinal variety of all U(n)-homogeneous metrics. 

§2 Let V be an inner product space. Let R be the linear space 
of all curvature-like 4-tensors on V; i.e. R E R iff R(X, Y, Z, W) = 

- R(Y, X, Z, W) = - R(X, Y, W, Z); R(X, Y, Z, W) + R(Y, Z, X, W) + 
R(Z, X, Y, W) = 0 (it then follows that R(X, Y, Z, W) = R(Z, W, X, Y)). 
Let B be a symmetric 2-tensor on V, then the 4-tensor B 1\ B on V 
defined by B 1\ B(X, Y, Z, W) = B(X, Z)B(Y, W) - B(X, W)B(Y, Z) 
is a curvature-like tensor. Also, note that B 1\ B(X, Y, Z, W) = 
CB 1\ B(X 1\ Y), Z 1\ W), with B defined as follows: 

Let B be the symmetric linear operator on V defined by B(X, Y) = 

(B(X), Y) (the shape operator corresponding to B). Let the 2-tensor 
B 1\ B be defined by B 1\ B(X 1\ Y) = B(X) 1\ B(Y). The inner product 
on 1\2 (V) is defined in the usual way. 
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Now, for a point p E S~~- 1 c CP(n) let flt be the orthogonal 

projection of the curvature operator of CP(n) restricted to TpS~~- 1 

and let R be the curvature operator of S2nb- 1 . The Gauss equation, a, 

Rt(X, Y, Z, W) = flt(X, Y, Z, W)- R(X, Y, Z, W) = B(X, Z)B(Y, W)­
B(X, W)B(Y, Z), may then be written Rt(X 1\ Y) = (B 1\ B)(X 1\ Y), 
where B is the ~econd fundamental form. The fact that Rt = B 1\ B 
has surprisingly strong consequences. It is already sufficient to prove 
Theorem 2 for n 2: 4, which we do in §4. This is based on the following 
result: 

Proposition 3 (see also Agaoka [A]). Rt(X 1\ Y) 1\ Rt(X 1\ Z) = 0 
for all X, Y, Z E Tv(S~~- 1 ). 

Proof. Rt(X 1\Y)/\Rt(X AZ) = (BI\B)(X 1\Y)A(BAB)(X AZ) = 
B(X) 1\ B(Y) 1\ B(X) 1\ B(Z) = 0. q.e.d. 

Remark. For one case of n = 3 we also need to use the Codazzi­
Mainardi equation, which is done in §5. For n = 2, Rt(X 1\Y)/\Rt(X 1\Z) 
will always be a 4-vector in TpS~ b' hence it is automatically zero and 
gives no information. This is by fa~ the most difficult case, and the proof 
is given in §6-§8. 

§3 For CP(n) we have the standard results: 

(3.1) R(ei 1\ ej) = -ei 1\ ej- Jei 1\ Jej 

R(ei 1\ Jej) = -ei 1\ Jej + Jei 1\ ej 

R(Jei 1\ Jej) = -Jei 1\ Jej- ei 1\ ej 

(i # j) 

R(ei 1\ Jei) = -2(eo 1\ Jeo + e1 1\ Je1 + · · · 
· · · + en-1 1\ Jen-d- 2(ei 1\ Jei) 

Here J denotes the almost complex structure of CP(n), eo, e1, ... , en-1 
is a complex basis for Tp CP( n). Also we use the convention 
R(X 1\ Y)Z = ~x~yZ- ~Y~xZ- ~[X,Y]Z· 

Also S 2nb- 1 = U(n)/U(n-1), from here it has an almost cocomplex a, 

structure J', i.e. J' is defined on the c_n- 1 part in TpS~~- 1 = IREBC.n- 1 

by the action of i sitting diagonally in the isotropy grou'p U(n -1) at p. 
Notice, however, that this a priori is not related to the almost cocomplex 
structure inherited from the almost complex structure of CP(n) when 
S 2n-1 is isometrically immersed. In fact, a challenge will be to demon­
strate that these two structures on S 2n-1 coincide. (see e.g. Theorem 4 
in §4 and the proof of Theorem 5 for showing that J e2 = J' e2 ( = J'Y2 ) 

in that case.) 
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We now compute the curvature operator for S~~- 1 . 
We have: G = U(n), H = U(n- 1) C U(n), g =f) EEl p with 

P = { ( *) IdE cn-1 (column matrix)}. 

Here td means the transpose of d. Clearly the pair (g, f)) is reductive. 
We have (see [KNII]): Let X, Y etc. also denote the Killing fields 

determined by X, Y E Tp(S~~- 1 ). Then 

(3.2) R(X 1\ Y) = [Ap (X), Ap (Y)] - Ap ([X, Y]p)- ad([X, Y]~). 

Here Ap: p-+ g((p) is a map defined by Ap (X)Y =~[X, Y]p + U(X, Y) 
where U is the symmetric bilinear map from p x p to p determined by 
2(U(X, Y), Z) = ([Z,X]p, Y) +(X, [Z, Y]p) (seep. 201 of [KNII]). Also, 
here [ , ] denotes the extension of the Lie bracket [ , ]p to 1\2 (TpS~~- 1 ) 
given by [X 1\ Y, Z 1\ W] =(X, Z)Y 1\ W + (Y, W)X 1\Z- (Y, Z)X 1\ W­
(X, W) Y 1\ Z. In fact, we often consider the element X 1\ Y as a linear 
endomorphism of p by the formula (X 1\Y)Z =(X, Z)Y- (Y, Z)X. This 
bracket just coincides with the usual bracket of two linear maps X 1\ Y, 
z 1\ w: .p-+ p. 

Let 

1 : y;-- . (

0 ... 0 

o-a O···O 

0 ... 0 

0) (0 . . . 0 ) (0 . . . 0 ) . 1 E· 1 iE· 

b ' }j = b 0 ·:· 0 J ' J'Yj = b 0 . :·· 0 J 

i -~ 0 ·~ 0 

be an orthonormal basis for p. (j i- 0). Ej = t(o, ... , 1, ... 0) is the j-th 
basis vector, and i is the imaginary unit. We compute: 

[Yo, }j] = Y0Yj- YjY0 = :b o ··· o (

0 ... 0 

-i 'Ej 

Similarly, [Y0 , J'}j] = ~ Yj. Now, let j, k i- 0. We then have: [}j, Yk] = 
YjYk- Yk}j = b(-Ejk + Ekj) where Ejk is the matrix whose only 
non-zero component is (Ejk)jk = 1. Similarly: [}j, J'Yk] = YjJ'Yk -
J'Yk}j = tx(iEjk + iEkj) - ~~8jkYo and: [J'}j, J'Yk] = J'YjJ'Yk­
J'YkJ'Yj = tx( -Ejk + Ekj)· 
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Hence we have 

[Yo, Yj]p = -~J'Yj, [Yo, Yj]~ = 0 
a 

[Yo, J'Yj]p = ~Yj, [Yo, J'Yj]~ = 0 
a 

1 
[Yj, Yk]p = 0, [Yj, Yk]~ = b2 ( -Eik + Eki) 

[Yj, J'Yk]p =- !~ 8ikYo, [Yj, J'Yk]~ = : 2 (Ejk + Ekj) 

[J'Yj,J'Yk]p =0, [J'Yj,J'Yk]~ = b12 (-Eik+Eki)· 

Here j, k-=/:- 0. 
We have 2(U(Yo, Yo), Z) = ([Z, Yo]p, Yo)+ (Yo, [Z, Yo]p). For Z =Yo 

this is 0, for Z = Yj it is ~(J'Yj, Yo) = 0, and for Z = J'Yj it is 
-~(Yj, Y0 ) = 0. It follows that U(Yo, Y0 ) = 0. 

We have 2(U(Yo, Yj), Z) = ([Z, Yo]p, Yj) +(Yo, [Z, Yj]p). For Z =Yo 
and Z = Yk this is easily seen to be zero, but for Z = J'Yk we get 
2(U(Yo, Yj), J'Yk) = -~(Yk, Yj) +(Yo, ~~8jkYo) = 8jk(~~- ~). Hence 
U(Yo,Yj) = (~- 2~)J'Yj. SimilarlyU(Yo,J'Yj) = ( 2~-~)Yj. Further­
more, for j, k-=/:- 0 we have U(Yj, Yk) = U(Yj, J'Yk) = U(J'Yj, J'Yk) = 0. 

From [KNII] we know that the covariant derivative V' x Y = 
Ap(X)Y =![X, Y]p+U(X, Y). Hence we compute V'y0 Yo =![Yo, Yo]p+ 
U(Yo, Yo) = 0. Furthermore: V'y0 Yj = ![Yo, Yj]p + U(Yo, Yj) = 
_...!..J'Y. + (.£. - ...!..)J'Y. = (.£. - l.)J'Y.. Similar computations give 2a J b2 2a J b2 a J 

V'y0 J'Yj = (~- ~)Yj, V'y;Yo = ~J'Yj, and V'J'Y;Yo = -~Yj. 
For j, k -=/:- 0 we now have: Y'YjYk = ~[Yj, Yk]p + U(Yj, Yk) = 0, 

V'Y;J'Yk = ~[Yj, J'Yk]p + U(Yj, J'Yk) = -~8jkYo, V' J'Y;Yk = 
~[J'Yj, Yk]p + U(J'Yj, Yk) = ~8jkYo, and V' J'Y;J'Yk = 0. Hence we 
have: 

For j-=/:- 0: 

V'y; = Ap(Yj) = ; Yo 1\ J'Yj 

V' J'Y; = Ap(J'Yj) =-;Yo 1\ Yj 
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Furthermore, 

Ap([Yo, Yj]p) = Ap ( -~J1Yj) = b~ Yo A Yj 

Ap ([Y0 , J 1Yj]p) = Ap ( ~ Yj) = b~ Yo A J 1Yj 

Ap([Yj, J 1Yk]p) = Ap (- ~~ 8jkYo) = 28jk ( b~ - ~:) 'f Yi A J 1Yi-
l=1 

We also have: [Ap (Yo), Ap (Yj)] = [ ( ~- ~ )2=~:-t Yk A J 1Yk, ~Yo A J 1Yj] = 

(b: --b) 1:~:-t[Yk A J 1Yk, Yo A J 1Yj] = (b: - -b )Yj A Yo and similarly: 

[Ap(Yo),Ap(J1Yj)] = (b:- -b)J1Yj A Yo, 

2 

[Ap (Yj ), Ap (Yk)] = ~4 J 1Yj A J 1Yk 

2 

[Ap(Yj),Ap(J1Yk)] = ~4 Yk A J 1Yj 

2 

[Ap(J1Yj),Ap(J1Yk)] = ~4 Yj A Yk. 

Finally: ad([Y0 , Yj]~) = ad([Y0 , J1Yj]~) = 0, 

ad([Yj, Yk]~) = : 2 ad( -Ejk + Ekj) = : 2 Yj A Yk + :2 J 1Yj A J 1Yk 

([ 1 l ) i ( ) 1 1 1 I ad Yj, J Yk ~ = b2 ad Ejk + Eki = b2 Yj A J Yk + b2 Yk A J Yj 

(notice that -b ad(Ejk + Ekj)Yj = -bYk = -bJ1Yk, etc.) 

([ I I l ) 1 ( ) 1 1 1 1 ad J Yj, J Yk ~ = b2 ad -Ejk + Ekj = b2 Yj A Yk + b2 J Yj A J Yk. 

We are now ready to compute the curvature operators R(X A Y) 
according to the formula (3.2) R(XAY) = [Ap(X), Ap(Y)]-Ap([X, Y]p)­
ad([X, Y]~). 

The results are: 

A (a2 1) ( 1 I ) (3.3) R(Yo A Yj) = b4 - b2 Yj A Yo- Ap -~J Yj - 0 

= (a2 
- ~) Y. A Yo+~ (-!!:_Yo A Y.) b4 b2 J a b2 J 

a2 
=--Yo A Y. b4 J• 
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§4 Let S~~- 1 = M be locally isometrically immersed into CP(n) 
around the point p. Let N be the unit normal to M at p, then J N E TpM 
and we put e0 = J N. When M is the geodesic sphere, e0 is the struc­
tural vector Y0 of M at p. We first show that this is always the case 
(for n;::::: 3). 

Theorem 4. For n ;::::: 3 we may choose Yo = e0 • 

Proof. We set Yo = cos cp e0 + sin cp J e1 and Y1 = e1 (normal to e0 

and Je1 , hence to Y0 ). We usually replace vectors Yi, J'"Yj, ek etc. to 
another one by applying the isotropy action of S~';,- 1 or CP(n). Note 
that by this modification, the expression of connections, curvatures and 
brackets are unaltered. We have: 

Rt(Yo A Y1) = Rt(coscpeo A e1 + sincp Je1 A e1)- R(Yo A YI) 

=- coscpe0 A e1 + sincp(4e1 A Je 1 + 2e2 A Je2 + · · · 
a2 

... + 2en-l A Jen-1) + b4 Yo A Y1 

= ( ~; - 1) cos cp eo A e1 

+ sin cp [ ( 4 - ~;) e1 A J e1 + 2e2 A J e2 + · · · 

· · · + 2en-1 A Jen-l] 

according to (3.1) and (3.3). We have: Rt(Y0 A Y1) A Rt(Yo A Y1) = 

4( ~~ - 1) sin cp cos cp e0 A e1 A e2 A J e2 + 4( 4 - ~~) sin2 cp e1 A J e1 A e2 A 
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J e2 + 8 sin2 r.p e2 1\ J e2 1\ e3 1\ J e3 + · · · = 0 according to Proposition 4. 
In case n ~ 4 it follows immediately from the e2 1\ J e2 1\ e3 1\ J e3 term 
that sin r.p = 0. For the case n = 3 we have from the two first terms: 
( ~: - 1) sin r.p cos r.p = ( 4 - ~:) sin2 r.p = 0. Hence either (A): sin2 r.p = 0 

2 • . 

or (B): ~ = 4, cosr.p = 0. In case (A) we are done, m case (B) we may 
choose Yo = J e1. Let Y2 = e2 where J 1Y1 = cos '1/J eo + sin '1/J J e2, (Y2 is 
orthonormal to Y0 , Y1 and J 1Y1). Then: Rt(Yo 1\ Y2) = flt(Je 1 1\ e2)-

R(Yo 1\ Y2) = -Je11\ e2 + e1 1\ Je2 +~:Yo 1\ Y2 = (~:- 1)Je1/\ e2 + 
e1 1\ Je2 = 3Jell\ e2 + e1/\ Je2. But then Rt(Yo I\Y2) 1\ Rt(Yo 1\ Y2) = 
6Je1 1\ e2 1\ e1 /\ Je2 =f. 0, which contradicts Proposition 4. Hence (B) is 
impossible. q.e.d. 

We now wish to prove our main result (Theorem 2) -b- ~ = 1; this 
means that the metric of M is the metric of S 2n- 1(r) for some r E (0, ~) 
(Proposition 1). We start with the easier case, n ~ 4. 

Theorem 5. For n ~ 4 we have b - ~: = 1. 

Proof. We have Yo= eo, Y1 = e1, let J 1Y1 = cos'¢Je1 +sin'¢e2, 
Y2 =-sin'¢ Je1 +cos'¢e2 (orthonormal to Yo, Y1 and J 1Y1) and J 1Y2 = 
cos~ Je2 +sin~ e3. We have Rt(Yo 1\ Y1) = (~: - 1)e0 1\ e1 as above. 

t -t A 

R (Yi 1\ Y2) = R (e1 1\ (-sin '1/J Je1 +cos'¢ e2))- R(Y1 1\ Y2) 

=sin '¢(4el 1\ Je1 + 2e2 1\ Je2 + · · · + 2en-l 1\ Jen-1)- cos '1/J e1 1\ e2 

( a 2 1) I I 1 -cos'¢Je1 1\Je2- b4 -b2 JY11\JY2+b2Y11\Y2 

=···- (::- :2 )[cos'¢cos~Je1/\Je2+cos'¢sin~Je1/\e3 
+ sin'I/Jcos~ e2 /\ Je2 + sin'ljJsin~ e2 1\ e3] 

1 1 ·. 
- b2 sin '1/J e1 1\ J e1 + b2 cos '1/J e1 1\ e2 

= ( : 2 - 1) cos '1/J e1 1\ e2 - [ ( :: - : 2) cos~ + 1] cos '1/J J e1 1\ J e2 

- ( ~; - b~ ) sin '1/J sin~ e2 1\ e3- ( ~; - b~ ) cos '1/J sin~ J e1 1\ e3 

+ (4- : 2) sin'¢e1/\ Je1 

+ [2- (::- b12 )cos~Jsin'¢e2/\Je2+2sin'I/J~ek/\Jek. 
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We have 

Rt(Yo 1\ Y1) 1\ Rt(l'l 1\ Y2) = ( ~: - 1) eo 1\ e1 1\ Rt(Y1 1\ Y2) 

= - ( ~: -1) [1 + (~:- :2) cos~] cos~ eo 1\ e1 1\ Je1 1\ Je2 

( 
2 ) n-1 

+ 2 ~4 - 1 sin~ eo 1\ e1 1\ 2::: ek 1\ J ek = 0. 
k=3 

There are two possibilities: 

(A) ~ = 1 
(B) ~~=I= 1, sin~= 0, (b- ~~)cos~= 1, sin~= 0 

( ( b - ~) must be different from zero). 

In case (B) we then have cos~= ±1, b- ~~ =cos~= ±1, and we 
only need to show that cos~ = -1 is impossible. 

Consider now case (B). WehaveRt(Y1 /\}2) = (b-1)cos~e1 /\e2 . 

= - ( 4 + 3 ~: - ~) cos~ e1 1\ J e1 

-2 [ 1 + ( ~: - :2) cos~] cos~ e2 1\ J e2 - 2 cos~~ ej 1\ J ej 

-2 (a2 - ...!:._) ~ y. 1\ J'Y. 
b4 b2 L....tJ 1 

. j=3 

= - ( 4 - 3 cos~ - : 2) cos~ e1 1\ J e1 
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n-1 n-1 
-2cos'lj; L ej 1\ Jej + 2cos~ L }j 1\ J'Yj 

j=3 j=3 

Hence Rt (Yo 1\ Y1) 1\ Rt (Yi 1\ J'Yi) = - 2( ~~ - 1) cos 'ljJ eo 1\ e1 1\ L:;:i ej 1\ 

J ej + 2( ~~ - 1) cos ~eo 1\ e1 1\ L:;:i }j 1\ J'Yj = 0. Hence, for ~~ "/= 1 we 
have: 

n-1 n-1 
( 4.1) cos 'ljJ L ej 1\ J ej = cos~ L }j 1\ J'Yj. 

j=3 j=3 

Similarly 
t -t A 

R (Yo 1\ Y2) = R (eo 1\ cos'lj; e2)- R(Yo 1\ Y2) 

= - cos 'ljJ eo 1\ e2 + ~: Yo 1\ Y2 = ( ~: - 1) cos 'ljJ eo 1\ e2 

Rt(Y2 1\ J'Y2) = Rt(cos'lj; e2 1\ cos~ Je2)- R(Y2 1\ J'Y2) 

- cos'lj;cos~(2e1 1\ Je1 + 4e2 1\ Je2 + · · · + 2en-1 1\ Jen-1) 

- (3a
2 

- ~) Y2 1\ J'Y2- 2 (a2 - ..!...) Y1 1\ J'Y1 
b4 b2 b4 b2 

- 2 (a2 - ..!...) ~ y 1\ J'Y 
b4 b2 L..-t J J 

j=3 

- 2cos'lj; (cos~+ ( ~: - : 2)) e1 1\ Je1 

- cos 'ljJ cos~ ( 4 + 3 ~: - b; ) e2 1\ J e2 

- 2cos'lj;cos~~ e· 1\ Je·- 2 (a2 - ..!...) ~y 1\ J'Y L..-t J J b4 b2 L..-t J J 
j=3 j=3 

- cos 'ljJ cos ~ ( 4 - 3 cos ~ - : 2 ) e2 1\ J e2 

n-1 n-1 
- 2cos'lj;cos~ L ej 1\ Jej + 2cos~ L }j 1\ J'Yj. 

j=3 j=3 

Hence 

Rt (Yo 1\ Y2) 1\ Rt (Y2 1\ J'Y2) 

~ -2 ( ~: - 1) cos€ eo Ae, A [~ e, A Je,- cos,P ~ Y; A J'Y;] 
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= 0. 
2 

Hence, for ~4 =/= 1 we have 

n-1 n-1 

L ej 1\ Jej = cos'l/J L }j 1\ J'Yj. 
j=3 j=3 

Comparing with (4.1) this gives cos~= 1 in case (B). 
2 

Now consider (A), ~4 = 1. We have 

Rt(Y1 1\ J'Y2) = Rt(e1 1\ (cos~ Je2 +sin~e3))- R(Y11\ J'Y2) 

= -cos~ e1 1\ J e2 +cos~ J e1 1\ e2 -sin~ e1 1\ e3 -sin~ J e1 1\ J e3 

( a 2 1) , 1 1 
- b4 -b2 Y2AJY1+b2Y1AJY2 

= -cos~ e1 1\ J e2 +cos~ J e1 1\ e2 -sin~ e1 1\ e3 -sin~ J e1 1\ J e3 

- ( 1 - b12) e2 1\ J e1 + b12 e1 1\ cos~ J e2 + :2 e1 1\ sin~ e3 

= ( b12 - 1) cos ~ e 1 1\ J e2 + (cos ~ + 1 - b~ ) J e 1 1\ e2 

+ (b1
2 -1) sin~ e1/\ e3- sin~ Je1/\ Je3. 

Rt(Y1 A J'Y2) A Rt(Y1 A J'Y2) 

= 2 ( b12 - 1) (cos~ + 1 - : 2) cos~ e1 1\ J e2 1\ J e1 1\ e2 

-2 ( b~ - 1) sin~ cos~ e1/\ Je2 1\ Je1 1\ Je3 

+2(cos~+1- : 2) (b~ -1)sin~Je1/\e2/\e1/\e3 

-2 ( :2 - 1) sin2 ~ e1 1\ e3 1\ Je1 1\ Je3 = 0. 

From the last term we see: either (C) b2 = 1 or (D) sin~= 0. If b2 =/= 1, 
sin~= 0 and 

Rt(Y1 A J'Y2) A Rt(Y1 A J'Y2) 

=2(:2 -1) (cos~+1- :2 )cos~el/\Je2 /\Je1 Ae2 , 
hence 1-b = - cos~. This does not hold for cos~ = -1, hence cos~ = 1 

and 1- b = ~~ - b = -1 (b2 = ~). This finishes (D). Assume b2 = 1, 
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2 

~· == 1, i.e. a= b = 1. Then 

Rt(Y1 1\ Y2) 

- cos 'ljJ J e1 1\ J e2 + 3 sin 'ljJ e1 1\ J e1 + 2 sin 'ljJ e2 1\ J e2 
n-l 

+ 2 sin 'ljJ L ek 1\ J ek. 
k=3 

Setting Rt (Y1 1\ Y2) 1\ Rt (Yi 1\ Y2) = 0 we get sin 'ljJ = 0. From the 
formula at the end of §3: R(Y1 1\ J 1Y1) = - Y1 1\ J 1Y1, i.e. Rt (Y1 1\ J 1Y1) = 
Rt(e1 1\ cos'lj; Jel) + Y1 1\ J 1Y1 =- cos'lj;(4el 1\ Je1 + 2e2 1\ Je2 + · · · + 

2en-1 1\ J en-d+ Y1 1\ J 1Yi. = -3 cos 1/J e1 1\ J e1 - 2 cos 1/J 2:::::~:~ ek 1\ J ek. 
Rt(Y1 1\ J 1Y1) 1\ Rt(Yi. 1\ J 1Yl) = 12e1 1\ Je1 1\ e2 1\ Je2 +···+=f. 0, which 
excludes this case. q.e.d. 

§5 We now deal with the case n = 3. We know already (Theorem 5 
and the proof of Theorem 6) that Yo = eo, Y1 = e1, J 1Y1 = cos 'ljJ J e1 + 
sin 'ljJ e2, Y2 = -sin 'lj;Je1 +cos 'ljJ e2, J 1Y2 =cos~ Je2 ( = ±Je2) (see the 
beginning of the proof of Theorem 6, and note that we have no e3 here). 
The formulas (3.1) and (3.2) specify to: 

(5.1) R(ej 1\ ek) = -ej 1\ ek- Jej 1\ Jek = R(Jej 1\ Jek) 

and 

2 

R(ej 1\ Jek) = -ej 1\ Jek + Jej 1\ ek- 2Djk L ez 1\ Jez 
l=O 

A a 2 
(5.2) R(Y0 1\ Yj) =- b4 Yo 1\ Yj 

A I a2 I 
R(Yo 1\ J Yj) = - b4 Yo 1\ J Yj 

A (a2 1 ) I I 1 ( ) R(Yj 1\ Yk) = b4 - b2 J Yj 1\ J Yk - b2 Yj 1\ Yk j, k =f. 0 

A ( I I ) (a2 1 ) 1 I I RJYj/\JYk = b4 -b2 Yj/\Yk-b2JYj/\JYk 

R(Y. 1\ J 1Yk) = (a2
- _..!._) Yk 1\ J 1Y.- _!_y. 1\ J 1Yk 

J b4 b2 J b2 J 

( a 2 1 ) ( I 1 ) +2 b4 - b2 Djk Y1 1\ J Y1 + Y2 1\ J Y2 . 

We now calculate R(li 1\ Yj) and R(}i 1\ J 1Yj) where R(X 1\ Y) 
R(X 1\ Y) - R(X 1\ Y). Although we only use the tangential part 
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Rt = [lt- R to begin with, note that in the Codazzi-Mainardi equa­
tion 

(R(X !\ Y)Z, -Je0 ) = (R(X !\ Y)Z, -Jeo) 

= Y(B(X, Z))- B(X, \i'yZ) 

- X(B(Y, Z)) + B(Y, \7 x Z) + B([X, Y], Z) 

we may use either R(X !\ Y) or R(X !\ Y), since the normal ( -Je0 ) 

components coincide for Rand R. Also, it is nice to have R(X !\ Y)Z 
in the (lj, J 1Yk) basis (instead of only in the (ej, Jek) basis). 

Now, 

(5.3) 

R(Yo !\ Yl) = R( eo !\ el) - R(Yo !\ Yl) 

a2 
-eo!\e1-Jeo!\Je1+ b4 eo!\e1 

(~: -1)eo/\e1-Jeo/\Je1 

(5.4) 
R(Y1 !\ Y2) = R(e1 !\ (-sin~Je1 +cos~e2))- R(Y1 !\ Y2) 

= sin~(2eo !\ Jeo + 4el !\ Je1 + 2e2 !\ Je2)- cos~e1 !\ e2 

( a 2 1) I I 1 
-cos~ J e1 !\ J e2 - b4 - b2 J Y1 !\ J Y2 + b2 Y1 !\ Y2 

= ···- (~:- b12) (cos~Je1+sin~e2 )/\cos~Je2 
1 . 

+ b2e1 !\ (-sm~Je1 +cos~e2 ) 

= 2 sin~ e0 !\ J e0 + ( 4 - b12) sin~ e1 !\ J e1 

+ ( 2 - ( ~: - b~) cos~) sin~ e2 !\ J e2 + ( b12 - 1) cos~ e1 !\ e2 

- (1+ (~:- b~)cos~)cos~Je1/\Je2 . 
Rt(Yo !\ Yl) !\ Rt(Y1 !\ Y2) 

= G: -1) [ (2 - ( ~: - b~) cos~) sin~ eo !\ e1 !\ e2 !\ J e2 

- ( 1 + ( ~: - b~) cos~) cos~ e0 !\ e1 !\ J e1 !\ J e2] = 0. 
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Hence, either (A) ~: = 1 or 

In the second case sin 'ljJ or cos 'ljJ must = 0, and ( ~: - -b) cos~ = 2 
or -1. In addition to (A) we have the two possiblities: (B) cos 'ljJ = 0 
and ( ~: - -b) cos~ = 2 or (C) sin 1/J = 0 and ( ~: - -b) cos~ = -1. 

Now, 

R(Y1 A J 1Y2) = R(e1 A cos~ Je2)- R(Y1 A J 1Y2) 

=-cos~ e1 A Je2 +cos~ Je1 A e2 

( a2 1) I 1 I 
- b4 -b2 Y2AJYl+b2Y11\JY2 

=-cos~ e1 A Je2 +cos~ Je1 A e2 

- (~:- : 2) e2 A Je1 + b~ cos~e1 A Je2 

= ( :2 - 1) cos~ e1 A Je2 + ( ( ~: - : 2) +cos~) Je1 A e2. 

Rt(Y1 A J 1Y2) A Rt(Y1 A J 1Y2) 

= 2 ( b12 - 1) [ ( ~: - b12) +cos~] cos~ e1 A J e2 A J e1 A e2. 

Hence either b2 = 1 or ( ~: - -b) + cos~ = 0. 

First check (A): ~: = 1. If b2 = 1, we have a= b = 1. In this case 
we have: Rt(Y1 A Y2) = 3 sin 1/J e1 A Je1 +2 sin 1/J e2 A Je2- cos 1/J Je1 A Je2 
and Rt(Y1 A Y2) A Rt(Y1 A Y2) = 12 sin2 1/J e1 A Je1 A e2 A Je2 = 0, hence 
sin'lj; = 0. 

(5.5) 

R(Y1 A J 1Y1) 

= R(e1 A (cos 1/J Je1 +sin 1/J e2)) - R(Y1 A J 1Y1) 

- cos'lj;(2eo A Je0 + 4el A Je1 + 2e2 A Je2)- sin'lj;e1 A e2 
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- 2 cos'¢ eo 1\ J eo - ( 4 + 3 ~; - ~) cos'¢ e1 1\ J e1 

- 2(1+ (~:- :2)cos~) cos'¢e2/\ Je2- (1+3~;- ~) sin'¢e1/\e2 

+ (2 (~: - : 2) cos~- 1) sin'¢ Je1 1\ Je2 

In the case under investigation (a = b = 1, sin'¢ = 0) this reduces to 
Rt(Y11\J'Y1) = -3cos '¢ e1/\Je1 -2 cos'¢ e2/\Je2. Hence Rt(Y1 1\ J'Y1)1\ 
Rt (Y11\ J'Y!) = 12 cos2 '¢ e1/\ J e11\ e2/\ J e2 = 0, which is a contradiction 
since cos'¢ = ±1. 

It follows that in case (A) we must have: (~~-b)= -cos~= =t=L 
1 1 - 1 . . 'bl h h . 1 1 - 1 . b2 - 1 2 - 1 - b2 - 1s 1mposs1 e, ence we ave. - b2 -- , 1.e. - 2• a - 4 

and -b- ~~ = 1, which corresponds to the solution S5 (i). 
Now we consider case (B):(~:- -b)cos~ = 2, cos'¢= 0. From 

Rt(Y1 1\ J'Y2) 1\ Rt(Y1 1\ J'Y2) = 2(-b- 1)[(~~ -b) cos~+ 1]el 1\ 
Je2 1\ Je1 1\ e2 = 6(-b- 1)el 1\ Je2 1\ Je1 1\ e2 = 0, we conclude that 
b = 1, Rt(Y11\ J'Y2) = 3cos~ Je1 1\ e2. Rt(Yo 1\ Y1) 1\ Rt(Y1 1\ J'Y2) = 

2 • 
3( ~4 - 1) cos~ e0 1\ e1 1\ Je1 1\ e2 -1- 0 (m case (B) we may assume that 

~~ -1- 1). Hence this contradicts Proposition 4 and (B) cannot occur. 

We now consider case (C): sin'¢= 0 and(~:- b) cos~= -1. If 

cos~ = 1, this says -b - ~: = 1, which is exactly what we wish to prove. 
Hence it is sufficient to show that cos~ = -1 is impossible. 

Assume cos~ = -1, we now have: Y0 = eo, Y1 = e1o J'Y1 = 
"'' y; I h a 2 1 cos 'f/ Je1, 2 = cos'¢e2, J Y2 = -Je2, w ere cos'¢= ±1, b4 - b2 = 1. 

Now: 

1 
R(Yo 1\ Y!) = b2 eo 1\ e1 - Jeo 1\ Je1 

R(Yo 1\ J'Y1) = R( eo 1\ cos'¢ J e1) - R(Yo 1\ J'Y1) 
a2 

= - cos'¢ e0 1\ J e1 + cos'¢ J eo 1\ e1 + b4 Yo 1\ J'Y1 

= ( ~; - 1) cos'¢ e0 1\ J e1 + cos'¢ J e0 1\ e1 

1 
= b2 cos'¢eo 1\ Je1 +cos'¢ Je0 1\ e1 

R(Y1 1\ J'Y1) = -2 cos'¢ eo 1\ Jeo- ( 7- : 2) cos'¢ e1 1\ Je1 

(from (5.5)). 
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From Gauss' equation we compute: 

Gl. (Rt(Yo 1\ Yt)Yo, Y1) = boobn- b~1 = :2 

(bii = B(Yi, Yj), biJ = B(Yi, J'Yj), lr.J = B(J'Yi, J'Yj)). 

G2. (Rt(Yo 1\ Yi)Yo, J'Yi) = boob11- bmbor = 0 

G3. (Rt(Yo 1\ Y1)Y1. J'Y1) = bmb11 - borbn = 0 

G4. (Rt(Yo 1\ J'Y1)Yo, J'Y1) = boobn - b~I 
1 1 

= b2 cos'¢((eo/\Je1)e0 ,cos'lj;Je1)= b2 

G5. (Rt(Yo 1\ J'Y1)Y1, J'Y1) = bmbn- bo1b11 

1 
= b2 cos'lj;((eo 1\ Je1)e1,cos'lj;Je1) = 0 

G6. (R(Y1 1\ J'Y1)Y1. J'Y1) = bubn- bi1 

= \- ( 7- b12 ) cos'¢(e1 1\ Je1)e1, cos'¢ Je1) = b~ - 7. 

We have: 0 = I~~~~~~~~~ I = (bmbn- b0 yb11)boo- (boobn- b~1 )bm + 
boi b11 bn 

(boob1y-bmb0 y)b0 y = -bbm according to G2, G4 and G5, hence b01 = 0. 

Similarly: 0 = I~~~ ~~~.~~~I = -bbor (after developing the first line), 
boo b01 boi 

hence b0 y = 0 

0 = I~~~~~~~~~ I = bb11, hence b11 = 0. 
bot bu b1I 

The remaining equations are now: boobn = boobn = b, bubn = 
b -7. Hence bn = bn = (b -7)112 , boo= b(b -7)-112 • 

To deduce a contradiction from this we need to apply the Codazzi­
Mainardi equations. We first observe that (C) must hold at all points, 
hence sin'¢ = 0 and cos~ = -1. Hence the above values for bij 
must also be globally true. In particular, since bij are constants, 
Yk(bij) = J'Yk(bij) = 0, i, j E {0, 1, I}. The Codazzi-Mainardi 
equation states: (R(X 1\ Y)Z, -Jeo) = Y(B(X, Z)) - B(X, \lyZ) -
X(B(Y, Z)) + B(Y, V' xZ) + B([X, Y], Z), where B is the second funda­
mental form w.r.t. the normal -Jeo of M at p; i.e. '\!' x Y = V' x Y­
B(X, Y)(-Je0 ) = Y'xY + B(X, Y)Je0 • We set X= Yo, Y = Y1. Z = 
J'Y1 and get: (R(Yo 1\ Y1)J'Y1, -Jeo) = cos'lj;(R(eo 1\ e1)Je1, -Jeo) = 
cos'¢(( -eo 1\ e1- Jeo 1\ Je1)Je1, -Jeo) =cos 'lj;(Jeo, -Jeo) = -cos'¢= 
Y1(bor)-B(Yo, V'y1 J'Y1)-Yo(b1r)+B(Y1, \lyoJ'Y!)+B([Yo, Yi], J'Yt) = 

0 + fxboo + (~ - {2 )bn - ~bn = =t=l. Here, {2 = Y1tb2 and 
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boo - bu = lz(-lz - 7)-112 - (lz - 7) 112 = 7b(1 - 7b2 )-112 . So 

(R(Y0 1\ YI)J'Y1 , -Je0 ) = 7(1 + b2 ) 112 (1- 7b2 )-112 ==fl. 49(1 + b2 ) = 
1 - 7b2 . This is a contradition. q.e.d. 

§6 We now embark upon the study of homogeneous 3-spheres isometri­
cally immersed into CP(2). The first point is that in this case it is impor­
tant to note that, as we explained above, the isometry group is U(2) 
rather than SU(2) (which acts simply transitively on S 3 ). On the con­
trary, in higher dimensions, we may consider s2n-1 as su ( n) 1 su ( n -1), 
since the isotropy group for SU ( n) is SU ( n - 1), with isotropy repre­
sentation equal to f.Ln- 1 EB 8 on IR.2n-2 EB R Consequently, for n > 2 
an invariant inner product is the standard inner product stretched by 
a factor a on JR. and by a factor bon IR.2n-2 • For n = 2, SU(1) ~ {1}, 
and we do not have this limitation. Let CP(2) be coordinatized around 

[ ~ J by [ ~} J , z1, z2 E C. Let X = ( J1 g g), and consider the geo-

desic exp(tX) [8] = (coot ~ siot) [8] = [sigt] = [taO't]. Simi-
1 -sintOcost 1 cost 1 

larly, with Eb = ( g g r/), E~ = ( 8 8 ~) and J' E~ = ( 8 g ~i) 
-t 0 0 0 -1 0 0 -t 0 

we have: (exptEb) [~] = [ -i~ant], (exptED [~] = [taft J, and 

( exp tJ' ED [ ~ J = [ -i {ant J (corresponding to tangent vectors in local 

coordinates: ( (/) ' ( n ' (_~\)). 
We prove that Eb, E~, J' E~ correspond to Eo = ( b _?i), 

E1 ( -.?1 6), J' E1 ( 9 b) respectively under the map 
J(r): u(2) ----> TexprxS3 (r) defined by J(r)(Z) = the Killing field of Z 
at the point exp(rX)p, (identified with S 3 (r), r E (0, ~)),pis the base 
point, (see Proposition 3 in Tomter [To]). To do this it is sufficient to 
see that [X,Eo] = Eb, [X,E1] = E~ and [X,J'E1] = J'E~. [X,Eo] = 

( 8 86) (b_9i8)- (b~i8) ( 8 86) = ( g gc/) = Eb. Similarly 
-1 0 0 0 0 0 0 0 0 -1 0 0 -i 0 0 

[X, E 1] = E~, [X, J' E 1] = J' E~. To check the isotropy subgroup of U(2) 

on [ ~ J we need only check the isotropy of the standard representation of 

U(2) on ( 0 ), and that is ( ~ e?t) ~ U(1). This acts trivially on ( ~) and 
by the standard representation on ( ~) ~ C. Hence, by Schur's lemma 
an invariant inner product is given by the standard inner product on 
IR.3 = Sp(E0 , E 1, J' E 1), stretched by a factor a on IR.E0 and a factor bon 
IR.2 = Sp(E1, J' E!). We denote the sphere with this metric S~ b· Since 
S~ b is smoothly diffeomorphic to SU(2), E0 , E 1 and J' E 1 now c~nstitute 
a basis of left invariant vector fields, and we wish to take advantage of 
that. We have [Eo,E1] = 2J'E1, [E0 ,J'E1] = -2E1, [E1,J'E1] = 2E0 . 

Here Eo defines the distinguished direction. Let Y0 = ~o , Y1 = ~1 , 
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J'Y1 = J'::1 be unit vectors. Then [Yo, Y1] = ~J'Y1 , [Y0 , J'Y1] = 
-~Y1, [Y1, J'Y1] = ~~Yo. Koszul's formula says that 2(\7 x Y, Z) = 
X(Y, Z) + Y(X, Z)- Z(X, Y) +([X, Y], Z)- ([Y, Z],X) + ([Z,X], Y). 
By left invariance the three first terms vanish, hence 2(\7y0 Y1, Yo) = 
([Yo, Y1], Yo) - ([Y1, Yo], Yo) + ([Yo, Yo], Y1) = 2(~J'Y1, Yo) = 0. Simi­
larly 2(\7y0 YI, Y1) = 0 and 2(\7y0 YI, J'Y1) = 2(~- f, ). Then \7y0 Yl = 
(~- f,)J'Yl· By corresponding computations \7y0 J'Yl = (f,- ~)Y1, 
\7y1 Yo = -f,J'Yl, \7y1 J'Yl = f,Yo, \7 J'Y1 Yo = f,Y1, \7 J'Y1 Yl = -f,Yo 
and \7 Yo Yo = \7 y1 Y1 = \7 J'Y1 J'Y1 = 0. By left in variance these for­
mulas hold at all p E S!,b· Then we get for the curvature tensors: 

R(Yo 1\ Y1)Yo = \7y0 \7y1 Yo- \7y1 \7y0 Yo- \7(Y0 ,Y1 ] Yo = \7yo ( -f,J'YI)-

0- ~\7 J'Y1 Yo = -f,(f,- ~)Y1- ~(f,Y1) = -~~yl· By corresponding 

computations R(Yo 1\ YI)Yi = ~:Yo and R(Y0 1\ YI)J'Y1 = 0. It follows 

that R(Yo 1\ Y1) =-~:Yo 1\ Y1. Similarly R(Yo 1\ J'Yi) =-~:Yo 1\ J'Y1 
and R(Y1 1\ J'Y1) = (3 ~~ - ~) Y1 1\ J'Y1. We also have: 

R(eo 1\ e1) =-eo 1\ e1- Jeo 1\ Je1 

R(eo 1\ Je1) =-eo 1\ Je1 + Jeo 1\ e1 

R(e11\ Je1) = -2eo 1\ Jeo- 4el/\ Je1 

Now choose -Jeo to be the unit normal to S! b C C:P(2), then 
J( -Je0 ) = e0 is a tangent vector field to S! b· (e1, J~1 ) is an orthonor­
mal frame field in the orthogonal compleme:r{t of the line bundle defined 
by eo on S! b' We define it such that Y0 =cos r.p e0 +sin r.p Je1. 

Let J'Yi =-sin r.p eo+ cos r.p Je1 (orthonormal to Yo), then Y1 = ± e1. 
Wecompute:R(Yo/\YI) = R((cosr.peo+sinr.pJe1)A(±e1))-R(Yo 1\ Y1) = 

2 

=F cos r.p eo /\e1 =fcos r.p Jeo I\Je1 ± sinr.p(2eo/\Jeo+4el/\Jei) + ~4 Yo 1\ Y1. 
We have: eo = cos r.p Yo - sin r.p J'Y11 e1 = ±Y11 J e1 = sin r.p Y0 + 
cos r.p J'Y1. Substituting this we get: R(Yo 1\ Y1) = - cos2 r.p Yo 1\ Y1 =f 
cos r.p J e0 1\ (sin r.p Y0 +cos r.p J'Y1) ± 2 sin r.p( cos r.p Y0 -sin r.p J'Y1) 1\ Je0 + 

4 sin r.p Y1 1\ (sin r.p Yo + cos r.p J'Y1) - sin r.p cos r.p Y1 1\ J'Yi + ~~ Yo 1\ Y1 = 

(~ -1-3 sin2 r.p)Yo 1\ Y1 +3 sin r.pcos r.p Y1AJ'Y1 =FJe0 1\ (3sinr.p cos r.p Yo+ 
(1- 3sin2 r.p)J'YI). By similar computations we get the result: 

(6.1) 

R(Yo 1\ YI) = ( ~; - 1 - 3 sin2 r.p) Yo AY1 + 3 sin r.p cos r.p Y1 1\ J'Y1 

=F J eo 1\ (3 sin r.p cos r.p Yo + (1 - 3 sin2 r.p )J'Y1) 

R(Yo 1\ J'Yi) = ( ~; - 1) Yo 1\ J'Y1 ± Jeo 1\ Y1 
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R(Y1 1\ J'Y1) = 3 sin rp cos rp Y0 1\ Y1 

We are now in a position to consider the Gauss equations: 

2 

Gl. (Rt(Yo 1\ Yl)Yo, Y1) = ~4 - 1- 3sin2 rp = boobu- b61 

G2. (Rt(Yo 1\ Y1)Yo, J'Y1) = 0 = boob1y- bo1bo1 

G3. (Rt(Yo 1\ Yl)Y1, J'Y1) = 3sinrpcosrp = b01b11- bub0 y 
2 

G4. (Rt(Yo 1\ J'Yl)Yo, J'Y1) = ~4 - 1 = boobn- b~I 

G5. (Rt(Yo 1\ J'Yl)Y1, J'Y1) = 0 = b01bn- b01b11 

G6. (Rt(Y11\J'Yl)Y1,J'Y1)=; -3~: -4+3sin2 rp=bubn-bi1. 

Now consider: I~~~~~~ ~~~I = 0 = (bo1bn - b0 yb1I)boo -
bar bn bn 

(boobn- b~1 )bol + (boobn - b01b0 I)b0 y = 0 + (1- ~~ )b01 + 0 accord­
ing to G5, G4 and G2. 

D1: Hence (1- ~~ )bo1 = 0 (and for a 2 =f. b4 : b01 = 0). 

Similarly by considering I ~~~ ~~~ ~~~ I = 0 we obtain: 
boo bo1 bar 

D2: 3sinrpcosrpboo + (~~ -1- 3sin2 rp)boi = 0. 

I ~~~ ~~~ ~~~ I = 0 gives: 
bar b1r bn 

D3: (~- 3~~- 4 + 3sin2 rp)b01 + 3sinrpcosrpb1y = 0 

I ~~~ ~~~ ~~~ I = 0 gives: 
bo1 bu bn 

D4: 3sinrpcosrpb01 + (~~ -1- 3sin2 rp)b11 = 0 

I ~~~ ~~~ ~~~ I = 0 gives: 
bar bn bn 

D5: (~- 3~:- 4 + 3sin2 rp)b0y + 3sinrpcosrpbn = 0 

and I ~~~ ~~~ ~~~ I = 0 gives: 
bar b1r bn 

D6: (1- ~~ )b1I = 0. 
We first deal with the case a 2 =f. b4 . Then, by D1 and D6: b01 = 

b11 = 0. Furthermore 
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I baa 0 bai I 4 2 • 2 D7: det B = o bu o = (1)2 - 3~4 - 4 + 3sm cp)boo + 
bai 0 bn 

3sincpcoscpb0 J: = (~~ -1)bn = 3sincpcoscpb01 + (~~ -1- 3sin2 cp)bn. 

Proposition 6. For a2 -=f. b4 we have det B -=f. 0 on an open dense 
subset of S!,b· 

Proof. Assume det B = 0 on an open, nonempty subset. If 
det B = 0, it follows from D7 that bn = 0, from G3 that sin cp cos cp = 0, 
and from G 1 that ~~ - 1 - 3 sin2 cp = 0, hence sin cp -=f. 0 and cos cp = 0. 
UT h a 2 4 • 4 vve then ave b4 = 4. From G6 we get: 0 = b2 - 12- 4 + 3, I.e. b2 = 13, 
b2 = 1~, a 2 = 1~~· We wish to apply the Codazzi-Mainardi equa­
tions, these say that (R(X 1\ Y)Z, -Je0 ) = Y(B(X, Z))- B(X, 'VyZ)­
X(B(Y, Z)) + B(Y, 'VxZ) + B([X, Y], Z). 

There are 9 basic cases of this equation. We 
substitute X Y0 , Y Yt, Z Yo to get: 
(R(Yo 1\ Y1)Yo, -Jeo) ±(R(sincp Je1 1\ e1) sincp Jet, -Jeo) 
±((2eo/\Jeo+4e1 /\Je1)Je1,-Jeo) = 0 = Y1(boo)- B(Yo,'Vy1 Yo)­
Yo(bm) + B(Y1, 'VyaYo) +B([Yo, Y1], Yo) = Y1(boo)- B(Yo, -{>;J'Y1)-
0 + 0 + B(~J'Yt, Yo)= Y1(boo) + f,boi + ~bo1 = Y1(boo) + 2fbo1· Hence 
Y1(boo) = - 241bo1· This case of the Codazzi-Mainardi equation we 
denote by (C1). 

Similarly, we have (C2) for X= Y0 , Y = Y1, Z = Y1 and (C3) for 
X= Yo, Y = Y1, Z = J'Y1. Also: 

(C4): X=Yo, Y = J'Y1, Z=Yo 

(C5): X=Yo, y = J'Yt, Z=Y1 

(C6): X=Yo, Y= J'Yt, Z = J'Y1 

(C7): X=Y1, Y = J'Y1, Z=Yo 

(C8): X=Yi., y = J'Yt, Z=Y1 

(C9): X=Y1, Y = J'Y1, Z = J'Y1. 

We have (by (6.1)): (C5): (R(Yo 1\ J'Y1)Yt, -Je0 ) 

(((~~ - 1)Yo 1\ J'Y1 ± Jeo 1\ Y1)Y1, -Jeo) = (±(Jeo 1\ Y!)Y1, -Jeo) 
±1 = J'Y1(bm) - B(Yo, '\7 J'Y1 Y!) - Yo(bli) + B(J'Y1, 'VyaY1) + 
B([Yo, J'Y1], Y1) = 0- B(Yo, -{>;Yo) - 0 + B(J'Yt, (~ - {>; )J'Yl) + 
B(-~Yt, Y!) = 2boo + ~bn- 143 bn = 2boo + ~bn. 

Finally, by (6.1) and coscp = 0 we have (C9): 

(R(Y1 1\ J'Yi)J'Yi., -Jeo) 

= (=F(Je0 1\ ((-2 + 3sin2 cp)Yo + 3sincpcoscpJ'Y1))J'Y1, -Je0 ) = 0 
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= J'Y1(b11)- B(Yb 'V J'YJ'Yi.)- Yl(bn) + B(J'Yi., 'VyJ'Yl) 

+B([Yb J'Yi.], J'Yl) 

= 0-0- Y1(bn) + B (J'Y1,; Yo)+ B (!~Yo, J'Y1) 

= -Yl(bn) + 6boi, 

i.e. Yi.(bn) = 6boi· Now, we differentiate 2boo + ~bn = ±1 along the 
vector field Yi. and obtain: 0 = 2YI(boo) + ~Y(bn) = - 221 boi + 1;b01 = 

-~b01, hence b01 = 0. 
It only remains to determine b00 and bn. By ( 6.1) and cos <p = 0 

(C3) gives 

(R(Yo 1\ Y1)J'Y1, -Jeo) 

= :r=(-(Jeo 1\ 2J'Y1)J'Y1, -Jeo) = ±2 

= YI(boi)- B(Yo, 'VyJ'Yl)- Yo(bli) + B(Y1, 'Vy0 J'Y1) 

+B([Yo, Y1], J'Y1) 

= 0 - B (Yo, ; Yo) - 0 + B ( Yi., (; - ~) Yi.) + B ( ~ J'Y1, J'Y1) 

13 
= -2boo + 4 bn. 

Hence 1
4
8 bn = ±1 ± 2 = ±3, bn = ±~ from (C3) and (C5). Hence, 

from (C9), boo= -~bn = =t= 152 • Hence boobn = - 158 , but this is a 
contradiction, since by (G4) b00bn = 3. Hence: detB = 0 on an open 
set is impossible when a2 =f. b4 . q.e.d. 

We continue the computation on the open set {p E S~,bldet B(p)=f. 0}. 

bubn- b~1 
(det B)3 = (det B) b01b11- bo1bn 

bo1b11 - b0 ybu 

bo1b11 - b01bn 
boobn- ba1 

b01 b0 y - boobli 

b01b11 - boybu 
b01bo1 - boob11 

boobu- b61 
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2 2 

+ 3~4 sin2 r.p- 3sin2 r.p- 9sin4 r.p- 4 ~4 + 4 + 12sin2 r.p 

- 9sin2 r.p + 9sin4 r.p] (det B) 

(~: -1) [4~: -3~:- ~:- ~ +4 

+12(~:- : 2 )sin2 r.p] (detB). 

We cancel detB and obtain (detB)2 = (~= -1)[4~:- 3~;- ~=- t. + 

4 + 12( ~: - b) sin2 r.p]. Now we substitute ( ~: - 1 - 3 sin2 r.p )boi = 
-3 sin r.p cos r.p b00 (D2) into D7 to obtain: 

(6.2) (~: -1-3sin2 r.p)detB 

= (a2 - 1- 3sin2 r.p) (i- 3a2 -4 + 3sin2 r.p) boo b4 b2 b4 

+3 sin r.p cos r.p( -3 sin r.p cos r.p )boo 

= [ 4 ~: - 3 ~: - ~: - ~ + 4 + 12 ( ~: - : 2 ) sin2 r.p] b0o. 

Similarly, by substituting for b01 from D5 into D7 we obtain: 

(6.3) (i- 3a2 -4 + 3sin2 r.p) detB 
b2 b4 

= [ 4 ~: - 3 ~: - ~: - ~ + 4 + 12 ( ~: - : 2 ) sin2 r.p] bn, 

and we already have 

(6.4) det B = ( ~: - 1) bu. 

Proposition 7. We have sin r.p is constant on S~ b (i.e. r.p is con-
stant) in the case a2 =f. b4 . ' 

Proof. Consider the Codazzi-Mainardi equation 

(R(YoAJ'Y1)Y1, -.Jeo) = ±(R(eo A !e1)e1, -Jeo) 

= ± ((-eo A Je1 + Jeo A e1)e1, -Jeo) = ±1 

= J'Yl(bm)- B(Yo, V' J'Y,Yl)- Yo(bn) 

+ B(J'Y1, V'y0 Y1) + B([Yo, J'Y1], Y1). 
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Since b01 = bn = 0 we have J'Y1 (b0 I) = Y0 (bn) = 0 and (C5) fsboo­

~b11 + ( ~ - i}s )bn = ±1. Multiply both sides by ( ~= - 1) [4 ~; - 3 ~= -
a2 4 4 12( a2 1 ) . 2 ] W bt . . b• - 7J2 + + b• - b2 sm r.p . e o am. 

We wish to keep track of the terms involving sin r.p. On the RHS (right 

hand side) this is simply ±12( ~= -1) (~=--b) sin2 r.p. On the LHS we have 
(R1 (a, b) sin2 r.p + R 2 (a, b)) det B where R1 (a, b) and R 2 (a, b) are rational 

functions in a and b. Assume first that ~= =f. -b. Then sin 2 r.p does occur 
with nonzero coefficient both in RHS and in ( det B)2 • Assume first that 
R 1 (a, b) =f. 0. Then, on squaring both sides of the equation, we get on the 

LHS: 12R1 (a, b )2 ( ~= -1) ( ~= --b) sin6 r.p, hence the coefficient of sin6 r.p is 
nonzero. On the RHS we only have terms of sin4 r.p and sin2 r.p. We now 
have a polynomial of degree 3 in sin2 r.p equal to zero. We conclude that 
sin r.p is constant on the open, dense subset {p E S!,b I det B(p) =f. 0} and 

hence on S!b· Next assume that R 1 (a,b) = 0. Then, on the RHS we 

have 144(~= '_ 1) 2 (~= - b )2 sin4 r.p + lower order terms, on the LHS we 
only have sin2 r.p-terms. Hence, since the coefficient of sin4 r.p is nonzero, 

we again have that sin r.p is constant. This finishes the case ~= =f. -b. 
Now assume ~= = b, i.e. a= b. There are no sin2 r.p-terms in RHS 

or in (detB)2. We compute R1(a,b) = -1,(-b -1)(-3) +3-l;(b -1) = 0, 
hence there are no r.p-terms at all in this case. For the remaining terms 
we obtain: 

[~ (~ -1) 2 
- ~ (~ - ~ + 4) + ~ (~ - 1) (~ -4)] det B 

bb2 bb4 b2 bb2 b2 

=±(b12-1) (b:-~+4). 
~ ( -b - 1) det B = ± ( -b - 1) ( tr - ~ + 4). Since ~ = 1 for b = 1, this is 

impossible, hence we get ~V(b- 1)(tr- ~ + 4) = ±(b- ~ +4). By 
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Proposition 7 b-f>-+4 =J- 0, hence f,-(-b-1)(b-f>-+4) = (b-f>-+4)2 

and f,-(-b-1) = b-f>-+4 = (-b-1)(-b-4). So f,- = -b-4, i.e. -f, = -4 
but this is a contradiction. Hence this case cannot occur. q.e.d. 

Proposition 8. In the case a 2 =J- b4 we have sin cp cos cp = 0. 

Lemma. If cp is constant on S~,b' it follows that bij is constant, i, 
j = 0, 1, I. 

proof of Lemma. First, according to the explanation after the proof 
. . h (d )2 ( a2 ) [ a2 a4 a2 4 of Proposition 7, we ave et B = b4 - 1 4b8 - 3 bs - b4 - b2 + 4 + 

12(~~ -b) sin2 cp] on {p E S~,b I detB(p) =J- 0}, hence detB is constant 
there, and consequently everywhere. From D7 it follows that b11 is 
constant and non-zero; hence, by G3 it follows that boi is constant. Now, 
if sin cp cos cp =J- 0, it follows from D2 and D5 that b00 and bn also are 
constants. If sin cp cos cp = 0 we use D7. Since {p E S~ b I det B (p) =I- 0} 
is open dense in s~,bl we obtain the desired result. ' q.e.d. 

Proof. By Proposition 8 cp is constant. By (C1) 

(R(Yo 1\ Yl)Yo, -Jeo) 

± (R( (cos cp eo +sin cpJ el) 1\ el)( cos cp eo +sin cp J e1), -J eo) 

± ( (- cos cp e0 1\ e 1 - cos cp J e0 1\ J e 1 + 2 sin cp eo 1\ J eo 

+ 4sin cp e1 1\ Jel)( cos cpe0 +sin cp Jel), -Je0 ) 

± (2 sin cp cos cp J eo +sin cp cos cpJ eo, -J eo) = =t=3 sin cp cos cp 

= Y1 (boo) - B(Yo, \i'y, Yo) - Yo(bo1) 

+ B(Y1, V'y0 Yo) + B([Yo, Y1], Yo) 

= ~boi + ~boi = (~ + ~) boi· 
b2 a b2 a 

Similarly, ( C9) 

(R(Y1 1\ J'Yl)J'Y1, -Jeo) 

± (R(e1 1\ (-sin cp e0 +cos cp Jel))(- sin cp e0 +cos cp Jel), -Jeo) 

± ( (- sin cp eo 1\ e1 - sin cp J eo 1\ J e1 - 2 cos cp eo 1\ J eo 

- 4coscpe1 1\ Jel)(-sincpe0 + coscpJel), -Jeo) 

± (sin cp cos cp J e0 + 2 sin cp cos cp J e0 , - J e0 ) 

=t= 3sincpcoscp = J'Y1(b11)- B(Y1, \7 J'Y,J'Yl)- YI(bn) 

+ B(J'Y1, \i'y,J'Yl) + B([Y1, J'Y1], J'Yl) 

a 2a 3a 
= b2 boi + b2 boi = b2 boi· 
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We subtract C1 from C9 and get: ( ~~ - ~ )b01 = 0. Hence b01 = 0 unless 
~~ = ! , i.e. a = b. But a = b was proved not to occur at the end of the 
proof of Proposition 8. Hence b01 = 0 and sin cp cos cp = 0. q.e.d. 

§7 We continue with the case a2 # b4, and we only need to check 
sincp = 0 and coscp = 0. 

Theorem 9. For a2 # b4 and sincp = 0; we have: b- b: = 1. 

Proof. By D1, D2 and D6 we have b01 = b01 = b11 = 0. Further­
more we may choose Yo= e0 , Y1 = ±e1, J'Y1 = Je1. From G1 and G4 

2 

we have: b4 - 1 = boobn = boobn. From this bn = bn. 
We now apply an efficient method. Both the curvature ten­

sor R and the complex structure J of CP(2) are parallel. Hence 
V x J = 0 for any X. Consider for example Vy1 J'Y1 = Vy1 J'Y1 + 
b11Je0 = ~Yo + 0 = ~Yo. On the other hand, writing C for 
contraction, we have: VyJ'Yl = Vy1 Je1 = Vy1 (C(J 1&1 el)) = 
C(Vy1 (J ~&~ e1)) = C(VyJ ~&~ e1 + J ~&~ Vy1 e1) = 0 + J(Vy1 e1) = 
±J(Vy1 Yl) = ±J(Vy1 Yl +bnJeo) = O±bn(J2 eo) = =Fbneo = =FbnYo. 

So b11 = bn = =F ~. Substituting into G6 we obtain: b: = to - 3 b: - 4. 

Hence 4(-b - b:) = 4, and the result follows. q.e.d. 

Proposition 10. For a2 i= b4 we cannot have cos cp = 0 except 
possibly for a = v'3, b = 1. 

Proof. In this case we have: Yo = Je1, Y1 = ±e1, J'Y1 = -eo, 
as well as bm = bn = 0. It is easy to see that b01 = 0 also: From D7 
(detB = (b: - 1)b11 ) and Proposition 7, we have that b11 # 0 on the 
open dense subset of S~ b· Then, from G3, we immediately have b01 = 0 

on s~,b because cos 'P =' 0 and bm = 0. 

We have Vy0 YQ = Vy0 Yo + booJeo = booJeo, and also: Vy0 Yo = 
Vy0 C(J 1&1 ei) = CVy0 (J 1&1 e1) = ±C(J 1&1 Vy0 Y1) = ±(~- ~)Jeo. So 
boo = ±(~- !). Similarly Vy1 Yo = Vy1 YQ + bmJeo = -~J'Y1 = 

~eo and also Vy1 Yo = Vy1 (C(J 1&1 e1)) = ±C(J 1&1 Vy1 Y1) = 
±J(Vy1 Y1 + bnJeo) = =j=bueo. Hence bn = =f~· From G1 we have 

boobn = b: -4 = -~(~-!),so b: = b + 2, a2 = b2 + 2b4 • We have 
from G4 and G6: 

bi1 = a2 = boobnbnbn = (a2 _ 4) (i. _ 3a2 _ 1) (a2 _ 1) - 1 

b4 b00 bn b4 b2 b4 b4 

S a2 (a2 1) (a2 4·)( 4 3a2 1) Fr h" a4 4 o b4 b4 - = b4 - p - v - . om t 1s we get bs + p = 

b: + ¥? + 1, and substituting a2 = b2 + 2b4 we get b = 1, a = y'3. q.e.d. 
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It is easily seen that this solution, with boo = ± )J, bu =t=VJ, 

bn = ±2VJ satisfies all Gauss equations, Codazzi-Mainardi equations, 
and also the requirement that J be parallel. Since the principal curva­
tures bii are constant, S~ b is a Hopf hypersurface. Kimura [KJ proved 
that any such hypersurfa~e is an open subset of a submanifold which is 
homogeneous under a subgroup of the isometry group U(3) of CP(2). 
Such submanifolds are classified in Takagi [Tal]. For the case n = 2 we 
only have the geodesic spheres and tubes over an JRP(2) (or a complex 
quadric). We show that one of those tubes is similar, but not equal to 
our possibility. 

We find the factors a and b by computing the lengths of Killing­
Jacobi fields along the geodesic exp(tX)p, starting at a point p E S~ b 

(recall X= ( g g A)). Consider the field J(t) = f(t)e0 . ' 
-1 0 0 

Since the sectional curvature of Sp(e0 , Je0 ) is 4, we have, by the 

Jacobi equation ~;/ = -4J(t). Hence f"(t) = -4f(t). Since JRP(2) is 
real, its tangent space must equal Sp(e0 , e1 ), hence the Jacobi field starts 
out at its maximum length for t = 0. So f(t) = cos 2t. By a similar 
argument the field K(t) = g(t)e1 must satisfy g"(t) = -g(t). Here we 
assumed e1 was chosen such that Tp JRP(2) = Sp(e0 , e1 ), (unproblematic 
when Yo= e0 ). Hence g(t) =cost. Finally, for L(t) = h(t)Je1 we also 
get h"(t) = -h(t), this time, however, Je 1 is orthogonal to TplRP(2), 
and h(t) = sint. For precisely one t E (0, ~) two of these are equal: 
cos(2 · ~) =sin~ = ~- By the formulas of Cecil and Ryan [CR, p. 494] 
the principal curvatures are 2 tan 2t, tan t, - cot t. For t = ~ we get 
2vfJ, )J, and -vfJ, coninciding with the values (albeit in a different 

order) we had computed for 8~, 1 . From Takagi's list [Tali] it follows 

easily that for n = 2 only geodesic spheres and real projective planes 
can occur, hence, by Kimura's theorem, this is the only possibility. It is 
not an 8 3 with the given U(2)-action. 

§8 We finish with discussing the case a2 = b4 • We have 

D2: 3 sin r.p cos r.p boo - 3 sin2 r.p b01 = 0 

D7a: ( ~ -7 + 3sin2 r.p) boo+ 3sinr.pcosr.pb01 = 0 

D3 and D4 are linear equations exactly like this with b01 substituted 
for boo and b11 for boi· D5 and D7b are again the same with this time 
boi substituted for b00 and bn for boi. The determinant of this system 
equals 12( b - 1) sin2 r.p. If this is not zero, we must have b00 = boi = 0 
and similarly b01 = b11 = 0 and b01 = bn = 0. From G1 it follows 
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that sincp = 0, which contradicts 12(-b - 1) sin2 cp =f. 0. Hence this 
determinant must be equal to zero. 

Now either: (a) b = 1 or (b) sincp = 0. 
First consider b = 1 (= a). We may assume that there exists a point 
p E Sr 1 such that sincp(p) =f. 0. These points constitute an open set of 
Sr 1, ~nd on this open set, from D2 we have b0y = cot cp b00 , similarly 
b1; = cot cp b01 and bn = cot cp b0y = cot2 cp b00 . In addition to this 
G1 gives b00 b11 - b51 = -3sin2 cp (the rest of G2-G6 are easily seen to 
depend on these 4 equations). 

We compute: 

Vy0 Jeo = J[Vy0 (coscpYo -sincpJ'Y1)] 

= J[- sin cp Yo( cp )Yo +cos cp booJ eo -cos cp Yo( cp )J'Y1 

- sincp\i'y0 J'Y1- sincpb0yJeo] 

= J[-Yo( cp )Je1 +sin cp Y1] + (sin cp b0y - cos cp boo)eo 

= Yo( cp )e1 ±sin cp Je1 + (sin cp b0y - cos cp boo)eo. 

On the other hand (VyJeo, Yo) = -(Jeo, 'i\ly0 Yo) = -(Jeo, booJeo) = 
-boo. Similarly ('i\ly0 Jeo, Y1) -(Jeo, Vy0 Y1) -b01 and 
(Vy0 Jeo, J'~) = -(Jeo, Vy0 J'Y1) = -b0y. Hence Vy0 Jeo = -booYo­
b01Y1- boyJ'Y1 = (-coscpboo + sincpb0y)eo =F b01e1- (boosincp + 
b0ycoscp)Je1. Hence we have: b00 sincp + b0rcoscp = =rsincp. Substi­
tuting b0r = cot cp boo into this we get: boo sin2 cp + b00 cos2 cp = boo = 
=F sin2 cp. Also b0r = =F sin cp cos cp and bn = cot2 cp b00 = =F cos2 cp. 

Now we also have: 

'i\ly,Jeo 

= J[Vy, (cos cp Y0 - sincp J'YI) +cos cp b01 Je0 -sin cp bnJe0] 

= J[- sincp Y1(cp)Yo +cos cp \7y, Y0 - coscp ~(cp)J'Y1 - sincp\7y,J'~] 

+sin cp b1yeo - cos cp b01 eo 

= J[-Y1 (cp )Je1 -cos cp J'~ -sin cp Yo] + sincp bneo -cos cp b01 eo 

= Y1 ( cp )e1 - J( J el) + (sin cp bn - cos cp b01)e0 

= ~(cp)e1 + e1 + (sincpb1y- coscpb01)eo. 

Also (Vy,Jeo, Yo) -(Jeo, 'i\i'y, Yo) -bo1, (Vy,Jeo, Y1) 
-(Jeo, Vy,Y1) = -bu, and ('i\i'y,Jeo,J'Y1) = -(Jeo, Vy,J'Y1) = -b1r. 
Hence: 'i\7 y1 J eo = -b01 Yo - bu Y1 - b1y J'Y1 = (bn sin cp- b01 cos cp )eo =F 
bue1- (b01 sincp + bn coscp)Je1. So we have: b01 sincp + bn coscp = 0. 
We also have from D4: b01 cos cp - b1y sin cp = 0 and the determinant of 
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this homogeneous system is 1. The only solution is b01 = b1r = 0. From 
G 1 we have boobu = =f sin2 cpbn = -3 sin2 cp, hence bu = ±3. 

Consider the Codazzi-Mainardi equation (C5): From (6.1): 

(R(Yo !\ J 1Yl_)Y1, -Jeo) 

= \ ( ( ~: - 1) Yo!\ J 1Y1 ± Jeo !\ Y1) Y1, -Jeo) 

= (0 =f (Y1, Y1)Jeo, -Jeo) 

± 1 = J 1Y1 (bol) - B(Yo, \7 J'Y1 Y1) - Yo(b1I) 

+ B(J1Y1, 'Vy0 YI) + B([Yo, J 1Y1], YI) =boo+ bn- 2bu 

=f sin2 cp =f cos2 cp- 2(±3)) = :r7. 

But this is a contradiction, hence the case a) does not occur. 
Next, consider (b): sincp = 0. Then we may choose Yo e0 , 

Y1 = ±e1, J 1Y1 = J e1. We have: 
'\7y1 Y1 = \i'y1 Y1 + bnJeo = buJeo. Also: '\7y1 Y1 

-'\7y1 C(J0JYI) = =f'\?y,C(J 181 Jei) = :r'\?y,C(J 181 J 1YI) 
=rJ('Vy,J1Y1 + b1rJeo) = =rJ(&Yo + bliJeo) = ±(-&Jeo + blieo); 
then b1r = 0 and bu = =fl. Similarly: 

'\7 J'Y,J1Y1 = 0 + bnJeo = bnJeo = -'\7 J'Y1 C(J 181 J(Je1)) 

= ±C(J 181 '\7 J'Y1 Y1) = ±J(\7 J'Y1 Y1 + b11Jeo) 

= =f (; Je0 + bneo) . 

Hence bn ==fl. Furthermore: 

- 1 1 (a 2) \i'yoJ Y1 = \i'yoJ Y1 + borJeo = b2 - ;: Y1 + borJeo 

= ± ( 1- ~) e1 + b0rJeo =- '\7y0 C(J 181 J(Je1)) 

= ±C(J 181 '\?yo(YI)) = ±J('\7y0 Y1) 

= ±J('Vy0 Y1 + bo1Jeo) = ± (~- 1) J(Jel) =f bmeo 

= ± ( 1- ~) e1 =f bo1eo, 

i.e. b01 = b0 r = 0. Hence we have now proved that bm = b0 r = b11 = 0, 
bu = bn = =fl. It follows from G4 that b00 = 0 also. From G6: 
4 7 - 1 b2 - 1 2 - 1 H h d· b2 - - , - 2, a - 4 . ence we ave prove . 
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Theorem 11. . For a2 = b4 the only possibility for S~,b is for a = ~, 
1 1 a 2 

b = v~z· Hence b2- b4 = 1. 
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