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Isometric Immersions into Complex Projective
Space
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In the theory of isometric immersions of submanifolds there are fun-
damental results of John Nash for the C*° case and Burstin-Cartan-
Janet-Schléfly for the analytic case (also see Robert Greene [G] for the
case of local isometric immersions). However, these theorems require a
large codimension and are of practically no help in considering concrete
questions in low codimensions.

An obvious way of producing large varieties of isometrically
immersed homogeneous submanifolds is to take the orbits of Lie group
actions. In low codimensions the following result should often be true:

Let a compact, connected Lie group G act on the connected
Riemannian manifold N with principal orbit type M = G/H. Then,
among all the G-homogeneous metrics on G/H the only ones which
allow an isometric immersions into N are the ones which are already
realized as the orbit metrics of this action.

Obviously this is true for the geodesic spheres S"~1(r) of R™ under
the standard action of SO(n). With a little work it is also easy to prove
for the larger classes of metrics invariant under the unitary or symplectic
groups. A somewhat more challenging example is to prove this for the
second Stiefel manifold SO(n)/SO(n — 2) of R?™ under the diagonal
embedding SO(n) — SO(n) x SO(n) acting on R?".

In this paper we obtain far reaching generalizations of these results.
First, we wish to consider isometric immersions into other homogeneous
spaces than Euclidean (and spherical or hyperbolic) spaces. Secondly,
we wish to include all dimensions. It is clear that the low dimensions
are going to be considerably harder, since the main technique for using
the Gauss equation fails in the lowest dimensions. We work out here the
concrete case of isometric immersions of spheres $?"~! = U(n)/U(n—1)
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into N = CP(n). The techniques developed here should be quite useful
in many other homogeneous spaces, also. In particular, quite analo-
gous results hold true for complex hyperbolic space and quaternionic
projective and hyperbolic spaces, and will be published soon.

We also note that our results have a bearing on the fundamen-
tal theorem for hypersurfaces. This theorem states that for Euclidean
(or spherical/hyperbolic) spaces N, any codimension one manifold M
with given candidates for the first and second fundamental forms allow
a local isometric immersion into N if and only if those forms satisfy
the Gauss and Codazzi equations; moreover, this immersion is unique
up to deformation by an isometry of N. Now for isometric embeddings
of 3 into CP(2) we get far more solutions to the Gauss equation than
those which actually come from submanifolds. Most of those solutions
are ruled out by the Codazzi equations, but some are not. Hence, the
fundamental theorem cannot be generalized that simply to CP(n). One
also need a condition that the curvature tensor of the total space N is
parallel. Also see Eschenburg-Tribuzy [ET] about this question.

81 These theorems follow from a careful study of the Gauss equation:
(ﬁ(X AY)Z, W) = B(X,W)B(Y,Z) — B(X,Z)B(Y,W) where R is
the curvature operator of the submanifold M and B is the second fun-
damental form (for the case of a Euclidean surrounding space). In the
case of a non-FEuclidean surrounding space, however, the Gauss equation
reads: (Rt(X/\Y)Z W)= B(X,Z)B(Y,W) — (X W)B(Y, Z) where
R* = R* — R, Rt is the part of the curvature operator R of N tangen-
tial to M . This will vary with M’s position in N, so in this case the
left hand side of the above equation is also unknown when M and its
first and second fundamental forms are specified. We are not aware of
much study of this situation in the literature; however, we present here
the complete solution of the probably most basic question in isometric
immersions in the case of non-classical geometries.

Let N = CP(n) with the metric normalized such that the sectional
curvatures are in [1,4]. Let the metric of the geodesic sphere S*"~1(r) =
U(n)/U(n — 1) be ., 7 € (0,%) defined as follows: The isotropy rep-
resentation of U(n — 1) on T,5*" 1(r) = RO R 2 =R C"!is
given, as on p. 12, by 6 @ p,, -1 where 0 is the trivial representation and
tn—1 is the standard representation. Consequently, the inner product
at p of any U(n)-invariant metric is given by two real, positive scalars
a and b, which represent the stretching factors from the standard metric
on R?"~! = R @ R?"~2 for the two summands (by Schur’s lemma). For
the Berger metric sphere S?"~1(r) we have a = sinrcosr and b = sinr;

hence 75 — b: = 1. We now call $?"~!(r) with this metric S27!.



Isometric Immersions into Complex Projective Space 369

Proposition 1. 5’2"2_1 =U(n)/U(n—1) is isometric to a geodesic
sphere S*™~1(r) in CP(n) iff 3 — ‘;—: =1, in R™ iff & — Z—z =0 and
in complex hyperbolic space CH(n) with metric normalized such that
sectional curvatures lie i [—4,—1] iff 35 — %; = -1.

Proof. Let 517 — %Z— =1, then 0 < b < 1, and we set b = sinr,
r € (0, %), the result then follows from the above observation. In the
second case we have that a = b; hence this is the Euclidean case. In the
third case we have ‘g—: > 1; hence, setting ;% = cothr; then b = sinhr,
i.e. a =sinhrcoshr. This is exactly the geodesic spheres in CH(n) with
metric normalized as above. g.e.d.

Remark. 1If biz — ‘;—z =t > 0, this corresponds to a geodesic sphere
in a CP(n) with a homothetic metric, similarly for & — ‘;—z =—t <0,
this corresponds to a geodesic sphere in a CH(n) with a homothetic
metric.

We now have an interpretation of all U(n)-invariant metrics on
S27=1 We note that in CP(n) and CH (n) the geodesic spheres S2"~1(r)
for different r determine distinct homothety classes of metrics, whereas
in R?" all such metrics are homothetic.

Our main resul, here proved for CP(n), is the following:

Theorem 2. The Berger metrics v, are the only U(n)-invariant
metrics on S~ 1 which allow an isometric immersion into CP(n).

Remark. We only need to prove: biz - ‘;—i = 1. Obviously, homo-
thetic metrics admit an isometric immersion into CP(n) with a homo-
thetic metric. Thus, the set of U(n)-homogeneous metrics admitting an
isometric immersion into a given CP(n), is a one-dimensional subset of

the two-dimensinal variety of all U(n)-homogeneous metrics.

§2 Let V be an inner product space. Let R be the linear space
of all curvature-like 4-tensors on V; ie. R € R iff R(X,Y,Z, W) =
_R(Y7 X, Z, W) = —R(Xa Y, W, Z); R(X7 Y, Z, W) + R(K Z, X, W) +
R(Z,X,Y,W) = 0 (it then follows that R(X,Y, Z, W) = R(Z,W, X,Y)).
Let B be a symmetric 2-tensor on V', then the 4-tensor BA B on V
defined by B A B(X,Y,Z,W) = B(X,Z)B(Y,W) — B(X,W)B(Y, Z)
is a curvature-like tensor. Also, note that B A B(X,Y,Z,W) =
(BAB(X AY),Z AW), with B defined as follows:

Let B be the symmetric linear operator on V defined by B(X,Y) =
(B(X),Y) (the shape operator corresponding to B). Let the 2-tensor
B A B be defined by BA B(X AY) = B(X) A B(Y). The inner product
on A%(V) is defined in the usual way.
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Now, for a point p € Sﬁj},’l C CP(n) let R be the orthogonal
projection of the curvature operator of CP(n) restricted to TPSE’TZ“I
and let R be the curvature operator of ng};l. The Gauss equation,
RYX,Y,Z, W)= R\X,Y,Z,W)— R(X,Y,Z,W) = B(X,Z)B(Y,W)—
B(X,W)B(Y, Z), may then be written R{(X AY) = (BAB)(X AY),
where B is the second fundamental form. The fact that R* = B A B
has surprisingly strong consequences. It is already sufficient to prove
Theorem 2 for n > 4, which we do in §4. This is based on the following
result:

Proposition 3 (see also Agaoka [A]). RYXAY)ARXANZ)=0
forall X, Y, Z € T,(S2371).

Proof. RYXAY)ARYXAZ)= (BAB)XAY)A(BAB)(XAZ) =
B(X)AB(Y)AB(X)AB(Z) =0. q.e.d.

Remark. For one case of n = 3 we also need to use the Codazzi-
Mainardi equation, which is done in §5. For n = 2, R{(XAY)ARY (X AZ)
will always be a 4-vector in T, pSS’,b, hence it is automatically zero and

" gives no information. This is by far the most difficult case, and the proof
is given in §6-8§8.

§3 For CP(n) we have the standard results:

(3.1) R(eiNej) = —e; Nej — Je; A Je;
R(e; A Jej) = —e; AN Jej + Je; Nej (i#£7)
R(Je; NJej) = —Je; NJej —e; Nej
R(e; N Je;)) = —2(eg N Jeg+e1 AJey + - -
ceoden_1 Aden—1) —2(e; A Je;)

Here J denotes the almost complex structure of CP(n), eg, €1,...,€n_1
is a complex basis for T,CP(n). Also we use the convention
R(X N Y)Z = ?X?YZ — ?Y?XZ — le,y]z.

Also Sg)’;)_l =U(n)/U(n—1), from here it has an almost cocomplex
structure J’, i.e. J' is defined on the C"~! part in T,,ng;,—l =ReC"!
by the action of 7 sitting diagonally in the isotropy group U(n —1) at p.
Notice, however, that this a priori is not related to the almost cocomplex
structure inherited from the almost complex structure of CP(n) when
S§?n—1 is isometrically immersed. In fact, a challenge will be to demon-
strate that these two structures on $?"~! coincide. (see e.g. Theorem 4
in §4 and the proof of Theorem 5 for showing that Jeys = J'es (= J'Y3)
in that case.)
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We now compute the curvature operator for SZZ—I.
We have: G=U(n), H=U(n—1) CU(n), g =h & p with

= {it)

Here *d means the transpose of d. Clearly the pair (g, b) is reductive.
We have (see [KNII]): Let X, Y etc. also denote the Killing fields
determined by X, Y € Tp(S’i"b-l). Then

deC" ! (column matrix)} .

(32)  R(XAY)=[Ap(X),Ap(Y)] = Ap([X, Y]y) — ad([X, YTs).

Here A, : p — gl(p) is a map defined by A, (X)Y = 1[X,Y], + U(X,Y)
where U is the symmetric bilinear map from p X p to p determined by
2U(X,Y),Z) =([Z,X],,Y)+(X,[Z,Y],) (see p. 201 of [KNII]). Also,
here [, ] denotes the extension of the Lie bracket [, ], to /\Z(TpS‘ff{fl)
given by [XAY, ZAW] = (X, 2)Y AW+ Y, W)XANZ—(Y,Z)X N\W —
(X, W)Y A Z. In fact, we often consider the element X AY as a linear
endomorphism of p by the formula (X AY)Z = (X, Z)Y —(Y, Z)X. This
bracket just coincides with the usual bracket of two linear maps X AY,

ZANW:p—0p.
0 - 0 B 0 -~ 0 -
, iE.
0 - 0 ’ , J’Y’J — % 0 - 0 ’
—'E; 0 i'E; 0

Let
0--0 0
v L)
0= 100 o)X=
be an orthonormal basis for p. (j #0). E; =%(0,...,1,...0) is the j-th
basis vector, and 7 is the imaginary unit. We compute:

(S

1 (07 1
[Yo, ¥j] = YoY; — YYo= — (0 0 ) =—=J'Y.
—itE;

Similarly, [Yo, J'Y;] = 1Y;. Now, let j, k # 0. We then have: [Y;,Y;] =
Y;Y, - VY, = 517(—Ejk + Ejj) where Eji is the matrix whose only
non-zero component is (Ejx)jx = 1. Similarly: [Y;, J'Y;] = Y;J'Y;, —
J'YY; = 5 (iEjk + iEj) — 326;1Y0 and: [J'Y;, J'Yi] = JY; 'Y, —

J'YJ'Y; = %(—E]’k + Eg;).
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Hence we have

1
[Yb’}/}]p = ”EJI}/ja [YZ),YJ]U =0

1
[YbaJ/Yj]P=EYJ" [va‘]/ ]b_o

[Y;, Yelp =0, [V}, Yi]p = b—2(—Ejk + Ey;)
2a 7
[V, J'Yelp = =338k Yo, Y5, 'Yl = 75 (Eji + Ei)
[J/Y},J Yk]p =0, [J’Y},J’Yk] b2( Ejp + Ekj).
Here j, k #0.

We have 2(U(Yy,Y0), Z) = ([Z, Yolp, Yo) + (Yo, [Z,Y0)y). For Z =Y,
this is 0, for Z = Yj it is 2(J'Y;,Yo) = 0, and for Z = J'Yj it is
—2(Y;,Yy) = 0. It follows that U(Yp, ¥y) = 0.

We have 2(U(Y0,Y;), Z) = ([Z,Yolp,Y;) + (Yo,[Z,Y;]p). For Z=Y,
and Z = Y}, this is easily seen to be zero, but for Z = J'Y; we get
2(U(Y0,¥;), Vi) = ~3(Vi, ;) + (Yo, B6,75) = u(3 — 3). Hence
U(Yy,Y;) = (% —5)J'Y;. Similarly U(Y,, J'Y;) = (2a 22)Y;. Further-
more, for j, k # 0 we have U(Y},Y:) = U(Y], J’Yk) U(J’Yj, J'Y;) = 0.

From [KNII] we know that the covariant derivative VxY =
Ay (X)Y = J[X,Y],+U(X,Y). Hence we compute Vy, Yo = 3[Yo, Yolp+

U(YO,Y}J) = 0. Furthermore: Vy,Y; = 1[¥,,Y], + U(Y,,Y))
LJY; + (& — —)J'Y = (& - HJ'y;. Slmllar computations give
'VYOJI (a ) VYJ}/O— sz'YJ,and VJ/YJYb - Y
For j, k # O we now have: Vy, Yy = [V, Yi], + U(Yj,Yk) =0,
Vij/Yk = %[Y}',J’Yk]p + U(Y]',J,Yk) = —Z;—Ig&jkY(), ley].Yk =

%[J’Yj,Yk]p + U(J'Y;,Yi) = &6;,Y0, and V iy, J'Y, = 0. Hence we
have:

a 1\2
szAMKO=(§—E>§:EAfE
j=1
For j # 0:

Vy, = 4,(Y;) = =Y A J'Y;

b2
Voy; = A (J'Y;) = '“b_zYO NY;
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Furthermore,

1 1
A0, Y51) = 8y (=207, ) = %6 AY;

1 1
Ap([(Yo, J'Yjlp) = Ay (EYJ') =z AJY,
2a
B (Y5, J'Yi]p) = Ay (—b—25jkYo) 265k < — ) ZY ANJ'Y,.

We also have: [y (¥o), Ay (V)] = (5~ 1) "L YAS Y, BYoAT'Y;] =
(b4 - b2)z [Yk ANI'Y, Yo NJT'Y;] = (‘;Z - b%)YJ AYy and similarly:

2

[AP(Y0)7AP(‘],YJ)] (b4 b2)']IY A Yo,

Ay (Y5), Ay (V)] = b2 JY; NT'Y

Ap (Y5), Ap (J'Y3)] = Yk NJ'Y;

(A (T7Y5), Ap (J'Y2)] = 4Y/\Yk

b
Finally: ad([Yo,}/j]b) = ad([Yo, Jl}/}]b) =
1 1 1 ,

ad([Y},Yk]h) = ] ad(—Ejk + Ekj) = b—zyj ANY, + ——J Y; NJ'Y
7 1
b_ ad(Ejk + EkJ) = —Y N J/Yk + 2 Yk A J/Y
(notice that ’2 ad(E ]k + Ex;)Y; = 2 Yk = b2 LYy, etc)
ad([J'Y;, J'Vi]y) = ad( Ejk + Ex;) =

ad([Y;, J'YViy) =

b2Y AY. + = J’Y ANJ'Y.

We are now ready to compute the curvature operators R(X A Y)
according to the formula (3.2) R(XAY) = [Ap(X), Ap(Y)]-Ap ([ X, Y]p)—
ad([X, Y]p).

The results are:

, 2 1
(33) R(YoAY;) = (5"- - lz) Y A Yo — A, (—EJ’YJ) —0

bt b

a? 1
- (b—‘*_b?)Y Yo+ a( bZYOAY)
= Y[)/\Y

b4



374 P. Tomter

Similarly: R(Yy A JY;) = —Z—EYO NJ'Y;, R(Y ANYg) = (“—4 — b%)J’Yj A
JY, — b%Y] AYy. For j, k # 0 we have:

. 2
R(Y; A J'Yi) = 73 @ A J'Y; — A, (—-Igajm>

bZ(Y /\J/Yk-i-Yk/\J/Y)
a? 1
:(F_ﬁ)nAfn
1 (1,2 n 1
bQY/\JYk+6-k<b4 bQ)ZYl/\JY

a? 1

R(J'Y; AJ'Yy) = ('64" -

> YJ ANY, — b—2J/Y} A J/Yk.

§4 Let SC%T; ! = M be locally isometrically immersed into CP(n)
around the point p. Let N be the unit normal to M at p, then JN € T,M
and we put eg = JN. When M is the geodesic sphere, eq is the struc-
tural vector Yy of M at p. We first show that this is always the case
(for n > 3).

Theorem 4. Forn > 3 we may choose Yy = eg.

Proof. We set Yy = cospeg +sinp Je; and ¥ = e; (normal to eq
and Jey, hence to Yy). We usually replace vectors Y;, J'Y;, e ete. to
another one by applying the isotropy action of 537;)—1 or CP(n). Note
that by this modification, the expression of connections, curvatures and
brackets are unaltered. We have:

RY(Yy AY:y) = R(cospeg A ey +sinpJe; Aey) — R(Yo AYr)
= —cospeg Aep +sin<p(461 ANJeyr+2ea ANJeg+---

—M%lAhnﬂ+M%AH

a2
= (b_4 — 1) cospep A ey

2
-‘rSingO|:<4——Z—4>61/\J61+262/\J62+"'

-+ 2671,—1 A Jen_1:|

according to (3.1) and (3.3). We have: RY (Yo AY1) A RY Yy AY)) =
2
4(% —1)sinpcospeg Aey Ney AJeg +4(4 — —)sm per ANJeg Aeg A
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Jeg + 8sin® peg A Jey Aeg A Jesg + - - - = 0 according to Proposition 4.
In case n > 4 it follows immediately from the es A Jes A ez A Jes term
that siny = 0. For the case n = 3 we have from the two first terms:
(Z—: —Dsinpcosp = (4 — ‘g—:)sin2 @ = 0. Hence either (A): sin?p = 0
or (B): ‘l’;—i =4, cosp = 0. In case (A) we are done, in case (B) we may
choose Yy = Jey. Let Yo = ep where J'Y; = cost e + siny Jea, (Ya is
orthonormal to Yy, Y; and J'Y;). Then: RY(Yy AYs) = R (Jey Aey) —

R(YOAYQ) = —Je; ANeg + e /\J62+Z—:Y0/\1[2 = (—2 — 1)J€1/\62+
e1 NJey =3Je1 Nea + e A Jea. But then Rt(YO A Y2) A Rt(Yo A\ YQ)

6Je; A ey Aep A Jeg # 0, which contradicts Proposition 4. Hence (B) is
impossible. q.ed.

We now wish to prove our main result (Theorem 2) b% — %; = 1; this
means that the metric of M is the metric of $?"~!(r) for some r € (0, F)
(Proposition 1). We start with the easier case, n > 4.

Theorem 5. Forn > 4 we have 513 — %Z— =1.

Proof. We have Yy = eg, Y1 = e, let J'Y; = cosvJe; +sin es,
Y> = —sin Jej +cosy e; (orthonormal to Yy, Y7 and J'Y;) and J'Ys =
cos€ Jey +sin€ e3. We have R (Yo AYy) = (%; — 1)eg A ey as above.

RY(Y1 AYs) = R'(ey A (—siny Jey + costpey)) — R(Y1 A Yz)

=siny(de; A Jey +2es AJeg + -+ 2ep1 A Jep_ 1) —coste; Nes
2

b2) JYiANTY, + Yl/\Yz

b2

—cosyp Jey AN Jeg — (Z4

2 1
== (Z—4 — b2) [costpcosE Jeg A Jeg + cosipsing Jep Aes

+ sintp cos € ex A Jeg +Sln¢s1n§eg A es]

1
2 s1n1/zel/\Jel+b cosz/zel/\eg

1 2 1
= (—65 — 1) costpe; Neg — [(Z—4 - b_2) cos{—!—l] cosp Jey A Jeg

[¢2

2 1
( )31n1/231n§eg/\63 (b_4 bz)COS¢Sln€J€1 Aes

( )smfdjel/\Jel

n—1
[ ( >cos§] s1n1/162/\Jez+2sm1/)Zek/\Jek

k=3
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We have
a2
R (Yo A1) AR (Y1 AY:) = (b_4 — 1) eo Ner A RH (Y1 A Ya)

2 1
1+(a_ bz)cosg} cosPeg ANep AJeyp A Jeg
1 a?\ . .
EhT sinysinfeg Aep Aex Aes
a2

1
— —) cosysin€eg ANey AJep Aes

a2
(= -1
<b4 b b2
a? a? 1

+<b—4—1 [2—(b—4 bz)cosf]smweo/\el/\ez/\Jez

2 n—1
+2(b4—1)sin¢eo/\el/\Zek/\J6k=0.

k=3

There are two possibilities:
(B) 4 #1,siny =0, (55 — %) cosé =1,sin€ =0
(& - ‘;—j) must be different from zero).
In case (B) we then have cos& = +1, bii’ — Z—j =cos& = +1, and we
only need to show that cos€ = —1 is impossible.
Consider now case (B). We have R{(Y; AYz) = (315 —1)cosype; Aes.

RY Yy A J'Y1) = Rt (ey Acostp Jey) — R(Yy A J'YY)
= —COS’Z,[J(4€1 /\J€1 +262/\J€2 + - +26n 1 /\Jen 1)

a4
(3b—4—b>Y1/\J’Y1—2( - )ZY/\JY

2 4
— (4+3Z—4 — b—z-) cosper NJey

2 1 n—1
[14—(24 bz)cosf} coswez/\Jeg—2cos1/JZeJ/\.]eJ
Jj=3

2 1\ ,
—2(6—4—b—2>ZYjAJYj
j=3

1
(4 3cosé — —) cosper AJep
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n—1 n—1
—2cost) Y e; AJej+2c0s€ Y Y AJT'Y;
7=3 j=3
Hence Rt(Yo/\Yl)/\Rt(Yl/\J'Yl) = (b—4 —1)cos 60/\61/\2?:_31 e; A

Je; —l—2(b—4 —1)cosfeg A ey /\E" 1Y A J'Y; = 0. Hence, for z—j # 1 we
have:

n-—1 n—1
(4.1) coszﬁZejAJej:cos{ZYj/\J'Yj
j=3 j=3

Similarly
R'(Yo AYa) = R'(eg A costpez) — R(Yo A Yz)

a2 o2
—YoANYo=|——1]costpey Aea
pé

bt
RY(Ya A J'Yy) = Rt(costpeg Acos€ Jeg) — R(Ya A J'Y)
= —costpcosé(2e; AJey +4deg AJeg + -+ 2ep_1 ANJep 1)
—~ <39E— 4)1’2/\J’Y2—2< @ —i)YlAJ’Yl
bt b2 bt b2

—2( - )ZY AJ'Y;
a? 1
= —2008¢<cos£+ (b—4—b—2>)61/\.]61

a? 4
— cosy cosé 4—}—31)—4 2 ex N Jes

n—1 2 n—1
1
_2cos¢cos§E ej/\Jej—2(Z—4—b—2) E Y; AJ'Y;
j=3

=3

= —costeg Nex+ —

1
= —cos1/)cos§(4 3cosé — )ez/\Jez

n—1 n—1
- 2cos¢cos£Zej A Jej + 2COS§ZYJ- ANJ'Y;.

=3 =3
Hence

R' (Yo AY2) A RY (Y2 A J'Ya)

a2 n—1 n—1
= -2 (b_4_1) cos€eg Aes A Zej/\Jej—comﬁZYj/\J’Yj

=3 =3
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0.

2
Hence, for 7z # 1 we have

n—1 n—1
Zej NJej = coszlJZYj AJ'Y;.
j=3 j=3

Comparing with (4.1) this gives cos§ = 1 in case (B).
Now consider (A), & = 1. We have

RY (Y1 A J'Ys) = Rt(ey A (cos€ Jeg +sinées)) — R(Yy A J'Yy)
= —cosfes N Jes +cosJep ANeg —sin€ey ANeg —siné Jeg A Jeg
a? 1 , ,
_(b4 b2)Y2/\JYl+b2Y1/\JY2
= —cosfeg NJes+cos€Je; Aeg —sin€ey Neg —siné Jey A Jeg

1 1
— (1 02 )62/\J€1+b ey /\costez—i—b e; Asiné eg

1 1
<b2 — 1) cosfe; N Jeg + (cos§+1— b—z) Jei Ney

1
+ (BE — 1) sine; Aeg —sin€ Jey A Jes.
RY(Y1 A J'Y2) A RY(Y: A J'Y2)

1 1
=2 (b_2 — 1) (cos{—l— 1-— b_2> coséei N Jea AN Jei Nea

1
-2 (b_2 — 1) sinécosée; AJeg AJey A Jes

1 1
+2 (cos§—|—1 02 ) <b2 —1) sinf Jes Aea Aeg Aes

1
-2 (b—2 — 1) sin?€e; Aeg A Jeg AJes = 0.
From the last term we see: either (C) b2 =1 or (D) siné = 0. If % # 1,
siné = 0 and
R (Y, AJYs) A RN (YL ANJ'YR)

1 1
:2(55 - 1) (cos§+1— bz)COS§el ANJes A Jey A eg,

hence 1— b% = —cos § This does not hold for cos§ = —1, hence cos¢ =1
2

and 1 — 35 = % — &% = —1 (b = 1). This finishes (D). Assume b? =1,
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N

=1,ie.a=b=1. Then

T

RY (Y1 A YR)
= —cos®Jey AJes + 3sinve, A Jey + 2sines A Jes
n—1
+ 2sin vy Z ex N\ Jeg.
k=3 ’

Setting R*(Y; A Y2) A RY (Y1 AY3) = 0 we get siny = 0. From the
formula at the end of §3: R(Y1AJ'Y)) = =Y AJ'Yy, ie. RE(Y1IAJ'Y:) =
Rt(e1 AcospJer) + Y1 AJ'Yy = —cosp(de; A Jep +2e2 A Jeg + -+ +
2en_1AJen_ 1) +Y1ANJ'Y1 = —3costper AJes —2cos ZZ;; er A\ Jeg.
RY (Y, ANJ'Y1)AR Y1 AJ'Y1) = 12e1 AJer Aea A Jea+ - -+ # 0, which
excludes this case. q.e.d.

§5 We now deal with the case n = 3. We know already (Theorem 5
and the proof of Theorem 6) that Yy = eg, Y1 = e1, J'Y: = cose) Jer +
sint ey, Yo = —sinJe; + costpeq, J'Ya = cos€ Jey (= £Jez) (see the
beginning of the proof of Theorem 6, and note that we have no e3 here).
The formulas (3.1) and (3.2) specify to:

(5.1) R(ej Ner) = —ej Nex, — Jej A Jex, = R(Je; A Jex,)

2
R(ej NJer) = —e; NJer + Jej Aer — 2651 Zel A Jey

1=0
and
~ a,2
(52) RO AY) =~ ¥ A Y,
~ az
R(Yo AJ'Y;) = —b—4Yo NJ'Y;
~ a? 1 , , 1 .
R(Y; NYy) = (ZZ—E—Z—>J}§AJYk—§Y}AYk (4, k#0)

A , a? 1
a? 1
o2

1
)Yj/\Yk — ZI Y ATV

. 1
R()G'/\J’Yk)z ( )YkAJll/}_b_Q}/}AJ/Yk
bt b2

We now calculate R(Y; AY;) and R(Y; A J'Y;) where R(X ANY) =
R(XAY) — R(X AY). Although we only use the tangential part

2 1
42 (“_ - —> §ik(Yi N J'Yy + Ya A J'Ya).
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R* = R* — R to begin with, note that in the Codazzi-Mainardi equa-
tion
(R(X AY)Z,—Jeo) = (R(X AY)Z, —Jeo)
=Y(B(X,Z)) - B(X,VyZ)
- X(B(Y,2))+B(Y,VxZ)+ B([X,Y], 2)
we may use either R(X AY) or R(X AY), since the normal (—Jep)
components coincide for R and R. Also, it is nice to have R(X AY)Z

in the (Y}, J'Y%) basis (instead of only in the (e;, Je) basis).
Now,

(5.3)

R(Yy AY:) = R(eg Aer) — R(Yy A YY)
2

= —egNey —JegAJey + b4eo/\el
a2
= (b—4»1)60/\€1—J60/\J61

(5.4)
R(Y1 AYa) = R(ey A (—sine Jey +costpes)) — R(Y: A Yz)
= siny(2eg A Jeg + dey A Jey + 2ex A Jey) — cosz/Jel A ey

2

Yl/\Yz

—costpJey A Jeg — (2—4 — b2) J’Yl /\J,Yé + b2

2
== (Z—4 — bl2> (cosy Jey +sinyey) Acosé Jey

1
b2 —e1 A (—siny Jey + cosez)

1
= 2siny ey A Jeg + (4 — b_2> sinye; A Jey

+ (2— (— — )cos )51n1/1e2/\J62—|- (bl 1) cospe; Ney
(1—{—( — )cos&) cos Jey N Jes.

R' (Yo AY1) A RY YL AYS)

a? a
:(i)z_l)[( ( b os£)sin1/)eo/\el/\ez/\J62

- <1+< )cos )COS1,L'60/\€1/\J€1/\J62:|EO.
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Hence, either (A) ‘Z—z =1or

(- (‘Z_j - 5 ) oosé ) sinw = 1+ (‘b‘—j - ) cost) cos =0,

In the second case sin® or cos) must =0, and (Z—j — ) cosé =
or —1. In addition to (A) we have the two possiblities (B) OS’(,/J = O
and (‘;—i — gz)cos€ =2 or (C) siny = 0 and (‘Z—z — gr)cosé =

Now,

R(Y1 AJ'Ys) = R(e1 Acos€ Jeg) — R(Y1 A J'Y)

= —cosfey A Jey +cos€ Jey /\ez

bt b2
= —cos€e; A Jes +cos Jey Ney

a? 1 ,
== nAJn+bHAJE

a2 1 1
- (-54—— 62)62/\Jel+ = coser A Jey

2 1
= (— —1) coséey N Jeg + <(Z4 — b2) +cosf) Jey Nes.

RY(Yi A J'Y2) AR YA A J'Yz)

2 1
=2 (b2 — 1) [<(2—4 - b2> +cos§] cosfel AJes AJer Aes.

Hence either b2 = 1 or (‘Z—j — &) +cos=0.

First check (A): ';—i = 1. If b2 = 1, we have a = b = 1. In this case
we have: R*(Y1AY2) = 3sinye; AJey+2sinyeaAJey—costy Jep AJey
and RY(Y; AYz) A RYHY; AYy) = 12sin® ey A Jey Aey A Jey = 0, hence
siny = 0.

(5.5)

R(Yi A J'Y1)

= R(e1 A (costp Jeq +sintpez)) — R(Yy A J'Y7)

= — cost(2e9 A Jeg + de; A J61 + 2e3 A Jey) —sinth e A ea

2y a2 1
a )KATH—2<

—siny Jey A Jeg — <3b—4 ~ 32 2

)Yg/\J’Yz
a? 4
= . 3b4 5 e1 A {cos®) Jey +sinip eq)

2 1
-2 (Z—4 — b2) cos& (—sin Jey + cospes) A Jey
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2 4
= —2costpeg AJeg — (4+3%Z — b2) cosper AJep

a? 1 a? 4\ .
— 211+ ¥R cosE) costhes A Jeg — 1+3F——b—5 sinye; A e

a? 1 .
+(2 (E)Z — b_2) cos& — 1) siny Jey A Jes
In the case under investigation (¢ = b = 1, siny = 0) this reduces to
RY(Y1AJ'Y;) = —3cosypeiAJey—2cos eaAJez. Hence R (Yy A J'Y1)A
RY Y1 AJ'Y1) = 12cos? ¢ er AJer Aea A Jeg = 0, which is a contradiction
since cost) = £1.

It follows that in case (A) we must have: (%12— — %) os& = F1.
1— b2 =1 is impossible, hence we have: 1 — b2 = —1,ie. b2 = % a’ = %
and b12 — b4 = 1, which corresponds to the solution S5(§{—)

Now we consider case (B): (‘;4 — f&)cosé = 2, cosyp = 0. From

R{(Y1 A J'Ya) A RH(YL A J'Y,) = 2(% — 1)[(‘;4 — #)cos + 1leg A
Jeo A Jeg ANeg = 6(—— — 1er A Jeag A Jeg A eg = 0, we conclude that
b=1, R{(Y; AJ'Y,) = 3cos€ Jer Aeg. R (Yo AYy)ARIY: A J'Y,) =
3(‘;—: —1)cos€eg Aep A Jey Aey # 0 (in case (B) we may assume that

%; # 1). Hence this contradicts Proposition 4 and (B) cannot occur.

We now consider case (C): sinty = 0 and (23 — g)cosg = —1. If
cos& = 1, this says blz - bz = 1, which is exactly what we wish to prove.
Hence it is sufficient to show that cos§ = ~1 is impossible.

Assume cosé = —1, we now have: Yy = ey, Y7 = e, J'Y; =

cosp Jey, Yo = costpeg, J'Yo = —Jes, where costp = +1, ‘g—j — biz = 1.
Now:

1
R(Yvo/\yvl) = b—2€0/\€1—J60/\J€1

R(Yo A J'Y1) = R(eg Acostp Jer) — R(Yo A J'Y7)
a2

= —costeg AJey +cosipJeg Aey + b4YO AJ'Y
a2
= (b_4 — 1) costeg A Jey +cosp Jeg A ey

1
= b—20051/)eo AJer +cosypJeg Aey

1
R(Y1 ANJ'Y1) = —2coseg A Jeg — (7— ) costpe; A Jey

b2
(from (5.5)).
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From Gauss’ equation we compute:

1
Gl. (RY(Yo AY1)Yo, Y1) = boob11 — b3, = 2

(bij = B(Y:,Y;), biy = B(Y;, J'Y;), by = B(J'Y;, J'Y;)).
G2.  (R'(Yo AY1)Yy, J'Y1) = booby1 — bo1bos = 0
G3.  (R'(Yo AY1)Y1,J'Y1) = borbi1 — boib11 = 0
G4.  (R'(Yo A J'Y1)Yo,J'Y1) = boobis — b2
1 1
=33 cost((eg A Jep)eg,costh Jer) = =3
G5.  (R'(Yo A J'Y1)Y1,J'Y1) = borbit — boibiz
1
= 32 08 P{(eo A Jei)er,cospJes) =0
G6.  (R(Yy AJ'Y1)Y1,J'Y1) = byybig — b2;

1 1
= <— (7— b_2) cos(er A J61)61,COS¢J61> T v

boo bo1 bo1
boo bo1 bo1

boo boz bor | = (bo1b1t — borbr1)boo — (boobri — bZ;)bo1 +
01 11 11
(boob11—bo1bo1 ) b1 = —b—lgbm according to G2, G4 and G5, hence by; = 0.

boo bo1 bo1
bo1 b11 by
boo bo1 bo1

We have: 0 =

Similarly: 0 = = —b%boi (after developing the first line),

hence by; =0
boo bo1 bog

0 = | bor b11 by3
bo1 b11 b1

The remaining equations are now: bggbi; = bogbis = b%, b11bi1 =
gz — 7. Hence byy = by = (g5 — 7)'/2, boo = 35 (gz — 7)7V/2.

To deduce a contradiction from this we need to apply the Codazzi-
Mainardi equations. We first observe that (C) must hold at all points,
hence siny = 0 and cos§{ = —1. Hence the above values for b;;
must also be globally true. In particular, since b;; are constants,
Yi(bi;) = J'Yi(bi;) = 0, 4, j € {0,1,1}. The Codazzi-Mainardi
equation states: (R(XAY)Z,—Jey) = Y(B(X,Z)) — B(X,VyZ) —
X(B(Y,Z))+ B(Y,VxZ)+ B([X,Y], Z), where B is the second funda-
mental form w.r.t. the normal —Jep of M at p; i.e. VxY = VxY —
B(X,Y)(—Jey) = VxY + B(X,Y)Jeg. Weset X =Y,, Y =Y, Z =
J'Y; and get: (R(Yo A Y1)J'Yy, —Jeo) = cosp(R(ep A e1)Jer, —Jeo) =
cost((—ep Aey — Jeg A Jer)Jer, —Jep) = cosp(Jeg, —Jeg) = — cosyp =
Yl(bOi)_B(Yba VYI J,K)_Yb(bli)+B(Yla VYOJIH)+B([K)7 Yi]v J/H) =
0+ f&boo + (2 — %o — 2b;p = F1. Here, & = YA and

= bizbﬁ, hence b7 = 0.




384 P. Tomter

boo — b = (& -7V -(F -0V = 1 - )72 So
(R(Yo AY1)J'Y1, —Jeg) = T(1 + b2)Y/2(1 — 76?)~1/2 = F1. 49(1 + b?) =
1 — 7b%. This is a contradition. q.e.d.

§6 We now embark upon the study of homogeneous 3-spheres isometri-
cally immersed into CP(2). The first point is that in this case it is impor-
tant to note that, as we explained above, the isometry group is U(2)
rather than SU(2) (which acts simply transitively on $2). On the con-
trary, in higher dimensions, we may consider $2"~! as SU(n)/SU(n—1),
since the isotropy group for SU(n) is SU(n — 1), with isotropy repre-
sentation equal to u,_1 @ 6 on R 2 @ R. Consequently, for n > 2
an invariant inner product is the standard inner product stretched by
a factor a on R and by a factor b on R2"~2. For n = 2, SU(1) = {1},
and we do not have this limitation. Let CP(2) be coordinatized around

0 01
[?1)} by Fl;]’ zl, z2 € C. Let X = _0188>, and consider the geo-
desic exp(tX) 5 Osmt){ ] = [Sigt] = {taéxt]. Simi-
sint 0 cost cost 1

oo |

N
t
e
Il

larly, with F} = (

i

0 c()

0.0

i 0

we have: (exptE}) [g]
0

(exptJ'E}) [ ] [ —itan ] (correspondlng to tangent vectors in local

coordinates: ('), (9), (—z))

We prove that Ej, Ej, J'E] correspond to E, = (§5),
E, = (%%), JEi. = (9§) respectively under the map

J(r): u(2) — Toxprx S®(r) defined by J(r)(Z) = the Killing field of Z

at the point exp(rX)p, (identified with S3(r), r € (0,%)), p is the base

point, (see Proposition 3 in Tomter [To]). To do this it is sufficient to

see that [X, Fo| = E§, [X,E1] = E| and [X,J'Ey]| = J'E|. [X,Eo] =
001\ (4 00 i 00 001 00—i .

( 0 00) (O—iO) - (o—io) ( 0 00) = (0'0 o) = E§. Similarly
-100 000 000 ~-100 —-i0 0

[X, Eq1] = Ei, [X,J' E1] = J E{. To check the isotropy subgroup of U(2)

on [8] we need only check the isotropy of the standard representation of

U(2) on (3), and that is (} %) =2 U(1). This acts trivially on (%) and
by the standard representation on (9) = C. Hence, by Schur’s lemma
an invariant inner product is given by the standard inner product on
R3 = Sp(Ey, E1, J'E;), stretched by a factor a on RE, and a factor b on
R? = Sp(Ey, J'E1). We denote the sphere with this metric S2 - Since
Sa37b is smoothly diffeomorphic to SU(2), Ey, E1 and J'E; now constitute
a basis of left invariant vector fields, and we wish to take advantage of
that. We have [Eo,El] = 2J’E1, [Eo,J'El] = -—2E1, [El, J El] = 2E0
Here Ey defines the distinguished direction. Let Yy = T Y = “EL’

[
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JY; = LB be unit vectors. Then [Y,Yy] = 2J'Y;, [¥5,J'Y:] =
—%Yl, W,J'1] = i—‘;Yo. Koszul’s formula says that 2(VxY,Z) =
By left invariance the three first terms vanish, hence 2(Vy, Y1, Ys) =
<[YE)7Y1]7YO> - <[YP17Y'0]7Y0> + <D/E)’}/O]a}/1> = 2<%JIY1)YO> = 0. Simi-
larly 2(Vy,Y1,Y1) = 0 and 2(Vy,Y1,J'Y1) = 2(2 — ). Then Vy, V1 =
2 _ #)J'Y1. By corresponding computations Vy, J'Y; = (& — %)Yl,
Vy, Yo =—3J'Y1, Vy,J'Y1 = 5Y0, Vi, Yo = Y1, Vi Y1 = - 51
and Vy, Yo = Vy, Y7 = Vyy, J'Y; = 0. By left invariance these for-

mulas hold at all p € Ss’b. Then we get for the curvature tensors:

R(Yo AY1)Yo = Vv,V Yo — Vv, Vi, Yo — Viyy v Yo = Vi (& J'Y1) —
0-— %VJ:leb =—5(& - %)Yl — %(Z%Yl) = -—‘;—zYl. By corresponding
computations R(YO ALY = %;Yo and R(Yo AY)J'Y; = 0. Tt follows
that R(Yo AY:) = —% Yo A Y;. Similarly R(Yp A J'Y)) = — &Yy A J'Y
and R(Y; A J'Y;) = (3%2— — #)Y1 A J'Y1. We also have:

R(eg/\el) = —eg N ey — JCO A J€1
R(eo A J@l) = —€9 /\Jel +J€0 N ey

R(ey A Jey) = —2e9 A Jeg — 4e1 A Jeg

Now choose —Jep to be the unit normal to Sg”b C CP(2), then
J(—Jeo) = eo is a tangent vector field to S3 ,. (e1, Je1) is an orthonor-
mal frame field in the orthogonal complement of the line bundle defined
by eg on S? ;. We define it such that Yy = cos e + sing Je;.

Let J'Y1 = —sin @ ep+ cos ¢ Jey (orthonormal to ¥p), then Y; = +e;.
We compute: R(YoAY:) = R((cos @ eo+sin ¢ Je1)A(£e1))—R(Yo A Yy) =
FcospegNerFeosp JegAJer £sinp(2eg AJeg+4eq AJel)-l—‘Z—on AY7.
We have: ey = cospYy — sinp J'Yy, e = 1Y;, Je; = sinpYy +
cosp J'Y;. Substituting this we get: R(Yp AY)) = —cos? p Yo A Y F
cosp Jeg A (sine Yo + cos J'Y7) £ 2sinp(cos Yo —sinp J'Y1) A Jeg +
4sinp Y] A (sinp Yy 4+ cosp J'Y]) —sinpcosp Yy AJ'Y] + Z_jYO ANY] =

%; —1-3sin? )Yy AY; +3sinpcos o Y3 AJ'Y] F Jeg A(3sin g cos ¢ Yo +
(1 — 3sin” )J'Y;). By similar computations we get the result:
(6.1)

2

R(Yo AY:) = (2—4

F Jeo A (3sinpcos ¢ Y + (1 — 3sin® ) J'Y;)

—1 — 3sin? <p) Yo AY, +3sinpcose Y AJ'Y;

2
R(YQ/\J’K) - (%—1) Yo/\J/le:tJeo/\Yv]_
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R(Y1 AJ'Y1) = 3sinpcos Yo A Yy

b b2
F Jeog A ((—2 4 3sin? @)Yy + 3sinpcos p J'Y7).

2y
- (4+3%———3sin2<p) YiAJ'Y:

We are now in a position to consider the Gauss equations:

2
GL. (R'(Yo A Y3)Yo, Y1) = 35 — 1 - 3sin” o = boobys — b,

Q2. (R (Yo AYi)Yo, J'Y1) = 0 = boobys — boboi
G3. (R' (Yo AY1)Y1,J'Y1) = 3sinpcos o = borb1 — bi1boi

2
G4. (R'(Yo A J'Y1)Ye,J'Yy) = = — 1 = boobyy — b%;

bt
G5. <Rt(Yo ANJ' Y)Yy, J'Y1) =0 = bo1bis — boibii
4 a? .
G6. (R (Y1 NI Y)Y, Y1) = 2z 3b—4 — 4+ 3sin? @ = by1big — bgi'

boo bo1 boi
boo bo1 box
bo1 bi1 b1 )
(bo()bﬁ — b(zﬁ)bm + (b()oblj — bOlboi)boi =0+ (1 — Z—4)b01 + 0 accord-
ing to G5, G4 and G2.

2

D1: Hence (1 — $7)bo1 = 0 (and for a? # b* : boy = 0).
boo bo1 bo1
bo1 bi1 b1
boo bo1 box
2

D2: 3singpcospboo + ($x — 1 — 3sin? )bt = 0.
bo1 bi1 by1 .
boi b11 bz | =0  gives:
boz b1t bt )
D3: (l;iz - 3@ —4+ 3sin® @)bo, + 3sinpcos by =0
boo bo1 boi .
bor bix by1 | =0  gives:
bo1 b1y b1

D4: 3sinpcos @by + (‘;—: —1—3sin? p)by; =0

Now consider: = 0 = (boibir — bo1b11)bo0 —

Similarly by considering =0 we obtain:

bo1 b11 bi1 X

bo1 b1 byz | =0  gives:

bot b1t bit
2 . .

D5: (l;% —3% —4+ 3sin® ¢)bgi + 3sin g cos @ by = 0

bOO bOl boi

bot 13 bii

and = gives:

D6: (1 — % )by; = 0.
We first deal with the case a? # b*. Then, by D1 and D6: by, =
bi1 = 0. Furthermore
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b 0 b,
D7: detB = |0 by 0| = (& — 3% — 4 + 3sin®@)bgy +
boi 0 bi1

3sinp cosp by = (%; — 1)by1 = 3sinpcos p byi + (‘g—z — 1 — 3sin® )by1.

Proposition 6. For a? # b* we have det B # 0 on an open dense
subset of Sg’ be

Proof. Assume det B = 0 on an open, nonempty subset. If
det B = 0, it follows from D7 that b;; = 0, from G3 that sin ¢ cosp = 0,
and from G1 that ‘Z—i —1—3sin? p = 0, hence sin ¢ # 0 and cos ¢ = 0.
We then have %; = 4. From G6 we get: 0 = ,;% —12—-4+43,ie. l;% =13,
b? = %, a? = %. We wish to apply the Codazzi-Mainardi equa-
tions, these say that (R(X AY)Z, —Jeo) =Y (B(X,Z)) - B(X,VyZ)—
X(B(Y,Z))+ B(Y,VxZ)+ B(|X,Y], Z).

There are 9 basic cases of this equation. We
substitute X = Y5, Y = Y, Z = Yy to get:
(R(Yo AY1)Yo,—Jeg) =  E(R(singJei Aer)sinpJer, —Jeg) =

:|:<(260 A JCO +461 AN Jel)Jel, —J60> =0 = Yi(b()()) - B(YE),VYI}/O) -
Yo(bo1) + B(Y1, Vy, Yo) + B([Yo, Y1), Yo) = Yi(boo) — B(Yo, =& J'Y1) —
0+ 0+ B(2J'Y3, Yo) = Yi(boo) + ot + Zboy = Y (boo) + ZLbog. Hence
Yi(boo) = —24—1b01. This case of the Codazzi-Mainardi equation we
denote by (C1).

Similarly, we have (C2) for X =Y, Y =Y;, Z = Y] and (C3) for
X =Yy, Y=Y, Z=JY,. Also:

(C4): X=Y, Y=J% Z=Y
(C5): X=Y, Y=JYi, Z=Y
(C6): X=Y, Y=JY, Z=JY
(C7): X=Yi, Y=JY, Z=Y,
(C8): X=Y, Y=JYv, Z=Y
(C9): X=Yi, Y=JYV, Z=JY.

We have (by (6.1)): (C5): (R(Yo N JY1)Y1,—Jey) =
(% —1)Yo A J'Yy £ Jeg AY1)Y1,—Jeo) = (£(Jeo A Y1)Yr,—Jeg) =
+1 = J'lfl(b()l) — B(YO,VJ,y,Yl) — Yo(bﬁ) + B(JIY;[,VYOY1) +
B([Yo, J'V1], Y1) = 0 — B(Yo,—%Yo) — 0+ B(J'Y1, (2 — &)J'Y1) +
B(—2Y1,Y1) = 2bgo + 5b11 — L2b11 = 2bgo + 2bi7.

Finally, by (6.1) and cos¢ = 0 we have (C9):

(R(Y1 AJ'Y1)J'Ya, —Jeo)
= (¥(Jeg A ((—2 + 3sin? p)Yy + 3singcos p J'Y;))J'Y;, —Jep) =0
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= J'Y1(bi1) — B(Y1, Vyry, J'1) = Ya(b11) + B(J'Y1, Vy, J'T1)
+B([Y1a JlYl]v JlYi)

—0-0-Yi(b) + B (J’Yl, szO) +B <b2

= —Y1(bi1) + 6boi,
ie. Y1(bii) = 6byi. Now, we differentiate 2bgo + 2bj; = =+1 along the
vector field Y; and obtain: 0 = 2Y;(boo) + 2Y (by1) = —Z b1 + L2bg; =
~—b01, hence by; =

It only remains to determme bgo and by7. By (6.1) and cosp = 0
(C3) gives

(R(Yo A Y1)J'Yi, —Jeo)

= F(—(Jeo A 2J'Y1) 'Yy, —Jeg) = £2

= Yi(bo1) — B(Yo, Vy, J'V1) — Yo(br1) + B(Y1, Vy, J'Y1)
+B([Yo, V1], J'11)

%)

2 2
:0—B<Y0,b2YO) —0—|—B(Y1, <b2 - 5) Y1> +B(5J/Y1,J/Y1>

= —2bgo + Z—bﬁ.

Hence 8by; = £14+2 = +3, by = :t% from (C3) and (C5). Hence,
from (C9), bgo = "%bii = :F%- Hence bgobiz = 18, but this is a
contradiction, since by (G4) bgpob;1 = 3. Hence: det B = 0 on an open
set is impossible when a? # b%. q.e.d.

We continue the computation on the open set {p € 527 »|det B(p) #0}.
biibii — b3 boibii — borbit  bo1bii — borbut

(det B)? = (det B) |boibi1 — borbis  boobis — b3 boiboi — boobii
boib11 — botbir  boibor — boob11  boobi1 — b3,

%—3‘;—Z+3Sin2<p—4 20 3singcose
= (det B) 0 w1 0
3sinpcos ¢ 0 %;—1—3sin2go
2 4 2 2
= (det B)(Z—4— . 1) KbQ 3b4 +3sin?p 4)(2—4 —1- 381112()0)
— 9sin? o cos? cpJ

a? a®> 4 12 a* | a? 2_2
(b—4—1> [4b6_5§_b sin? ¢ — 3b8+3b4 b sin® ¢
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2 2
a
—Sin2<p—3sin2<p—98in4<p—4a—

7 71 T4+ 12sin% ¢

+3

— 9sin? ¢ 4 9sin? go] (det B)

a2 a? a* a® 4
= (b_‘*_l) [4176‘36—8'?472*4
a? 1 .
+ 12 (b—4 — -b—2> SlIl2 (P] (det B).

We cancel det B and obtain (det B)? = (% — 1)[4% — 3% — & _ 4 4
4 + 12(‘;—: — b%) sin? p]. Now we substitute (‘;—: — 1 — 3sin® p)by; =
—3sin ¢ cos p bgy (D2) into DT to obtain:

a2
(6.2) (b_4 —1— 3sin? go) det B

2 4 2
= (2—4 -1 —3sin2<p) (b_2 —32—4 —4+3sin2<p) boo

+3 sin @ cos (-3 sin ¢ cos p)bgo
a? a* a2 4 a2 1\ .,
Similarly, by substituting for by; from D5 into D7 we obtain:

4 a? . 9
. - —3— — sin” @
(6.3) = 3b4 443 det B

a? a*  a? 4 a? 1 . 9
= [4E—3E§—Zz—i)—2——|—4+12 (Bz—b—2>sm 90] bi1,
and we already have
a2
(64) det B = (BZ - 1) bll-
Proposition 7.  We have sin ¢ s constant on Sib (i.e. @ is con-
stant) in the case a? # b*.
Proof. Consider the Codazzi-Mainardi equation
<R(YE)/\J/Y1)Y1, —J60> = ﬂ:(R(@O AN J61)61, "J€0>
= + ((—eg A Jer + Jeg A er)er, —Jeg) = £1
= J'Y1(bo1) — B(Yo, Vv, Y1) — Yo(b11)
+ B(J'Y1,Vy, Y1) + B([Yo, J'Y1], Y1).
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Since b01 = bli = 0 we have J le(b(n) YO(bll) =0 and (05) 2 bOO
+1. Multiply both sides by (b4 - )[4—2 — 3“— -

%bll + (% — bZ)bii

g_i..l;iz-{-zl—q-l “—4——15)8111 ¢]. We obtain:

a (a? a?

b_Q(b_4_1><b4 1 —3sin? <p)detB
2[ a? _a* a2 a® 1
E[Ajtb—(i~3b—8—-bz—-b—z-|-4—i-12(b4—b2)sm ]detB

2 2
+ (g - z%) (Z—4 - 1) (% —3‘;—4 —4+3sin2<p> det B
2 2 4 2 2
S () [ g e ()
We wish to keep track of the terms involving sin¢. On the RHS (right
hand side) this is simply :|:12(‘;—: - 1)(‘;—:— %) sin® . On the LHS we have
(R1(a,b)sin® ¢+ Ry(a, b)) det B where R;(a,b) and Ry(a,b) are rational
functions in @ and b. Assume first that ‘g—j #* b—lz. Then sin? ¢ does occur
with nonzero coefficient both in RHS and in (det B)?. Assume first that
Ry (a,b) # 0. Then, on squaring both sides of the equation, we get on the
LHS: 12R;(a, b)z(‘;—z - 1)(‘;—1 — 2 sin® ¢, hence the coefficient of sin® ¢ is
nonzero. On the RHS we only have terms of sin* ¢ and sin? ¢. We now

have a polynomial of degree 3 in sin? ¢ equal to zero. We conclude that
sin ¢ is constant on the open, dense subset {p € Sib | det B(p) # 0} and

hence on 33 . Next assumnie that Rj(a,b) = 0. Then, on the RHS we
have 144(b_4 —1)? (F - %)? sin* ¢ + lower order terms, on the LHS we
only have sin? ¢-terms. Hence, since the coefficient of sin* ¢ is nonzero,

we again have that sin cp is constant. This finishes the case ‘g—: #* 312—.

Now assume ‘;i = b27 i.e. @ = b. There are no sin® p-terms in RHS
or in (det B)?. We compute R;(a,b) = (3 —1)(—=3) +3%(5% — 1) =0,
hence there are no ¢-terms at all in thls case. For the remaining terms
we obtain:

1/1 2 92/1 5 1/1 1
lZ(’bZ_l) —5(—b4——b2+4>+5(—b2—1) (—b2—4)
1 1 5

3(gz —1)det B =+(g5 — 1)(5r — & +4). Since 2 b4 =1for b=1, this is
impossible, hence we get 24/(7% — 1)(& — & +4) = £(& - & +4). By

det B
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Proposition 7 3 —w %+4 # 0, hence & (g7 —1) (¢ b—2+4) = (g —z+4)?
and bz(bz 1) m—etd= (- 1)(,,2 —4). So & =H—4,ie F=—4
but this is a contradiction. Hence this case cannot occur. q.e.d.

Proposition 8. In the case a® # b* we have sin pcos @ = 0.

Lemma. If ¢ is constant on Sg’,b, it follows that b; is constant, <,
j=0,1,1.

proof of Lemma. First, according to the explanation after the proof
of Proposition 7, we have (det B)?2 ( —1) [4% — Z_B - ‘;—z -5 +4+
12(%2— — &)sin’¢]on {p € S5, | det B(p) # 0}, hence det B is constant
there, and consequently everywhere. From D7 it follows that b;; is
constant and non-zero; hence, by G3 it follows that by is constant. Now,
if sinpcosp # 0, it follows from D2 and D5 that byy and bj; also are
constants. If sinpcos¢ = 0 we use D7. Since {p € S%, | det B(p) # 0}
is open dense in Sg»b, we obtain the desired result. q.ed.

Proof. By Proposition 8 ¢ is constant. By (C1)
(R(Yy A Y1)Yy, —Jeo)

= + (R((cospeq +singpJe;) Aer)(cospeq +sing Jer), —Jeo)
+ ((—cospeg Ney —cospJeg A Jep +2sinpeg A Jeg
+4singe; A Jeq)(cos peq + sinp Jey), —Jeg)

= 4 (2sinpcosy Jeg + sin p cos pJeg, —Jeg) = F3sinpcos

= Y1 (boo) — B(Yo, Vv, Yo) — Yo(bo1)
+ B(Y1, Vy, Yo) + B([Yo, Y1), Yo)

= stor+ 2o = (554 2 r
Similarly, (C9)
(R(Y1 N J'Y1)J'Y1, —Jeo)
= + (R(e; A (—sinpeg + cosp Jey))(—sinpeg + cosp Jer), —Jep)
= +((—sinpeg Aey —sinp Jeg A Jeg —2cospeq A Jeg
—4cospe; AJer)(—singeg + cosp Jer), —Jeg)
= =+ (sinpcosp Jeg + 2sin p cos ¢ Jeg, —Jep)
= F3sinpcosp = JY1(bi1) — B(Y1, Vv, J'Y1) = Ya(bii)
+ B(J'Y4,Vy, J'Y1) + B([Y1, J'Y1], J'Y3)
2a 3a

b01 + p2 20 —5 bot E‘z‘boi
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We subtract C1 from C9 and get: (33 — 2)by; = 0. Hence by; = 0 unless
i‘; = Z i.e. a = b. But a = b was proved not to occur at the end of the

proof of Proposition 8. Hence by; = 0 and sin ¢ cos ¢ = 0. q.e.d.

§7 We continue with the case a? # b*, and we only need to check
sin = 0 and cosp = 0.

a2

Theorem 9. For a? # b* and sinp = 0; we have: —15—3—:1.

Proof. By D1, D2 and D6 we have bg; = by7 = by7 = 0. Further-
more we may choose Yy = ey, Y; = de;, J'Y; = Je;. From G1 and G4
we have: %; — 1 = bgpb11 = bpobyi. From this by; = by7.

We now apply an efficient method. Both the curvature ten-
sor R and the complex structure J of CP(2) are parallel. Hence
VxJ = 0 for any X. Consider for example Vy,J'Y; = Vy, J'Y] +
bitJeo = Yo + 0 = Y. On the other hand, writing C' for
contraction, we have: Vy,J'Y; = Vy, Je; = Vy,(C(J ® e1)) =
C(vzﬁ(‘]@el)) = C(Vyl.]@el + J®VY161) = 0+ J(leel) =
+J(Vy, Y1) = £J(Vy, Y1+ b11Jeg) = 0+t b11(J%e0) = Fbireo = Fb11Yo.
S0 by; = by1 = Fy35. Substituting into G6 we obtain: ‘;—z = l% - 32‘—2 —A4.
Hence 4(z% — %;) =4, and the result follows. q.e.d.

Proposition 10. For a? # b* we cannot have cosp = 0 except
possibly for a = /3, b=1.

Proof. 1In this case we have: Yy = Jey, Y1 = *er, J'Y; = —eg,
as well as bg; = b;7 = 0. It is easy to see that by; = 0 also: From D7
(det B = (-‘;—j — 1)b11) and Proposition 7, we have that b;; # 0 on the
open dense subset of Sg’b. Then, from G3, we immediately have by = 0
on S, because cos ¢ = 0 and by; = 0.

We have Vy, Yo = Vv, Yo + booJeo = booJeg, and also: Vy, Yy =
Vv,C(J ®e1) = CVy, (J ®e1) = £C(J @ Vy, Y1) = £(& — 2)Jeo. So
boo = :|:(—b% — %) Similarly ?YIYO = VY1Yb + bo1Jeg = —I—)‘%lel =
#eo and also Vy, Yy = Vy (C(J ® e1)) = £C(J ® Vy, Y1) =
:l:J(Vlel +bi1Jeg) = Fbireo. Hence by; = F35. From G1 we have
boob11 = & b4 =—-% b%~%), so‘Z—z:b%—i-Z, a? = b% + 2b*. We have
from G4 and G6:

b2 _f_ boob11b11b11 11_2_4 4 3a? 1 9_2_ 1 -
U758 T boobyy \ b4 b2 ot bt '

So (bj —-1) = (‘;: -4 - 31;12 —1). From this we get Z‘: + 5 =
& + o a +1 and substituting a? = b>+2b* weget b=1,a = v/3. q.e.d.
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It is easily seen that this solution, with by = :t%, b1 = FV3,

b1 = £24/3 satisfies all Gauss equations, Codazzi-Mainardi equations,
and also the requirement that J be parallel. Since the principal curva-
tures b;; are constant, Sg’b is a Hopf hypersurface. Kimura [K] proved
that any such hypersurface is an open subset of a submanifold which is
homogeneous under a subgroup of the isometry group U(3) of CP(2).
Such submanifolds are classified in Takagi [Tal|. For the case n = 2 we
only have the geodesic spheres and tubes over an RP(2) (or a complex
quadric). We show that one of those tubes is similar, but not equal to
our possibility.

We find the factors @ and b by computing the lengths of Killing-
Jacobi fields along the geodesic exp(tX)p, starting at a point p € Sib
(recall X = ( 81 § é)). Consider the field J(t) = f(¢)eo.

Since the sectional curvature of Sp(eg, Jeg) is 4, we have, by the
Jacobi equation %}J = —4J(¢t). Hence f"(t) = —4f(t). Since RP(2) is
real, its tangent space must equal Sp(eg, e1), hence the Jacobi field starts
out at its maximum length for ¢ = 0. So f(¢t) = cos2t. By a similar
argument the field K{t) = g(t)e; must satisfy g”(t) = —g(t). Here we
assumed e; was chosen such that T, RP(2) = Sp(eg, e1), (unproblematic
when Yy = €p). Hence g(¢) = cost. Finally, for L(t) = h(t)Je1 we also
get h”'(t) = —h(t), this time, however, Je; is orthogonal to T, RP(2),
and h(t) = sint. For precisely one t € (0, ) two of these are equal:
cos(2- L) =sink = % By the formulas of Cecil and Ryan [CR, p. 494]

6 6
the principal curvatures are 2tan2t, tant, —cott. For t = & we get

2\/§, %, and —\/g, coninciding with the values (albeit in a different
order) we had computed for 5\3/57 ,- From Takagi’s list [Tall] it follows
easily that for n = 2 only geodesic spheres and real projective planes
can occur, hence, by Kimura’s theorem, this is the only possibility. It is
not an S* with the given U(2)-action.

§8 We finish with discussing the case a = b*. We have

D2: 3sin ¢ cos @ bog — 3sin® @by = 0
4
D7a: <—b—2 — 7+ 3sin® cp) boo +3sinpcospbyy =0

D3 and D4 are linear equations exactly like this with bg; substituted
for boo and b7 for bgi. D5 and D7b are again the same with this time
bo1 substituted for bgp and bjy for by;. The determinant of this system
equals 12(& — 1) sin? ¢. If this is not zero, we must have bgp = by = 0
and similarly by; = b5 = 0 and by; = by; = 0. From G1 it follows



394 P. Tomter

that siny = 0, which contradicts 12(1%2 — 1)sin®p # 0. Hence this
determinant must be equal to zero.

Now either: (a) b=1 or (b) sinp=0.
First consider b = 1 (= a). We may assume that there exists a point
pE .S’iq”l such that sin@(p) # 0. These points constitute an open set of
Si”yl, and on this open set, from D2 we have by; = cot ¢ bgg, similarly
b7 = cot by, and bj; = cot @by = cot? pbgyy. In addition to this
G1 gives boob11 — b3, = —3sin® ¢ (the rest of G2-G6 are easily seen to
depend on these 4 equations).

We compute:

VysJeo = J[Vy,(cosp Yo —singp J'Y1)]
= J[—sinp Yo(p)Yp + cos o booJeo — cos o Yo(p)J'Ys
— sinVy, J'Y; — sin @ by Jeg)
= J[—Yo(p)Je1 + sin Y1] + (sinp by — cos ¢ bog )eo
= Yo(p)e1 L sing Jeg + (sin @ by — cos ¢ boo)eo-

On the other hand (Vy,Jeg, Yo) = —(Jeq, Vy,Yo) = —(Jeo, booJeg) =
—b()o. Similarly <vYOJ€0,Y1> == —<J60,vy0Y1> = —b01 and
<?Y0J607J,K> = —<J€0,vYOJ,)/1> = —boi. Hence vyojeo = —booYo —
b01Y1 - bOIJ,Yi = (— COS(pb()o + Sin(pboi)eo F b0161 — (b()() sin<p +
by cosp)Je;. Hence we have: by sing + byicos = Fsinp. Substi-
tuting by; = cot @ bgo into this we get: bggsin? ¢ + bog cos? ¢ = bgy =
Fsin? ¢. Also by; = Fsin @ cosp and byp = cot? @ bgy = T cos? .
Now we also have:

Vy, Jeg

= J[Vy, (cos Yy — sing J'Y1) + cos ¢ bo1 Jeg — sin ¢ by1Jeg)]

= J[-sinpYi(p)Yo + cosp Vy, Yo — cos o Y () J'Y1 — sinpVy, J'Yi]
+ sin p by7e0 — cos @ boreg

= J[-Yi(p)Je1r — cosp J'Y, —sinp Yy] + sinp byieq — cos ¢ boreg

— Vi(@)er — J(Jer) + (sin @by — cos pbor)e

=Yi(p)er + e1 + (sinp b7 — cosp bor )eo.

Also (YY1J607Y0> = "<J_607vY1YO> == —b()l, _<V_7y1 JEO,Y1> =
—<J€0,VY1Y1> = —b11, and <VYIJ€0,JIY1> = —<J60,VY1JIY1> = _bli'
Hence: ﬁyl Jeo = —*b01YO — b11}/1 — blijlyl = (bli Sil’l(p - b01 COS @)eo F
birer — (bor sing + by cosp)Jer. So we have: by sinp + byjjcosp = 0.
We also have from D4: by cos — by7sinp = 0 and the determinant of
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this homogeneous system is 1. The only solution is by; = b;7 = 0. From
G1 we have bobi1 = F sin? b1 = —3sin? @, hence by; = 3.
Consider the Codazzi-Mainardi equation (C5): From (6.1):

<R(Y0 N J/K)Yi, —J€0>

2
= <((gz —1) YoAJ,Ya_:tJCOAY1> 1/1,_Jeo>

= (0 F (Y1, Y1)Jeo, —Jeg)
= +1=JY1(bo1) — B(Yo, Vv, Y1) — Yo(bi1)

+ B(J'Y:, Vy, Y1) + B([Yo, J'V3], Y1) = boo + byg — 2b11
= Fsin®p Fcos? ¢ — 2(£3)) = FT.

But this is a contradiction, hence the case a) does not occur.

Next, consider (b): sing = 0. Then we may choose Y5 = e,
Y, = +eq, J'Y; = Je;. We have:

vlel = le}/l + b11J60 = blljeo. Also: ?Ylyl =
Uy, CU®JIY) = FVLCWJ ® Je1) = FVCW ® J'Y;) =

FI(Vy, J'Y1 + bitJeo) = FJI(EYo + bigJeo) = £(—FJeo + bieo);
then b;7 = 0 and b;; = F1. Similarly:
Vi J'Y1 = 0+ bitJeg = bizJeg = =V iy, C(J ® J(Jey))
= :IZC(J(X) vJIY1Y1) = :l:J(VJ/YIH + bﬁJeo)

=7 (I:%Jeo +b1i€0) .

Hence bj; = F1. Furthermore:

= 2
VYoJ’Yl = vYoJIYI + bo1Jeo = (i)% B ;) Y1 + boiJeo

2 _
=+ (1 - 5) e1 + boiJeo = —Vy,C(J @ J(Je1))
=+C(J ® Vy, (1)) = £J(Vy, Y1)

2
= ﬂ:J(VY()Yi +601J60) =4 (; — 1) J(Jel) F b0160

2
==+ (1 — 5) e1 F boieo,

i.e. bopy = bp; = 0. Hence we have now proved that bg1 = by = b7 =0,
b1 = bir = F1. It follows from G4 that byp = 0 also. From G6:
#—T7=1,0" =%, a® = 1. Hence we have proved:
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Theorem 11. . For a® = b* the only possibility for S , is fora = 3,

a

2
bzﬁ. Henceb%—b—‘l:l.
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